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We propose a method of synthesizing computer-generated holograms of real-life three-dimensional ~3-D!

objects. An ordinary digital camera illuminated by incoherent white light records several projections of
the 3-D object from different points of view. The recorded data are numerically processed to yield a
two-dimensional complex function, which is then encoded as a computer-generated hologram. When
this hologram is illuminated by a plane wave, a 3-D real image of the object is reconstructed. © 2001
Optical Society of America
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1. Introduction

Since the invention of the hologram more than 50
years ago,1 holographic recording of real objects has
been performed by wave interference. In general,
interference between optical waves demands special
stability of the optical system and relatively intense
light with a high degree of coherence between the
involved beams. These requirements have pre-
vented hologram recorders from becoming as widely
used for outdoor photography as conventional
cameras. A partial solution to these limitations is
obtained by the techniques of holographic stereo-
grams2,3 ~also known as multiplex holograms4,5!.
However, optical interference is also involved in re-
cording of holographic stereograms, although it is
off-line interference. The meaning of “off-line” here
is that a reference beam interferes with a beam dif-
fracted from a motion picture film. The motion pic-
ture film contains many viewpoints of the object, and
the object is in-line recorded by a motion picture cam-
era. However, unlike ordinary holograms,1,6 holo-
graphic stereograms do not reconstruct the true wave
front that is diffracted from an object when this object
is coherently illuminated. The reconstructed wave
front from a holographic stereogram is composed of a

set of discrete patches; each patch contains a differ-
ent perspective projection of the object. Because of
the discontinuity between those patches, the imita-
tion of the observed reality cannot be complete.

In this study we propose a process of recording a
computer-generated hologram ~CGH! of a real-world
three-dimensional ~3-D! object under conditions of in-
coherent white illumination. Yet the true wave
front diffracted from the object, when it is coherently
illuminated, can be reconstructed from the proposed
hologram. In other words, after a process of record-
ing the scene under incoherent illumination and dig-
ital computing, we get a two-dimensional ~2-D!
complex function. This function is equal to the com-
plex amplitude of coherent light diffracted from the
same object and propagates through a particular op-
tical system described below. Thus apparently we
succeed in recording the complex amplitude of some
wave front without beam interference. It should im-
mediately be said that we do not propose here a gen-
eral method of recording complex amplitude without
interference. Our system cannot sense any phase
modulations that happen between the object and the
recording system. However, let us look at a 3-D ob-
ject illuminated by a coherent plane wave. If the
reflected beam from the object propagates in free
space and then through the particular optical system,
the result at the output plane is some complex am-
plitude. We claim that this complex amplitude can
be restored under incoherent conditions. Once this
complex function is in computer memory, we can en-
code it to a CGH. When this CGH is illuminated by
a plane wave, which then propagates through the
same optical system mentioned above, the image of

Y. Li, D. Abookasis, and J. Rosen ~rosen@ee.bgu.ac.il! are with
the Department of Electrical and Computer Engineering, Ben-
Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105,
Israel.

Received 25 September 2000; revised manuscript received 27
February 2001.

0003-6935y01y172864-07$15.00y0
© 2001 Optical Society of America

2864 APPLIED OPTICS y Vol. 40, No. 17 y 10 June 2001



the 3-D object is reconstructed in space as a common
holographic image.

Similarly as in stereogram photography, we record
several digital pictures of the object from different
points of view. The pictures are recorded into a dig-
ital computer, which computes a CGH from the input
data. Illuminating this hologram by a plane wave
reconstructs the original objects and creates the vol-
ume effect in the observer’s eyes. The hologram that
we would like to produce is of the type of a Fourier
hologram. This means that the image is recon-
structed in the vicinity of the back focal plane of a
spherical lens when the hologram is displayed on the
front focal plane. However, a complete 2-D Fourier
hologram can be recorded if the camera’s points of
view are on a 2-D transverse grid of points. Because
it is technically impractical, or at least quite difficult,
to shift the camera out of the horizontal plane along
a 2-D transverse grid of points, the hologram that we
produce here is only a one-dimensional ~1-D! Fourier
hologram along the horizontal axis and an image
hologram along the vertical axis. Consequently, the
coherent system that we emulate and the recon-
structing system are both composed of a cylindrical
Fourier lens in the horizontal axis and a second cy-
lindrical imaging lens in the vertical axis. In Sec-
tion 2 we describe the recording process in detail.

2. Recording and Synthesizing the

Computer-Generated Hologram

The recording setup is shown in the upper part of Fig.
1. A 3-D object function o1~x, y, z! is located at the
coordinate system ~x, y, z!. o1~x, y, z! represents the

intensity reflected from all the observed bodies in the
scene. From each point of view, the camera observes
the scene through an imaging lens located at a dis-
tance L from the origin of ~x, y, z!. The camera is
actually shifted in constant angular steps along a
horizontal arc centered about the origin, and it is
always directed to the origin. The angle between
the camera’s optical axis and the z axis is denoted ui.
For each ui, the projected image o2~xi, yi, ui! is re-
corded into the computer, where ~xi, yi! are the coor-
dinates of the image plane of each camera. On the
basis of simple geometrical considerations, the rela-
tion between ~xi, yi, ui! and ~x, y, z! is given by

~ xi, yi! 5 ~ x cos ui 1 z sin ui, y!. (1)

For simplicity, we assume that the magnification fac-
tor of the imaging lens is 1. Also, because distance L
is much greater than the depth of the object, all the
object points are equally imaged with the same mag-
nification factor of 1.

Inside the computer, each projected function is
Fourier transformed along horizontal axis xi only and
is imaged along vertical axis yi. We assume that the
digital 1-D Fourier transform ~FT! is a perfect imita-
tion of an optical system, such that the collection of
1-D FTs is given by

o3~u, v, ui! } * * o2~ xi, yi, ui!exp~2i2puxiylf !

3 d~v 2 yi!dxidyi, (2)

where l is the wavelength of the plane wave illumi-
nating the system and f is the focal length of the
cylindrical Fourier lens. The coherent optical sys-
tem that yields the same result as relation ~2! is
shown in Fig. 2~a!. For each ui value, the real posi-
tive transparency function o2~xi, yi, ui! is displayed on
the front focal plane of lens Lx and then illuminated
by a plane wave. Because of the focal length of lens
Ly, there is an imaging relation between axes yi and
v. Assuming an ideal system, this image is ex-
pressed by the convolution of the object function with
a d function7 in relation ~2!. This lens setup is also
used later for reconstructing the hologram. Note
that the optical system shown in Fig. 2~a! is only the
optical equivalent system of the digital computation.
The operation expressed in relation ~2! is performed
by the digital computer to preserve the phase infor-
mation of the FT of the projections without the use of
light interference. The optical equivalent system is
presented in Fig. 2~a! for clarity only, not as a system
that was really implemented in this study. It should
be also emphasized that, although no phase informa-
tion is contained in any of the object’s projections, the
phase information that describes the object’s 3-D
structure is actually recovered by the digital process,
as discussed next.

Let us consider now the relation between o3~u, v, ui!
and the object o1~x, y, z!. For a single infinitesimal
element of size ~Dx, Dy, Dz!, at point ~x9, y9, z9!, with
the intensity o1~x9, y9, z9! from the entire 3-D object

Fig. 1. Schematic of the holographic recording and reconstructing
systems. SLM, spatial light modulator.

10 June 2001 y Vol. 40, No. 17 y APPLIED OPTICS 2865



function, the distribution on the ~u,v! plane for each ui

value is

o3~u, v, ui! } o1~ x9, y9, z9!exp~2i2puxiylf !

3 d~v 2 yi!DxDyDz. (3)

Relation ~3! is obtained from relation ~2! because,
for each ui value, a single point at the input scene is
imaged to a point at the ~xi, yi! plane. The d function
in relation ~3! is a mathematical idealization of the
fact that the point at yi is imaged to the line v 5 yi on
the ~u, v! plane. Substituting Eq. ~1! into relation ~3!
yields

o3~u, v, ui! } o1~ x9, y9, z9!exp@2i2p~ux9 cos ui

1 uz9 sin ui!ylf#d~v 2 y9!DxDyDz.
(4)

Next we examine the influence of all points of the
object o1~x, y, z! on the distribution of o3~u, v, ui!.
The object is 3-D, and the FT operates only along the
horizontal axis, whereas along the vertical axis the
picture is perfectly imaged. Therefore the overall
distribution of o3~u, v, ui! is obtained by a 3-D integral
of the expression in relation ~4! as follows:

o3~u, v, ui! } * * * o1~ x, y, z!exp@2i2p~ux cos ui

1 uz sin ui!ylf#d~v 2 y!dxdydz. (5)

Relation ~5! describes a tomographic process in the
visible-light regime.8,9 By an appropriate Fourier
transform from the spatial frequency coordinates10

~ fx, fz! 5 ~u cos ui, u sin ui! to ~x, z!, the 3-D object o1~x,
y, z! can be digitally reconstructed from o3~u, v, ui!
inside the computer. However, it is not our inten-
tion here to deal with tomography or with digital
reconstruction. Our goal is to pull out from the en-
tire 3-D distribution given in relation ~5! a particular
2-D distribution only. This 2-D distribution, when it
is encoded into a CGH and illuminated properly,
yields a holographic reconstruction of the object.

The maximum range of angle ui is chosen to be
small ~no more than 16° on each side in the present
example!. Therefore we are allowed to use the fol-
lowing small-angle approximations: cos ui ' 1 and
sin ui ' ui. Recalling our original goal to get a 2-D
hologram containing the information on the objects’
volume, we next reduce the 3-D function given by
relation ~5! to a 2-D function. From the 3-D function
o3~u, v, ui!, we take only the 2-D data that exist on the
mathematical plane defined by the equation ui 5 au
in the ~u, v, ui! space, where a is some chosen param-
eter. Substituting this condition with the small-
angle approximations into relation ~5! yields the
following 2-D function:

h~u, v! 5 o3~u, v, ui 5 au!u cos ui51
sin ui5ui5au

5 * * * o1~ x, y, z!d~v 2 y!exp@2i2p~ux

1 au2z!ylf#dxdydz. (6)

Let us summarize the process up to this point:
The 3-D object o1~x, y, z! is recorded from several
angle values ui. In the computer the recorded data
of projections of the scene are designated o2~xi, yi, ui!.
For each value of ui, each matrix is Fourier trans-
formed along xi and imaged along yi. The 3-D ma-
trix obtained is designated o3~u, v, ui!. Finally, from
the entire 3-D matrix we select only the 2-D matrix
with all the values that satisfy the equation ui 5 au.

Next we show that, if a is chosen to be a 5 21y~2f !,
h~u, v! is equal to the complex amplitude on the out-
put plane of the equivalent coherent system, shown
in Fig. 2~b!. It should be emphasized that this co-
herent system is only the equivalent optical system
for the expression in relation ~6!, and we depict it in
Fig. 2~b! only to clarify the equivalent model. The
complex amplitude is examined at the back focal
plane of a convex cylindrical lens ~horizontally focus-
ing! when a plane wave is reflected from the 3-D
object o1~x, y, z! located at the back focal plane and is
perfectly imaged along the vertical axis. For a sin-
gle infinitesimal element of the size ~Dx, Dy, Dz! from
the entire object with an amplitude of o1~x9, y9, z9!, the
complex amplitude at the plane ~u, v! is11,12

g1~u, v! 5 Ao1~ x9, y9, z9!d~v 2 y!

3 expF2i2p

l
Sux

f
2

u2z

2f 2DGDxDyDz,

(7)

Fig. 2. Equivalent optical systems for ~a! the digital computation
performed on each projection and ~b! the hologram recording.
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where A is a constant. Summation over the contri-
butions from all the points of the 3-D object yields the
following complex amplitude:

g~u, v! 5 A * * * o1~ x, y, z!d~v 2 y!

3 expF2i2p

l
Sux

f
2

u2z

2f 2DGdxdydz. (8)

Comparing Eqs. ~8! and ~6!, we see indeed that sub-
stituting a 5 21y~2f ! into Eq. ~6! yields an expression
similar to the one given in Eq. ~8!. The only differ-
ence is that o1~x, y, z! in Eq. ~8! represents a complex
amplitude, whereas in Eq. ~6! it represents an inten-
sity. As the intensity of the reconstructed object
from h~u, v! is proportional to uo1~x, y, z!u2, its gray-
tone distribution is expected to be deformed com-
pared with the gray-tone map of the original object.
However, we can compensate for this deformation by
computing the square root of the grabbed pictures in
the recording stage. In both functions h~u, v! and
g~u, v! the object’s 3-D structure is preserved in a
holographic manner. This means that the light dif-
fracted from the hologram is focused into various
transverse planes along the propagation axis accord-
ing to the object’s 3-D structure.

Parameter a can in fact take any arbitrary real
value, not just the value 21y~2f !. In that case, after
integration variable z is changed to z9 5 22faz, Eq.
~6! becomes

h~u, v! } * * * o1Sx, y,
2z9

2af
Dd~v 2 y!

3 expF2i2p

l
Sux

f
2

u2z9

2f 2 DGdxdydz9. (9)

Relation ~9! also has the form of Eq. ~8! but with the
change that the hologram obtained describes the
same object on a different scale along its longitudinal
dimension z. We conclude that by our choice of pa-
rameter a we can control the longitudinal magnifica-
tion of the reconstructed image, as we show below.

Equation ~8! represents a complex wave front,
which usually should be interfered with a reference
wave to be recorded. In the case of wave interfer-
ence the intensity of the resultant interference pat-
tern keeps the original complex wave front in one of
four separable terms.6 However, in our case the
complex wave-front distribution is recorded into com-
puter memory in the form of Eq. ~6! @or relation ~9!#
without any interference experiment and actually
without the need to illuminate the object with coher-
ent laser light. Because the expression in Eq. ~6!
describes the equivalent of a wave-front distribution,
it contains 3-D holographic information on the origi-
nal objects, which can be retrieved as described in
what follows.

As we mentioned above, the hologram values are
stored in computer memory in the form of the com-
plex function h~u, v!. To reconstruct the image from

the hologram, the computer should modulate some
transparency medium with the hologram values. If
the transparency cannot be modulated directly with
complex values, one of many well-known coding
methods for CGHs13 might be used. The spatial
light modulator ~SLM! that we use in this study can
modulate the intensity of light with continuous gray
tones. Therefore, complex function h~u, v! is coded
into a positive real transparency as follows,

hr~u, v! 5 0.5(1 1 ReHh~u, v!

3 expFi2p

lf
~dx u 1 dy v!GJ) , (10)

where ~dx, dy! is the new origin point of the recon-
struction space and uh~u, v!u is normalized at 0–1.

The holographic reconstruction setup is shown in
the lower part of Fig. 1. To get the output image
with the same orientation as the object, we display
the 180°-rotated hologram h~2u, 2v! on the SLM.
Then the SLM is illuminated by a plane wave, which
propagates through the SLM and the two cylindrical
lenses with two orthogonal axes. Through lens Lu, a
1-D FT of h~2u, 2v! along u is obtained at the back
focal plane along xo. Lens Lv images the distribu-
tion along the v axis on the yo axis. This optical
setup is identical to the equivalent coherent system
shown in Fig. 2~b!, and therefore the real image of the
original 3-D object is reconstructed in the vicinity of
the back focal plane of cylindrical lens Lu.

To calculate the magnification of the image along
each axis we consider the equivalent optical process
on object and on image planes. Based on Eq. ~6!
together with the operation of lens Lu, the effective

Fig. 3. Sixteen projections of the sixty-five projections of the input
scene taken by the camera from various viewpoints.
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system from plane ~x, y! to the output plane, along
the horizontal axis, is similar to a 4-f system.14

Therefore the overall horizontal magnification is
identical to 1. In the vertical axis the object is im-
aged twice from plane ~x, y! to output plane ~xo, yo!,
and therefore the magnification is also equal to 1.
On the longitudinal axis the situation is a bit more
complicated. Looking at Eq. ~6! and the Fourier lens
Lu, we see a telescopic system but with two different
lenses. From Eq. ~6! the effective focal length of the
first lens is f1 5 =fy~2uau!. The focal length of re-
constructing lens Lu is f2 5 f. Using the well-known
result that the longitudinal magnification of a tele-
scopic system14 is ~ f2yf1!2, we find the longitudinal
magnification in our case to be 2f uau. Note that with
parameter a one can control the image’s longitudinal
magnification independently of the transverse mag-
nification.

3. Experimental Results

In our experiment the recording was carried out by
the system shown in the upper part of Fig. 1 and the
reconstruction was demonstrated first by a computer
simulation of the system shown in the lower part of
Fig. 1 and then by an optical experiment. The scene
observed contains three cubes of size 5 cm 3 5 cm 3
5 cm located at different distances from the camera.
We show in Fig. 3 16 examples selected from 65 scene
viewpoints taken by the camera. Each projection
contains 256 3 256 pixels. Figure 3 shows the scene
observed by the CCD from a distance of 77 cm. The

angular range is 616° from the CCD axis to the z
axis, and the angular increment between every two
successive projections is 0.5°.

The hologram was computed from the set of the 65
projections according to the procedure described
above. Explicitly, for each picture, every row in ev-
ery projection matrix was Fourier transformed.
From the entire 3-D matrix obtained, we picked only
the 2-D matrix placed on the diagonal plane ex-
pressed by the equation ui 5 au. The magnitude
and the phase angle of the computed 256 3 256-pixel
complex function h~u, v! are shown in Figs. 4~a! and
4~b!, respectively. The central part of the CGH com-
puted according to Eq. ~10! is depicted in Fig. 4~c!.
The total size of the CGH is 800 pixels on the hori-
zontal axis and 256 pixels on the vertical axis.

The reconstruction results from the hologram ob-
tained from the computer simulation are depicted in
Fig. 5. We obtained these results by calculating the
diffraction behind the cylindrical lenses15 for three
values of zo. Figure 5 shows the reconstructed in-
tensity at three transverse planes along the optical
axis. The figure shows the central three horizontal
diffraction orders, whereas the zero order appears as
the white area in the center of each part of Fig. 5; this
area is thinner in Fig. 5~b! than in Figs. 5~a! and 5~c!.

Fig. 4. ~a! Magnitude ~the maximum value is darkest! and ~b!

phase angle ~p is white and 2p is black! of the hologram recorded
and computed in the experiment. ~c! Central part of the CGH,
computed by Eq. ~10! from the complex function shown in ~a! and
~b!.

Fig. 5. Simulation results from the hologram shown in Fig. 4~c! at
the vicinity of the back focal point of lens Lu for three transverse
planes at ~a! zo 5 29f, ~b! zo 5 6f, ~c! zo 5 25f.
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At each transverse plane, in the left-hand diffraction
order a different letter of a different cube is in focus;
thus reconstruction of the 3-D objects is demon-
strated.

In the optical experiment the CGH @part of which is
shown in Fig. 4~c!# was displayed on a SLM ~Central
Research Laboratories, Model XGA1!. Parameter a
in this example was chosen to be @sin~32°!y3.5# cm21,
where 32° is the angular range of the capturing camera
and 3.5 cm is the width of the SLM located in the ~u, v!
plane. The reconstruction results in the region of the
left-hand diffraction order are shown in Fig. 6 at three
transverse planes along the optical axis. Evidently,
the same effect in which every letter is in focus on a
different transverse plane appears also in Fig. 6.

4. Conclusions

In conclusion, we have proposed and demonstrated a
process of recording holograms of real-life 3-D objects

without wave interference. There are two main dif-
ferences between our method and previous tech-
niques16,17 for recording CGH’s of 3-D objects. First,
as we have shown, our hologram is a single hologram
with properties similar to those of a hologram re-
corded optically by the interference of laser beams.
Our hologram is neither a composite hologram nor a
holographic stereogram as previously suggested.16,17

Second, we deal with a real-life 3-D object recorded
into computer memory, whereas others compute
CGHs of artificial computer-generated objects. The
last-named difference also distinguishes our method
from the method of 3-D CGH suggested in Ref. 18.

This method is also different from the techniques
for recording holographic stereograms and multiplex
holograms2–5 in two aspects. First, there is no need
to interfere coherent beams in any stage of our pro-
cess. The final CGH is obtained from the set of the
object’s projections purely by numerical computation.
Second, our process is a true imitation of a particular
holographic coherent system. Therefore the recon-
structed image has features similar to those of an
image coming from a coherently recorded hologram.
This method might lead to development of a generally
used holographic camera for outdoor photography.

This research was supported by the Israel Science
Foundation.
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