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Abstract

We revisit the problem of determining the sample size for a Gaussian process emulator

and provide a data analytic tool for exact sample size calculations that goes beyond the

n = 10d rule of thumb and is based on an IMSPE-related criterion. This allows us to

tie sample size and prediction accuracy to the anticipated roughness of the simulated

data, and to propose an experimental process for computer experiments, with extension

to a robust scheme.

1 Introduction

The Gaussian process model was proposed by Sacks et al. (1989b) as a statistical emulator

for deterministic computer codes, and a large body of literature has subsequently been de-

voted to the exploration of its performance under various conditions. Experimental design

for computer experiments has been extensively investigated, whether space-filling designs

(see e.g. Johnson et al. (1990), Joseph et al. (2012)) or optimal designs driven by different

statistical criteria (e.g. Sacks et al. (1989a), Shewry and Wynn (1987), Harari and Steinberg
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(2014)).

One might think that the design of experiments for deterministic computer model emulation

would be a topic with little left to study. Still, Only a small amount of literature has been

dedicated to the foundational topic of sample size in computer experiments, and practition-

ers often make the naive assumption that the sample size should grow linearly with the

input dimension, known as the “n = 10d” rule of thumb, where d is the number of inputs

to the computer model (Chapman et al. (1994), Jones et al. (1998)). A partial justification

for the latter is given by Loeppky et al. (2009), who advocate the n = 10d rule in specific

cases. Their message is that, for relatively uncomplicated surfaces and moderate d, good

prediction accuracy can be obtained with n = 10d observations in an initial experiment, and

increasing n further can increase accuracy further. However, if n = 10d observations results

in poor accuracy, (which tends to happen in complicated or high dimensional codes with

input factors having similar complexity), then the improvement in accuracy through adding

more runs tends not to be helpful.

In this paper, we take the view that the choice of experimental design ought to take into

account the prior belief about the complexity of the response surface, the desired prediction

accuracy, and the available resources.

The underlying structural assumptions about the approximated response surface by embrac-

ing the n = 10d rule are far-reaching, and are often not fully understood. For d = 20, for

example, n = 200 would not even suffice to estimate a linear model with 20 main effects and

all 190 two-factor interactions. Fitting a Gaussian process model using so few data points

must then reflect the belief by experimenter that either the change in the response is purely

additive in many of the factors or that several factors are entirely inert.

Originally, small sample sizes were a consequence of lengthy simulation run-times, numerical
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singularity in the correlation matrix and computational issues, stemming from the need to

store and repeatedly invert a large n × n covariance matrix. With remedies in place (see

e.g. Ranjan et al. (2011), Kaufman et al. (2011)), in conjunction with improving computing

capabilities, it is expected that large-scale computer experiments will routinely take place in

the near future. It is easy to imagine models with a large number of inputs (≥ 100) where

factor sparsity (Box and Meyer (1986)) implies that relatively few ( ≈ 20) of the inputs are

important. In such cases, careful consideration of the model structure and the goals of the

experiment are important.

The sample size for an experiment, the complexity of the model, and the prediction goals of

the experiment are intimately related. In this paper we attempt to provide methodology for

computer experiments to address their interrelationships.

This paper is organized as follows. Section 2 provides a brief introduction to the Gaussian

process model commonly used for computer model emulation. In addition, we take high

prediction accuracy as an experimental objective and propose different interpretations for

that goal. Section 3 ties the prediction accuracy to the sample size and the model hy-

perparameters that specify the response surface complexity, and discusses consequences for

experimental design. In Section 4 we develop a methodical experimental process for com-

puter experiments, and in Section 5 we demonstrate the proposed process on an experiment

involving a piston simulator. We then provide a robust scheme, in Section 6, to handle

uncertainty with regard to the hyperparameters. Section 7 includes a discussion and some

thoughts for future work.

For the reader’s convenience, a web applications was created to accompany this paper and

facilitate future analyses. For details, see the Supplementary Materials section.
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2 Gaussian Processes Emulators for Deterministic Com-

puter Models

2.1 Gaussian Process Regression

Building a computer model emulator can be viewed as nonparametric regression for deter-

ministic simulators. The reasons for using the conventional specification for the Gaussian

process (Sacks et al., 1989b) lie with its ability to interpolate the model output and to quan-

tify uncertainty at unsampled inputs.

In this setting, the computer model output, y (x), is viewed as a realization of a sta-

tionary, zero mean, Gaussian process with covariance function C (x,x′) = σ2Rθ (x− x′).

The correlation function, Rθ (·), depends on the vector of hyperparameters θ that govern

the correlation between responses at separate locations. Denote the experimental design

D = {x1, . . . ,xn} ⊂ X , where X ⊂ R
d is the experimental region. We will assume, without

loss of generality, that X = [0, 1]d. Let y = [y (x1) , . . . , y (xn)]
T be a vector of observations

at the design points, and denote by Rθ the matrix whose entries are Rij = Rθ (xi − xj).

Then for any x ∈ X , choosing the Kriging predictor

ŷ (x) = E
{
y (x)

∣∣y
}
= r

θ
(x)T R−1

θ
y, (1)

to predict y (x) would yield the Mean Squared Prediction Error (MSPE)

E
[
{ŷ (x)− y (x)}2

∣∣y
]
= Var

{
y (x)

∣∣y
}
= σ2

{
1− r

θ
(x)T R−1

θ
r

θ
(x)
}
, (2)

for r
θ
(x) = [Rθ (x− x1) , . . . , Rθ (x− xn)]

T. For the rest of this paper we suppress the

θ subscript, keeping in mind that the correlation between responses at different locations

depends heavily on these hyperparameters.
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2.2 A Measure for Prediction Accuracy

Using (2), the Integrated MSPE (IMSPE) of the Kriging predictor (1) is given by

J (ŷ,D;θ) =

∫

[0,1]d
E
[
{ŷ (x)− y (x)}2

∣∣y
]
dx = σ2 − σ2tr

{
R−1

∫

[0,1]d
r (x) r (x)T dx

}
.

(3)

Weighted versions of (3) have been proposed to emphasize prediction in certain areas of the

design region (see e.g. Sacks et al. (1989b)).

As y (x) is taken to be stationary, Var {y (x)} = σ2, we may then consider the normalized

quantity

J (ŷ,D;θ)

σ2
=

∫

[0,1]d

Var
{
y (x)

∣∣D
}

Var {y (x)} dx (4)

as the average proportion of the variability of y (x) that remains unexplained by design D.

This is reminiscent of the proportion of unexplained variability in linear regression mod-

els, typically calculated as the ratio of the sum of squares for error and the total sum of

squares. In this case. however, (4) is for out of sample observations. Following this anal-

ogy, we can form the counterpart of the squared multiple correlation coefficient in regression.

Proposition 1. Let y (x) ∼ GP (0, σ2R) and let ŷ (x) = r (x)T R−1y be the Kriging predic-

tor of y (x). Then

1− J (ŷ,D;θ)

σ2
= ρ2 (y, ŷ) ..=

∫

[0,1]d
ρ2 (y (x) , ŷ (x)) dx, (5)

where ρ (·, ·) denotes the correlation coefficient.
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Proof. First note that, from (1)

cov (y (x) , ŷ (x)) = r (x)T R−1cov (y (x) ,y) = σ2r (x)T R−1r (x) = Var {ŷ (x)}

and, since Var {y (x)} = σ2, we have

ρ2 (y (x) , ŷ (x)) =

{
σ2r (x)T R−1r (x)

}2

σ2 · σ2r (x)T R−1r (x)
= r (x)T R−1r (x) .

The result follows from (2) and (4).

We can interpret ρ2 (y, ŷ) in (5) as the average squared correlation among the simulator

responses and predicted responses at unsampled inputs. Proposition 1 sheds new light on

the interpretation of IMSPE-optimal designs (see e.g. Sacks et al. (1989b)). The proposition

demonstrates that minimizing the IMSPE is equivalent to maximizing the average, squared,

out-of-sample correlation between y (x) and ŷ (x). By minimizing the IMSPE we can expect

to improve the predictive ability of the Kriging predictor.

Definition 1.

The Root Average Unexplained Variability (RAUV) of predictor ŷ, evaluated at design D ⊂

[0, 1]d is

RAUV (ŷ;D,θ) =

(J (ŷ,D;θ)

σ2

)1/2

=

(∫

[0,1]d

Var
{
y (x)

∣∣D
}

Var {y (x)} dx

)1/2

.

We propose RAUV as a measure of expected prediction error on designing a computer

experiment. Its indicated magnitude is relative to the prior standard deviation, and the

choice of the square root scale is in line with similar measures used by Loeppky et al.

(2009) and Chen et al. (2016). It is common practice to measure model performance by its
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Empirical Root Mean Square Error (ERMSE) computed on a holdout set, normalized by

some measure of the variation in the data measured in the original units, such as the range

or the empirical standard deviation. We have found sample sizes that warrant low a priori

RAUV to be consistent with good empirical prediction accuracy, much more so than the

average unexplained variability without the square root. It can also be justified equivalently

in terms of uncertainty quantification: requiring RAUV ≤ 0.05 means that we want the

square root of the average squared length of our prediction intervals to shrink by 95% once

data is observed. From Proposition 1

RAUV (ŷ;D,θ) =
√

1− ρ2 (y, ŷ).

Thus, ensuring RAUV (ŷ) ≤ ε, explaining at least 100 (1− ε2)% of the variability in y (x)

by the model and achieving |ρ (ŷ, y)| ≥
√
1− ε2 are equivalent for Gaussian process model

fitting in the context of computer model emulation.

3 Model Complexity, Sample Size and Prediction Ac-

curacy

We invoke the result of Micchelli and Wahba (1981) and Harari and Steinberg (2014) to shed

some light on the link between the complexity of the model being estimated, the prediction

accuracy and sample size.

Theorem 1. If

R (x,x′;θ) =
∞∑

k=1

λkϕk (x)ϕk (x
′)

is the Mercer expansion of R(·;θ) on [0, 1]d, with eigenfunctions {ϕk (x)} and eigenvalues
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{λk}, then

inf
D

{J (ŷ;D,θ)

σ2

}
≥
∑

k≥n+1

λk. (6)

Over [0, 1]d, the eigenfunctions and eigenvalues can be solved numerically; in particular, for

separable correlation functions, the problem reduces to a series of univariate eigendecompo-

sitions. Details are provided in Harari and Steinberg (2014).

The inequality (6) encapsulates the complex relationship between sample size, model com-

plexity (in the form of the Gaussian process hyperparameters) and prediction accuracy. One

immediate result is the following.

Corollary 1.

Let {λk} be the set of eigenvalues of R (x,x′;θ). Let nc be the critical sample size required

to achieve RAUV ≤ ε for some ε > 0. Then

nc ≥ min



n :

√ ∑

k≥n+1

λk ≤ ε



 = min

{
n :

n∑

k=1

λk ≥ 1− ε2

}
. (7)

Given some idea about the way in which the different inputs act, one can then, (at least

approximately) derive analytically the required sample size for a given average level of pre-

diction accuracy. Thus, to achieve an acceptable amount of unexplained variability, one has

a choice of ε, and this depends on the particular application and its goals.

For the piston example of Section 5, Figure 7 there displays actual vs. predicted values for

a large holdout set, where the predicted values are obtained from (1). The four panels show
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sample sizes of 30, 50, 70, and 120, respectively, which, for the hyperparameters θ selected

for the piston example, correspond to ε values of 0.191, 0.120, 0.086 and 0.045. In the top

left panel of the figure, n = 30 and ε = 0.191, the quality of the fit is far from perfect, but

this corresponds to 96% of the average explained variability. In our experience, agreement

such as that indicated in top right panel of Figure 7 (with n = 50 and ε = 0.1) reflects, for

deterministic simulators, an acceptable fit with at least 99% of the variability (on average)

explained. An even better fit, in the bottom right corner of Figure 7, corresponds to ε = 0.05

(and n = 120).

Remark 1.

Ideally, one would like an upper bound of the form

inf
D

{J (ŷ;D,θ)

σ2

}
≤
∑

k≥n+1

λk + α2 (n,θ)

to bound the critical sample size n
L
≤ nc ≤ n

U
, with n

U
guaranteeing an RAUV below the

desired threshold. Without an upper bound we treat inequality (6) roughly as an equality

throughout this paper, and remember that we need to choose a slightly larger sample size

than the one recommended by (7). This approach is supported by Figure 2 and the findings

of the simulation study in Section 5.

We now proceed to use these ideas in a practical setting by fixing any two of the three

vertices of the triangle appearing in Figure 1 and observing the impact on the third vertex.
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Prediction Accuracy

(RAUV)

Model Complexity

(θ)

Sample Size

(n)

Figure 1: The three interacting elements of a (computer) experiment.

3.1 Sample size for a desired level of prediction accuracy and fixed

θ

For fixed Gaussian process hyperparameters (model complexity) and a given level of predic-

tion accuracy (RAUV), determination of the required sample size follows a simple application

of Corollary 1.

Example 3.1.1.

Consider the computer code used by Yi et al. (2005) to simulate ligand activation of G-protein

in yeast. Loeppky et al. (2009) fixed five of nine factors and used a 4-dimensional Gaussian

process emulator for the response, using the squared-exponential correlation function

R (x,x′;θ) = exp

{
−

4∑

i=1

|xi − x′
i|2

θi

}
, (8)

with θ = (θ1, θ2, θ3, θ4) a vector of correlation length parameters.

Based on a design with n = 80 runs, they found the maximum likelihood estimates for the

emulator to be θ̂ = (9.09, 1.59, 1.79, 0.56). Treating these for the moment as the actual

parameters for the data-generating process, we can find the eigenvalue. Figure 2 shows the
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lower bound
√∑

k≥n+1 λk for the RAUV versus n. If we set a threshold ε = 0.05, the

smallest sample size for which the threshold is crossed is n = 21. Also plotted are the

RAUV values for IMSPE-optimal designs of various sample sizes and the given θ. While the

theoretical lower bound is closely approached by the empirical values, caution needs to be

taken and a few more runs (in this example 5 or 6) may be needed to guarantee that the

desired precision level is achieved. More conservatism is called for when the design to be

used is not IMSPE-optimal. In this example both the lower bound curve and the empirical

IMSPE values indicate that a sample size of n = 10d = 40 should be more than enough

for an adequate fit (if parameter estimates are to be trusted), which is consistent with the

findings of Loeppky et al. (2009).

Sample Size

R
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n
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e
d
 V
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ty

1 10 20 30 40 50 60 70 80 90 110 130 150 170 190 210 230 250

0
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0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0

θ = ( 9.09 , 1.59 , 1.79 , 0.56 )

For RAUV ≤ 0.05 you will need n ≥ 21

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

Figure 2: RAUV lower bound curve for the squared exponential correlation function, with
the estimated correlation length parameters for the G-protein example from Loeppky et al.
(2009). The dots in the figure denote RAUV values calculated for IMSPE-optimal designs.

Example 3.1.2.

We look to find an n that will give an RAUV of ε = 0.05 for a Gaussian process model with
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the product Matérn correlation function

R (x,x′;φ,ν) =
d∏

i=1

1

Γ(νi)2νi−1

(
2
√
νi |xi − x′

i|
φi

)νi

Kνi

(
2
√
νi |xi − x′

i|
φi

)
,

where φi and νi are the correlation length and smoothness parameters along the ith direction,

respectively, and Kν (·) is the modified Bessel function of order ν. Here we focus on an

isotropic 4-dimensional process with φ1 = · · ·φ4 = 1 and ν1 = · · · = ν4 = 5/2 (to guarantee

twice differentiable realizations). In this case the lower bound curve (see Figure 3) indicates

that a sample size of n ≥ 112 is required for the precision target we set for ourselves, and

the n = 10d rule with d = 4 is inadequate; a process whose realizations are harder to predict

compared to a process that is based on the squared exponential correlation function, requires

more observations for the same level of prediction accuracy.

Sample Size
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.2

0
0
.2

5

θ = (1,1,1,1) ; ν = 2.5

For RAUV ≤ 0.05 you will need n ≥ 112

Figure 3: RAUV lower bound curve for the product Matérn correlation function of an
isotropic process with ν = 5/2 and θ = 1.
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3.2 Assessing prediction accuracy for fixed n and θ

With a limited computation budget, the experimenter is interested in anticipated quality of

the predictions that can be achieved for the emulator. For instance, solving for eigenvalues

and taking advantage of (6), the product Matérn correlation function specified in Example

3.1.2, n = 40 runs, leads to RAUV ≥ 0.128. If this level of inaccuracy is excessive, the

experimenter may consider instead exploring only a sub-set of the inputs or increasing the

computational budget.

3.3 Maximum model complexity for fixed n and prediction accu-

racy

Inequality (6) does not define a one-to-one relationship between the Gaussian process hy-

perparameters and the sample size required for a desired level of prediction accuracy. If,

however, one only considers isotropic models, (7) can be inverted. Suppose, for example,

that one wishes the most complicated isotropic Gaussian process model that can be investi-

gated with prediction accuracy RAUV ≤ 0.05 and the product Matérn correlation function

with ν = 5/2 and n = 40, correlation length of φ = 1.46 is the minimum value that results

in
√∑

k≥41 λk ≤ 0.05. With this parameter determined, the experimenter can then produce

Functional Analysis of Variance (FANOVA) plots (see Saltelli et al. (2008)) of realizations

from an isotropic Gaussian process with φ = 1.46.

Figure 4 displays 20 realizations from a univariate Gaussian process based on the product

Matérn correlation function with φ = 1.46 and ν = 5/2. If the realizations demonstrate a

complexity that is less than the experimenter’s belief in the computer model then this φ is

unlikely to achieve the desired level of precision. In that case, one may either find a way to

increase the sample size or lower the a priori expectations with regard to prediction accuracy.
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x

Z
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

Figure 4: 20 realizations drawn from a univariate Gaussian process based on the product
Matérn correlation function with φ = 1.46 and ν = 5/2.

4 Stepping Through Design Process

Ultimately, the design of computer experiments shares many of the same features as the

design of physical experiments. The experimenter is usually faced with having to propose

2 of the 3 values in Figure 1. In general, we recommend roughly following the proposed

scheme, below, when designing a computer experiment.

4.1 Eliciting a prior

Choose a suitable correlation family and hyperparameters. This amounts to choosing the

response surface model and related complexity. We recommend presenting the experimenter

with several plots of realizations similar to Figure 4 as guidance, and recommend choosing

a prior process that is slightly less smooth than the anticipated response as a matter of

robustness.

4.2 Calculating the required sample size/expected accuracy

Obtain a lower bound for the required number of runs for a desired level of prediction

accuracy (as in Subsection 3.1). Alternatively, on a fixed budget of runs, the expected
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prediction accuracy of the Gaussian process model (see Subsection 3.2) can be assessed.

As another alternative, examine the complexity level of the response that the budget and

prediction accuracy allow, as in Section 3.3.

4.3 Making operational decisions

If the calculated required number of runs is operationally feasible, one can proceed that

number of runs, and preferably more in view of (7). If for a feasible number of runs, the

calculated RAUV appears to be greater than a tolerable level, a mitigating measure could

be considered.

1. Reducing dimensionality by eliminating inputs: Obviously, every input coded

into the simulator likely matters to some degree. Some inputs, however, may be thought

to be less influential than others. If an expert can identify inputs whose absence from

the model may have little bearing on the response, omitting those from the model (while

holding them fixed at, say, their midpoint during computer runs) can significantly

decrease the required number of runs.

2. Altering the emulation model: Excessive RAUV is an indication that lack of

training data can lead to predicting a constant everywhere (except for spikes at the

observed simulator outputs), in which case one might consider sacrificing interpolation

and retreating to “traditional”, parametric statistical models.

5 An Illustration

Consider the piston simulation appearing in Kenett and Zacks (1998). Here, a piston’s linear

motion is transformed into circular motion of a rod connected to a disk. The measured
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response is the time it takes to complete one cycle,

C (M,S, V0, k, P0, Ta, T0) = 2π

(
M

k + S2 P0V0

T0

Ta

V 2

)1/2

(9)

for V =
S

2k

{(
A2 + 4k

P0V0

T0

Ta

)1/2

− A

}
and A = P0S + 19.62M − kV0

S
,

where M ∈ [30, 60] is the piston weight (kg), S ∈ [0.005, 0.020] is the piston surface area

(m2), V0 ∈ [0.002, 0.010] is the initial gas volume (m3), k ∈ [1000, 5000] is the spring coeffi-

cient (N/m), P0 ∈ [9× 104, 11× 104] is the atmospheric pressure (N/m2), Ta ∈ [290, 296] is

the ambient temperature (K), and T0 ∈ [340− 360] is the filling gas temperature (K). More

documentation (and code) for this model can be found at http://www.sfu.ca/~ssurjano/

emulat.html.

Suppose that the underlying model is unknown, but that an expert believes that with all

other factors being held fixed, letting M increase will increase the cycle time moderately in

a nonlinear fashion and that the same is true for k, although a reverse trend is expected;

likewise, that increasing S will result in a sharp, nonlinear decrease in cycle time, while the

opposite will happen when V0 alone varies; that within the experimental region the average

effect of P0 is very limited; and that varying Ta has an unnoticeable effect on the cycle time,

the same being true for T0.

In practice, we might use realizations drawn from univariate Gaussian processes, with dif-

ferent values of the correlation lengths, to help specify θ. In the absence of a domain expert

our assessments would then be based on the main effect plots from the FANOVA of the

cycle time C (x), see Figure 5. In light of the sensitivity plots, a Gaussian process prior

with a squared exponential correlation function (8) would be selected with hyperparameters
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θ = (1, 0.4, 0.4, 1, 3, 10, 10), leading to a sample size of n ≥ 210 when aiming at RAUV ≤ 0.05

in (7). Instead, ignoring T0 and Ta and treating the model as 5-dimensional leads to a critical

sample size of n ≥ 111. We to compare the performance of the different sample sizes.

x1

y

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.1
0

.0
0

.1
0

.2

x2

y

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.1
0

.0
0

.1
0

.2

x3

y

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.1
0

.0
0

.1
0

.2

x4

y

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.1
0

.0
0

.1
0

.2

x5

y

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.1
0

.0
0

.1
0

.2

x6

y

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.1
0

.0
0

.1
0

.2

x7

y

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.1
0

.0
0

.1
0

.2

Figure 5: Main effect plots for the piston simulator, provided by the tgp R package (Gramacy
and Taddy (2010)), where x1, . . . , x7 represent the input variables M , S, V0, k, P0, Ta, T0,
respectively.

Since randomness in the response can only be incorporated via randomness in the design,

we generated 50 random 5-dimensional Latin hypercube samples of various sample sizes. We

first took a conservative approach to the sample size and chose n = 120 instead of n = 111

suggested by the inequality (7). In order to compare the 10d rule of thumb for d = 5 or

d = 7, we also considered n = 50 and n = 70. The corresponding RAUV is shown in column

2 of Table 1.

To measure performance using simulated data, we evaluated the Empirical RAUV

ERAUV (ŷ;D) =

(∑nho

i=1 (ŷ
ho

i − yho

i )2

n
ho
σ̂2

)1/2
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at a size n
ho

= 100, 000 holdout set in the 7-dimensional space, where the estimate σ̂2 = 0.022

was obtained by fitting a one time 5-dimensional model to a size 1000 dataset that remained

fixed throughout the simulation study.

●

●

●

●
●

Sample Size

E
R

A
U

V

30 50 70 120

0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2
0
.1

4
0
.1

6
0
.1

8
0
.2

0
0
.2

2
0
.2

4

Figure 6: Empirical RAUV values over 50 repetitions for the piston example. Each repetition
stands for a randomly chosen Latin hypercube (for each sample size).

Results of the simulation study appear in Table 1 and Figure 6. The variability in the results

shows how the randomness of the choice of the design (Latin hypercube in this case) propa-

gates into the model. With an additional design optimality criterion (maximin distance for

example) one should expect to see clear separation between the different sample sizes.

The maximum likelihood estimates, θ̂ = (1.60, 0.30, 0.50, 0.44, 1.99), turned out to be quite

different from our early assessment. In spite of this, our procedure seems to have captured

the overall complexity of the model to a good degree, judging by the proximity of the the-

oretical RAUV values (for the specified parameter values) to the empirical ones in Table 1.

Section 6 discusses a robust procedure that allows the experimenter to provide a range of

values for each correlation length parameter, rather than giving a single guess.
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Sample Size Theoretical RAUV ERAUV
30 ≥ 0.191 0.172(±0.025)
50 ≥ 0.120 0.107(±0.024)
70 ≥ 0.086 0.080(±0.013)
120 ≥ 0.045 0.050(±0.008)

Table 1: Summary of simulation results for the piston cycle time model. Average ERAUV
results appear with ± one standard deviation.

Finally, Figure 7 provides a visualization of the improvement of the RAUV (for randomly

chosen designs) from 0.167 to 0.106, 0.079 and finally 0.048 as the sample size increases from

30 to 50, 70 and 120, respectively (for a single fit, each).

6 Robust Sample Size Calculations

The task of choosing values for the correlation parameters is challenging, and specifying a

range of values may be easier in practice. It is therefore natural to consider incorporating

some uncertainty with respect to these chosen values to enhance robustness.

Denote by g : Rd → N
+ the function that maps each vector of correlation parameters θ to a

critical sample size nc through (7). If we now assign a distribution θ ∼ π (θ), g will induce

a probability measure on nc. Drawing a random sample {θi} from π (θ) will then result in

a Monte Carlo sample {g (θi)} from a distribution π (nc) of sample sizes.

As an example, consider the piston simulation of Section 5 and assign θ1,. . .,θ5 independent

uniform priors on [0.8, 1.2], [0.25, 0.55], [0.25, 0.55], [0.8, 1.2] and [2, 4], respectively (see the

“Moderate uncertainty” scenario in Table 2). We drew a random sample of size 10, 000

from π (θ) and produced the corresponding random sample from π (nc) through solving for

eigenvalues and calculating the critical sample size (7) for each drawn vector. Figure 8

shows the histogram for the sample sizes. Given the uncertainty in the response surface
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Figure 7: True response vs. fitted plots for the piston example, based on sample sizes of 30,
50, 70 and 120, respectively, and randomly constructed Latin hypercube designs.

specification, a choice must be made in order to run the experiment. One could, of course,

choose the maximum sample size from those observed. Doing so would be extreme in our

view (and also would require more random samples to appropriately estimate the maximum

sample size). Looking at the plot, a line at n = 140, marking the 95th percentile of the

sample sizes, is added. We view this as representing a safe choice for a sample size that

accounts for uncertainty in θ. Although the eventual recommended sample size is somewhat

larger than that from Section 5, it is still rather economical compared to the worst case

scenario sample of 187.

The choice of prior distribution for the correlation parameters impacts the sample size. One

might be tempted to think that more uncertainty in the complexity requires more samples,
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Figure 8: A histogram of a Monte Carlo sample from the sample size distribution π (nc),
induced by assigning a distribution π (θ). The cutoff at n ≥ 140 marks the 95th percentile.

Very high uncertainty High uncertainty Moderate uncertainty
Range n (95%) Range n (95%) Range n (95%)

θ1 : [0.001, 5]

≥ 157

θ1 : [0.5, 1.5]

≥ 214

θ1 : [0.8, 1.2]

≥ 140
θ2 : [0.001, 5] θ2 : [0.1, 0.7] θ2 : [0.25, 0.55]
θ3 : [0.001, 5] θ3 : [0.1, 0.7] θ3 : [0.25, 0.55]
θ4 : [0.001, 5] θ4 : [0.5, 1.5] θ4 : [0.8, 1.2]
θ5 : [0.001, 5] θ5 : [1, 5] θ5 : [2, 4]

Table 2: Robust sample size calculations for the piston simulation, based on different levels
of uncertainty.

but this is not necessarily the case. To study how sample size calculations are impacted by

the choice of π (θ), we assigned θ1,. . .,θ5 independent uniform priors on respective intervals

about their conjectured values. Table 2 summarizes the results of a small scale simulation.

We considered three scenarios: “Very high uncertainty”, “High uncertainty” and “Moderate

uncertainty”, pertaining to long, fairly long, and medium length intervals, respectively. For

each scenario we drew a random sample of size 10, 000 from π (θ) and produced the cor-

responding random sample from π (nc) through solving for eigenvalues and calculating the

critical sample size (7) for each sampled vector.

Looking at Table 2, increased uncertainty does not automatically translate into increased
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sample size. The wide intervals in the leftmost column resulted in some inactive dimensions

for many of the randomly drawn vectors, and in turn to a smaller sample size than the one

recommended for the more focused “High uncertainty” scenario.

7 Discussion

The machine learning community refers to the IMSPE curve versus n as the “learning curve”

(see e.g. Williams and Vivarelli (2000)) and, over the years, tighter lower bounds than (6)

for the case of noisy data – as well as upper bounds – have been derived (see e.g. Sollich

(1999)). However, in the interpolation setting we are considering, these bounds do not apply.

Thus the bound in (6) is used in this paper. It has been found to be fast to calculate and,

as Figure 2 implies, fairly tight in practice.

As a possible topic for future research, one could look to establish an explicit expression

governing the trade-off between the correlation length θ and the required sample size for a

given ε. We performed a simulation study for the isotropic 4-dimensional product Matérn

kernel with smoothness parameter ν = 2.5 by calculating nc for θ = 0.05, 0.1, 0.15, . . . , 2.5

and ε = 0.05. Figure 9 shows the results in the log-log scale, along with the fitted linear

regression line. The estimated slope is very close to −3, suggesting the critical sample size

decays at a rate of O (θ−3) for this example.

We are in agreement with Loeppky et al. (2009) in noting that in high dimensions, the

number of samples may be onerous. As an illustration, we considered a setting with d = 26

inputs and varied the number of active factors from 1 to 26. For each number of active

inputs, and sample sizes of n = 50, 100, 200, 400, and 500, we generated 50 realizations

of a Gaussian process with the product power-exponential covariance and θ = 1 for the

active factors, using a randomly drawn Latin hypercube design along with a hold-out set
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Figure 9: The minimum sample size (7) required to achieve RAUV ≤ 0.05 vs. correla-
tion length for a 4 dimensional isotropic Gaussian process based on the product Matérn
correlation function with smoothness ν = 2.5.

of 100 randomly chosen trials. The Kriging model, with the product power-exponential

covariance, was fit to each simulated dataset and the predictive performance was evaluated

on the corresponding hold-out set using the empirical value of

∫

[0,1]d

Var
{
y (x)

∣∣D
}

Var {y (x)} dx.

There, for a fixed sample size, the average unexplained variability grows fairly rapidly as

the number of active factors increases. Indeed, even when n = 500, we see that, when the

number of active factors is about 15, the Gaussian process emulator has a difficult time

predicting the response surface accurately. Overall, the more complex the response surface

and the more active inputs influencing the response, the larger the sample size required.

We repeated the same procedure, but generated data for the same scenarios using a sum

of 1-d independent Gaussian processes (one for each active dimension) with θ = 1 for the

active factors. However, the data analysis was performed using the same Kriging model as

before with the product squared-exponential covariance. The results are summarized in Fig-
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ure 10b. There, for the same sample sizes and numbers of active dimensions, the standard

GP explains almost all of the variability on average, except for the relatively small setting

of n = 50. The take-away message here is that, when the model is simple, the Gaussian

process does an admirable job at computer model emulation.

Our belief is that the complexity of many computer models lies somewhere between these

two extremes, and thus the methodology proposed in this paper is a conservative approach.

The illustrations point to a need for a class of simpler random functions that represent the

space in which the computer model response surface lie for both design and analysis.

Supplementary Materials

A web application that performs all the analyzes presented in this paper is available at

https://harario.shinyapps.io/Sample Size Shiny. In addition, R code for the study of Section

5 is available online as supplementary material.
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