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The computer code developed previously (K. Balasubramanian, J .  Computational Chern., 5,387 (1984)) 
for the characteristic polynomials of ordinary (nonweighted) graphs is extended in this investigation to 
edge-weighted graphs, heterographs (vertex-weighted), graphs with loops, directed graphs, and signed 
graphs. This extension leads to a number of important applications of this code to several areas such as 
chemical kinetics, statistical mechanics, quantum chemistry of polymers, and unsaturated systems con- 
taining heteroatoms which include bond alternation. The characteristic polynomials of several edge- 
weighted graphs which may represent conjugated systems with bond alternations, heterographs 
(molecules with heteroatoms), directed graphs (chemical reaction network), and signed graphs and lat- 
tices are obtained for the first time. 

I. INTRODUCTION 

The evaluation of the characteristic poly- 
nomials of graphs has been the subject of 
numerous inve~tigationsl-~~ in recent years. 
The evaluation of these polynomials for 
graphs is generally regarded as a tedious 
problem owing to the combinatorial com- 
plexity involved in this problem. There are a 
number of chemical applications of these 
polynomials, many of which are discussed in 
the literature,'-34 particularly the more re- 
cent references. 

In summary, the characteristic polynomi- 
als have applications in chemical kinetics,37 
quantum chemistry, dynamics of oscillatory 
reactions, and in determining the stabilities 
of reaction networks,35 lattice  statistic^,^^ 
estimating the stabilities of conjugated sys- 
t e m ~ , ~ ~  formulation of TEMO theorem,39 
enumeration of walks and self-returning 
walks,3 and electronic structure of organic 
polymers and periodic s tu~tures .~~"  

In earlier investigations, we discussed an 
algorithm2 and computer code' to generate 
the characteristic polynomials of graphs con- 
taining a large number of vertices with very 
little computer time using an elegant recur- 

*Alfred P. Sloan fellow; Camille and Henry Dreyfus 
Teacher-scholar. 

sive matrix product method. This method 
was also shown to be applicable to charac- 
teristic polynomials of organic polymers and 
periodic s t r ~ c t u r e . ~  The characteristic poly- 
nomials of many graphs and lattices con- 
taining a large number of vertices could be 
obtained for the first time using that com- 
puter code.' 

The present investigation is aimed at de- 
veloping a computer code to evaluate the 
characteristic polynomials of edge-weighted 
graphs, vertex-weighted graphs, and di- 
rected graphs. We extend our earlier code to 
calculate the characteristic polynomials of 
edge-weighted and vertex-weighted graphs. 
We develop a modified.code to calculate the 
characterist ic polynomials of directed 
graphs. Section I1 describes the method of 
investigation while Section I11 reports re- 
sults and discussions. 

11. METHOD OF CALCULATING 
CHARACTERISTIC POLYNOMIALS OF 
WEIGHTED AND DIRECTED GRAPHS. 

The adjacency matrix of an edge-weighted 
graph, A, is defined as 

o i f i  = j  

wu if i # j and if i and j are neighbors 
0 otherwise 

(1) 
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where U I ~  is the weight of the edge connecting 
the vertices i and j .  The normal adjacency 
matrix of a graph differs from the above 
matrix in that the weights of all the edges 
are the same and set to unity in the adja- 
cency matrix of an ordinary graph. The adja- 
cency matrix of a vertex-weighted graph is 
defined as 

v, i f i  = j  

0 otherwise 
A = 1 if i # j and if i and j are neighbors 

(2) 
where u, is the weight of the vertex i. Note 
tha t  for some vertices, ui could be zero. 
There is also the third possibility in which 
both vertices and edges could be weighted 
with different weights. 

1 

I v, if i = j 

0 otherwise 
A = wv if i # j and i and j are neighbors 

(3) 

The edge-weighted graphs occur in a num- 
ber of applications. If one interprets the 
weights as the rate constants and the ver- 
tices as the chemical species participating in 
a chemical reaction, then the associated ad- 
jacency matrix is the matrix of rate con- 
stants. One of the ramifications of Huckel 
theory or extended Huckel theory is to re- 
move the constraint that  all the nearest 
neighbors interact the same way. A popular 
method called "bond alternation" is to allow 
different weights for single and double 
bonds. Then the associated graph and its 
adjacency matrix would be weighted. In 
statistical mechanics, one has to deal with 
nonisotrophic lattices. The associated lattice 
graph would then be weighted. Quantum 
chemical problems dealing with organic 
molecules containing heteroatoms lead to  
vertex- and edge-weighted graphs. The het- 
eroatom node is sometimes denoted by a 
graph which contains loops a t  that  node. 
Thus edgelvertex weights appear in many 
applications. 

The characteristic (spectral) polynomial 
of a weighted graph is defined as the secular 
determinant of the associated weighted adja- 
cency matrix shown below 

(4) 

In earlier papers',2 we showed the power of a 
P G ( A )  = J A  - AZI 

method which we call Frame's method and 
later called Leverrier-Faddev method by 
Ki;ivka et aZ.28 (also see ref. 16) for evaluat- 
ing the characteristic polynomial of an ordi- 
nary graph. This method reduces a numeri- 
cally complex problem of determinant ex- 
pansion to a simple recursive matrix product 
algorithm. The method runs as follows. If 
one constructs, the matrix Bk Is as follows re- 
cursively, the coefficients of the characteris- 
tic polynomials are generated as the traces 

C ,  = TraceA ( 5 )  
B1 = A ( A  - C l I ) ,  (6) 

Cz = f Trace B1, (7) 

(8) 

of Bk IS .  

Bz = A(B1 - C z l )  

C, = - TraceB,-, (3 (10) 

The characteristic polynomial of the matrix 
A is then given by (11) 

P G ( A )  = A" - ClA"-' - C2An-'. . . . - C,-lA - C, 
(11) 

The above algorithm is valid for any matrix, 
although, in our earlier code' we assumed 
the matrix is the adjacency matrix of the 
graph. Thus the structure of the code devel- 
oped earlier takes advantage of the fact that 
the matrix is real symmetric and the off- 
diagonal elements of the connected vertices 
are all equal to 1. Consequently, the code de- 
veloped up to now could be used only for or- 
dinary graphs. In this investigation we 
extend the code in many ways which enables 
computations of the polynomial of any  
weighted graph. 

We develop two computer programs in 
Fortran 77, one for edgelvertex-weighted 
graphs but not directed, so the adjacency 
matrix is still real symmetric. In this case 
many parts of the earlier code are modified 
t o  t ake  into account t he  f a c t  t h a t  t h e  
weights are different. In fact, the weights 
have to be readin for this code for the vari- 
ous edges and vertices. The other code is for 
directed graphs which we consider later. 
Since the weights of the edges could be non- 
integral numbers, the integer arithmetic 
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used in the earlier code does not work. The 
code was modified to double precision real 
arithmetic. 

The input description for the computer 
code to evaluate the characteristic polynomi- 
als of edgelvertex weighted graphs is shown 
in Table I. Table I1 shows a sample input 
for which the output is shown in Table 111. 
A copy of this computer code or the code 
for directed graphs could be obtained from 
the author. 

A directed graph is a graph in which the 
edges have direction. Thus arrows are added 
to the edges pointing the direction of flow 
(from vertex i to j or j to i). Also, a directed 
graph could be edgehertex weighted. In gen- 
eral, the edge from i t o j  need not have the 
same weight as an edge fromj to i. This is 
the case in chemical kinetics, since the rate 
constant for the forward reaction is not the 
same as the rate constant for the reverse 
reaction. 

The adjacency matrix of a directed graph 
is thus nonsymmetric. This leads to a prob- 
lem in that our earlier code takes advantage 
of symmetric nature of the matrix in storage 
as well as computation. Thus, for this case a 
simple modification of the code would not be 
enough. We rewrote the entire code which 
stores the whole matrix in a two-dimen- 
sional array rather than the upper triangle 

Table 11. Sample input for the weighted L6 graph 
(linear chain of length 6) with bond alteration. The 
weights of alternate bonds are 1.159 or 1.0. 

Card 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

1 
weighted Lo (wl/wz = 1.159) 
6 

1 1 
1.159 
1 2 
1.0 
1 3 
1.159 
1 4 
1.0 
1 5 
1.159 

in a one-dimensional array. Further, the in- 
put for this  code is different since the 
weights of edges i + j  a n d j  + i could 
be different and therefore must be readin. 
Table IV shows the input description for the 
characteristic polynomials of directed 
graphs. Note that the difference between 
this input and the earlier input is that d l  
the neighbors of a given vertex (not just the 
ones with labels less than the given vertex) 
and the weights of the corresponding edges 
must be readin. 

A class of graphs called signed graphs and 
Mobius graphs fall in the general category 

Table I. Input description for the program to compute the characteristic polynomials of edgelvertex weighted 
graphs. 

Card Format Input Variable Description 

1 1615 NGRAPH Number of graphs to be processed 
For each graph read the following cards 

2 lOA8 TITLE Name of the graph 
3 1615 N, NWT N: Number of vertices in the graph 

NWT = 1 if the graph is edge or ver- 
tex weighted, 0 otherwise 

For each vertex read the following cards 
4 1615 M, Number of neighbors of this vertex 

with labels less than the label of the 
vertex 
The labels of the M vertices which 
a re  neighbors of this vertex with 
smaller labels (If M = 0 leave this 
blank) 

W(1) = weights of the corresponding 
edges 
HET: weight of this vertex. Set to 
zero if this vertex is not a heteroatom 
or does not carry loops. 

(ID(I), I = 1,M) 

if NWT = 1 and M # 0 read the following card 
8F10.5 (W(I), I = l,M),HET 5 
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Table 111. Sample output for the input in Table 11. 

WEIGHTED L6 (Wl/W2 = 1.159) 
VERTEX PNEIGHBORS WITH LABELS LESS THAN 

1.15900 0.00000 

1.00000 0.00000 
VERTEX 

VERTEX 

3NEIGHBORS WITH LABELS LESS THAN 

4NEIGHBORS WITH LABELS LESS THAN 
1.15900 0.00000 

VERTEX 5NEIGHBORS WITH LABELS LESS THAN 
1.00000 0.00000 

VERTEX 
1.15900 0.00000 

LOWER TRIANGLE OF THE ADJ MATRIX OF THE GRAPH 
0.00 1.16 0.00 0.00 1.00 0.00 0.00 0.00 1.16 0.00 
0.00 0.00 0.00 1.16 0.00 

6NEIGHBORS WITH LABELS LESS THAN 

COEFS IN CHARPOLY 
1.0000 0.0000 
9.0998 0.0000 

THIS VERTEX 1 

THIS VERTEX 2 

THIS VERTEX 3 

THIS VERTEX 4 

THIS VERTEX 5 

0.00 0.00 0.00 1.00 0.00 0.00 

-6.0298 0.0000 
-2.4238 

Table IV. Input description for the characteristic polynomials of directed graphs. Cards 1-3 same as Table 11. 

For each vertex read the following cards 

Card Format Input Variable Description 

4 1615 M Number of all neighbors of this vertex 
The labels of all the neighbors of this 
vertex if M # 0 and NWT = 1 read 

(ID(I), I = 1,M) 

5 8F10.6 (W(I), I = l,M), HET W(1) = weight of the edge from 
I to ID(1) 

HET: weight of the vertex 

of directed graphs. For signed graphs the ad- 
jacency matrix is defined as follows. 

0 i f i = j  
1 

0 otherwise 

if j > i and i and j are neighbors 
A = [  - 1 if i > j and i and j are neighbors 

(12) 
Such graphs have many applications among 
which lattice statistics4' in statistical me- 
chanics is one of them. Note that the signed 
graphs whose adjacency matrixes are de- 
fined above are  special cases of directed 
graphs.  A signed graph  could also be 
weighted. 

It is well known that computer codes in 
general could have logical or other errors 
which are called "bugs." One needs several 
aids to debug codes. Debugging the code for 
weighted graphs was not easy since many 
known characteristic polynomials are effec- 
tive only for ordinary graphs. However, this 
was useful to some level since in the limit of 
all weights of a weighted graph being equal 
to unity, the characteristic polynomial of the 
weighted graph is the same as the polyno- 

mial of t he  corresponding unweighted 
graph. This was used to reproduce the char- 
acteristic polynomials of many graphs for 
which the weights were readin as unities. 
This procedure, however, does not assure 
that the code is debugged. 

Balasubramanian and Randie" have 
shown that the method of tree pruning can 
be applied to obtain the characteristic poly- 
nomials of edge-weighted trees. These au- 
thors have obtained the  characteristic 
polynomials of many weighted trees. These 
results were used to compute the character- 
istic polynomials of many graphs they con- 
sidered in that paper by using a few chosen 
nonintegral weights. All these cases were 
used to debug the code. 

The code developed here should work 
without any difficulty for weighted graphs 
containing up to 200 vertices. However, for 
directed graphs since both upper and lower 
triangle of the adjacency matrix need to be 
stored more memory (approximately double) 
would be required. It must also be pointed 
out that for graphs containing large num- 
bers of vertices if the weights of many edges 
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Table V. Characteristic polynomials of weighted "linear" chains L ,  with bond alteration ( / 3D /Ps  = 1.159). 

n Characteristic Polynomial 

4 
6 
8 
10 
12 

14 

16 

18 

20 

X4 - 3.6866h2 + 1.8044 
X6 - 6.0298h4 + 9.0998X2 - 2.4238 
X8 - 8.3731h6 + 21.8861h4 - 18.7951h2 + 3.2559 
A'' - 10.7164h' + 40.1634A6 - 61.9806h4 + 35.0744X2 - 4.3736 
A" - 13.0597h" + 63.9317h8 - 144.8473h6 

A14 - 15.4030h" + 93.1909A" - 280.2620X8 

A16 - 17.7462hI4 + 127.9411h" - 481.0917A" + 1007.2348h8 

A" - 2O.0895Xl6 + 168.1823hI4 - 760.2032h" 

+ 150.9132A4 - 61.3157X' + 5.8749 

436.3803h6 - 331.6904h4 + 102.4401h2 - 7.8917 

- 1159.6815h6 + 676.9650h4 - 165.5734A' + 10.6007 

+ 2009.3862h" - 3143.4450A8 + 2808.2431X6 
- 1306.3393A4 + 260.9797A2 - 14.2397 

+ 3618.8950h" - 7205.7602X" 
+ 8821.2186h8 - 6329.0640h6 
+ 2412.7455X4 - 403.3771h2 + 19.1280 

A'' - 22.4328hI8 + 2I3.9144Xl6 - 1130.4633h1* 

is greater than unity then numerical errors 
due to  roundoff could become significant. 
Even, in double precision arithmetic this 
error could be large in absolute sense. Thus, 
if the weights of many edges are greater 
than 1 and the graph contains more than 50 
vertices, one would need to use higher preci- 
sion in a 32-bit machine or use a machine 
such as Cray which uses a word with longer 
bits to store numbers. We see this as the 
only limitation with this or any code to com- 
pute numbers of such magnitude. Central 
processing unit (CPU) time is of little con- 
sideration since even for graphs containing 
a large number of vertices the polynomial 
could be obtained with very little time. 

111. RESULTS AND DISCUSSION 

Table V shows the characteristic polyno- 
mials of linear weighted graphs denoted as 
L,.  The weights are chosen with the as- 
sumption that these chains represent conju- 
gated hydrocarbons and the ratio of the 
weights for single and double bonds (pD/ps)  
is given by the Ohno parameterization 
(pD/& = 1.159) as described in Ohmine 
et al.41 for polyenes. Note that the computer 
code for the polynomial could take any 
weight and this particular choice is only 
used as an illustration of how the code could 
be used for polyenes with bond alternation. 
Note that the coefficient of the constant 
term is (pD/ps)" for L,. This can be verified 
using the tree pruning 

Next, we consider the graph shown in 
Figure 1. We allow bond alteration by choos- 
ing different weights for single and double 
bonds (pD/& = 1.159) in accordance with 
Ohmine et al.41 The resulting polynomial is 
shown below. 

X24 - 34.1194X22 + 5O1.8812X2O 
- 4198.5305h1' + 22,184.3337X16 
- 77,739.O678Xl4 + 184,508.0701h12 
- 297,347.4389X'O + 320,790.8669h' 
- 223,826.8456X6 + 94,569.7463h4 
- 21,349.9686X2 + 1942.9424 (13) 

If one substitutes one of the vertices (of va- 
lency 2) in each of the outer 6 rings in 
Figure 1 with nitrogen atoms such that the 
resulting structure preserves the D 6 h  sym- 
metry, the resulting graph is a vertex- and 
edge-weighted graph if bond alteration is 
also included. If one chooses a weight of 0.5 
for the nitrogen atom, then one obtains the 

Figure 1. The graph of coronene. The characteristic 
polynomial of this structure which includes bond al- 
teration is given by (13). The characteristic polyno- 
mial for the heterostructure obtained by substituting 
one vertex (of degree 2) of each of the 6 outer rings so 
that D 6 h  symmetry is preserved is given by (14) (weight 
of the heterovertex = 0.5). 
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following characteristic polynomial for the 
resulting edge- and vertex-weighted graph. 
hZ4 - 3.0X23 - 28.908h22 + 84.498A2l 

+ 356.O64X2O - 1112.6388X'9 
- 2582.8477h18 + 8257.338h17 
+ 11686.4272h16 - 38,384.3447X15 
- 35,062.5022h14 + 116,330.0209X13 
+ 70,575.369X12 - 237,242.6538X1' 
- 103,732.5719h10 + 306,350.3708X9 
+ 76,631.2727h' - 355,663.5005X7 
- 235,255.227h6 - 463,070.2832X5 
- 1,141,554.8947h4 - 4,765,413.1001h3 
- 8,599,306.3219h2 - 36,769,181.9104X 
- 183,369,070.0652 (14) 

We also show, for comparison, the character- 
istic polynomial of the graph in Figure 1 ob- 
tained earlier2 without weights. 
h24 - 30hZ2 + 387h20 - 2832X1' + 13O59Xl6 

- 39,858X14 + 82,281h12 - 115,272h10 
+ 108,192h8 - 65,864X6 + 24,432X4 
- 4896h2 + 400 (15) 

Note that the bond alteration, in general, in- 
creases the magnitude of the coefficients. 
The inclusion of heteroatoms gives rise to 
additional terms. In fact, the coefficient of 

where n is the number of vertices in 
the graph is simply the  sums of all the 
weights of the vertices since this coefficient 
is the trace of the adjacency matrix. Since for 
the heterograph of Figure 1, there are 6 nitro- 
gen atoms with each being weighted with 0.5, 
this coefficient should be 3.0 in agreement 
with the coefficient of hZ3 in expression (14). 

The present code could also be used to 
generate the characteristic polynomials of 
graphs with loops. Consider the chain with 
loops shown in Figure 2. The adjacency ma- 
trix of such a graph would have diagonal 
elements being equated with the number of 
loops corresponding to that vertex. For ex- 
ample, the first diagonal element of the ad- 
jacency matrix of the graph in  Figure 2 
would be 0, the second diagonal being 1, 
third being 3, etc. The characteristic polyno- 

Figure 2. A linear chain with multiple loops. For the 
characteristic polynomial of this graph see (16). 

mial of this graph is given by (16) 
h6 - 10h5 + 33X4 - 36h3 - 8h2 + 24h - 2 

(16) 
Next, we consider a few directed graphs. 
Special cases of directed graphs are signed 
graphs. The adjacency matrices of signed 
graphs were defined in Section 11. Consider 
a class of signed graphs resulting from C, ,  a 
cycle containing n vertices. The characteris- 
tic polynomials of these graphs are shown in 
Table VI for C4-CZo for even n. It may be 
tempting to conclude that the characteristic 
polynomial of a signed graph is the same as 
that of the ordinary graph but for sign. This 
is, in general, false as seen from Table VI. 
For the simplest case, namely, C4, the poly- 
nomial for the regular graph is h4-4A2. The 
constant coefficient is 0 differing from 
Table VI. However, for c6 the characteristic 
polynomial of the regular (unsigned) graph is 

(17) h6 - 6h4 + 9h2 - 4 

Thus the polynomial differs only in the signs. 
For the naphthalene graph, the polynomials 
of signed and unsigned graphs are given by 
expressions (18) and (19), respectively. 

AIO + l l h 8  + 41h6 + 65X4 + 43X2 + 9 (18) 
AIO - 11X' + 41h6 - 65X4 + 43h2 - 9 (19) 

Thus for some graphs the polynomials differ 
only by the signs of the coefficients. Our ob- 
servation is that for all graphs which are 
based on C4 (eq. square lattice) the polyno- 
mials of signed and unsigned graphs differ. 
Consider, for example, the square lattice 
shown in Figure 3. The ordinary character- 
istic polynomial of this lattice is given by 
(20) while for the signed lattice, the polyno- 

16 5- -6 7 

Figure 3. A signed square lattice. Although, direc- 
tions are not shown in this figure the weight of an 
edge from i toj  is + 1 i f j  > i and -1 i f j  < i. The char- 
acteristic polynomial of this lattice is given by (20). 
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Table VI. Characteristic polynomials of some signed graphs C,. 

Signed Graph Characteristic Polynomial 

h4 + 4h2 + 4 
As + 6h4 + 9h2 + 4 

A" + 10h8 + 35h6 + 50h4 + 25h2 + 4 
A12 + 121° + 54h8 + 112A6 + 105h4 + 36h2 + 4 
X14 + 14A12 + 77X'O + 210h8 + 294h6 + 196X4 + 49h2 + 4 
h16 + 16X14 + 104h12 + 352h" + 660h8 + 672h6 + 336h4 + 64h2 + 4 
A" + 18h16 + 135h14 + 546X12 + 1287h" + 1782h8 + 1386h' + 540h4 + 81h2 + 4 
h20 + 20h" + 170h" + 800X'4 + 2275X12 + 4004h" + 4290h8 + 2640h6 + 825X4 + 100h2 + 4 

h8 + 8h6 + 20h4 + 16x2 + 4 

mial is given by (21) 
XI6 + 24X14 + 226X12 + 1064h1' + 1888h8 

+ 3352X6 + 1888h4 + 320h2 + 16 
A16 - 24X14 + 206hI2 - 804h1' + 1481h8 

(20) 

- 1260X6 + 400X4 (21) 
Expressions (20) and (21) differ in every co- 
efficient except the first two terms to con- 
vince us tha t  the polynomials of signed 
graphs are, in general, different from those 
of unsigned graphs. The graphs with four- 
membered rings have terms that  cancel 
while those of six-membered rings do not. 
Thus the characteristic polynomials of signed 
and ordinary graphs for six-membered ring 
systems are the same. The coefficients of the 
polynomials of signed graphs are always 
positive . 

CONCLUSION 

In this investigation we developed com- 
puter codes for (1) the characteristic polyno- 
mials of edgejvertex-weighted graphs and 
(2) the characteristic polynomials of directed 
and signed graphs. The characteristic poly- 
nomials of many edgehertex-weighted graphs 
and directed graphs were obtained. These 
codes would be useful in a number of appli- 
cations in chemical kinetics, lattice statis- 
tics, quantum chemistry of polymers, and 
unsaturated systems containing heteroatoms. 
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