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Computer Experiments on Ergodic Problems 

in Anharmonic Lattice Vibrations 
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*Department of Physics, H6sei University, Tokyo 

Various computer experiments based on the numerical integration of dynamical 

equation of motion are reviewed and their importance is emphasized in connection 

with ergodic theory. To do this a short review of the present status of the ergodic 

theories is also given and the interrelations among various results of ergodic theories 

are clarified. The induction period discovered in the previous papers (H. Hirooka and 

N. SaitO, ]. Phys. Soc. Japan 26 (1969), 624; N. Ooyama, H. Hirooka and N. SaitO, 

J. Phys. Soc. Japan 27 (1969), 815) is further examined in one·dimensional anharmonic 

lattices including exponential lattices. The apparent randomness which the system 

exhibits after elapsing the induction period is, strictly speaking, quasi·stochastic in 

the sence that the process is described completely as deterministic. The "true" stocha

sticity which seems required in the thermodynamical state will be realized in the 

thermodynamical limit. 

§1. Introduction 

209 

The ergodic theory is regarded as most fundamental in statistical me

chanics. Since the age of Boltzmann various discussions were given to this 

problem. The development is mainly done by mathematicians, and especially 

important results were obtained by Birkhoff, Von Neumann, Hop£, Khinchine 

and others. The theories, however, were not necessarily satisfactory for phys

icists, since one can say nothing about ergodicity in real physical systems. 

The fundamental postulates of thermodynamics and statistical mechanics, such 

as the zeroth law of thermodynamics or ergodicity etc., are introduced from 

passive experiences or from purely theoretical requirements. The theoretical 

investigation of elucidating these postulates from mechanical point of view is an 

important task of theoretical physics. But there was devised no active experi

ment to clarify the essential aspects of these problems. This is quite peculiar 

compared with other branches of theoretical physics. The unsatisfactory stage 

of mathematical theory of ergodicity, and the lack of experiments which are 

seductive to theorists may be the reason why many physicists have been 

almost indifferent to ergodic theory. 

However in 1950's two epochmaking progresses which opened the new 

ways were made. One is the mathematical studies done by Kolmogorov and 

his school and the other is the numerical experiments on computer carried 
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210 N. Saitt'l, N. Ooyama, Y. Aizawa and H. Hirooka 

out by Fermi and others. These are reviewed in later sections, but it is to be 

emphasized that the progress of computer has made possible the experiments 

which were impossible in the usual procedures of experiments on ordinary 

materials. 

The purpose of the present article is to give a review of computer ex

periments on anharmonic lattices related to the problem of ergodicity. In §2, 

computer experiments for obtaining macroscopic properties by means of numer

ical calculation are reviewed. This kind of molecular dynamics is of course 

related to ergodicity, but no special intention is payed for elucidating ergodic 

problems. In §3 problems initiated by Fermi, Pasta and Ulam and excited 

thereby are discussed. Section 4 is devoted to a short review of the ergodic 

theory, with special emphasis of recent achievements by Kolmogorov and 

others,*) in connection with the existence of the invariant tori in weak anhar

monic vibrations. The relations among the results obtained by various ergodic 

theories are summarized in Figs. 1 and 2. In §5, computer experiments on 

various mechanical models are given to show the isolating integrals as well as 

the unstable regions. These studies are related to the invariant tori discussed 

in §4. Section 6 is the main part of the present article and presents the com

puter experiments made in our laboratory. Especially the induction period is 

investigated in further detail, and the approach to equilibrium is discussed.• 

Section 7 is the conclusion and the meaning of stochasticity is discussed. 

§2. Molecular dynamics 

In the last two decades many computer experiments have been carried 

out in various fields of statirtical mechanics including equilibrium and non

equilibrium problems. In these studies we notice two different approaches. 

The one is the probabilistic method, based on Gibbs' statistics or stochastic 

equations. In equilibrium problems canonical averages are sometimes calculated 

by the Monte Carlo method.1) As an example of time-dependent problems 

we refer to the work of Ogita et al. 2) on the study of the dynamical property 

of an Ising system by simulating it on computer as a stochastic process. 

In the present article, however, we pay particular attention to another 

one, i.e. the method of integrating directly the equation of motion without 

recourse to partition functions or other stochastic methods. For example, Alder 

et al,3) carried out the experiments of the interaction of hard spheres moving 

in a vessel to investigate the phase transition and transport phenomena in 

this system. Similarly Kohler and Bellemans4) verified that the system of 

weakly coupled electric dipoles on a rigid lattice reaches an equilibrium state 

and the relaxation time of fourth moment of angular momentum distribution 

is inversely proportional to the eighth power of the dipole moment, as ex-

*J Excellent reviews are also found in references 12) and 35). 
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Computer Experiments on Ergodic Problems 211 

pected from statistical mechanical theory. Rahman5> and Verlet6> simulated 

on computer the molecular dynamics of liquid argon using a system of 864 

particles interacting through a Lennard-Janes potential and obtained the time

relaxed pair-correlation function and the constant of self-diffusion as well as 

several equilibrium quantities, which agree well with real experiments on 

argon. Further Harp and Berne7> studied the linear- and angular-momentum 

correlation functions in liquid CO. On the other hand, Visscher et al.8> 

discussed the lattice thermal conductivity in disordered harmonic and anhar

monic crystal models. The thermal conductivity obtained shows the expected 

dependence on the composition of the impurity atoms, but, except nearly 

monatomic lattices, the computer experiments yield larger heat conductivities 

in anharmonic lattices than in harmonic ones. In connection with these 

results, Hirooka et al.9> studied the effect of anharmonicity on the localiza

tion of modes in disordered lattices. 

Thus the computer-simulated molecular dynamics gives interesting and 

useful information about macroscopic properties of a system of large number 

of interacting particles. 

§3. FPU problem 

Notwithstanding the success of the works mentioned above of molecular 

dynamics since 1960, we have to make mention of the study of Fermi, Pasta 

and Ulam10 > early in 1950's, which seems the most important computer experi

ment, although the earliest. 

FPU observed on computer how the energy is transfered to higher normal 

modes on exciting the lowest mode initially in one-dimensional anharmonic 

lattices where the nonlinear forces considered are quadratic, cubic and broken 

linear ones. Here the normal modes are defined as those of the system in 

the absence of nonlinear forces. They expected that the presence of anhar

monicity gave rise to the energy sharing among normal modes required for 

the establishment of an equilibrium state. Unexpectedly, however, they failed 

to show the appreciable energy transfer to higher modes, but rather they 

found a recurrence phenomenon. This surprising result seems to be in con

tradiction to the zeroth law of thermodynamics. 

A similar phenomenon was also observed by Saito and Hirooka, 11> who 

showed that a one-dimensional anharmonic lattice does not have a tendency 

to reach a new equilibrium state which is characterized by a Maxwell distribu

tion of particle velocities, when a constant force is applied to the system 

which is initially in mechanical equilibrium. Since the work of Fermi et al., 

many investigations followed to explain the FPU results. In particular Ford12> 

and Jackson13> emphasized the resonance condition for energy exchange among 

normal modes. Northcote and Potts14> considered a lattice of harmonically 
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212 N. Sait6, N. Ooyama, Y. Aizawa and H. Hirooka 

bound particles, but introduced an additional potential of rigid-sphere type be

tween nearest particles. This system, which is regarded as a limiting case 

of large anharmonicity, was shown to reach an equilibrium state when one 

excites the lowest mode. The existence of stable and stochastic regions in 

anharmonic vibrations was pointed out by Israiliev and Chirikov15J and by 

Zaslavski and Sagdeev.16J They have given qualitative arguments from the 

approximate treatments of nonlinear vibration. 

On the other hand Zabusky,17l observing that the anharmonic lattice vibra

tion is approximately described by Korteweg-de Vries (KdV) equation, studied 

the properties of solitons in this case by computer experiments and found the 

recurrence phenomenon which is similar to FPU case. Toda18l·19l also found 

analytically the wave train solution and the solitary wave solution (lattice 

soliton) in a special example of coupled nonlinear oscillators. The recurrence 

phenomenon and the existence of stable solitons in anharmonic lattices or in 

KdV equations show nonergodic property of these systems. The stability of 

lattice solitons is discussed elsewhere in this issue by Ooyama and Saito.18l 

The ergodic property of anharmonic lattice vibrations will be discussed in 

the present paper, but before doing this, it would be appropriate to make a 

short review of ergodic theory. 

§4. Short review of ergodic theories of classical mechanics 

The term ergodic is sometimes used with confusion. Boltzmann assumed 

that most physical systems are ergodic, in the sense that a representative 

point in r-space passes through every point of the energy surface correspond

ing to the initial condition. One also says that a system is ergodic, if the 

long time average] of any dynamical quantity expressed as a phase space 

function f of the system is equal to its ensemble average f*. These two ways 

of use have different meanings. We retain the term ergodic for the latter 

meaning, and we use the term "ergodic in Boltzmann's meaning" for the 

original meaning introduced by Boltzmann. It is recognized that ergodic systems 

in Boltzmann's meaning would never exist, since the crossing of the path in 

phase space cannot occur and thus the constant-energy surface of dimension 

larger than 2 cannot be filled by an essentially one-dimensional orbit. Thus 

one expects that most physical systems would be quasi-ergodic, in the sence 

that an orbit in phase space covers the energy surface everywhere densely. 

In 1931, Birkhoff21J proved that the dynamical system is ergodic if and 

only if the surface of constant energy in phase space is metrically indecom

posable. But it is not necessarily trivial to determine in Birkhoff's theorem 

whether or not a real system is indecomposable. Many mathematical models 

are proposed to show that there exist the transformations which ensure the 

metric transitivity. Especially Oxtoby and Ulam22J proved that homeomorphism 
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Computer Experiments on Ergodic Problems 213 

on a quite general class of surfaces are metrically indecomposable. In this 

connection mention must be made of the theorems due to Burns and Poincare 

found in the last century. Burns23 ' showed that in the problem of three 

bodies no algebraic integral exists other than ten well-known integrals, namely 

the six integrals of motion of the center of gravity, three integrals of angular 

momentum and the integral of energy. Further Poincare24' showed that a 

canonical normal system does not have a family of integrals other than that 

of energy which are analytic and uniform in a certain domain and for small 

range of parameter p,. A canonical normal system is defined as the conserva

tive system which is described by a set of coordinates y 1, X;, (i= 1, 2, ···, n), in 

such a way that the Hamiltonian H can be expanded as 

H=Ho+ttll1+tt2Hz+··· (1) 

with respect to a small parameter p,, where Ho is independent of x;'s and, Hand 

H.'s are periodic in x;'s. In 1923, Fermi25' proved by generalizing Poincare's 

theorem that a canonical normal system for n:2:2 does not have a uniform 

integral aside from the energy integral, and thus the system is quasi-ergodic. 

A system of anharmonic oscillators belongs to this class of canonical normal 

systems. Van Hove,26 ' however, claimed that a quasi-ergodic system is not 

always metrically transitive. Furthermore, if an isolating integral exists (§5), 

the non-existence of uniform integrals does not lead to quasi-ergodicity. An 

important result was obtained in 1954 by Kolmogorov.27' Kolmogorov, Arnold 

and Moser (KAM) 27' proved that almost all the systems with invariant 

multidimensional tori, such as harmonic lattice vibration, remain stable against 

the introduction of small nonlinear perturbations. In other words, the motion 

of the perturbed system is restricted to the invariant tori close to the invar

iant tori of the unperturbed system, provided that the frequencies of the 

unperturbed motion are incommensurate. This theorem was first proved for 

canonical normal system with nondegenerate unperturbed frequencies, i.e. 

(2) 

but later the theorem is extended to degenerate cases by Arnold27 ' and espe

cially by Nisida28 ' by reducing them to nondegenerate cases by means of the 

Birkhoff transformation. The invariant tori in these theories are not uniform 

integrals and do not conflict with Poincare-Fermi theorem. These invariant 

tori will be broken under the larger nonlinear perturbation, and the system is 

expected to become ergodic, although no analytical theory is presented yet. 

The computer studies of these problems are given in §§5 and 6, which form 

the main parts of the present article. 

A trajectory of a system is described as a geodesics on a space of a 
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214 N. Sait<>, N. Ooyama, Y. Aizawa and H. Hirooka 

certain metric. The geodesic flow on a manifold with negative curvature 1s 

shown ergodic by Anosov.29> This kind of system is called a C-system. In 

C-systems two orbits with close initial data are exponentially divergent. 

Recently Sinai30> proved that a system composed of more than two hard 

spheres contained in a parallelepipedic box with rigid walls is ergodic and 

further it is a K-system. For the definition of K-system some mathematical 

preliminaries are required and thus we do not enter into it here.27> We fur

ther notice that in real thermodynamical systems the long time average f 
defined by 

_ 1 ~t+T/2 

/=lim T fdt 
T..;o= t-T/2 

(3) 

can be replaced by a short time average 

/'.. 1 ~t+T/2 
!=- fdt 

'r t-T/2 

(4) 

provided that -r>-ro, where -ro is the characteristic relaxation time of the system. 

In other words, we say that the system is thermodynamical if the relation 

........ -
f=f=f* (5) 

holds. For the establishment of thermodynamical state, it is conjectured that 

hermodynam1cal f"' 1* 

Ex1stence of Invanont Ton 

Co-Extstence of Invonant Ton 
and Instability Reg1ons 

Vanishing of Isolating 
Integrals and Increase 
of Instability Reg1ons 

© 
Fig. 1. Diagram showing the relation among various ergodic theories. IA]...i....lli] means 

that B follows from A by the introduction of a property C. The dotted lines 

indicate conjectures. 
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Computer Experiments on Ergodic Problems 

Ergodic j = l Non- E;godic ht* 

--------------~------ ----------------

Metrrcal 
Indecomposability 

Quasi- Ergodicity 

Non- Existence· ·:>f 

Isolating Integrals 

Non- Ex1stence of 

I : 

Met neal 
Decomposability 

------------------

Non-Quasi- Ergodicity 

Uniform Integrals 
Ex1stence of Uniform Integrals 

' ' . 
' I 
I ' 

' 
Hard Core Canonrcal Seporable 
Gas System Normal System System 

' : 
' 

A B C DE FG 

Fig. 2. Classification of mechanical systems. 
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the thermodynamical limit (n-=, V-=, n/V=const) will be necessary. 

Thus Sinai's proof that the gas system for n>2 is ergodic will be extended 

to the statement that the gas system for n-oo is thermodynamical. Figures 

1 and 2 are the summary of the present section. In Fig. 1 we show the inter

relation among the results of various ergodic theories for dynamical systems. 

Figure 2 is the relations of the domains where the classifications of dynamical 

systems hold. The vertical lines indicate the boundaries of the classifications 

and their mutual positions. It is conjectured that for n-oo, the solid vertical 

lines at C.D.E.F move to the right up to the vertical line at G and thus 

KAM region vanishes. In this way, almost all the physical system will 

become thermodynamical, as expected. 

§5. Existence of isolating integrals and instability regions 

As mentioned in §4, there exists no uniform integral other than energy 

in canonical normal systems. This kind of integral is assumed uniform with 

respect to a parameter p., provided that p. is small. However, it is possible 

that there exist integrals at some fixed value of p.. These integrals are some

times called isolating, third or adelphic integrals. The KAM invariant tori 

are isolating integrals. Search for such integrals has been carried out for a 

long time, especially by astronomers. Recently, with the motion of stars in 

the galaxy in mind, computer studies have been made for the motion of a 
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216 N. Saito, N. Ooyama, Y. AiEawa and H. Hirooka 

particle in various potential fields with axial symmetry. Among others,31) 

Henon and Heiles82 l considered the motion in a plane containing the symmetry 

axis of the potential fields. They discussed the system with Hamiltonian 

given by 

H= ~ (.:P+Y)+ U(x,y), 

U(x,y)= ~ (x2 +y2 +2x2y- ~ y8). 

(6) 

By virtue of the energy integral, if we put x=O, we have an orbit in the 

(y, y, x) space. Henon-Heiles represented the results of computation by plott

ing in the (y, y) plane the consecutive points crossing the x=O plane with 

positive x>O. When the total energy is small, the consecutive points in the 

(y, y) plane lie exactly on a curve, called level curve. These curves form a 

one-parameter family which covers completely the available area, and also 

show the existence of the stable points and the separatrix (Fig. 3). On in

creasing the energy, however, the available area is divided into two; one is 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

-0.4 

-04 -0.3 -0.2-01 0 01 0.2 0.3 0.4 05 y 

Fig. 3. Henon-Heiles' level curves. 

Total energy E=0.0833. 

y ~~~~~~~~~~~~~ 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

-~·:.-:·._:-.- .. 
.. 

"·""~ 
:-:.~_-. ~0-
.. = 

.~ : • . ·• . . . 0 .. 

r-----, .. , . ' . 
. ......____, : ;-: . . 

-0.5-0.4-0.3-02-0.1 0 0.1 0.2 03 0.4 05 0.6 0.7 y 

Fig. 4. Henon-Heiles' level curves. Total 

energy E=0.12500. The dots in the unsta

ble region belong to a single orbit. 

filled by level curves and the other is rather random and is devoid of level 

curves. This random region lies around the separatrix mentioned above (Fig. 

4). The existence of level curves means the existence of isolating integrals, 

which can be identified as the invariant tori found by Kolmogorov. The 

instability region near the separatrix is also found in the magnetic surface in 

a plasma studied by Mel'nikov33) and others.34l Same kind of study is carried 

out by Walker and Ford35) in a system with isolated or double resonances. 

All these studies show the existence of isolating integrals as well as the in

stability region arising from the amplitude instability. This is regarded to be 
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Computer Experiments on Ergodic Problems 217 

consistent with KAM theory. Furthermore according to Ford and Lunsford,36> 

in the anharmonic oscillators with resonant nonlinear terms, for example, in 

a system with Hamiltonian 

H = J1 + 2J2 + 3Ja +r [a.J1.n12 cos 2(~1-~2) 

+ S(J1J2Ja) 112 cosC~1 +~2 -~a)] (7) 

expressed in terms of action-angle variables, irreversibility occurs even in limit 

of r~O. They showed this by calculating the instability region and the separa

tion of two trajectories initially started with a small distance. 

Recently Aizawa37> discussed a nonlinear spring with the Hamiltonian 

(8) 

He found the nonlinear normal modes and studied on computer their stability 

for the cases of N = 3 and 4 by the method of Henan and Heiles. In the 

unstable region where the isolating integral is missing, the system has a 

property of C-system just like the Ford-Lunsford36' model discussed above. 

It is also surmised that for N~oo the unstable region covers all the energy 

surface, and thus the system results in the thermodynamical state. 

§6. Experiments on one- and two-dimensional vibrations 

a. Models for computer experiments 

In this section we consider the systems of one-dimensional lattice of 

(N + 2) identical particles as well as of two-dimensional square lattice of 

(N+2) X (N+2) particles, both with fixed-boundary conditions, interacting 

through quadratic harmonic potentials and quartic anharmonic potentials, i.e. 

(9) 

between nearest neighbors. As will be explained later, we have to make 

computer experiments with larger amplitudes in order to get thermal equilibrium. 

Larger amplitude might, however, cause the collapse of the lattice in case of 

cubic potential. The Hamiltonians of the systems considered here are assumed 

to be given for one- and two-dimensional cases respectively by 

(10) 

Xo=XN+1=0, 

and 
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218 N. SaitO, N. Ooyama, Y. Aizawa and H. Hirooka 

1 N N 

H2=- ~P~1+ ~V(x,+t.J-x, 1 ) 
2 i,i~l i,j-0 

N 

+ -~ r V(x,,f+l-x,1), 
.,,=0 

(11) 

l, m=O, ···, N+ 1, 

where p/s or p,/s are momenta of particles and the second and third terms 

in H2 represent the central-force potentials and noncentral-force potentials be
tween nearest neighbors respectively. The anharmonic coupling constant A 

can be varied at our disposal. This enables us to see the effect of the an

harmonicity upon the behaviors of our systems, which is impossible on using 

the 0-function type strong anharmonicity. Initially one of the normal modes 

is excited and the motion of all the particles are calculated using a set of 

differential-difference equations by means of the Runge-Kutta-Gill method. 

The energy of each normal mode and other necessary quantities are calculated. 

The normal modes of anharmonic lattices are defined, as mentioned in §3, as 

those of the corresponding harmonic lattice. Thus the energies of the harmonic 

parts of the total Hamiltonians H 1 and H 2 are given respectively by the 

normal coordinates Q/s and Q1/s 

1 . 
s•=--zC~+co!QD, 

co.= 2sin( 2(J;+ 1))' 

_ • 2 ZTr • 2 }Tr ( . . )1/2 
co11-2 sm 2(N+ 1) +rsm 2(N+ 1) · 

(12) 

(13) 

(14) 

(15) 

A useful check of consistency of numerical calculation is provided by the con

servation of total energy defined by the sum of kinetic, harmonic and anharmonic 

potential energies. The conservation of energy was confirmed within the error 

less than 0.01% in all the calculations, on using the time increment of less 

than 1/50 of the period, 2n/co, of the highest frequency mode. 

Our computer experiments were done firstly in two-dimensional case38> and 

thereafter in one-dimensional case,39>·*> with almost similar results for both 

ones. The advantage of the two-dimensional model over the one-dimensional 

one is that in the two-dimensional case one can choose elastic constant r so 

as to make the distribution of normal frequencies convenient for our purpose, 

*' The detailed reports of experiments described in this section are also given in these refer

ences. 
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by making some of the frequencies nearly equal to one another even in a 

system of small number of particles, although the two-dimensional system is 

accompanied with the inconvenience of providing larger boundary effect. For 

example, the frequencies and the periods of the normal modes in the case of 

N= 3 (9 movable particles) and r= 

0.9 are given in Table I, which shows 

that (1, 3), (3, 1) and (2, 2) modes 

have almost equal frequencies. As a 

consequence the resonance condition, 

proposed by Ford12> and Jackson13> will 

be satisfied, and the exchange of energy 

among normal modes will take place 

easily. Furthermore the periods of the 

normal modes lie in small range be

tween 2.47 and 5.96, and this will 

give rise to the exchange of the energy 

among all normal modes in rather 

short computation time. In one-dimen-

Table I. Nonnal frequencies and periods 

in the case of N=3, ')'=0.9. 

Mode number O'JiJ 21t/O'Ji} 

1,1 1.06 5.96 

1,2 1.54 4.07 

1,3 1. 91 3.29 

2,1 1.59 3.95 

2,2 1.95 3.22 

2,3 2.25 2.79 

3,1 1.99 3.17 

3,2 2.28 2.75 

3,3 2.55 2.47 

sional lattices, the distribution of normal frequencies depends only on the 

number of particles and the resonance condition mentioned above is supposed 

to be realized more easily in a system of much more particles. This circum

stances, however, will be improved by introducing impurities with different 

masses and/or spring constants, as treated by Jackson, or by exciting a normal 

mode with larger energy. The latter attempt was achieved by Ooyama et al.,39> 

and the result will also be described below. 

b. Energy sharing among normal modes 

Some characteristic behaviors of energy sharing among normal modes can 

be found in the square lattice of N=3 when we excite the (2, 2) mode with 

the anharmonic coupling constant .A= 0.5 under the initial conditions 

Q ··= {2.0 
., 0 

for (i,j) = (2, 2) 

otherwise 

for all (i,j). 

(16) 

In all the experiments described here we take the initial conditions of zero 

initial velocities (Q=O). Thus we do not repeat to write explicitly this con

dition in what follows. We find, as shown in Fig. 5, that at the initial stage, 

the energy of the (2, 2) mode is not transfered to the other modes appreciably 

and the motion itself seems periodic and stable, but, after an elapse of a 

certain amount of time, which we call the induction period, abrupt energy 

transfer to (1, 3) and (3, 1) modes takes place. The existence of the induc

tion period implies that, during this period, the energies of the normal modes 
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Fig. 5. Energy sharing among normal modes in a two-dimensional square lattice with 

N=3, 7=0.9 and A=O. 5. The (2, 2) mode only is excited. 

other than the excited one (2, 2) increase slowly up to certain critical values. 

Thus if, besides exciting the (2, 2) mode initially, we excite all the other 

modes with very small amount of energies (for example about the order of 

10-3 of the energy of the main excited mode), we expect that the induction 

period is reduced greatly and the thermal equilibrium is attained in a shorter 

time. Thus on exciting the (2, 2) mode by the initial conditions 

for (i,j) = (2, 2) 

otherwise, 
(17) 

the induction period is found to become 1/4 of the case of Fig. 5 and almost 

all modes are excited at the final stage of computation. 

The energy sharing among normal modes in two-dimensional lattice de

scribed above is achieved by the presence of resonance condition. However 

the resonance condition need not be satisfied strictly as pointed out by Jackson, 

provided that anharmonicity is large. Thus in a system without strict reso

nance condition or even in a one-dimensional system one can expect the same 

kind of energy sharing. This is really the case, and we find the induction 

periods also in one-dimensional anharmonic lattices. 

Here we note that, because of the symmetry properties of the initial 

condition and the potential energy of quadratic and quartic types the even 

modes can never be excited, when an odd mode is initially excited. This 
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Fig. 6. Energy sharing among normal modes in a one-dimensional lattice with A=O.l. 

The 11th mode is excited. The 9th mode becomes excited, but is omitted here. 

Single precision. In this connection an erratum should be made. In Fig. 7 in the 

previous paper••> A=O.l should read A=O. 088. 
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symmetry, however, is easily broken by the presence of errors introduced in 

the process of computation, and therefore the even modes can be excited. 

This is seen in Fig. 6. When one excite the 11th mode, the 13th and 9th 

modes are easily excited after the elapse of the induction period and then the 

12th mode begins to be excited. Clearly this is due to the computation errors. 

By a more precise calculation using the double precision program (see Fig. 7), 

we found that the 12th mode begins to be excited at a later time than the 

experiment given in Fig. 6. The induction period does not change and the 

computation result remains unaltered by the more precise calculation up to 

the time when the energy begins to be transferred to the 12th mode in Fig. 6. 

On the other hand in real physical systems, we never have such an ideal 

system as is completely isolated from the surrounding medium. The interaction 

of surrounding medium has the effect of introducing the errors of energies of 

the normal modes, although the total energy of the system is kept almost 

constant. In our present computer experiments, the computation errors do 

change the normal mode energies appreciably but do not destroy the conser

vation of total energy. As is mentioned already, a check of computation 

errors is done by the conservation of the total energy. Of course the errors 

of the conservation of the total energy increases gradually as the time proceeds, 

but we could not find the abrupt increase of the errors even when the 12th 

mode becomes excited. The computation errors are generally to be avoided, 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.4

5
.2

0
9
/1

8
4
2
8
8
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



222 

>
(!) 

7.0 

6.0 

5.0 

ffi 40 
z 
UJ 

lO 

1.0 

0 

1200 

200 

11 

1«XJ 

N. SaitO, N. Ooyama, Y. Aizawa and H. Hirooka 

11 

400 

1600 

13 

600 BOO 

TIME 

1800 

TIME 
2000 

1000 

2200 

1200 

Fig. 7. Energy sharing among normal modes in a one-dimensional lattice with 71.=0.1. 

Double precision. Compare Fig. 7 with Fig. 6. 

but in our present purpose this effect turns out to be not always annoying 

but rather to be regarded positively as a necessary effect by interpreting it as 

the interaction of the surrounding medium in real systems. We adopt this 

view, but otherwise, our system is never ergodic. 

Therefore after the elapse of the induction period we expect that all the 

modes are excited and the system reaches a thermal equilibrium. In an

harmonic lattice vibration, however, the normal mode energies are not neces

sarily same to all the modes. It is better to see whether the velocities of 

the particles obey Maxwell distribution or not when the energy sharing among 

normal modes takes place. We found that the long time averages of the 

kinetic energies of individual particles tend to a constant value, and those of 

the products of the velocities of different particles have a tendency to vanish 
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after elapsing the induction period.39> This also confirms the establishment of 

thermal equilibrium. 

c. Induction period 

The induction period found in the computer experiments described above 

seems to be an essential feature for the establishment of a thermal equilibrium 

in the anharmonic lattice vibration. For quantitative purpose, we define the 

induction period T by the time required for the energy of the initially excited 

mode to be reduced to the one half of the initial value. When other conditions 

are same, the induction period becomes larger, the smaller the coupling constant 

A is. Figure 8 shows the relation between 1/T and A. It is thus surmised 

that there exists a critical value Ac2 under which the induction period becomes 

infinite and the system is not ergodic. However one has to notice that this 

result is obtained by admitting the computation errors. On decreasing A, the 

induction period becomes long and thus the 12th mode becomes excited before 

the induction period elapses. As one sees in Fig. 7 which is obtained by a 

more precise calculation with the double precision program, the 13th and 9th 

modes only are excited and the system is periodic although at t=2300, the 

12th mode becomes excited due to the computation errors. In this case of 

small A, the induction period varies according to the degree of precision in 

the calculation. We can say that there is another critical value ku under 

which only the 9th and the 13th modes are excited and the system behaves 
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Fig. 8. Inverse of the induction period vs anharmonic coupling constant. 
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periodically until the 12th mode becomes excited. The inverse of the time 

necessary for these two modes to be excited lies on the extention of 1/T--;. 

relation. This is easily understood, because the induction period defined 

above is just the time necessary for the 13th mode to be excited. 

d. Exponential lattice 

As mentioned in §1, Toda18> has found the "normal" modes*> and solitary 

waves (solitons) in an exponential lattice with the potential 

V(r) =_!!_(e-6' +br) 
b 

(18) 

where r is the deviation from the equilibrium distance of the neighboring 

particles and a and b are constants. The existence of stable "normal" modes 

or solitons seems contradictory to the ergodic properties of the anharmonic 

lattice. The stability problems of solitons are discussed by Ooyama et aJ.2°> 

Here we present the same kind of the experiments described above in the 

lattices of the potential (18). Figure 9 is the result of the calculation on the 

energy sharing among the modes when one excites the 11th mode (N= 15, 

a=0.471, b=2.127, ab=l, ab2/2=1.06), and shows that after the elapse of 

the induction period the system reaches a thermal equilibrium. On the other 

hand, Fig. 10 (a=0.646, b=1.54, ab=l, ab2/2=0.77) shows rather periodic 

behavior. The anharmonicity in the potential is expressed by ab2 /2. This 

quantity is 0.77 for Fig. 10 but it is 1.06 for Fig. 9. For smaller ab2 /2= 0.5 

(a= 1, b= 1) we have striking periodic behavior as shown in Fig. 11, which 

corresponds to Fig. 7 in the quartic anharmonic potential. 

In concluding this section, mention is to be made further. Chirikov et al.40> 

made similar experiments on the system with the same Hamiltonian given by 

Eqs. (8) and (9), and found the same phenomena as ours. They considered 

as essential the time required for the energy sharing to take place among the 

modes including the eventh, and regarded it as a measure of instability. 

According to our present discussion, the computation errors are necessary for 

the complete energy sharing, but the measure of instability defined by Chirikov 

et al. is easy to change by different computer programs, and thus cannot be 

regarded as a characteristic quantity of the system. Recently Inoue41> studied 

the system of two anharmonically coupled oscillators by the Mori42> theory of 

*> The meaning of "normal" mode used here is different from the normal mode without " " 

defined in the above section. The "normal" mode with " " is the motion of such a wave as its 

shape does not change with time. 
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Brownian motion, and evaluated the frequency shift and the damping constant 

of the normal mode. Although the damping constant is shown to be anomalous 

at the resonance condition, it is rather periodic with positive and negative 

values alternately. It is expected that in the limit of large number of oscil

lators, the damping constant calculated in this manner really exhibits "damping". 

§7. Discussion and quasi stochasticity 

The recurrence phenomena and the non-ergodic properties of the an

harmonic lattice vibrations found by Fermi et aP0> and Saito et al.11' described 

in §3 can be explained by the result of Kolmogorov and others/7' since as 

far as the anharmonic coupling constant A is small, there exists invariant tori. 

We have also shown in §6 that there exists a critical value ..lc of the coupling 

constant A so that depending on A larger or smaller than ..lc, the system is 

ergodic or not. For A>..lc the behavior of the system under the given initial 

condition is similar to those of the unstable region found by Henan and Heiles82' 

or by Ford and others.85'·36' These region, however, is not stochastic region 

in its strict meaning, because the behavior is completely deterministic as a 

solution of a set of differential equations. In spite of this, it is also to be 

noted that the use of the word "stochastic" in these region is not without 

reason. As shown in §§5 and 6, the behaviors of the systems in the unstable 

regions are irregular, oscillatory and aperiodic. Thus it would be better to 

say that the system is quasi-stochastic. It is difficult to define the degree of 

quasi-stochasticity, but whatever definition one may adopt, it is conjectured 

that the larger the system, the degree of quasi-stochasticity becomes larger. 

In our experiments on anharmonic lattice vibrations, the computation errors 

which come in inevitably are found to play an essential role. We take into 

account positively the effect of the computation errors, since the initial condi

tions we adopted cannot give rise to the excitation of the even modes under 

mathematical rigor. Other initial conditions or other systems, such as having 

cubic potentials, do not require the computation errors. Chirikov40 ' assigned 

the time required for the excitation of an even mode as a measure of the 

relaxation time to reach the equilibrium state. 

In this paper we have presented the computer experiments made mainly 

in our laboratory, but still important problems remain unsolved. The studies 

for the case of cubic potentials, the effect of the impurities,*> and the depend

ence of the induction periods on the mode number or the number of particles 

etc. are now in progress, and other studies related to ergodicity as well are 

going on. 

*> This was suggested by Professor Ford. 
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