BY
J. ALAN GEORGE

STAN-CS-71-208
FEBRUARY, 1971

NATIONAL Reproducad by Mromatiencu COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UNIVERSITY

EEST AVAILABLE COPY

DOCUMENT CONTROL DATA-R\&D
Sriofis classification of thlo, body of abstract andindening annotafion nust br entered when fie uveralt feport is classilied)

I would like to express my deepest gratitude to my thesis : Ivisor, Professor George Forsythe, for suggesting the topic of this thesis and providing guidance and encouragement during its preparation. I aiso wish to thank the reading committee for their constructive criticism, and in particular Dr. Fred Dorr who supplied much sound advice and consultation during the last six months of this work.

I welcome this opportunity to thank Professor Gene Golub not only for his academic help but for his friendship, which, in numerous ways, helped make life at Stanford for my wife, Doris, and me generally more enioyable. I also wish to thank Michael Saunders, my friend and fellow student, for many stimulating and helpful discussions.

Finally, I thank Phyllis Winkler and Laura Staggers for their typing.

This research was supported by the Office of Naval Research, the IBM Corporation, and the Atomic Energy Commission.

Taole of Contents

page
CHAPIER 1: INPRODUCTION
1.1 Aims of the Thesis 1
1.2 The Variational Principle and a Brief Discussion of Ritz Methods 4
1.3 Essential Characteristics of Finite Element Methods 7
1.4 Tensor Product Spaces 14

1. 5 Survey of the Thesis and Summary of Conclusions 16
CHAPTER 2: GENERATION AND STORAGE OF TWO-DIMENSTIONAL I'RIANGULAR MESHES
2.1 Introduction 21
2.2 Review of Previous Work on Mesh Generation 23
2.3 A Semi-Automatic Mesh Generation Scheme 30
2.4 An Automatic Two-Dimensional Domain Triangulator 34
2.5 A Storage Scheme for Finite Element Meshes and Associated Boundary Data 46
CHAPTER 3: GENERATION OF FINITIE ELEMENT ERUATIONS
3.1 Introduction 52
3.2 Construction of Interpolating Polynomials 55
3.3 Generation of the Equations 66
3.4 Asserably of the Equations 77
3.5 Inc:lusion of Singular Functions in the Basis 81
CHAPTER 4: SOLUTION OF FINITE ELEMENT EQUATIONS
4.1 Introduction and Notation 83
4.2 Compzat Storage Schemes for Sparse Matrices 92
4.3 Node ordering for a Small Bandwidth 99
Page
4.4 Node Ordering to Reduce $|\operatorname{Pr}(A)|$ 105
4.5 Some Experiments with Ordering Algorithms 108
4.6 The Value of N_{A}^{Z} for Arbitrary Elements and Triangular or Quadrilateral Meshes 116
4.7 Analysis of Storage and Computational Requirements for a Model Problem 124
4.8 Miscellaneous Topics and Concluding Remarbs 130
CHAPTER 5: FINTIE ELEMENT SOLUTIONG TO SOME SELECTED PRGBLEMS
5.1 Introduction 133
5.2 The I-Shajed Membrane Eigenvalue Problem 134
5.3 Eigenvalues of Rhombical Domains 140
5.4 A Dirichlet Problem 150
REFERENCES 154
APPENDIX A: SOME REPRESENTATIVE TRIANGUJAR ELEMENTS 162
APPENDIX B: $0 / \mathrm{S} 360$ FORTRAN CODE FOR FINITE ELEMENT METHODS 164
APPENDIX C: SAMPLE DECK SET-UPS AND RUNS 209

CHAPTER 1

INTRODUCTION

1. Aims of the thesis

Our mein goal in this thesis is a detailed study of the implementation of finite element methods for solving linear elliptic partial differential equations in two dimensions. Our study is restricted to problems which can be formulated as finding the stationary values of a quadratic integral over a given class of functions. Thus, we consider inhomogeneous second order elliptic boundary value problems in the plane which are either formulated as least squares problems or can be placed in variational form. In the text we consider equations with variable coefficients and problems involving boundary integrals, although the Fortran code we actually present can handle a less general class of integrals. However, the majority of the program would remain unchanged for more general p:oblems.

Our viewpoint will not be that of a person who wishes to solve a specific problem. Instead, we will adopt the attitude of one who must provide a general program which is efficient, easy to use, and applicable to a reasonably large subclass of two dimensional linear elliptic boundary value problems. Thus, the capability of handling odd-shaped domains and general (non-Dirichlet) boundary conditions in a uniform manner will be important. Our study will include the problems of mesh generation and the solution of the sparse systems of finite element equations, as well as the actual generation of those equations.

We will also be interested in the performance of finite element methods (for our chosen class of problems). We will evaluate them by comparing numerical solutions to selected problems obtained by different numerical methods, including among others, finite difference methods. We will also compare different finite element methods; that is, finite element methods using different bases. Our results should offer some evidence as io which numerical technique is best, although the question of what we mean by "best" is indeed very complex. Obviousiy, if we choose our problems carefully, almost any method can be made to look best. If we have a specific problem that must be solved many times, then it may very well be worthwhile to find the best method for that particular problem (even though the method is applicable to a rather small class of problems, and therefore unsuitable for the purposes we have set down above). For our purposes, the following questions will be of more or less equal importance in evaluating and comparing numerical methods:
(a) What accuracy is achieved for a given amount of computation?
(b) What storage is required?
(c) Does the method rely on domain shape? (For example, does it only apply for square domains, or rectangular polygons?)
(d) Does the method utilize a special technique which requires some information known only to an expert in the field? If so, can the technique be integrated into the program so that the ama: eur user can use the technique unassisted?
(e) How generaliy applicable is the method? For example, must the coefficients of the differential operator be constants or be restricted in some other way? Are normal derivative or mixed boundary conditions easily handled?

Obviously, whether some or all of these consicerations are important depends upon individual needs and circumstances, but from our viewpoint of designing a general purpose program, we would like to use a method which yields a satisfactory response to all of thern. Our aim is to show that finite element methods are very strong candidates.

Many of the comparisons of numerical methods which appear in the literature are made in the context of solving a specific proilem, and the comparisons are often made on the basis of (a) and perhaps (b), with much less emphasis (perhaps only acknowledgement) of differences in (c), (d), and (e). Given the high cost of program development and the diminishing cost of computing power and hardware, we feel these latter considerations deserve more attention than they nomally receive. Our emphasis in this thesis will be on a methods general utility rather thain on its ability to solve any particular problem "better" than it has been solved before. Hence, many of our conclusions will be of a, qualitative rather than quantitative nature. Nevertheless, we feel such results are important and useful. A review of the thesis and a summary of our results are found in Section 1.5 .

Throughout the text "section $n_{1} \cdot n_{2}$ "will mean section n_{2} of chapter n_{1}. Equations, figures and tables in section n_{2} wi.11 be numbered $\left(n_{2} \cdot 1\right),\left(n_{2} \cdot 2\right), \ldots$, and references in chapter n_{1}, 5 jogure $\left(n_{2} \cdot n_{3}\right)$ also in chapter n_{1} will just be $n_{2} \cdot n_{3}$; references to figure $\left(n_{2} \cdot n_{3}\right)$ appearing in another chapter would be written $\left(n_{1} \cdot n_{2} \cdot n_{3}\right)$.

2. The Variational Principle and a Brief Discussion of Ritz Methods

For many boundary value problems of even order it is possible to conctiuct on integral. I[v] which can be formed for all functions lying in a certain class V and which takes on a minimum for precisely the function $u \in V$ which satisfies the boundary value problem. This is called the variational formulation of the problem, and usually corresponds to ninimizing the energy of a physical system. The differential equation of the boundary value problem is the Euler-Lagrange equation obtained by imposing the condition that the first variation of $][v]$ vanish [V 2]. For example, let R be a two dimensional region bounded by a
piecewise smocth curve $\partial \mathrm{R}$. Consider the probiem

$$
\begin{equation*}
u_{x x}+u_{y y}=f \text { in } R \tag{2,1}
\end{equation*}
$$

(?.2) $u=g$ on ∂R.

The solution of (2.1)-(2.2) minimizes the functional

$$
\begin{equation*}
I[v]=\iint_{R}\left(v_{x}^{2}+v_{y}^{2}+2 t v\right) d x d y \tag{2.3}
\end{equation*}
$$

where $V \in V$, the class of functions in $C(? \cup \partial R)$ witn first derivatives in $L_{2}(R)$ and satisfying (2.2) [C2].

The Ritz procedure for rinding an epproximate solution to (2.1)-(2.2) is as follows: Let $V^{N} \subset V$ be a finite dimensional subspace of V sparned by the functions $\psi_{i}, i=1,2, \ldots, N$. Our aim is tc obtain
an approximation $v^{\mathbb{N}}$ to u by minimizing $I[v]$ for $v \in V^{N}$. Writing v^{N} in the form

$$
\begin{equation*}
v^{N}=\sum_{k=i}^{M} \alpha_{k} \psi_{k} \tag{2.4}
\end{equation*}
$$

where $\alpha_{k}, k=1,2, \ldots, N$ are real numbers to be determined, we use (2.4) in (2.3) to obtain the quadratic function

$$
\begin{align*}
I\left[v^{N}\right]= & \sum_{i, j=1}^{N}\left\{\iint_{R}^{N}\left(\psi_{i, x} \psi_{j, x}+\psi_{i, y^{*}} \psi_{j, y} \backslash d x d y\right\} \alpha_{i} \alpha_{j}\right. \tag{2.5}\\
& +2 \sum_{i=1}^{N}\left\{\iint_{R} f \psi_{i} d x d y\right\} \alpha_{i} \\
= & \alpha^{T} A \alpha+2 \alpha^{T} b
\end{align*}
$$

where $\alpha^{T}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right)$,

$$
\begin{equation*}
A_{i j}=\iint_{R}\left(\psi_{i, x} \psi_{j, x}+\psi_{i, y} \psi_{j, y}\right) d x d y \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i}=\iint_{R} f \psi_{i} d x d y \tag{2.7}
\end{equation*}
$$

Using the important fact that A is symmetric, we obtain the system of equations $A \alpha=-b$ which determines the coefficients α ir. (2.4) yielding the minimizing $v^{*} \in V^{\text {NT }}$. Under appropriate hypotncaes, $v^{*} \rightarrow a$ as $N \rightarrow \infty$ [K3]. The importance of the finite element method is that it allows us to construct ψ_{i} 's which satisfy these hypotheses and which also have attractive computational properties. This is taken up in the next section.

Note that for our chosen class of problems, it will always be

 possible to arrange that the coefficient matrix of the linear system we must solve is symmetric, since $\alpha^{T} A \alpha=\frac{1}{2} \alpha^{T} A \alpha+\frac{1}{2} \alpha^{T} A^{T} \alpha=\frac{1}{2} \alpha^{T}\left(A+A^{T}\right) \alpha=$ $\alpha^{T} \tilde{A} \alpha$, where \tilde{A} is obviously symmetric.
3. Essential Characteristics of Finite Flement Methods

The term "finite element" appears ts have originated in the early 1950's with structural engineers who regarier sonventional structures as composed of a number of separate ejements interconnected at node points. The concept was extended to continuous problems such as riate bending and steady-state temperature distribution, where the elements are merely subdivisions of the domain of the problem with adjacent elements having a common vertex or common side. The ast common element shapes are triangles and rectangles. Our attention will be devoted almost exclusively to triangular elements in this thesis, primarily because odd shaped domains can be more easily divided into triangles than rectangles.

Finite element methods are Ritz methods which use basis functions having small support; that is, Ritz methods which make use of a so.-called "local basj.s". In Chapter 3 we will discuss the actual procedure. At this point we simply observe that finite element methods make use of trial functions $v^{\mathbb{N}}$ (see Section 1.2) heving the form

$$
\begin{equation*}
v^{\mathbb{N}}=\sum_{k=1}^{\mathbb{N}} \alpha_{k}^{\psi} k \tag{3.1}
\end{equation*}
$$

where
(a) V^{N} is a piecewise polynonial on $R \cup \partial R$.
(b) v^{N} is a polynomial on each element.
(c) each basis function Ψ_{k} is associated with a node point Iying on a vertex, side, or interior of an element, and is non-zero only on elements containing the node. This property is depicted below:

Figure 3.1-a

Support of ψ_{k} associated with a corner (vertex) node.

Figure 3.1-b

Support of Ψ_{k} associated with a side node.

Figure 3.1-c

Support of Ψ_{k} associated with an interior node.

More than one basis function may be associated with a particular node, and because of the way the basis functions are chosen, the nodal paraneters α_{k} associated with each ψ_{k} turn out; to be tile value or the value of a derivative of v^{N} at the corresponding node point. The choice of these nodal parameters is done on the basis of (1) the number of degrees of freedom v^{N} has on each element and (2) the continuity
requirements of v^{N}. Indeed, a common practice is not to consider the basis functions, but instead, to choose the parameters so as to uniquely characterize the polynomial on each element and at the same time to attain a desired degree of continuity across interelement boundaries. For example, consider piecewise linear polynomials, for which v^{N} is a linear function on each triangle. The trial solution v^{N} can be uniquely characterized by its value at any three non-collinear points. By choosing these three parameters at the vertices, we can guarantee continuity along interelement boundaries. We would indicate this subspace by the element stencil

It is fairly easy to see that this amounts to using a "pyramid function" at each vertex node, as depicted below:

Figure 3.2 Pyramid Function Ψ_{k} associated with node k.

Some other common stencins associated respectively with quadratic and cubic polynomials are

Quadratic

Cubic

Note that in the last example, three basis functions will be associated with each corner node, and the function associated with the interior node Will be non-zero only on the triangle containing the node. A (non-exhaustive) list of stencils can be found in Appendix A.

Piecewise polynomials derived in this way are sometimes referred to as interpolation polynomials, since they are characterized by the values (and perhaps derivative values) that they assume at the node values. Note, however, that in our application the piecewise polynomial will not (usually) interpolate the solution of our boundary value problem.

We will not consider the important mathematical question of when (and how fast) $v^{N} \rightarrow u$ as $N \rightarrow \infty$. We will simply make some observations and refer to relevant sources in the literature:
(i) Because each basis function vanishes over most of the domain, the linear system that is generated is sparse, Strang [s5] emphasizes this by stating that "by a suitable choice of the trial functions ... the Galerkin equations... turn out to be difference equations". Whether we call them finite element or finite difference equations is largely a matter of taste; we prefer the former, and reserve the term "finite difference" for these methods based on divided difference approximations. For polynomial basis functions of low degree the two approaches sometimes yield the same equations. Our distinction is made on the method of aerivation rather than the end result.
(ii) The value of finite element methods will obviously depend upon how well the trial functions can approximate the true solution of our boundary value problem. This problem has been studied for general elliptic operators and tensor product approximating spaces in [$\mathrm{B} 8, \mathrm{S6,S1}$] and in references contained therein. We will briefly discuss tre practical advantages and disadvantages of these spaces in Section 1.4. Bramble and Z.lámal [B12], Zlámal [24, Z5], Zenešck [21], Goël [G2],
and others have proved convergence of the method and presented bounds for various elliptic operators and piecewise polynomials on triangles. Qualitatively, their results say that if the approximating subspace is admissible, and the true solution u is "smooth enough", then an increase in d (the degree of the piecewise polynomial) induces an equivalent decrease in the error bound. That is, the error bounds are of the form

$$
\left\|u-v^{N}\right\|_{q} \leq c h^{d+1-q}\|u\|_{\alpha+1}
$$

where $\|u\|_{\ell}^{2}=\sum_{|i| \leq \ell}\left\|D^{i} u\right\|_{L}^{2}, \quad i=\left(i_{1}, i_{2}\right), \quad|i|=i_{1} r \cdot i_{2}$, and $D^{i} u=\frac{\partial^{|i|} u}{\partial x^{i^{1}} \partial y^{i_{2}}}$. Here h is the maximum length of any triangle side in the mesh, and C is a constant which depends upon the sharpest angle in the mesh and the polynomial basis (element) being employed. For specific details, the reader is referred to the papers mentioned above.
(iii) The condition of the finite element linear system which we obtain will obviously depend upon our choice of $\psi^{\text {'s }}$. Indeed, one of the problems of using the Ritz technique has been the numerical instability of the discrete problem, caused by choosing almost linearly dependent trial functions. Intuitively, we would anticipate that such problems would be much less troublesome for the finite element method because the majority of the ψ 's will be orthogonal (by virtue of having disjoint support). Strang and Fix [S6] study this problem in depth for
uniform meshes by examining the condition number $H(G)=\left\|G^{h}\right\|\left\|G^{h^{-1}}\right\|$ of the Gram matrix, whose entries are the inner products of the basis elements ψ_{i}. They conclude that all the usuai piecewise polynomial trial functions yield a stable basis, where stability means that $H(G)$ remains bounded as $h \rightarrow 0$. They show that the condition of the coefficient matrix A obtained from the application of the finite element method (using a stable basis) to a uniformly elliptic operator of order $2 m$ is of the form $c h^{-2 m}$, where h is the mesh width and C depends on the choice of the basis. This result is of practical significance; for a given problem it says that as long as we use a stable basis, the condition of the coefficient matrix does not deteriorate as we increase the degree of our polynomisls. Note thot these results only apply for uniform meshes, and it is not known how detrimental severe grading of the mesh may be to the condition of the matrix A.
4. Tensor Product Spaces

Suppose $D_{1}=[0, I]$ is divided up into a uniform mest. with grid points (in, $i=0,1,2, \ldots, n$) and assume we have a basis $\left(\tilde{\psi}_{i}(x), i=0,1,2, \ldots, n\right)$ on $[0,1]$, where each $\tilde{\psi}_{i}$ is non-zero on the interval [i-ph,i+ph], with p small. Now consider the domain $D_{2}=[0,1] \times[0,1]$, covered by a square mesh with grid points ($(\mathrm{i} h, \mathrm{jh}), \mathrm{i}=0,1,2, \ldots, \mathrm{n}, \mathrm{j}=0,1,2, \ldots, \mathrm{n})$. To construct a tensor product basis on D_{2} we form the functions $\psi_{i j}=\tilde{\psi}_{i}(x) \tilde{\psi}_{j}(y)$, $i, j=0,1,2, \ldots, n$. The trial function V^{N}, where $N=(n+1)^{2}$, is then given by

$$
\begin{equation*}
v^{\mathbb{N}}=\sum_{i, j=0}^{n} \alpha_{i j}{ }^{\psi} i j \tag{4.ij}
\end{equation*}
$$

The main advantage to this approach is that it is possible to obtain a relatively smooth approximation with only moderate N, since if $\tilde{\psi}_{i} \in \mathbb{C}^{q}\left[D_{1}\right], i=0,1, \ldots, n$, then $\psi_{i j} \in C^{q}\left[D_{2}\right], i, j=0,1, \ldots, n$. This is often done by taking a spline basis for the $\tilde{\Psi}_{i}$'s. For example, we can have $v^{N} \in C^{2}\left(D_{2}\right)$ by using the cubic spline basis [Sl]. For a specific degree of smoothness, the number of parameters (unknowns) in the problem increases os n^{k} for k dimersions. Of course, the reason for these properties is the fact that the interelement boundaries [which are h by h squares] are constrained to lie along coordinate axes, and this brings i:is to the major disadvantage of this method of basis construction.

Because our elements are squares [or perhaps rectangles -- it is easy to scale the basis functions], our domain must be restricted to be
the union of rectangles. Furthermore, it is virtually impossible to grade (i.e., subdivide) the net "locally". If a fine mesh is desired in a region of the damain, then it must be made fine in an interval in each coordinate, even though we only desire the fine mesh in the intersection of these intervals. It is fairly easy to conceive of realistic problems which would force the grid to be almost uniformly fine.

However, there is some reason for optimism regarding this geometrical problem; Bramble and Schatz [BII] and Babuska [BI] have analyzed some methods thai do not require that the basis functions satisfy any boundary conditions. Yhe basic idea is to imbed the given domain R with boundary ∂R in a larger domain $R^{\wedge} \supset R$, with the basis functions satisfying homogeneous boundary conditions on the boundary of $\mathrm{R}^{\mathbf{\prime}}$. A boundary integral on ∂R scaled by $h^{-\gamma}, 0 \leq \gamma<\infty$ (where h is the mesh width), is added to a least squares formulation of the problem. The boundary integral is designed so that its minimum occurs when the approximate solution satisfies the boundary conditions on $\partial \mathrm{R}$. As would be expected, their error estimates depend upon the smoothness of the boundary data and the solution. They show that $\gamma=3$ is optimal in some situations.

We have not pursued this avenue of investigation in this tinesis because the approach we use to generace cur basis functions allows us to fairly easily satisfy boundary conditions.

5. Review of the Thesis and Summary of Conclusions

As our titie implies, the emphasis in this thesis is on implementation, and such a study leads to interesting practical problens which are seldom discussed in papers on rinite element methods. Engineering articles on finite element methods are often devoted to discussing the virtues of particular elements for solving specific probiems. Mathematical papers, on the other hand, are usually concerned primarily with rates of convergence of various finite element spaces. We feel our work lies between these two extremes; we are concerned with the actual implementation of finite element methods and how they compare in practice with other methods for solving elliptic boundsry value problems.

In Chapter 2 we examine the problem of generation and storage of two-dimensional triangular meshes. We begin by reviewing previous work on automatic mesh generation. We then present a semi-automatic procedure for triangulation of a domais. The method requires the user to provide a gross triangulation of the domain, reflecting any desired grading. The mesh is then refined by ariy specified fastor by the program. We feel this compromise solvtion, although not particularly elegant, is important for several reasons: (a) the required input for most domains is small., (b) the method can easily be adapted for use with graphical display equipment), (c) curved boundaries can be incorporated easily,
(d) the net can be graded under control of the user, and (e) inter-element boundaries can be forced to lie in specific positions (along lines of material discontinuity, ror example).

Chapter 2 also contains a description of a completely automatic domain trjangulator. Although the algorithm cannot be considered a finished product, we have included it because we feel it represents a promising approach to automatic triangulation. It is applicable to
arbitrary simpiy connected domains and is designed to produce graded nets where appropiiate. Some examples of meshes produced by the algorithm are presented and some further areas of research are suggested.

The finsl section of Chapter 2 contains an efficient storage scheme to represent arbitrary triangular meshes. Using this scheme along with some results obtained in Chapter 4, we compare the storage required for the mesh to the number of non-zero elements in the coefficient matrix. We show that except for piecewise linear polynomials, the storage required for the mesh is small compared to that required for just the non-zero elements in the coefficient matrix. We conclude that the mesh storage will seldom be an important factor in overall storage requirements in the application of finite element methods.

Chapter 3 deals in detail with the actual generation of the finite element equations. The process consists of two phases. The first is the computation of the stiffness matrices which express our integral over each element in terms of the nodal parameters used to characterize it. The second phase consists of assembling these matrices into a single large system and eliminating those parameters whose values are already srecified by boundary conditions. For the first phase we describe one method for generating coefficients of the equations on each triangle. We justify our use of the approach over others by demonstrating where much of the computation and manipulation of the basis functions can be carried out symbolically, thus avoiding use of numerjcal (or hand) integration and/or differentiation. Section 3.4 deals with the assembly of the equations. Boundary conditions which involve derivative parameters cause annoying implementation problems if the boundary is not parallel to the x or y axis, since relations between several parameters
must sometimes be satisfied. We discuss two alternate meth.ods of hanoling these problems and compare the implementation of each.

A study of sparse matrix methods is the s:\%ject of Chapter 4, with particular emphasis on the type of motrices axising from finite element methods. We introduce the concept of the profile of a matrix. and distinguish between graph methods, profile methods and band methods. We present arguments and experimental evidence supporting the use of profile methods.

In Section 4.5 we compare several ordering algorithms applied to matrices srising from different finite element bases. These experiments show the following: (a) profile methods can be significantly better than band methods, in terms of both storage requirements and operation counts; (in Sections 4.1 and 4.2 we show that they will never be worse than band methods.) (b) the "reverse Cuthill-McKee" ordering (our terminolozy), which we have discovered compares very favorably with other methods tested; (c) comparison of times required to produce the reverse Cuthill-McKee ordering with some of the times required for the entire ininite element solution (reported in Chapter 5) suggests that the use of the algorithm is relatively inexpensive. We feel that such information is extremely important. It is often contended by experienced users that autonatic ordering is unnecessary because they can produce an ordering empirically that is close to optinal. This may very well be true, but not all users are experienced, and more jmportant, one must still devise a way of communicating the desired ordering to the computer. We have shown that this largely clerical process can best be

Left to the computer. The code for doing the ordering oppears as part of phase 1 in:Appendix B.

Also in Chapter 4, we derive formulas for the density of finite element matrices for general elements and arbitrary triangular and quadrilateral meshes with holes. Such results are impcitant in managing storage, since we can allocate storage for the matrix as soon as the mesh and element to be used are knowm.

Chapter 5 contains results of several numerical experiments. The chapter contains numerical solutions to the L-shaped membrane eigenvalue problem, rhombical membrane eigenvalue problems, and a hollow square Dirichlet problem. Our comparisons are between different finite element metnods us well as between finite element methods and their competitors. These experiments showed the following:
(a) Efficiency in general increased with increasing degree of piecevise polynomial. This was true in all three examples, and because the solutions ranged from very smooth ones to ones with singularities in their first derivatives, we feel this information is significant.
(b) Finite difference methods compared rather unfavorably with our finite element solutions. Even for the problem where special fast direct methods for solving the difference equations could be utilized [B15,Gl], our finite element solutions appeared preferable.
(c) Several methods for finding eigenvalues yielded more accurate numbers than finite element methods (involving roughly the same cost), and also produced bounds. However, these methods use techniques which utilize a special feature of the equation or of the domain, and are
> difficult to implement in a general code. Again we emphasize that we are not saying these methods are inferior; we are simply saying that they are less suitable than finite element methods as the core of a general boundary value problem solver.

Appendix A contains a list of same typical elements. Some of these are referred to throughout the text.

Appendix B contains a listing of the Fortran code we have developed for solving a class of linear elliptic boundary value problems. We have segmented the code into modules, each one designed to carry out a specific task or set of tasks. The modules execute in sequence, with information passing from one to the next via external storage media which can be disk, drum or tape. Our reasons for segmenting our code and attempiing to keep each segment itself modular are (a) to ease maintenance and/or modification of the code, (b) to allow whe program to be run on smaller machines than the one we used, and (c) to facilitate documentation and understanding of the code by localizing specific functions. Specific details of the functions of each segment are found in comments in the code itself.

1. Introduction

The first step in most numerical methods for solving partial differential equation problems is that of discretizing the domain in question. In our case, the probiem consists of dividing our given domain R into disjoint triangles whose union is $R U \partial R$, with adjacent tirangles having a common side. If R has curved boundaries, we will admit "curvilinear" triangles having one curved side in the triangulation near the boundary. Figure 1.1 is an example of such a triangulation.

Figure 1.1

Manual genere. ion of a triangulation of R is an extremely tedious job. A compietely automatic triangulation procedure, on the other hand, while obviously desirable, is complicated and difficult to implement with any degree of flexibility. In Section 2 we review the literature on two-dimensional triangulation and in Sections 3 and 4 we present two new methods for triangulation of two dimensional domains. The method described in Section 3 is a semi-automatic scheme, while the one in

Section 4 is almost completely automatic. Section 5 contains a description of an efficient scheme for storing a representation of an arbitrary two-dimensional triangular mesh.

Once we have a suitable triangulation of the domain, we are faced with the problem of numbering the nodes (more precisely, the parameters associated with the nodes) in order to reduce the computation and/or storage requirements for the solution of the algebraic systern. Although it is possible to defer any ordering (and then actually order the parameters rather than the nodes), the problem will be considerably larger if each node has more than one parameter associated with it. Since all the parameters associated with a particular node are connected in the same way to other parameters as well as all being connected to each other, little is lost by ordering the nodes. Many good ordering algorithms require work proportional to the number of nodes multiplied by the square of the number of neighbours each node has, so substantial savings can be achieved by ordering at this stage. We defer discussion of these algorithms and the criteria used to reduce storage and computational requirements until Chapter 4, although again we emphasize that they should be applied at this stage.

2. Review of Previous Work on Mesh Generation

Mesh generation is a difficult pari of a boundary value probiem-solver to eutomate, and even the most generally applicable programs require substantial human assistance, especially in describing the boundary ∂R. In most boundary value problems the solution is not uniform in character over the domain. Often it is fairly smooth over most of R, and varies rapidly only over a small part of the domain, perhaps near a corner. For this reason it should be convenient, if desired, to indicate areas of the domain R where the grid can be coarse and areas where it should be fine. This grading capability could provide substantial saving.: in storage requirements and computer time.

For practical reasons finite difference programs have tended not to provide for the grading of nets. This is due largely to the ease with which one can store a regular rectangular net in a conventional two-dimensional array and the severe storage management problems which immediately result. when one departs from such a scheme. In the regular case, actual coordinates do not even have to be stored, which is a persuasive argument for using a regular net. Also, truncation error bounds for some difference operators are much better fur regular nets, and the determination of the coefficients for the difference operator is usually much easier (a prime consideration if an iterative scheme is being used and the coefficients are being computed each time they are needed). Thus, finite difference programs usually make use of uniform meshes, or meshes which are uniform in various parts of the region. Boundary points that result when $\partial \mathrm{R}$ intersects the mesh at a point other than a node point are treated by using well-known interpolation formulas. (These special boundary points may cause storage problems even when the simple two-dimensional array storage method is used; see Forsythe and Wasow [F5, pp. 361-63] for a discussion.) If the boundary is curved, it may be
rather awhward to find the correct formula to preserve the order of accuracy. In this context, the actual mesh generation is not a difficult problem. The problems arise where the boundary (which can have more or less arbitrary shape) intersects the regular mesh. ©ryer [C3] treats this entire problem in considerable detail, and we will not discuss it further here.

The mesh generation question with regard to finite elements has a somewhat different flavor. In this case, grading the mesh is essentially without cost provided we are going to store the node coordinates anyway. It is often stated that irregular nets are expensive to use because the coordinates of each net point must be stored, and for finite difference methods this objection is valid. [For example, suppose we are solving Laplace's equation on the unit square. Using a uniform n by n grid, the required storage is about n^{2}, assuming we are going to solve the equations using SOR. By comparison, if our mesh is irregular, we must remember the coordinates of each of the n^{2} nodes. Then we would need a total of $3 n^{2}$ words of storage, and if we want to aroid recalculation of the coefficients of the difference operator at each iteration (which will no longer all be the same), we will need $8 n^{2}$ words of storage.] However, for finite element methods: the number of node points will ordinarily be considerably fewer than the number of parameters since each node will usually have derivative as well as function-value parameters associated with it. As the degree of the basis functions increases, the storage required for the nodes quickly becomes small compared with that required for the coefficient matrix. This point is taken up in Section 5 of this chapter.

We will now review some methods appearing in the literature which have dealt with this triangulation problem.

Cheung and Pedro [C4] have written a program that generates a triangulation using the following general scheme. The domain is divided by one family of straight lines (which do not intersect in the domain but are not necessarily parallel) or arcs of circles (not necessarily concentric) or botin. Each line is further divided into a number of divisions to yield node points. The node points on adjacent lines are then joined in a zig-zag mannex to form triangles. The number of divisions in adjacent lines can only differ by one -- a hindrance if pronounced grading of the net is desired. This restriction can also lead to triangles with very sharp angles.

No attempt appears to be made to automatically achjeve a nodal numbering yielding a small bandwidth; instead manual "supervision" has to be exercised at various stages. The only attempt to avoid or remove small angles is done when forming two triangles from a quadrilateral; the lengths of the diagonals are computed and the shorter is used to form the triangles. (This can be disastrous; consider the quadrilateral $(-1,0),(0,-2),(1,0)$, $(0, \epsilon)$ where ϵ is positive but very small.)

Frederick, Wong, and Edge [F7] present a two-stage, semi-automatic method for triangulating a two-dimensional domain. The first stage consists of manually plotting the boundary of the domain and the node points (in the order designed to minimize or at least reduce the bandwidth of the resulting linear system) on an electromagnetic graph-tracing table. The coordinates
of the points are automatically punched on cards which then serve as input to a computer program that generates the triangles. There are a number of petenial drawbacks to this approach. The first is that for odd-shaped domains it is surprisingly difficult to number the nodes empirically so as to achieve a small bandwidth, especially if the net is graded ratner severely. As we saall see in Chapter 4, bandwidth is not necessarily a very good eriterion anyway, and to number the nodes empirically to achieve other (more satisfactory) criteria can be even more difficult. Secondly, without actually drawing in the triangles as you go along it is hard to decide where the next node would be placed. If the triangles are to be drawn, very little more manual effort would be necessary to tabulate their sespective nodes, thus eliminating the computer program completely. As the authors point out, however, the computer-based part of the procedure eliminates the clerical errors which would inevitably result from tabulation by humans. Although it is unfortunate that special-purpose equipment is required, the basic procedure is very appealing. It is easy to see how the same basic idea could be implemented in an interactive way by using a cathode ray display with a light pen. All the above objections could be eliminated if an automatic ordering scheme (such as one of those discussed in Chapter 4) were included in the implementation.

Barfield [B'] proposes a methud based on a conformal mapping of the boundary of a closed two-dimensional region onto the perimeter of a rectangular polygon in which is inscribed an orthogonal rectilinear grid. The method consists essentially of finding the function which conformally maps the given domain R onto the polygon, and then using the inverse of the mapping so determined to find the image of che orthogonal grid in the
polygon. The method obviously generates rectangles rather than triangles, so that each rectangle would have to be subdivided to obtain a triangulation of R. While the method is indeed very elegant, considerable care appears to be necessary to avoid distortion, and "long, slender" squares yield very poor triangles. Also the work involved in computing the mapping may be substantial.

Winslow [W5] proposes a method of mesh generation which consists essentially of solving an elliptic boundary-value problem using finite difference methods. The mesh lines are regarded as two intersecting sets of equipotentials, each set satisfying Laplace's equation in the interior of the given two-dimensional domain R. "Boundary conditions" are determined by where the lines are required to intersect the boundary S. Because of the well-known averaging feature of harmonic functions, the generated mesh varies smoothly over the entire domain, its relative grading being determined by the density of the points of intersection on S (ie., the boundary conditions). Triangular and quadrilateral grids can be generated using the method. Although the examples reported are very nice, they are for an extremely simple domain, and Winslow does not discuss the problem of how to concisely describe a general domain to the program (assuming that the program has the facility for handling one), and how to easily input the boundary conditions (the ends of the potential lines). As with most partial differential equation problems, the above tasks and the associated data management problems are difficult to implement in general; once done, the generation of tine equations and their solutions are relatively straightforward, even though they may require considerable computer time. He concedes that the method does not always work satisfactorily near reentrant corners, with node points outside the domain sometimes being produced.

Reid and Turner [Rl] use the following scheme to generate nearly regular meshes. A regtiar equilateral triangular mesh is placed over the domain R so that $\partial \mathrm{R}$ is inside the mesh boundary. Points where triangle sides intersect the boundary are called "boundary points", and node points of the mesh closer than $h / 2$ to a boundary point are moved to the boundary poin in such a way as to guarantee the monotonicity of the resulting finite Element coefficient matrix. [A matrix is said to be monotone if it is non-singular and all elements of its inverse are non-negative.] They consider only piecewise-linear polynomials. The node points and their incident edges which remain outside $\partial \mathrm{R}$ after the relocation process is complete are then discarded, yielding a mesh on R which is regular except near the boundary. The authors' assumptior appears to be that ∂R has no corrers, and this restriction on ∂R simpiifies the node relocation considerably. Corners in $\partial \mathrm{R}$ must necessarily end up as vertices in the triangulation, so the presence of corners imposes further restrictions on the relocation of nodes. It seems clear that we would want h to be of the same order of magnitude as (or smaller than) the shortest arc in ∂R in order to avoid generating triangles with sharp angles. Such a requirement could force the mesh to be finer than otherwise necessary. This scheme obviously assumes that the user desires a regular mesh, and this may not always be true.

Kamel and Eisenstein [Kl] present a mesh generation scheme that is also based on a regular mesh. The user supplies the boundary $\partial \mathrm{R}$ as a sequence of ares subdivided by nodes. First the authors find the "best" regular mesh having the same number of boundary nodes as the given boundary $\partial \mathrm{R}$. Here "best" means "closest to circular shaped." Their program begins at id node of a regular mesh and successively annexes rings of triangles (the last
ring may only be partially annexed) until the number of boundary nodes in the mesh equals the number of nodes on ∂R. This determines the number and relative positions of the triangles for the mesh. The correct number of nodes are then placed inside R and the mesh is then smoothed by applying several passes on the interior nodes, using the formula

$$
\begin{equation*}
x_{i}=\left(\sum_{y \in \eta\left(x_{i}\right)} y\right) /\left|n\left(x_{i}\right)\right| \tag{2.1}
\end{equation*}
$$

The authors caution that their procedure does not work well if the input boundary has nodes with abrupt changes in spacing, or if the domain shape is too complex. They imply that interaction with the algorithm using a graphics terminal is an advisable, if not necessary, part of using their method.

3. A Sersi-Automatic Mesh Generation Scheme

Ideally, a mesh generation procedure should have the capability of grading the net (i.e., making the net finer in selected areas of the domain) on the basis of information supplied by the user. This immediately reises the question of now a desired grading can be easily transmitted to the program. Also, sometines the "material" in the domain varies abruptly from one resion to another, and it may be desirable that triangle interfaces coincide with material interfaces to allow discontinuities in derivatives. This requirement would obvioisly complicate a completely automatic triangulation procedure by imposing constraints on some of the node positions.

With these considerstions in mind we have arrived at the following compromise. The user must supply a very gross triangulaion of the comain, reflecting the desired grading of the net, and with triangle boundaries lying in any desired position. This removes both of the problems raised above. The large triangles can then be subdivided by the computer in the obvious manner. If in addition the program has the capability or subdividing triangles having one curved side, the amount of input for most domains can be kept small.

The algorithm used to subdivide each input triangle is very simple. for some integer k, depending on how fine a firal mesh is required, each triangle side is evenly divided into k segments by $k-1$ nodes. Nodes of consecutive sides are joined by parallel lines yielding k^{2} triansles, each congruent to the original large one. This has the advantare that no sharp angles are generated; the smallest angle in the origjnal triangulation is the same as the smallest in the final triangulation.

For "curvilinear" triangles (having one curved side) the algorithm is similar. Suppose we have the following triangle (Fig. 3.1-a) which we must reinin by a factor of eight (Fig. 3.1-b).

Fig. 3.1-a

Seven node points are generated on each of the straight lines $A B, B C$, and AC as described above. The seven node points on the curve BC are then obtained by finding (approximately) the points of intersection of the curve with lines perpendicular to the straight line $B C$ and passing through the node points on it. The node points on $A B$ and $A C$ are each joined to the node points on the curve as in Fig. 3.1-b by straight lines, and their points of intersection are then used to form the triangles.

Below is ac example of the procedure:

Figure 3.2-a. Input Domain. Gross triangulation indicated by dashed lines.

Figure 3.2-b. Domain subdivided by a factor of 4 .

This approach to mesh generation could vary conveniently be adapted to use with an interactive display system. The fact that the user has conirol of the mesh while not being obliged to provide large amounts of input is particularly attractive in this regard.

4. An Autonatic two-Dimens:onal Domain Iriangulator

In this section we present a scheme for automatically triangulating a two-dimensionsl domain. Unlike the fully automatic schemes discussed in Section 2.2, this method does not utilize a regular mesh; in fact, it specifically is designed to allow for the construction of graded nets. It can be used for general simply connected domains, as the examples appearing later vill demonstrate.

The basic strategy of the method is as follows. The user is required to supply the initial boundary as a sequence of arcs, along with a simple rule indicating how each arc is to be subdivided. The sequence of arcs must form a closed loop, so for now we assume R has no noles. We then have an "initial boundary" consisting of a sequence of nodes connected by straight lines. We then proceed to annihilate R by successively removing triangles from R, as depicted in Figure 4.1. As each triangle is remored, we obtain a new "current boundary". This boundary, along with some associated information can be conveniently stored as a two-way Iinked list. Our goal is to cover (or annihilate) R with as few triangles as possible consistent with the requirements that the mesh vary smoothly and have no sharp angles or long sides. For example, for a unit square domain with each side divided into segments of length 0.01 , we would like the generated mesh to be composed largely of triangles which are close to equilateral triangles having sides of length 0.01 .

We will employ two methods of forming triangles. The first, which we will refer to as "trimming", is depicted by (i), (iii), (iv) and (vi) in Figure 4.1. The second i.ethod of generating triangles requires the seneration of ε node in R, as shown by (ii) and (v) in Figure 4.1. We

(i)

(iii)

(v)

(ii)

(iv)

(vi)

Figure 4.1
will refer to this method as "notching".
First we discuss the generation of nodes. Consider the diagram below

Figure 4.2

Let \bar{l} be the average distance between consecutive nodes in the initial boundary ∂R. Then P is the point on the bisector of angle $P_{2} P_{z} P_{4}$ which approximately minimizes

$$
\begin{equation*}
\mathscr{F}(P)=\left|c-b_{2}\right|+\left|c-b_{3}\right|+\gamma\left\{\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{4}\right|\right\}+\frac{1}{1+\gamma}\left\{\left|a_{1}-\bar{l}\right|+\left|a_{2}-\bar{l}\right|\right\} ; \tag{4.1}
\end{equation*}
$$

where

$$
\gamma=\sum_{i=1}^{L_{i}}\left|b_{i}-\bar{b}\right| / 4 \bar{b},
$$

and

$$
\bar{b}=\sum_{i=1}^{4} b_{i} / 4
$$

The first two terms are designed to make the (potential) triangles close to equilateral. The third term has a smoothing irffuence on the

Iengths of the arcs of the current boundery, and the last term aitempts to make the lengths of the arcs of the current boundary converge to $\bar{\ell}$. If either or both of the neighboring vertices nave angles less than $5 \pi / 6$, the same procedure is performed at these vertices, yielding two or three nodes. Their centroid is chosen as the trial node.

Now that we have a method for generating interior nodes, we can now describe the algorithm. In words it is as follows:

Step 1.
For each vertex on the current boundary having interior angle α less than or equal to $\pi / 3$, form a triangle by trimming and remove it from R, as depicted below.

Figure 4.3

Step 2.
Find any consecutive vertices both having interior angles α_{1} and α_{2} less than $5 \pi / 6$. If none are found, proceed to step 3. Otherwise, choose the pair with the minimum value of $\left|\alpha_{1}-2 \pi / 3\right|+\left|\alpha_{2}-2 \pi / 3\right|$, and generate an interior node P as described above. We then have a
situation such as one of these below:

Figure 4.4
it is obvious what we should do in Figure (4.4-a), but in Figure (4.4-b), it is debatable whether we should trim triangle $P_{3} P_{4} P_{5}$, or notch triangle $\mathrm{PP}_{3} \mathrm{P}_{4}$ (followed presumably by two trims of triangles $\mathrm{PP}_{2} \mathrm{P}_{3}$ and $\left.P_{4} P_{5} \cdot\right)$ Let $d_{1}=\left|P_{2}-P_{4}\right|$ and $d_{2}=\left|P_{3}-P_{5}\right|$, where $\left|P_{i}-P_{j}\right|$ is the distance between points P_{i} and P_{j}. Let
$S_{1}=\left\{b_{1}, d_{1}, b_{4}, b_{5}\right\}, S_{2}=\left\{b_{1}, b_{2}, d_{2}, b_{5}\right\}$ and $S_{3}=\left\{b_{1}, a_{1}, a_{2}, b_{5}\right\}$. Let v_{1}, v_{2} and v_{3} be the average value of the members in S_{1}, S_{2} and S_{3} respectively. Now define w_{1}, w_{2} and w_{3} by

$$
\begin{aligned}
& w_{1}=\left(\left|b_{1}-v_{1}\right|+\left|a_{1}-v_{1}\right|+\left|b_{4}-v_{1}\right|+\left|b_{5}-v_{1}\right|\right) / 4 v_{1}, \\
& w_{2}=\left(\left|b_{1}-v_{2}\right|+\left|b_{2}-v_{2}\right|+\left|a_{2}-v_{2}\right|+\left|b_{5}-v_{2}\right|\right) / 4 v_{2}, \\
& w_{3}=\left(\left|b_{1}-v_{3}\right|+\left|a_{1}-v_{3}\right|+\left|a_{2}-v_{3}\right|+\left|b_{5}-v_{3}\right|\right) / 4 v_{3}
\end{aligned}
$$

$$
\text { Let } w_{k}=\min \left\{w_{1}, w_{2}\right\} \text {. Then if } k=1\{2\}, w_{k}>w_{3} \text {, and angle }
$$ $P_{1} P_{3} P_{4}\left\{P_{3} P_{4} P_{5}\right\}$ is less than or equal to $\pi / 2$, then trim triangle $\mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}\left\{\mathrm{P}_{3} \mathrm{P}_{4} \mathrm{P}_{5}\right\}$. Otherwise, notioh triangle $\mathrm{PP}_{3} \mathrm{P}_{4}$. Ihen go to step 1.

Step 3.

Find any vertex having interior angle $\alpha \leq \pi / 2$. If there are none, go to step 4. Otherwise compute an interior node corresponding to the vertex as indicated below.

Figure 4.5
. Let $d_{3}=\left|P_{2}-P_{4}\right|$ and $d_{4}=\left|P-P_{3}\right|$. Define v_{4}, v_{5}, W_{4} and w_{5}
by

$$
\begin{aligned}
& v_{4}=\left(b_{1}+a_{3}+b_{4}\right) / 3, \\
& v_{5}=\left(b_{1}+a_{1}+a_{2}+b_{4}\right) / 4, \\
& w_{4}=\left(\left|b_{1}-v_{4}\right|+\left|a_{3}-v_{4}\right|+\left|b_{4}-v_{4}\right|\right) / 3 v_{4}, \\
& w_{5}=\left(\left|b_{1}-v_{5}\right|+\left|a_{1}-v_{5}\right|+\left|a_{2}-b_{5}\right|+\left|b_{4}-v_{5}\right|\right) / 4 v_{5}
\end{aligned}
$$

If $W_{14} \leq W_{5}$ then trim triangle $P_{2} P_{3} F_{5}$ and go to step 1. Otherwise repeat step 3 until a successful trim is achieved or until all the vertices have been tested. If no trim can be made, proceed to step 4.

Step 4.
Let μ_{1} and μ_{2} be the smallest and largest distances between consecutive nodes in the current boundary. We then do the following
(4a)

$$
\text { Set } \gamma=\mu_{I}+\frac{\mu_{1}}{\mu_{2}}\left(\mu_{2}-\mu_{1}\right)
$$

(4b) Of those nodes on the current boundary having at least one of its incident boundary arcs less than or equal to γ, choose the node having tue smallest angle α
(ic) If $\alpha \leq \pi$, generate a node, as in Figure 4,2 , notch a triangle (either $\mathrm{PP}_{2} \mathrm{P}_{3}$ or $\mathrm{PP}_{3} \mathrm{P}_{4}$) and go to step 1.

Otherwise, go to (4d).
(4a)
If $\gamma=\mu_{2}$, stop (we have failed). Otherwise, set $\gamma=\gamma+\frac{\mu_{1}}{\mu_{2}}\left(\mu_{2}-\mu_{1}\right)$ and go to (4b).

Remarks:
(1) The parameter γ in step 4 was found to be necessary to force the program to consider first those areas of the domain to be covered by a relatively fine mesh. The averaging effect built into the node generator combinca with this restriction on the lengths of the arcs considered first tends to fill in the domain near the short boundary arcs first; the size of the triangles increases with distance from the boundary.
(2) Steps 1, 2 and 3 are designed to remove any "protrusions" from the current domain. Their overa 11 effect is to make the current boundary convex or near convex.
(3) An interesting and potentially better raethod for generating nodes might be to allow P (Figure 4.2) to lie anywhere in tne curcent domain, rather than restrict it to lie on the bisector of the angle $P_{2} P_{3} P_{4}$. Minimizing $\mathscr{F}_{(}^{\prime}(P)$ would $b e$ considerably more complicated, but might be justified if triangulations with many fewer triangles resulted.
(4) In all cases where a node is generated, we check to see if it lies in the current domain by using an algorition described in [N2], and before forming any triangle we check to make sure no nodes lie inside the triangle. Thus, our algorithm is "fail safe"; if it terminates successfully, it has generated a legal triangulation.
(5) Ai we mentioned above, the current boundary can best be stored as a linked list, so that deletions and insertions can be carried out with little data rearrangement. To reduce computation, the lengths of each bourdary arc and the sine and cosine of each interior angle were also
retsined in conjunction with the linked list. These quantities were computed once by the routines "trim" and "notch" which actually modify the current boundary, and were ticn available as needed by steps 1-4. Other quantities might also have been retained.
(6) Figure 5.10 demonstrates the use of the algorithm when the domain has a hole in it. We simply provide a "boundary arc" cutting through the domain, joinirg the outer boundary to the inner one. The fact that the closed loop fomning the boundary overlaps itself and in some parts does not really correspond to a boundary at $a l l$ does not effect the algorithm. The smoothing program (discussed below) does not move node points lying on these pseado boundary arcs; hence, this device can be used to force some inter-element boundaries to lie in specified positions. In Section 2.3 wo explained why this might sometimes be desirable.

Below are several examples of domain triangulations. The output of the algorithm described above has been smoothed by carrying out three or four sweeps of the interior (non-boundary) nodes using formuia (2.1). The nodes on the curved portions of the boundary were obtained in the same manner as described in Section 2.3.

As we inplied in remaxk 4 above, more sophisticated methods of node generation ana trim/notch strategies might yield "better" triangulations, and such investigations are potentially fruitful topics of further research. It is even difficult to define precisely what we mean by a good graded mesh. It depends on the relative importance of (a) sharp angles (b) the total number of triangles (c) the smoothness of variation of the mesh, and perhaps other factors. It would be nice also to be able to a priori Giarantee certain desirable characteristics of the generated mesh in terms of characteristics of the initial boundary.

Figure 4.8

Figure 4.9

Figure 4.10

5. A Storage Scheme for Finite Element Meshes and Associated Boundary Data

As we have tried to emphasize in the preceding sections, the finite element mesh will probably not be regular; thus the storage scheme for it must be general. In this section we present a scheme for storing general finite element meshes, and show that for most elements, the required storage is small compared to the storage required to store the non zero elements of the coefficient matrix.

We shall see in Chapter 3 that the procedure for generating the finite elenent equations is carried out element-by-element; therefore, it is beneficial to be able to retrieve the node coordinates for each triangle easily. On the other hand, we do not want to siore copies of the node coordinates for each triangle, because many or all of the nodes belong to more than one triangle. Another point is that we really only need to remenver the vertices of the triengles in the mesh; node coordinates on the sides and in the interior of the triangle can be generated as needed, provided we have a formula for generating then.

For definiteness, suppose our mesh has V vertices, S triangle sides, N_{Δ} triangles, and H holes in it. The number of interior sides \{vertices\} and boundary sides \{vertices\} will be denoted by $S_{I}\left\{V_{I}\right\}$ and $S_{B}\left\{V_{B}\right\}$ respectively. In [El] the following relations between these mesh parameters are proved.

$$
\begin{equation*}
N_{\Delta}=\frac{1}{3}\left(S_{B}+2 S_{I}\right)=V_{B}+2 V_{I}-2(H-I) \tag{5.1}
\end{equation*}
$$

Fur a typical mesh having $S_{I} \gg S_{B}, V_{I} \gg V_{B}$, and small H, the the relations (5.1) yield
(5.2) $\quad V \doteq \frac{1}{2} N_{\Delta}$,
and

$$
\begin{equation*}
S \doteq \frac{3}{2} N_{\Delta} \tag{5.3}
\end{equation*}
$$

To aid in describing the scheme we are about to present, consider the figure below, where the domain has been covered by "3-10" elements (see Appendix A for details). The nodes are numbered sequentially, beginning with the vertex nodes, fonlowed by the arc-midpoint nodes (see below), followed by the nodes on the sides and interiors of the triangies. A node with tag k is understood to have coordinates $\left(x_{k}, y_{k}\right)$. The circled numbers are boundary reference numbers which are associated with the corresponding triangle sides. Iater, boundary conditions can be assigned with respect to these numbers. The arc-midpoint nodes tagged 6 and 7 are generated and allowed for in the storage scheme so that some form of interpolation along the boundary can be subsequently done. See ZIámal [z6] for one such possibility, where quadratic interpolation is used.

Figure 5.1

The storage scheme is depicted schematically below. Note that the pointers for each triangle are listed in a counterclockwise manner, in order of
vertices, cides, and interior. Suppose the vertices are numbered $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$, $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$. We adopt the convention that the i-th side of the triangle is the one with endpoints $\left(x_{i}, y_{i}\right),\left(x_{k}, y_{k}\right)$, where $k=(i+1) \bmod 3$.

A pointer will ordinarily require fewer bits than a node coordinate or a coefficient of an equation. For example, on an IBM 360 computer, pointers may conveniently be stored in two bytes (a half-word) whereas a coordinate would require four or eight bytes. In general, we will denote this ratio by $\alpha(\alpha \leq 1)$. Ignoring the storage required for the boundary tacle (since we assurae $S_{B} \ll S_{I}$), then the amount of storage required for the mesh is approximately

$$
\begin{equation*}
V_{M}=\alpha m N_{\Delta}+2 V \doteq(\alpha m+1) N_{\Delta}, \tag{5.4}
\end{equation*}
$$

where m is the number of nodes associated with each element.
Let n_{V}, n_{S} and n_{I} be the number of parameters associated, respectively, with vertex nodes, the node(s) on each triangle side (not including the endpoints), and the interior of each triangle. For example, element 3-10 would yield $n_{V}=1, n_{S}=2$, and $n_{I}=1$. We now want to show that V_{M} is usually small compared to the number N_{Z}^{A} of non-zero elements in the coefficient matrix A. In Section 4.6 we show that
(5.5) $\quad N_{Z}^{A} \doteq \sigma_{1}(V-3)+\sigma_{2}(S+3-2 V)$

$$
\doteq\left(\frac{\sigma_{1}+\sigma_{2}}{2}\right) N_{\Delta} \quad, \quad(\text { using (5.2) and (5.3)) }
$$

where σ_{1} and σ_{2} depend on n_{V}, n_{S}, and n_{I}.

Boundary Data Table

Figure 5.2

The following table serves to make our point.

Element ${ }^{+}$	σ_{1}	σ_{2}	$\frac{\sigma_{1}+\sigma_{2}}{2}$	$0 m+1$			
				$\alpha=\frac{1}{4}$	$\alpha=\frac{1}{3}$	$\alpha=\frac{7}{2}$	$\alpha=1$
1-3	5	2	3.5	$7 / 4$	2	5/2	4
2-6	27	19	23	5/2	3	4	7
3-4	64	37	50.5	2	7/3	3	${ }^{2}$
3-10	84	69	76.5	14/4	13/3	6	11
4-6	161	106	133.5	5/2	3	4	7
4-15	200	176	188	19/4	6	$9 / 2$	16
5-6	272	139	205.5	5/2	3	4	7
5-21	405	370	387.5	25/4	8	23/2	22

${ }^{+}$See Appendix A for a description of the elements.

Table 5.1

Thus for all but piecewise linear polynomials, $V_{M} \ll N_{Z}^{A}$, even when $\alpha=1$. If a direct method is being used to solve the generated syster, the storage required for the decomposition will be much more than \mathbb{N}_{Z}^{A}, so that V_{M} becomes rainer insignificant in comparison to overall storage requirements. Our conclusion is that the use of an irregular rather than regular mesh for finite elemc methods does not in general cause an important increase in storage requirements.

In future chapters we will often need the dimension of A, the number of parameters (unknowns) in our problem. Using (5.2), (5.3), and
the definition of V, S, n_{V}, n_{S} and n_{I} above, we have (5.6) $\quad N=n_{V} V+n_{S} S+n_{I} V_{\Delta}$

$$
\doteq\left(n_{I}+\frac{1}{2} n_{V}+\frac{3}{2} n_{S}\right) N_{\Delta}
$$

CHAPIER 3

GENEKATION OF FTNITE ELEMENT ERUATIONS

1. Introduction

In this chapter we discuss in detail the conputation involved in the generation of the finite element equations. The general procedure with minor variations appears rather frequently in engineering articles (usually with regard to a specific problem and element); Zlámal [25] has also described the procedure, again for a specific situation. Felippa and Clough [Fl] give an excellent summary of the generation process although they give few details. Unfortunately, we feel that too little emphasis is devoted to carefully identifying which of its severa: sub-tasks are independent of others, and which ones are dependent only on particular components of the problem being solved. For example, is a specific computation dependent only on the characteristics of the piecewise polynomial, and independent of the differential operator and the boundary conditiors? How much of the computation can be salvaged if only part of the problem is cnanged and how can that amount be maximized for a given change? Answers to questions such as these are important in the design and implementation of efficient programs. In this chapter we identify these various sub-tasks and indicate which parts of the generation procedure can be isolated as separate modules. The equation generation phase is itself inherentiy modular, oven though in its entirety it is usually regarded as the second of three stares in the application of the finite element method. The first phase is the mesh reneration, and the third is the solution of the renerated algecraic system.

As we stated in Chaptier 1, the finite element method is a RitzGalerkin method where the trial functions have small support. That is, the approximate solution is represented in terms of a local basis. Generation of such a basis for rectangular domains is fairly straightforward, as we described in Section 1.4. However, for domains of arbitrary shape, where it is not convenient or possible to restrict the support of the basis functions to rectangles, a different approach is necessary, and is provided by tie use of so-called intermolation polynomials [Fl, Zl]. The construction of such polynomials and their relationship to the local basis is the subject of Section 2.

Once we have the basis for our approximate solution $v(x, y)$, the next step is to carry out ire integrations required to obtain the coefficients of the linear system, as ciescribed in Chapter 1, Section 2. We emphasize tnat the computational procedure is considerably different from the formal description appearing in Chapter 1. The integrations required to detemine the coefficients are carried out element-by-element, and the actual basis functions are not (explicitly) generated at all. This conputation, where the equations are actually generated, is the subject of Section 3.

The last part of the generation procedure is usually referred to as assembly of the ecrations, or just "assembly", and is the subject of Section 4. Suppose our (linear) elliptic boundary value problem is cast in a variational form, with a functional $I[v]$ that we wish to minimize with respect to the parameters of v. The result of the element-by-element process described in Section 3 is a set of small quadratic functions, each one representing a contribution to I [v] of a particular subdomain (element) of the domain R. These small functions have some parameters in common,
and the process of combining these functions into a single large one is the task referred to as "assembly". The elimination of parameters whose values are determined by boundary conditions is also done at this stage.

2. Construction of Tnterpolating Polymomials

In this section we describe the construction of interpolating polynomials on triangles. However, the procedure and many of our remarks apply for a general pelygon. Let R be a simply or multiply connected domain in the (x, y) plane with piecewise linear boundary ∂R. Zlimal [z6] has described a metnod for removing this restriction on ∂R. We assume R has been triangulated into \mathbb{N}_{Δ} triangles, with edjacent triangles having either a common vertex or a cominon side and with the union of the closed triangles equal to $R U \partial R$. An example of a domain triangulated in this way appears below.

Figure 2.1

Our aim is to construct a piecewise polynomial of degree d on $R \cup \partial R$. To do this we assume that on each triangle $T^{\nu} \subseteq R U \partial R$, $r(x, y)$ is a polynomial $p^{\nu}(x, y)$ of degree d. We impose the conditions that p^{ν} and p^{γ} on neighboring triangles have common values and/or
derivatives at node points lying on their common boundary. We begin by studying the choice of parameters necessary to have $v(x, y)$ of class $C^{(\sigma)}$. This problsm has also been considered in [H2] for general polygons, and we give a special case of their arguments below.

Consider the fisure below, depicting two adjacent triangles T^{ν} ard T^{γ} having common boundary L. Directions tangent and normal to L will be denoted respectively by s and n. Thus $\frac{\partial v}{\partial n}\left(Q_{1}\right)$ is the derivative of V normal to L evaluated at Q_{1}. The notation $v(s)$ wi.ll mean the function v evaluated at the point $Q_{1}+s\left(Q_{1}-Q_{1}\right)$.

Figure 2.2

Suppose we require that

$$
\begin{equation*}
D^{\tau} p^{\nu}\left(Q_{i}\right)=D^{\tau} p^{\gamma}\left(Q_{i}\right) \quad, \quad i=I, 2, \quad|\tau| \leq \beta \tag{2.1}
\end{equation*}
$$

where $\tau=\left(\tau_{1}, \tau_{2}\right), \quad|\tau|=\tau_{1}+\tau_{2}$, and $D^{\tau} v=\frac{\left.\partial^{\mid \tau}\right|_{v}}{\partial^{I_{x}} \partial^{\tau}{ }^{\tau} y}$. Then
(2.2.) $\frac{\partial^{k} p^{\nu}\left(Q_{j}\right)}{\partial s^{k}}=\frac{\partial^{k} p^{\gamma}\left(Q_{i}\right)}{\partial s^{k}} \quad, \quad i=1,2, \quad k \leq \beta$,
hich implies $v(s)$ will be continucus along I, if

$$
\begin{equation*}
d+1=2(\beta+1) \tag{2.3}
\end{equation*}
$$

If (2.3) is satisfied, $\frac{\partial^{k} p^{v}}{\partial n^{k}}$ is a polynomial of degree
$d-k$ in s, having $d-k+1$ coefficients. Thus we require $d-k+1$ conditions of agreement between $\frac{\partial^{k} p^{\nu}}{\partial n^{k}}$ and $\frac{\partial^{k} p^{\gamma}}{\partial n^{k}}$ along L if $\frac{\partial^{k} v}{\partial n^{k}}$ is to be continuous along L. The conditions (2.2) impiy
(2.4) $\quad \frac{\partial^{j} p^{\nu}\left(Q_{i}\right)}{\partial n^{j}}=\frac{\partial^{j} p^{\gamma}\left(Q_{i}\right)}{\partial n^{j}} \quad, \quad i=1,2, \quad j \leq 6-k$,
imposing $2(\beta-k+1)$ conditions. Therefore, we need $\alpha-k+1-2(\beta-k+1)=$ $2(\beta+1)-k-2(\beta-k+1)=k$ more conditions of agreement imposei on $\frac{\partial^{k} p^{\nu}}{\partial n^{k}}$ and $\frac{\partial^{k} p^{\gamma}}{\partial n^{k}}$. Carrying out the same arguments for $k=1,2, \ldots, \sigma$ and summing implies we need $\sigma(\sigma+1) / 2$ additional "normal derivative" paraneters situated at nodes along L if v is to be oí class ${ }_{C}(\sigma)$ along L. Using the fact that the number of coeificients a a general d-th degree polynomial in two variables is $n_{\bar{\alpha}}=(d+1 j \cdot d+2) / 2$ yields the inequality

$$
\begin{equation*}
\frac{(\alpha+1)(\alpha+2)}{2} \geq 3\left\{\frac{(\beta+1)(\beta+2)}{2}+\frac{\sigma(\sigma+1)}{2}\right\} \tag{2.5}
\end{equation*}
$$

where the term $\frac{(\beta+1)(\beta+2)}{2}$ is the number of derivatives $D^{\tau} v,|\tau| \leq \beta$. The factor 3 appears because a triangle has 3 sides and 3 vertices. The inequality (2.5) yields the conditions
(2.c) $\beta(\beta+1) \geq j \sigma(\sigma+1)$ and $d=2 \beta+1$.

Sirplus degrees of freedom in the polynomial can be associated with nodes in the interior of the triangle. For approximation properties of these piecewise polymomials see $[21,24,25]$.

The conditions (2.6) imply, in particular, that we require a to be at least $5\{9\}$ for v to be in $C^{(1)}\left\{C^{(2)}\right\}$. Note that this applies only to the polynomials described above. A common technique used to reduce the number of parameters in the problea is to restrict the polynomial of degree d on each triangle to be of degree $d-k, k>0$ in parts of the triangle. For example; Goël [G2] begins with the 3-4 element (Appendix A) and by a suitable modification forces the normal derivative to each side of the triangle to vary linearly along the boundary. Agreement in value and first derivatives at the vertices Q_{1} and ∂_{2} guarantees continuity in the first derivatives along L. Zienkiewicz [Z3] and Clough and Tocher [Cl] also present techniques for achieving the same goal. Irons [II] describes a method for constructing a quartic element genera+ing a piecewise polynomial subspace $v \in C^{(1)}$. Bell [B6] describes a method for eliminating the side parameters on the 5-6 element by imposing the condition that the derivative of the polynomial normal to each triangle side be a cubic rather than a quartic. Zlámal [z6] uses a similar technique to eliminate the centroid parameter irom element 3-4.

We will refer to elements of the type just described as deficient elements, to distinguish them from elsme its which are polynomials of a particular degree over the whole triangle. We have restricied our studies in this thesis to non-deficient elements. (An explanation appears at the end of this section.)

We now turn to the actusl construction of interpolating polynomials.
Let the number of nodes associated with each triangle be $m=3\left(m_{S}+1\right)+m_{I}$, where $m_{S} \geq 0$ is the number of nodes on each triangle side (not including the endpoints), and let $m_{I} \geq 0$ be the number of nodes in the interior of each triangle. We denote the total number of nodes in the domain by M, and the coordinates of the nodes by $Q_{i}=\left(x_{i}, y_{i}\right), i=1,2, \ldots, M$. The indices of the nodes of triangle T^{ν} will be denoted by $\nu_{1}, \nu_{2}, \ldots, \nu_{m}$, with the vertex nodes coming first in counterclockwise order, followed by the side rodes also in counterclockwise order, followed by the interior nodes (in no specific order). When $m_{S}>0$ we assume that the side nodes evenly süo-divide the triangle sides. Iriangle T^{ν} is depicted in Figure 2.3 below.

Triangle T^{V}

Figure 2.3

To simplify the notaion in the sequel, we will assume that $\nu_{i}=i$. We begin by expressing $p^{\nu}(x, y)$ in the form

$$
\begin{equation*}
p^{\nu}(x, y)=\sum_{k=1}^{n_{d}} \alpha_{k}^{\nu} \varphi_{k}^{(d)}=\alpha^{\nu^{T}} \varphi^{(d)}=p^{(d)^{T}} \alpha^{\nu}, \tag{2.7}
\end{equation*}
$$

where $\varphi^{(d)}$ is the $n_{a^{\prime}}$-dimensional column vector whose elements are the monomial terms of the general d-th degree polynomial in two variables. We assume that the terms appear in order of non-decreasing degree, and in increasing powers of y for consecutive terms of the same degree. For example,

$$
\begin{equation*}
\varphi(3)^{T}=\left(1, x, y, x^{2}, x y, y^{2}, x^{3}, x^{2} y, x y^{2}, y^{3}\right) \tag{2.8}
\end{equation*}
$$

The superscript d will not usually be included explicitly. The vector α^{ν} concains the coefx́icients of p^{ν}, and α_{k}^{ν} and $\varphi_{k}^{(\alpha)}$ refer to the $k-t h$ components of α^{ν} and $\varphi^{(d)}$ respectively.

Now our goal is to represent p^{ν} on T^{ν} in teims of its nodal parameters. For example, if $d=1\left(n_{d}=3\right), \quad p^{\nu}$ can be uniquely characterized by its values at the vertices of T^{ν}. If p^{ν} is a cubic polynomial ($n_{d}=10$), one way to characterize it is by the parameters $D^{\tau} p^{\nu}\left(Q_{i}\right), i=1,2,3, \quad|\tau| \leq 1$, and $p^{\nu}\left(Q_{4_{4}}\right)$, where Q_{4} is at the centroid of $T V$. Note that both of these characterizations assure continuity across incerelement bandaries, as predicted by the theory presented in the lirst part of this section.

We denote the rumber of parameters associated with node i by μ_{i}, and the vector of those parameters by q_{i}. Its j-th element will be denoted by $q_{i, j}$. The parameters associated with $p^{\nu}(x, y)$, ordered $a s$
indicated by Figure 2.3, are then given by

$$
\begin{equation*}
q^{\nu^{T}}=\left(q_{1}^{T}, q_{2}^{T}, \ldots, q_{m}^{T}\right) \tag{2.9}
\end{equation*}
$$

Now suppose \mathcal{L}_{i} is a column vector of length μ_{i} whose elements are linear functionals designed to produce the parameters associated with node i when it is applied to v. For example, the vertex nodes for the cubic polynomial discussed above would have associated vector functionals of the form

$$
\mathcal{L}_{i}[f]=\left(\begin{array}{c}
f\left(Q_{i}\right) \tag{2,10}\\
f_{x}\left(Q_{i}\right) \\
f_{y}\left(Q_{i}\right)
\end{array}\right)
$$

Such an operator applied to a j-dimensional vector is understood to operate term by term; a column vector would yield a $\mu_{i} j$-dimensional column vector, a row vector would produce a μ_{i} by j matrix. Defining \mathcal{L}^{ν} by

$$
\begin{equation*}
\mathcal{L}^{\nu^{\Sigma}}=\left(\mathcal{S}_{1}^{T}, \mathfrak{L}_{2}^{T}, \mathcal{L}_{3}^{T}, \ldots, s_{m}^{T}\right) \tag{2.11}
\end{equation*}
$$

we have immediately the identity
(2.12) $\left.\quad \mathcal{L}^{\nu} V_{V}\right]=q^{V}$.

Using (2.7) along with the fact that v is p^{ν} on T^{ν}, we can rewrite (2.12) as a matrix equation involving α^{ν} and q^{ν} :
(2.13) $\quad q^{\nu}=2^{\nu}\left[p^{\nu}\right]$
$=\mathcal{L}^{\nu}\left[\varphi^{T} \alpha^{\nu}\right]$
$=\mathcal{L}^{\nu}\left[\phi^{T}\right] \alpha^{\nu}$
$=c^{\nu} \alpha^{\nu} \quad$.

As we stated in Section 3.2, we are restricting our basis to be polynomicls of a specific degree on each element (non deficient elements) so we assume that $n_{d}=\sum_{\ell=1}^{m} \mu_{\ell} . \quad C^{\nu}$ will be non-singular provided our node points are distinct and our parameters associated with each node point are linearly independent.

Using (2.13) in (2.7) yields

$$
\begin{equation*}
p^{\nu}(x, y)=\alpha^{\nu} \varphi=q^{\nu^{T}} c^{\nu^{-T}} \varphi \tag{2.14}
\end{equation*}
$$

giving the polynomial on T^{ν} in terms of the parameters which we have chosen to characterize it. Here the notation $C^{\nu^{-T}}$ means $\left(C^{\nu^{-1}}\right)^{T}$. Consider again the cubic example discussed above on triangle T^{ν} having vertices $Q_{i}=\left(x_{i}, y_{i}\right), \quad i=2,2,3$, and cericroid $Q_{4}=\left(x_{4}, y_{4}\right)$. Thus $\mu_{i}=3 ; i=1,2,3$, and $\mu_{4}=2$. Then q^{ν} is

$$
\begin{equation*}
q^{\nu^{T}}=\left(v_{1}, v_{1, x}, v_{1, y}, v_{2}, v_{2, x}, v_{2, y^{\prime}} v_{3}, v_{3, x}, v_{3, y}, v_{l 4}\right), \tag{2.1.5}
\end{equation*}
$$ where $v_{i, t}$ denotes the first partial derivative of v with respect to t at the point $Q_{i}=\left(x_{i}, y_{i}\right)$. The matrix C^{V} is

$$
\left[\begin{array}{cccccccccc}
1 & x_{1} & y_{1} & x_{1}^{2} & x_{1} y_{1} & y_{1}^{2} & x_{1}^{3} & x_{1}^{2} y^{2} & x_{1} y_{1}^{2} & y_{1}^{3} \\
0 & 1 & 0 & 2 x_{1} & y_{1} & 0 & 3 x_{1}^{2} & 2 x_{1} y_{1} & y_{1}^{2} & 0 \\
0 & 0 & 1 & 0 & x_{1} & 2 y_{1} & 0 & x_{1}^{2} & 2 x_{1} y_{1} & 3 y_{1}^{2} \\
1 & x_{2} & y_{2} & x_{2}^{2} & x_{2} y_{2} & y_{2}^{2} & x_{2}^{2} & x_{2}^{2} y_{2} & x_{2} y_{2}^{2} & y_{2}^{3} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
0 & 0 & 1 & 0 & x_{3} & 2 y_{3} & 0 & x_{3}^{2} & 2 x_{3} y_{3} & 3 y_{3}^{2} \\
1 & x_{4} & y_{4} & x_{4}^{2} & x_{4} y_{4} & y_{4}^{2} & x_{4}^{3} & x_{4}^{2} y_{4} & x_{4} y_{4}^{2} & y_{4}^{3}
\end{array}\right]
$$

We can write (2.14) in the form

$$
\begin{align*}
p^{\nu}(x, y) & =\sum_{k=1}^{n_{d}} q_{k}^{\nu}\left(\sum_{j=1}^{n_{d}} c_{k j}^{\nu-T} \varphi_{j}\right)=\sum_{k=1}^{n_{d}} q_{k}^{\nu} \psi_{k}^{\nu} \tag{2.16}\\
& =\sum_{i=1}^{m} \sum_{j=1}^{\mu_{i}} q_{i, j} \psi_{i, j}(x, y),
\end{align*}
$$

where $\psi_{k, j}$ is associated with the j-th parameter of node k. The $\psi^{\prime} s$ are often referred to as coordinate functions in the engineering literature, and are the members of the Local basis in terms of which $v(x, y)$ is being represented. It is easy to verify that $\psi_{k, j}$ vanishes on the boundary of the union of the triangles to which node k belongs, provided the nodal parameters have been chosen to guarantee continuity across interelement boundaries. The function $\Psi_{k, j}$ is defined to be zero outside the region. There will obviously be $\quad \mathbb{N}=\sum_{k=1}^{M} \mu_{k} \quad$ parameters and corresponding basis functions in the representation of v on R.

The procedure we have described for generating the basis functions is in a sense quite general. The generation of the matrix c^{V} can be isolated in a subroutine, and the only required input is
(i) the degree d of the polynomial,
(ii) the node coordinates (or a formula for generating them),
(iiii) the nodal parameters.
Item (ii) is sxpplied by the mesh, while (i) and (iii) can be specified by the user. Each row of C^{ν} is obtained by evaluating the components of φ at the corresponding node cocrdinate (perhaps after differentiating them, if the correspondins parameter is a derivative parameter). Observe that the matrix terms are sinple monomial terms of the form $x_{i}^{l} y_{i}^{l}{ }^{2}, \ell_{1}, \ell_{2} \geq 0$.

Differentiation of them can be easily done symbolically, with obvious computational advantages. Furthermore, eriries in each row will have common factors of the form x_{i}^{ℓ} and $y_{i}^{2}, \ell \geq 0$. Thus, the generation of C^{ν} can be implemented in an efficient as well as general way.

Provided we choose linearly independent parameters equal in number to $(\alpha+1)(\alpha+2) / 2$, the matrix C^{ν} will be non-singular and we can obtain the basis functions on T^{ν} in the factored form $\psi_{i}^{\nu}=\left\{C^{\nu-T} \varphi\right\}_{i}$. Having $\underline{p}^{\nu}(x, y)$ in the form (2.14) is perticularly convenient for our intended applications. Anticipating the next section, observe that on triangle T^{ν} the following equation holds

$$
\begin{equation*}
D^{\tau} p^{\nu}(x, y)=q^{\nu} C^{\nu^{-T}} D^{\tau} \varphi \tag{2.17}
\end{equation*}
$$

where the differential operator D^{τ} operates term by term on φ. Thus, if the basis functions are derived in this factored form, derivatives of the trial function v can be casily obtained symboliceliy. Furthermore, for two differential operators D^{τ} and D^{σ}, expressions of the form $D^{\tau} p^{\nu}(x, y) D^{\sigma}{ }^{\nu}(x, y)$ vecome

$$
\begin{equation*}
q^{\nu^{T}} C^{\nu}{ }^{-1}\left[D^{\tau} \varphi\left\{D^{\sigma} \varphi\right\}^{T}\right] c^{\nu^{-T}} q^{\nu} \tag{2.18}
\end{equation*}
$$

and again the matrix in the square brackets can be obtained sym sicany. Its terms are monomial terms of the form $x^{\ell_{1}}{ }^{\ell_{2}}, \ell_{1}, \ell_{2} \geq 0$. Note that the ease with which we can manipulate the basis functions depends upon beirg able to express each basis (coordinate) function as a linear combination of monomials. For some deficient elements this is not possible, and differentiation and integration of the coordinate functions must be done numerically [$H \perp$] and/or carried out by hand and
programmed explicitly. This would not be particularly disadvantageous for a special program designed to solve a specific class of pioblems. Also, in a production setting, many of the computations involving the functions can be done once and the results stored in a library. However, from our point of view of designing a general purpose program we have favored the use of non-deficient elements, which guarantee the invertibility of C^{V} and the representation of the basis functions as linear combinations of monomial terms.

3. Generation of the Equations

This section describes the actual calculation of the tinite element equations once we have an expression for our piecowise polynomial as discussed in the previous section. Suppose our problem is cast in a variational form, and we wish to minimize a functional $I[v]=I_{R}[v]+I_{\partial R}[v]$ with respect to the parameters of v , where

$$
\begin{equation*}
I_{R}[v]=\iint_{I}\left(a_{1} v_{x}^{2}+a_{2} v_{x} v_{y}+a_{3} v_{y}^{2}+a_{4} v^{2}+a_{5} v\right) d x d y \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
I_{\partial R}[v]=\int_{\partial R}\left(a_{6} v^{2}+a_{7} v\right) d s \tag{3.2}
\end{equation*}
$$

and v is restricted to satisiy a linear boundary condition of the form

$$
\begin{equation*}
a_{8} v+a_{9} v_{n}+a_{10} v_{s}=a_{11} \quad \text { on } \quad \partial R . \tag{3.3}
\end{equation*}
$$

Here $a_{i}, i=1,2, \ldots, 11$ are functions of x and y, and v_{n} and v_{s} are the (inward) normal derivative and (counter-clockwise) tangential derivative of v on ∂R.

Our interest here is in the implementation; consequently, we will not cuncern ourselves with the range of boundary value problems that can be covered by the above form, or relations and/or smoothness that the functions $a_{j}, j=1,2, \ldots, 11$ and v must possess in order for the problem to be correctly formulated. Also, we do not mean to imply that the proceüure to $b \in$ described applies only to the above functional. It will be clear that the construction applies to wher quaratic integrands (involving derivatives of higher order, for example).

We begin by observing that $I[v]$ can be expressed as a sum of the
contributions from each triangle $T^{\nu} \subset R \cup \partial R$. Thus we can write

$$
\begin{equation*}
I[v]=\sum_{\nu=1}^{N} I^{\nu}[v]=\sum_{v=1}^{N}\left(I_{\mathrm{P}}^{\nu}[v]+I_{\partial R}^{\nu}[v]\right) \tag{3.4}
\end{equation*}
$$

where $I_{R}^{\nu}[v]$ has the form (3.1) with the domain of integration replaced by T^{ν}, and $I_{\partial R}^{\nu}[v]$ has the form (3.2) with the contour of integration ∂R replaced by ∂R^{ν}, the part of T^{ν} lying on ∂R. For T^{ν} witin no side on ∂R, $I_{\partial R}^{\nu}[v]$ is obviously zero and does not have to be considered. The basic procedure is to obtain expressions for each term of the summation (3.4) as functions of the parameters of v.

Consider first the teim $I^{\nu}[v]$ corresponding to triangle T^{ν} :

$$
\begin{equation*}
I_{R}^{v}[v]=\iint_{T^{v}}\left(a_{1} v_{x}^{2}+a_{2} v_{x} v y+a_{3} v_{y}^{2}+a_{4} v^{2}+a_{5} v\right) d x d y \tag{3.5}
\end{equation*}
$$

Recali from Section 2 thai our expression for $p^{\nu}(x, y)$ on T^{ν} could be written in the form

$$
\begin{equation*}
p^{\nu}(x, y)=q^{\nu^{T}} c^{\nu^{-T}} \varphi, \tag{3.6}
\end{equation*}
$$

and we observed in Section 3.2 that $D^{\tau} p^{\nu}=q V^{\nu} \nu^{-T} D^{\tau} \varphi$, where the operator D^{τ} operates on the column vector φ term by term. Substituting (3.6) into (3.5), we obtain the following expressiois for the first four (quadratic) terms of (3.5):

$$
\begin{equation*}
q^{\nu^{T}} c^{\nu} \nu^{-T}\left\{\int_{\frac{1}{\nu}} a_{1} \varphi_{x} \varphi_{x}^{T}+a_{2} \varphi_{x} \varphi_{y}^{T}+a_{3} \varphi_{y} \varphi_{y}^{T}+a_{4} \varphi \varphi^{T} d x d y\right\} c^{-1} q^{\nu} \tag{3.7}
\end{equation*}
$$

Deferring treatment of the last term in (3.5) until later, suppose T^{ν} has cne or more sides lying on ∂R and denote that segment of ∂R
by ∂R^{ν}. Then we have

$$
\begin{equation*}
I_{\partial R}^{\nu}[v]=\int_{\partial R^{\nu}}\left(a_{6}^{v^{2}}+a_{7} v\right) a s \tag{3.8}
\end{equation*}
$$

and again using (3.6), we obtain the following quadratic runction from the first term in the integrand of (3.8):

$$
\begin{equation*}
q^{\nu^{T}} c^{\nu}{ }^{-T}\left\{\int_{\partial R^{\nu}} a_{\sigma} \varphi \varphi^{T} d s \quad c^{\nu^{-1}} q^{\nu}\right\} \tag{3.9}
\end{equation*}
$$

We will denote the sum of the matrices in braces in (3.7) and (3.9) by H^{ν}. The so-called stiffness matrix is then given by

$$
\begin{equation*}
A^{\nu}=C^{\nu} H^{-T} C^{\nu^{-1}}, \tag{3.10}
\end{equation*}
$$

and the quadratic terms of $I_{R}^{\nu}[v]$ yield the function $q^{\nu} A^{\nu} q^{\nu}$.
Turning now to the linear terms in $I_{R}^{\nu}[v]$ and $I_{\partial R}^{\nu}[v]$ we obtain, using exactly the same procedure, the expression
(3.11) $\quad q^{\nu} C^{\nu} \nu^{-T T}\left\{\begin{array}{l}\iint_{T^{\nu}} a_{5} \varphi d x d y+\int a_{7} \varphi d s \\ \partial R^{\nu}\end{array}\right\}$

Denoting the vector in braces by w^{ν}, the linear terms in $I^{\nu}[v]=I_{P}^{\nu}[v]+I_{\partial R}^{\nu}[v]$ yield (3.12) $q^{\nu}{ }^{T} c^{\nu-T}{ }_{w}{ }^{\nu}=q^{\nu} b^{\nu}$,
where the vector b^{ν} is usually referred to as a load vector by engineers.
Rejeating the above proced. e for each triangle $T^{\nu}, \quad \nu=1,2, \ldots, N_{\Delta}$, we obtain finaliy

$$
\begin{equation*}
I[v]=\sum_{\nu=1}^{N}\left(q^{\nu} A^{T}{ }_{\underline{q}}^{\nu}+q^{\nu}{ }_{b}{ }^{\nu}\right) \tag{3.13}
\end{equation*}
$$

where we note that there will be parameters q_{j}^{ν} common to more than one of the terms of the summation.

If we assume all our boundary conditions are natural (i.e., they axe satisfied automatically because of the design of the functional being mininized), then (3.3) is null, and our approximate solution is obtained by minimizing (3.10) with respect to the $q^{\nu / s}$. That is, we satisfy

$$
\begin{equation*}
\sum_{\nu=1}^{N}\left\{\left(A^{\nu}+A^{\nu}\right) q^{\nu}+b^{\nu}\right\}=0 \tag{3.14}
\end{equation*}
$$

If v must satisfy some boundary conditions of the form (3.3), then some of the $\underline{q}^{\nu / s}$ are constrained to assume certain values or satisfy certain relations. This entire assembly problem and incorporation of boundary conditions is examined in the next section.

We now examine the details of implementation of the procedure outlined in (3.6)-(3.12). To reduce the amon'. of computation that must be done for each triangle, it is convenient to confine as much of the computation as possible to a standard canonical triangle T° for which part of the computation can be done once and for all. The savings that can be realized depend rather heavily on whether the coefficients of the functional a_{i}, $i=1,2, \ldots, 7$ are constants or variable. The following scheme has been described for particular problem-element combinations by ziámal [Z5], Dupuis and Goël [D3] and others.

Let T^{0} have vertices $(0,0),(1,0)$ and $(0,1)$. Ther the linear transformation mapping $T^{\circ} \quad\left(\xi-\eta\right.$ plane) onto T^{ν} ($x-y$ plane) having
vertices $\left(x_{i}, y_{i}\right) \quad i=1,2,3$ is
(3.15) $\binom{x}{y}=\binom{x_{1}}{y_{1}}+\left(\begin{array}{cc}\Delta x_{1} & -\Delta x_{3} \\ \Delta y_{1} & -\Delta y_{3}\end{array}\right)\binom{\xi}{\eta}=\binom{x_{1}}{y_{1}}+J^{\nu}\binom{\xi}{\eta}$,
where $\Delta x_{i}=x_{i+1}-x_{j}$ wien the subscripts interpreted modulo 3. The inverse marring is then

$$
\binom{\xi}{\eta}=\frac{1}{\left|J^{\nu}\right|}\left(\begin{array}{cc}
-\Delta y_{3} & \Delta x_{3} \tag{3.16}\\
-\Delta y_{1} & \Delta x_{1}
\end{array}\right)\binom{x}{y}-\frac{1}{\left|J^{\nu}\right|}\binom{\Delta x_{3} y_{1}-\Delta y_{3} x_{1}}{\Delta x_{1} v_{1}-\Delta y_{1} x_{1}},
$$

where $\left|J^{\nu}\right|$ is the determinant of J^{ν}. Note that

$$
\begin{equation*}
\iint_{\mathbb{T}^{\nu}} W(x, y) d x d y=\iint_{T^{0}} W(x(\xi), y(\eta))\left|J^{\nu}\right| d \xi d \eta \quad . \tag{3.17}
\end{equation*}
$$

Now define the quantities $\tilde{q}, \tilde{\varphi}$, ard $\tilde{\mathrm{C}}$ on T° (in the $\bar{\xi}-\eta$ plane) in exactly the same way as their counterparts were defined in the $x-y$ plane. For example,

$$
\begin{equation*}
\tilde{\varphi}^{(3)}=\left(1, \xi, \eta, \xi^{2}, \xi \xi_{1}, \xi \eta^{2}, \xi^{3}, \xi^{2} \eta, \xi \eta^{2}, \eta^{3}\right) . \tag{3.18}
\end{equation*}
$$

Using (3.16) and (3.17), the integrals (3.5) and (3.8) can be expressed in the form

$$
\begin{equation*}
\iint_{T^{o}}\left(g_{1}^{\nu} w_{\xi}^{2}+g_{2}^{\nu} \xi_{\xi}^{W} \eta+g_{3}^{\nu} W_{T}^{2}+g_{4}^{\nu}{ }^{2}+g_{5}^{\nu}\right)\left|J^{\nu}\right| d \xi d \eta \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\partial T^{o}}\left(g_{6^{w}}^{\nu}+z_{7}^{\nu}{ }^{\nu}\right)\left|J^{\nu}\right| d s \tag{3.20}
\end{equation*}
$$

where $w(\xi, \eta)=v(x(\xi, \eta), y(\xi, \eta))$, and the $g_{i}^{\prime \prime}$'s will depend not only on their respective a_{i} 's, but also upon the mapping and the other terms in the functional. The contour integral (3.20) is understood to apply only to the part of T° corresponding to ∂R^{ν}. Again it is convenient to collect the linear and quadratic terms together. Carrying out the above procedure for the quadratic terms in (3.19) and (3.20) we obtain
(3.21) $\quad \tilde{q}^{\mathrm{T}} \tilde{\mathrm{C}}^{-\mathrm{T}}\left\{\begin{array}{l}\iint_{T^{0}}\left(\mathrm{~g}_{1}^{\nu} \tilde{\varphi}_{\xi} \tilde{\varphi}_{\xi}^{\mathrm{T}}+\mathrm{g}_{2}^{\nu} \tilde{\varphi}_{\xi} \tilde{\varphi}_{\eta}^{\mathrm{T}}+g_{3}^{\nu} \tilde{\varphi}_{\eta} \tilde{\varphi}_{\eta}^{\mathrm{T}}+g_{4}^{\nu} \tilde{\varphi}^{\sim} \tilde{\varphi}^{\mathrm{T}}\right)\left|J^{\nu}\right| d \xi \mathrm{~d} \eta \\ \end{array}\right.$

$$
\left.+\int_{\partial T^{\circ}}\left(g_{6}^{\nu} \tilde{\varphi} \tilde{\varphi}^{T}\left|J^{\nu}\right|\right) d s\right\} \tilde{C}^{-1} \tilde{q}
$$

The expression in braces in (3.21) is the $\xi-\eta$ counterpart of the matrix H^{ν} defined above, and we denote it by $\tilde{H^{\nu}}$. Then the $\xi-\eta$ counterpart of A^{ν} is given by

$$
\begin{equation*}
\tilde{\mathrm{A}}^{\nu}=\tilde{\mathrm{C}}^{-T} \tilde{\mathrm{H}}^{\nu} \tilde{\mathrm{C}}^{-1} \tag{3.22}
\end{equation*}
$$

The linear terms of (3.19)-(3.20) yield

$$
\tilde{q}^{\mathrm{T}} \tilde{\mathrm{c}}^{-\mathrm{T}}\left\{\begin{array}{l}
\left.\iint_{\mathrm{T}^{\circ}} \mathrm{g}_{5}^{\nu} \varphi\left|J^{\nu}\right| d \xi d \eta+\int \mathrm{g}_{7}^{\nu} \varphi\left|J^{\nu}\right| d \mathrm{~s}\right\} \tag{3.23}\\
\partial \mathrm{m}^{\circ}
\end{array}\right\}
$$

or

$$
\begin{equation*}
\tilde{q}^{\mathrm{T}} \tilde{\mathrm{C}}^{-\mathrm{T}} \tilde{\mathrm{w}}=\tilde{\mathrm{q}}^{\mathrm{T}} \tilde{\mathrm{~b}} \tag{3.24}
\end{equation*}
$$

Finally, since we wish I 'lv] to be expressed in terms of the parameters in the $x-y$ plane rather than the $\xi-\eta$ plane, we must apply a transformation derived from (3.15) to $\tilde{A} \nu$ and \ddot{b}. Specifically, using
(3.15), we can easily construct a block diagonal matrix K satisfying (3.25) $\quad \tilde{q}=K^{\nu}{ }^{\nu}{ }^{\nu}$,
from which we can get, by substitution of (3.25) into (3.22) and (3.24), the following
(3.26) $\quad A^{\nu}=K^{\nu} \nu^{T} \tilde{A} K^{\nu} \quad, \quad b^{\nu}=K^{\nu} \tilde{b}^{\nu}$

The following points are important in the implementation of the above.
(i) If the coefficients of the quadratic terms in the functional are constants (or at least constant over each triangle), then the corresponding g^{ν} 's will be constant over the triangles. Thus \tilde{A}^{ν} can be expressed as the sum of matrices of the form $\gamma_{1} G_{1}+\gamma_{2} G_{2}+\gamma_{3} G_{3}+\gamma_{4} G_{4}$, where the G_{i} 's are independent of ν, (and thus need to be computed once), and $\gamma_{i}=\gamma_{i}(\nu)$. For example, the first term would be

The generation of the G_{i} 's can be dune very efficiently as follows. First we compute

$$
\begin{equation*}
\vartheta_{i j}=\iint_{T^{\circ}} \xi^{i} \eta^{j} d \xi d \eta=i!j!/(i+j+2)! \tag{3.28}
\end{equation*}
$$

for all i and j less than μ, where μ depends upon d and the terms in the functional. The components of the integral are then $I_{r_{1}} r_{2}$, where
r_{1} and r_{2} are simple integer functions. When g_{i}^{ν} is not constant over each triangle, numerical integration will probably be necessary to evaluate the expressions in the braces in (3.21) and (3.23). Even in this instance, having the basis functions in the form (2.14) is still very convenient, since it allows us to compute the integrand at the evaluation points very efficiently. For example, consider evaluating the i, j-th component of the integrand of the first bracketed integral in (3.21) at the point $\left(\xi_{\mu}, \eta_{\mu}\right)$. The function to be evaluated will have the form

$$
\begin{array}{r}
\varepsilon_{1}^{\nu} \xi_{\mu}^{\varepsilon_{1}-2} \ell_{\mu}^{\ell_{2}}+g_{2}^{\nu} \xi_{\mu}^{\ell_{1}-1} \ell_{\mu}^{\ell_{2}-1}+g_{3}^{\nu} \xi_{\mu}^{\ell}{ }_{1} \eta_{\mu}^{\ell_{\mu}-2}+g_{4}^{\nu} \xi_{\mu}^{\ell} \eta_{\mu}^{\ell} \eta^{2}, \tag{3.29}\\
\ell_{1}, \ell_{2} \geq 0 .
\end{array}
$$

Assuming we have the basis functions in a convenient symbolic form, the evaluation of the integrand can be optimized considexably by precomputing the common factor $\xi_{\mu}^{l_{1} l^{-2}} \eta_{\mu}^{l_{2}} 2^{-2}$.
(ii) The matrix \tilde{C} and its W decomposition need only be computed once, since \ddot{c} is independent of ν.
(iii) The computation done so far has been independent of the boundary conditions (3.13). Thus a change in them would not require re-computation of the A^{ν} and $b^{\nu}, \quad v: 1,2, \ldots, N_{\Delta}$. Also note that changes in a_{5} and a_{7} would not change $A^{\nu}, \quad \nu=1,2, \ldots, N_{\Delta}$
(iv) Consider the calculation represented by (3.22), and denote n_{α} by n. Normally, one would expect the congruence transformation to require $2 n^{3}+O\left(n^{2}\right)$ multiplicative operations, since we need to perform 2n back-solves, each requiring $n^{2}+O(n)$ operations. We will show how to reduce the computation to $\frac{7}{6} n^{3}+O\left(n^{2}\right)$ under the assumption that \tilde{H}^{ν} is symmetric. 'Equation (3.14) above implies that we only need $\tilde{A} \tilde{A}^{\nu}+\tilde{A}^{\nu}$; therefore, if \tilde{H}^{ν} is not symmetric, we can compute $\tilde{\mathrm{C}}^{-T}\left(\tilde{\mathrm{H}}^{\nu}+\tilde{\mathrm{H}}^{\nu^{T}}\right) \tilde{\mathrm{C}}^{-1}$]. The following technique has also been used in [M2] in connection with solving generalized eigenvalue problems.

Suppose we have the $I U$ decomposition of $\tilde{\mathrm{C}}^{\mathrm{T}}$. Then the basic procedure is
(a) Solve $L U W=\tilde{H}^{\nu}$,
(b) Solve LU $\tilde{A}^{\nu}=W^{T}$.

Consider step (a). Suppose we compute only the lower triangle of W; i.e., we do not complete the U-soive, so that W has the form It is easy to show that now the calculation of W requires the following number of multiplicative operations:

$$
\theta_{a}=n \cdot \frac{n^{2}}{2}+\sum_{i=1}^{n} \frac{i(i+1)}{2}=\frac{n^{3}}{2}+\frac{n^{3}}{6}+O\left(n^{2}\right)=\frac{2}{3} n^{3}+O\left(n^{2}\right)
$$

Now consider step (b). We use the following notation to indicate partitions of L, U and C^{T}, where the upper left partition is k by k :

$$
\tilde{C}^{\tau}=\left(\begin{array}{c:c}
C_{1}^{k} & C_{2}^{k} \\
\hdashline C_{3}^{k} & C_{4}^{k}
\end{array}\right) \quad, \quad L=\left(\begin{array}{c:c}
L_{1}^{k} & 1 \\
\hdashline & -1 \\
L_{3}^{k} & L_{4}^{k}
\end{array}\right) \quad, \quad U=\left(\begin{array}{c:c}
U_{1}^{k} & U_{2}^{k} \\
- & -1 \\
& U_{4}^{k}
\end{array}\right)
$$

We will denote the i-th colum of \tilde{A}^{ν} by a_{i}, its 人irst k elements by a_{i}^{k}, and its last $n-k$ elements by $a_{i}^{k^{\prime}}$. The first i elements of the i-th row of W will be denoted by w_{i}. Then step (b) can be descrited as follows: For $k=n, n-1, \ldots, l$ compute

$$
L_{1}^{k} U_{1}^{k} a_{k}^{k}=w_{k}-C_{2}^{k} a_{k}^{k^{i}}
$$

The first step yields the last row and column of A; the next step yields tne remaining unknown parts of the ($n-1$)-st row and column and so on. Note that at each stage the vector $a_{k}^{k^{\prime}}$ has already been computed by previous steps. Here we use the fact that $\mathbb{I}_{1}^{k} U_{1}^{k}=C_{1}^{k}$. The number of multiplicative operations Q_{b} required for step (b) is given by

$$
\theta_{0}=\sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i(n-i)=n \sum_{i=1}^{n} i=\frac{n^{3}}{2}+0\left(n^{2}\right)
$$

Thus, the total computation required for the congruence transformation has been reduced from $2 n^{3}+O\left(n^{2}\right)$ to $\theta_{a}+\theta_{b}=\frac{7}{6} n^{3}+O\left(n^{2}\right)$.

Wher the coefficients of the quadratic terms are constants, this technique will not be too important since the number of such congruence transformations wiil be small. I'he computation of the G matrices discussed above is initialization, and for $N_{\Delta} \gg n_{d}$, the work required for equation generation is essentially proportional to $N_{\Delta} n_{d}^{2}$. However, if one or more of the quadratic coefficients is variable, a congruence trans-urmation must be done for each triangle, and using this technique saves $\frac{5}{6} n_{d}^{3} N_{\Delta}$ multiplicative operations.

The equation generation can be summarized as follows:

Step 1 (Initialization)

(i) Compute $\tilde{\mathrm{C}}$ and its IU decompcsition.
(ii) If all the quadratic terms have constant coefficients then compute the appropriate \mathbb{E} matrices and store them.

Step 2
For each triangle T° do the following:
(iii) Compute the mapping from T° to T^{ν}, and generate the quantities $\left|J^{\nu}\right|$ and g_{j}^{ν}.
(iv) Generate $\widetilde{\mathrm{A}}^{\nu}$ and $\tilde{\mathrm{b}}^{\nu}$.
(v) Apply the transformaition K^{ν} to \tilde{A}^{ν} and \tilde{b}^{ν} to obtain A^{ν} and b^{ν}.

4. Assembly of the Equations

Having completed the procedure described in Section 3.3 for each triangle, we have a system of the following form to solve:

$$
\sum_{\nu=1}^{N}\left\{\left(A^{\nu}+A^{\nu}\right) q^{\nu}+b^{\nu}\right\}=0
$$

or

$$
\sum_{\nu=1}^{N}\left\{B^{\nu} q^{\nu}+b^{\nu}\right\}=0
$$

Combining the terms in (4.1), and renumbering the q_{i}^{ν} 's and b_{i}^{V} 's from 1 to N, we obtain the systen
(4.2) $\quad A q=b$.

As we pointed out in the previcus section, if boundary (onaitions of the form (3.3) are imposed, then some of the elerents of q will be required to assume specific values or satisfy specific relations.

Suppose first that the boundary conditions only impose constraints on single parameters, rather than specifying relations that must hold between several parameters. Partitioning q inڭo q_{1} and q_{2}, equation (4.2) can be written in the form:

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \tag{4.3}\\
A_{21} & A_{22}
\end{array}\right)\binom{q_{1}}{q_{2}}=\binom{b_{1}}{b_{2}}
$$

Now if q_{2} must satisfy $q_{2}=\bar{q}_{2}$, we can solve

$$
\begin{equation*}
A_{11} q_{1}=b_{1}-A_{12} q_{2} \tag{4.4}
\end{equation*}
$$

As Felippa and Clough [FI] point out, in order to avoid rearranging santions, we would acturly solve the followind system in some permuted form
(4.5) $\left(\begin{array}{ll}\mathrm{A}_{11} & 0 \\ 0 & I\end{array}\right)\binom{\bar{q}_{1}}{\mathrm{q}_{2}}=\binom{\mathrm{b}_{1}-\mathrm{A}_{12} \overline{\mathrm{q}}_{2}}{\overline{\mathrm{q}}_{2}}$.

We shall see in Chapter 4 that if we use "profile" methods, this practice costs almost no storage or computation. We denote this system by

$$
\begin{equation*}
A^{\prime} q^{\prime}=b^{\prime} \tag{4.6}
\end{equation*}
$$

Now suppose further that the boundary conditions impose some general linear constraints on the solution of (4.6). As an example, we appeal to our cubic element $3-4$ and the diagram below:

Figure 4.1

Suppose the boundary condition $\frac{\partial v}{\partial n}=g(x, y)$ is imposed along ∂R. Then at the point Q, we want to impose the condition (4.7) on the derivative parameters at the node Q_{1}.

$$
\begin{equation*}
-v_{x}\left(Q_{1}\right) \sin \alpha+v_{y}\left(Q_{I}\right) \cos \alpha=g_{1}^{\prime}\left(Q_{1}\right) \tag{4.7}
\end{equation*}
$$

If our boundary conditions impose ℓ such constraints (where $\ell \ll N$ in general), we can write them as an $\ell \times N$ matrix equation
(4.8) $\quad Q q^{\prime}=c$.

The solution of (4.6) can be viewed as the point which minimizes the quadratic function

$$
(4.9) \quad \Phi\left(q^{\prime}\right)=\frac{1}{2} q^{\prime} T_{A^{\prime}} q^{\prime}-q^{\prime} T_{b^{\prime}}
$$

Using the method of Lagrange multipliers to minimize (4.9) subject to the constraints (4.8), we obtain the following system to solve

$$
\left(\begin{array}{ll}
A^{\prime} & Q^{T} \tag{4.10}\\
Q & 0
\end{array}\right)\binom{q^{\prime}}{\lambda}=\binom{b^{\prime}}{c}
$$

where λ is a vector of ℓ Lagrange multipliers. The algorithm for solving (4.10) is
a) Solve $A^{\prime} W=Q^{T}$ and compute $Y=Q W$ (and its $L U$ decomposition)
b) Solve $A^{\prime} y=b^{\prime}$
c) Solve $3 \lambda=Q y-c$
d) Solve $A^{\prime} q^{\prime}=b^{\prime}-Q^{T} \lambda$

At first sight this algorithm appears expensive, since $\ell+2$ solutions of systems of the form (4.6) are involved. However, if the coefficients in (3.3) are constants, Y remains constant for different boundary conditions. Thus, in such circumstences, our problem may be solved using
steps (b), (c) and (d) once the IU decomposition of Y is available. Another possibility for handling loundary conditions of the form (4.7) is to modify the paramesers of our problem. Applying the proper orthogonal transformation to the stipfiness matrices, we rotate the derivative parameters to get v_{n} and v_{s}. The boundary condition then imposes a condition only on v_{n}, and the variable can be eliminated in the obvious way.

Which of the two approaches for handling derivative boundary conditions is better? It is fairly clear that the latter approach will generally require less computation, since the rotations which must be applied are relatively inexpensive and each one saves a solution of the system (4.6). For very large systems, the difference between the two computations will be great. Furthermore, the relative difference between the work required to decompose A^{\prime} and that required for a back solution is not as large for band systems as for dense systems, since the factor is the bandwidth rather than N. Thius our remark above that A^{\prime} need only be decomposed once is not as important as you would expect.

In support of the first method of treating derivative boundary conditions is its simple and uniform implementation. The computation can. be isolated in one subroutine vhich generates the matrix Q. In contrast, the second approach is very complicated. Corners having interior angles which are not multiples of $\pi / 2$ may force us to apply non-orthogonal transformations to the derivative pacameters in order to handle boundary conditions imposed on both incident edges. The fact remains, howeven, that such complexity pays off. For typical problems (and a one shot computation) the first approach can require twice as much computation as the second.

5. Inclusion of Singular Functions in the Basis

For some elliptic boundary-value problems, particularly in domains with re-entrant corners, the solutions may have unbounded derivatives at some of the corners, so they are hard to approximate by polynomisis. A successful approach due to Fix [F2] is to enrich the basis by adding appropriate "singular" functions that represent the solution accurately near the corners.

Fix employed tensor product spaces rather than the interpolation method for generating the finite-element equations (the distinction between the two approaches was made in Chapter 3). Thus, once ne had designed the appropriate singuiar functions having small support, the inclusion of them in the basis was straightforward. The extra terms were simply added to the expansion t'or v^{N}.

The inelusion of such singuiar functions is still possible with the interpolation approach, but the procedure is not quite so obvious. Suppose we wish to include one singular function ψ^{*} in the basis, and assume that $\psi^{*} \neq 0$ on triangle T^{ν}. We will ignore the complication of the mapping of ${ }^{\prime} T^{\nu}$ onto the canonical triangle T°. Using the notation we developed in Section 1 of this chapter, we consider the computation involving the following term on trisngle T^{ν} :

$$
\begin{equation*}
\iint_{T^{\nu}} u_{x}^{2} d x d y \tag{5.1}
\end{equation*}
$$

We first note that the basjs functions on T^{ν} under "normal" circumstances are given by $\psi_{i}^{\nu}, \quad i=1, \hat{c}, 3, \ldots, m$, where

$$
\begin{equation*}
\psi_{i}^{\nu}=\left\{C^{\nu-T} \varphi\right\}_{i} \tag{5.2}
\end{equation*}
$$

The approximation to u on T^{ν} is thus given by

$$
\text { (5.3) } \quad v(x, y)=\sum_{i=1}^{m} q_{i}^{\nu} \psi_{i}^{\nu}=q^{\nu} C^{\nu} \varphi
$$

In this form it is clear how to add the singular function. Including the singular function ψ^{*} in the sum of (5.3) and going in reverse we have:

$$
\begin{align*}
v(x, y) & =\sum_{i=1}^{m} q_{i}^{\nu} \psi_{i}^{\nu}+q^{*} \psi^{*} \tag{5.4}\\
& =\left(q^{\nu}, q^{*}\right)\left[\begin{array}{cc}
c^{\nu} & \vdots \\
-\cdots & \vdots \\
& 1 \\
& 1
\end{array}\right]\left[\begin{array}{c}
\varphi \\
\varphi \\
\cdots- \\
\psi^{*}
\end{array}\right]
\end{align*}
$$

The expression for (5.1) is therefore

In this particular example, the stiffness matrix for q " will be ($n+1$) by ($n+1$) rather thar n by n. The extension to more than one singular function is clear.

CHAPIER 4
SOLUTION OF FINITE ELSMENT EQUATIONS

1. Introductuon and Noizition

In this chapter we will study the storage ad solution of finite element bystems of equations. As we printed out in Chapter I, the $N \times \mathbb{N}$ inite element coefficient matrix A will in general be sperse; that is, many (perhaps most) of its elements will be zero. To say that a matrix is sparse, with no further qualification, is not of much practical significance. What is impor'ant is whether we can make use of its sparseness to reduce storage and/or computation requirements in its subsequent processing; that is, we are interested in whether the matrix has exploitable structure rather than just its sparseness. One of our aims in this chapter will be to study the structure of finite element equations and to show how such structure can be utilized. In this connection we present some experiments comparing several ordering algorithms (i.e., algorithms which order or reorder the rows and columns of A with the aim of reducing storage and computation requirements). We also present two efficient methods for storing sparse matrices.

We have confined our attention to direct methods for solving finite element equations for the following reasons:
(1) Storage is becoming increasingly abundant, and one of the prime reasons for using iterative methods is that they generally require much less storage than direct methods. Computer memories are steadily becoming larger, the capacity and performance of peripheral storage devices such as disks and drums is improving rapidly, and large bulk core storage [F8] (which can be viewed as a very fast peripheral storage device) is becoming common. The use of virtual memory [DI, M5] is another important Levelopment. Under ideal conditions, the user is allowed to address a very jarge memory ($\approx 2^{2)^{4}}$ words
on the IBM $360 / 67$) which need not exist physically but where addresses are autonatically mapped onto actual physical adaresses durirg execution. We do not mean to imply that storage is not an imrurtant consideration in the choice of methods; our contention is simply that the characteristics of today's computer systems allow the solution of large linear systems with direct methods.
(2) Finite element methods tend to yield denser systems of equations than usual finite difference methods. Suppose the parameter $q_{i, j}$ is associated with node i. Then there will usually be a non-zero entry in $q_{i, j}$'s equation for every parameter associated with every triangle containing node i . It i.s easy to see that higner degree polynomials must lead to denser systems, because more parameters will be associated with each triangle. We discuss this subject in detail in Section 6 of this chapter. Since the amount of computation per iteration for most iterative schemes is pruporional to the number of non-zero elements in the matrix, this increased density increases the solution time for iterative methods. [However, for fixed \mathbb{N}, higher degree polynomials yieid systems which require more computation for their direct solution also, so it is difficult to make precise statements as to which methods require the least computation.] Fix and Larsen [F3] have compared Gaussian elimination and successive overrelaxation (SOR) for some special tensor-product spaces, and their analysis and numerical experiments suggest that $S O R$ is more efficient for some problems, if N is large enough. Their conclusions are based on the assumption that the equations have only one right side, and in many practical situations, this is unlikely. Also, their analysis is based solely on operation counts. For tensor-product bases such an analysis is reasonable, since the structure of the grid and the coefficient matrix can conveniently
be stored in two-uimensional arrays. The data management is no more complex than that resulting from using a five point difference operator on a regular mesh. However, for an arbitrary triangular mesh, A will not have such regular structure, and the calculation of a single component of the residual vector may be relatively expensive. In general, A will be symmetric and only its liper or lower triangle will be stored; therefore, in order to compute a single component of the residual, we musi be able to access lines of elements in both rows and columns of the upper (or iower) triangle of A . If the storage scheme is "row oriented", accessing elements in a specific column may require scanning several rows, and visa versa for column-criented schemes. By contrast, elimination schemes can be conveniently implemented so that they operate only on rows or only on columns. We discuss this subject in detail later; our point is that data management can be important in comparing methods.
(3) Finally, and perhaps most important, a rather large amount of practical engineering experience indicates that direct methods are preferable to iterative ones. The reasons for this include:
(i) Finite element systems (designed to yield a prescribed accuracy) tend to have a considerably lower order N than systems resulting from usual finite difference methods. This is due in part to the ease with which we can grade the net (thus making efficient use of each degree of freedom). Also, as we shall see in Chepter 5 , increasing the degree d of our piecerise polynomial allows us to decrease N and still obtain the prescribed accuracy.
(ii) Direct methods allow the use of jterative refinement [F4, W2], which provides an estimate of the condition of the discrete problem and the accuracy of the discrete solution. Such information is hard to
obtain using iterative methods. Since we do not know the true (discrete) solution, the error at each step of the iteration must be estimated on the basis of such measurable quantities as the size of the residuals or the size of the last correction vector. Unfortunately, small residuals or small changes in successive iterates do not guarantee smali errors in the computed sciution. By using direct methods, we also avoid the problem of finding a "good" over-relaxation parameter.
(iii) Usually, more than one right side must be processed. The initial cost of the decomposition, which represents the majority of the computation for the first solution, does not have to be repeated for succeeding right sides.

The study of sparse matrix problems is a rapidly expanding field. (See Willoughby [W3], and the extensive references therein.) In the sequel, we will assume A is a symmetric positive definite matrix. As we observed in Chapter I, finite element methods for elliptic problems cast in a variational form yield this type of matrix. Following Rose [R3] and Cuthill and McKee [C5], A will be said to have bandwidth m if and only if $a_{i j} \neq 0 \Rightarrow|i-j| \leq m$. Note that this differs from the usual definition of bandwidth, which is defined in terms of m to be $2 m+1$. For any matrix W, we define the quantities $f_{i}^{W}=\min \left\{j \mid w_{i j} \neq 0\right\}, \quad i=1,2, \ldots, N$, and $\delta_{i}^{W}=i-f_{i}$. Thus, $m=\max _{i}\left\{S_{i}^{A}\right\}$. The number N_{Z}^{W} will denote the number of non-zero elements in W.

Rose [R3] has given a detailed graph theoretic analysis of the Cholesky decomposition algorithm. With Rose we define the graph $G=(X, E)$ associated with A, where X and E are sets of nodes and edges, respectively. Vertices correspond to rows of the matrix, ana edges correspond to non-zero, off-diagonal elements of A. If $i>j$ and
$a_{i j} \neq 0$, then vertex i is joined to vertex j by an edge. (We then say that vertices i and j are adjacent.) The degree of a vertex is the number of edges incident to it. An example dernonstrating this notation appears below. An "X" indicates a non-zero element, and a "O" indicates a zero element.

$$
A=\left(\begin{array}{llllll}
x & 0 & x & x & 0 & 0 \tag{1.1}\\
0 & x & x & 0 & x & x \\
x & x & x & 0 & x & 0 \\
x & 0 & 0 & x & 0 & 0 \\
0 & x & x & 0 & x & x \\
0 & x & 0 & 0 & x & x
\end{array}\right), \quad:=
$$

The ordering of the equations induces a corresponding ordering of the vertices of G. In general, we denote an ordering α on X $(\{1,2,3, \ldots, N\} \xrightarrow{\alpha} X)$ by G^{α}. Denoting the set of vertices adjacent to vertex i by η_{i} ("neighbours" of vertex i), we can describe the Cholesky decomposition of A into L^{T} by a sequence of elimination graphs [R3] $G=G_{O}, G_{1}, G_{2}, \ldots, G_{N-1}$, where G_{i} is obtained from G_{i-1} by deleting vertex i and its incident edges and adding edges so that the vertices of n_{i} are pairwise adjacent. Using our example above, we have:

The zero/non-zero structure of L is thus given by

$$
L=\left(\begin{array}{llllll}
X & & & & & \tag{1.2}\\
& X & & & & \\
X & X & X & & & \\
X & & X & X & & \\
& X & X & X & X & \\
& X & X & X & X & X
\end{array}\right)
$$

The number of edges added duxing elimination is usually referred to as the fill-in, and is simply the difference setween $\mathrm{N}_{\mathrm{Z}}^{\mathrm{J}}$ and the number of non-zero elements in the lower triangle of A, including the diagonal. Rose [R3] points out that the fill-in will be zero iff for all $N \geq i>j>k>0, \quad\left(a_{i j} \neq 0 \wedge a_{i k} \neq 0\right) \Rightarrow a_{j k} \neq 0$. He shows that I must have this property (if we ignore the occurrence of accidental zeros), and calls matrices having this property perfect elimination matrices.

An element $a_{i, j}, i \geq j$ will be said to lie in the profile of A $\left(a_{i j} \in \operatorname{Pr}(A)\right)$ if $f_{i}^{A} \leq j \leq i$. Hence $a_{i j} \neq 0 \Rightarrow a_{i j} \in \operatorname{Pr}(A)$, but $a_{i j} \in \operatorname{Pr}(A) \neq a_{i j} \neq 0$. This is a simple but important generailization of the concept of bandwidth. Observe that $\operatorname{Pr}(A)=\operatorname{Pr}(L)$. We will denote the number of elements in $\operatorname{Pr}(A)$ by $|\operatorname{Pr}(A)|$. Thus A is sparse if $|\operatorname{Pr}(A)|$ is significantly less than N^{2}, even if $m=N$. Obviously, $|\operatorname{Pr}(\bar{A})|=\sum_{i=1}^{N}\left(\delta_{i}^{A}+1\right)$.

Now the decomposition of A into $I L^{T}$ is unique; however, the amount of computation done to obtain L will depend on the structure of A, and how carefully we take advantage of it. Suppose A is $N \times N$ with bandwidth m. Then treating A as a dense band matrix, it is easy to show that the number
of multiplicative operations required to compute L is approximately $\theta_{B}=\frac{N m(m+3)}{2}-\frac{m^{3}}{3}$. We will refer to the algorithm as the "band Cholesky (BC) decomposition algorithm".

Suppose now that $\delta_{i}^{A}<m$ for at least one i, and we take acivantage of this fact. The following theorem gives the number θ_{P} of multiplicative operations required to compute L, if we consider A and L as having dense profiles.

Theorem 1.I
Let f^{A} be as defined above. Then the number θ_{P} of multiplicative operations required to compute L is given by

$$
\begin{equation*}
\theta_{P}=\sum_{i=2}^{N} \frac{\delta_{i}^{A}\left(\delta_{i}^{A}+3\right)}{2} \tag{1.3}
\end{equation*}
$$

In addition, \mathbb{N} square root operations and $\theta_{P}-\mathbb{N}$ additions are required.

Proof:
Let us denote the elements of I by $\ell_{i j}$ and consider the computation of the i-th column of L. The element $\ell_{i i}$ is computed using the formula

$$
\begin{equation*}
\ell_{i i}=\left\{a_{i i}-\sum_{j=f_{i}^{A}}^{i-1} \ell_{i j}^{2}\right\}^{1 / 2} \tag{1.4}
\end{equation*}
$$

which requires $\delta_{i}^{A}=j-f_{i}^{A}$ multiplications, δ_{i}^{A} additions and a square root operation. The elements $l_{i k}, k=f_{i}^{A}, f_{i}^{A}+1, \ldots, i-1$, , are computed using

$$
\begin{equation*}
\ell_{k i}=\left\{a_{k i}-\sum_{j=q_{i k}}^{i-1} \ell_{i j} \ell_{k j}\right\} / \ell_{i i} \tag{1.5}
\end{equation*}
$$

which requires $\delta_{i}\left(\delta_{i}+1\right) / 2$ multiplicative operations and $\delta_{i}\left(\delta_{i}-1\right) / 2$ additions. Summing over i yields (1.3). This method will be referred to as the "profile Cholesky (PC) decomposition algorithm".

The following is obvious:

Proposition 1.1

For any ordering of A, we have $\theta_{P} \leq \theta_{B}$.

Finally, suppose we are prepared to take advantage of every non-zero element in A and L; that is, we wiil operate only on those elements which are actually changed by the elimination process. Let d_{i} be the degree of the i-th vertex in the eimination graph G_{i-1}. Then we have Theorem 1.2 (Rose [R3])

The number of multiplicative operations θ_{G} required to compute I is given by

$$
\begin{equation*}
\theta_{G}=\sum_{i=1}^{N-1} \frac{d_{i}\left(d_{i}+3\right)}{2} \tag{1.6}
\end{equation*}
$$

An additional N square root operations and $\sum_{i=1}^{\mathbb{N}-1} \frac{d_{i}\left(d_{i}+1\right)}{2}$ addition overations are required.

The reader is referred to [R3] for the proof of (1.6). This algorithm will be referred to as the "graph Cholesky (GC) decomposition algorithm".

Now we must consider the tradeoff between the amount of computation and storage requised by the different algorithms and their relative complexity.

Note that the graph theoretic analysis of elimination implicitly assumes that we are prepared to take full advantage of the structure of A; thus, for these results to be relevant, we must employ a very sophisticated program, such as that of Gustafson et al [G3]. [In our 6 by 6 example above, we must detect and make use of the fact that $\left.\ell_{42}=0.\right]$ Hence, for the GC algorithm to be worthwhile, L must have a significant number of zero elements within its profile, end it has been our experience that the L^{\prime} s derived from finite element coefricient matrices do not have sparse profiles. (See rection 4.5 for some numerical experiments in support of this claim.) Therefore, we have confined our studies to the BC and PC algorithms. We should emphasize that our decision is based only on empirical evidence; just how dense $\operatorname{Pr}(I)$ must be over all orderings appears to be an open question, even for piecewise linear polynomials on a square regular right triangular mesh.

So, in summary, we have chosen for various reasons to limit our attention to direct methods for sojving finite element systems, and to look at no more of the structure of the matrix than its profile.

Within this framework, our goals are to reduce storage, reduce computation, and to simplify data management. These gnals compete with one another, and the characteristics of the particular computer system (hardware and software) will have considerable effect on which is most important. Finally, in the sequel, the reader should keep in mind that $f_{i}^{A}, \delta_{i}^{A}$, $\operatorname{Pr}(A), \theta_{B}, \theta_{P}$ and θ_{G} are all functions of the ordering α of A. Thus comparisons between such quantities should be understood to mean for the same α, unless specifically stated otherwise.

2. Compact Storage Schemes for Sparse Matrices

As in the previous section, let us denote our sparse, symmetric, positive definite coefficient matrix by A, with Cholesky factorization LI. ${ }^{\text {P }}$. When piecewise polynomials of degree $>I$ are used, the matrix A will be more dense than that resulting from usual finite differerce schemes, Unfortunately, its profile is observed to become only s.ightly more dense with increasine degree. Hence it is advantageous to store the matrix in a compact manner to save storage. It is important to keep the organization simple to allow rapid row and/or column operations on the matrix. The prime consideration is not whether we can randomly access a particular element of the matrix efficiently but whether we can efficiently multiply the matrix by a vector or multiply one of its rows by a vector.

As we have mentioned before, finite element coefficient matrices tend to have a good deal less uniformity in structure than those arising from traditional finite difference methods. Because of the likelihood of graded nets and the possibility of associating more thar one parameter with each grid point, it is not convenient to design a storage scherae based on the geometry of the mesh in question. This is in contrast with rost storage schemes for difference equations.

Ideally, the number of storage units required to store the $\mathbb{N} \times \mathbb{N}$ symmetric coefficient matrix A shouid be equal to N_{0}, the number of non-zero elements in the lower triangle of A (including the diagonal). While it is obviously possible to store A in \mathbb{N}_{0} storage locations, the problem is to find an efficient mapping function that allows us to easily locate element $a_{i j}$. In this section we describe two methods for efficienuly storing a sparse symmetric matrix.

Method 1. Let v be a vector defined by

$$
\begin{equation*}
v_{i}=\sum_{j=1}^{i}\left\{1 \mid a_{i j} \neq 0\right\}, \quad i=1,2, \ldots, \mathbb{N} . \tag{3.1}
\end{equation*}
$$

Obviousiy, $\quad \sum_{i=1}^{N} v_{i}=N_{0}$. Let β_{i} be defin $\frac{d}{}$ by

$$
\begin{equation*}
\beta_{i}=\sum_{j=1}^{i} v_{j}, \quad i=1,2, \ldots, \mathbb{N} . \tag{3.2}
\end{equation*}
$$

The non-zero elemencs of the i-th row of the lower triangle of A are then stored in contiguous locations of an array S of length N_{0} beginning at $S_{\beta_{i-1}+1}$ and ending at $S_{\beta_{i}}$. In an arrey ω, also of length N_{0}, the corresponding distances of the elements from the diagonal are placed. Hence, if $\beta_{i-1}<p \leq \beta_{i}$, then S_{p} contains element $a_{i, i-\omega_{p}}$. An example is useful in understanding the scheme. Consider the following 15×15 matrix.

Here $N_{0}=38$ and the vectors S and ω are given by

At first glance, the overhead for this method appears prohibitively high since each word stored requires an extra word to store its "offset" from the diagonal. However, note that the elements of ω will all be bounded by m, the bandwidth of A. On the IBM 360, sor example, the array ω can be declared as short integer (2 bytes $=16$ bits), whereas the elements of S may be 4 or 8 bytes long. If A is being stored in double precision, the overhead is only about 25 percent, and the total storage required is essentially proportional to N_{0}. To access a particular element $a_{i j}$ of A will require scanning $\beta_{i}-\beta_{i-1}$ elements of the array ω. Since the elements ω_{2} for $\beta_{i-1}<k \leq \beta_{i}$ are crdered, a binary search can be used, so the amount of work required to access element $a_{i j}$ would be proportional to $\log _{2}\left(\beta_{i}-\beta_{i-1}\right)$. Even for rather dense bands (resulting from use of polynomials of high degree), this is very satisfactory. For example, using quintic polynomials on a typical mesh, we would need to access about 4 elements of ω before finding $a_{i j}$.

If storage is very scarce, a somewnat more efficient scheme is the following:

Method 2. Let A and β be as described above, and define the vector δ^{A} as in Section 4.1. Let A be stored in the array S as in Method 1, but instead of defining the array ω as in Method 1 , let ω be a bit array of length $\quad \sum_{i=1}^{\mathbb{N}}\left(\delta_{i}^{A}+1\right)$. Define the vector μ by

$$
\begin{equation*}
\mu_{i}=\sum_{j=1}^{i}\left(\delta_{i}^{A}+1\right) \quad, \quad i=1,2, \ldots, \mathbb{N} . \tag{2.5}
\end{equation*}
$$

Now define ω by

$$
\omega_{\mu_{i}-\ell}=\left\{\begin{array}{lll}
1 & \text { if } & a_{i, i-\ell} \neq 0 \tag{2.6}\\
0 & \text { if } & a_{i, i-\ell}=0
\end{array}\right\}, \quad \ell \leq \delta_{i}^{A}, \quad i=I, 2, \ldots, \mathbb{N}
$$

We again use the example (2.3) to aid in urderstending the scheme. The axrays μ and ω are given by

$$
\begin{aligned}
& \mu^{T}=(1,3,5,8,12,18,21,26,30,36,40,46,50,56,60) \text {, and }
\end{aligned}
$$

Thus, the zero/non-zero structure of the i-th row of the lower triangle of A is stored in the segment of ω beginining at $\omega_{\mu_{i-1}}+1$ and ending at $\omega_{\mu_{i}}$. The storage required to store A is thus

$$
\begin{equation*}
\left(N_{O}+2 N\right) \text { words }+\mu_{N} \text { bits } \tag{2.7}
\end{equation*}
$$

Note that the storage required for μ and β becomes less significant with increasing N_{0} and fixed N. The use of a bit array may cause some program overhead (unless the machine is bit addressable), and since ω is not ordered, up to $\mu_{i}-\mu_{i-1}$ elements of ω will have to be examined to
retrieve element $a_{i j}$. (Note that $\mu_{i}-\mu_{i-1}$ may be $\gg \beta_{i}-\beta_{i-1}$. .) Although this method will undoubtedly require consideably nore program overhead than method I to ise, it uses extremely little unnecessary storage. For example, using this method on an IBM 360 computer to store a dense 500: 500 symmetric matrix in short precision requires less than 4 percent mo e storage than the usual method of storing a triangular matrix in a one-dimensional array. The percentage overhead would be halved if the array were beingstored in double precision.

Thirdly, we present a method due to Jennings [Jl] which is applicable when $|\operatorname{Pr}(W)| \approx \mathbb{N}_{Z}^{W}$; that is, when there are few zero elements within $\operatorname{Pr}(W)$ - As we mentioned before, it has been our experience that the I's derived from finite element coefficient matrices have this property.

Method 3 ("Profile Storage Scheme")
Let the lower triangle (including the diagonal) of A be stored row by row in contiguous locations of a one-dimensional array S. Defining the vector μ as in method 2 above, then element $z_{i j}, i \geq j$ is given by S_{p}, where $p=\mu_{i}-i+j$. [Note that S now has the same zero/non-zero configuration as ω in method 2.]

This method obviously applies equally well to storing lower triangular matrices, and it is primarily for this reason that we present it. The overhead for this storage scheme is only the storage required for μ. To store L, we need $|\operatorname{Pr}(L)|+N$ words. If A is stored in this manner, the PC algorithr can be applied "in place" and no temporary storage is necessary.

Finally, we mention the most commonly used method for storing band matrices [M1], which we will refer to as the "diagonal storage scheme" or simply as method 4. The diagram below describes the storage layout:

The required storage is $(m+1) N$, and in order for the method to be efficient we should have $m \ll$ iv .

The following observation is of practicai interest:

Proposition 2.1

Let $V_{B}=(m+1) N$ and $V_{F}=|\operatorname{Pr}(L)|+N$. Then for any ordering of $A, \quad V_{P} \leq V_{B}+N$, and if $\sum_{i=1}^{N}\left(n_{i}-\delta_{i}\right) \geq N$, then $V_{P} \leq V_{B}$.

Proof:

$$
\begin{aligned}
V_{P}=N+|\operatorname{Pr}(L)| & =N+\sum_{i=1}^{N}\left(\delta_{i}+1\right) \\
& =N+\sum_{i=1}^{N} \delta_{i}+N \\
& =(N+1) m+N-\sum_{i=1}^{N}\left(m-\delta_{i}\right) \\
& =V_{B}+N-\sum_{i=1}^{N}\left(m-\delta_{i}\right) .
\end{aligned}
$$

Thus, Proposition 2.1 says that for any ordering, the storage required for method 3 cannot exceed that required for method 4 by more than N words. In practical situations we have found that V_{P} is always considerably less than V_{B}. See, for example, the experiments in section 4.5 and the analysis in section 4.7 .

Note that there is only a very weak relationship between $|\operatorname{Pr}(A)|$ and m. All we can show is

$$
\begin{equation*}
N+m \leq|\operatorname{Pr}(A)| \leq(m+1) N-m(m+1) / 2 \tag{2.9}
\end{equation*}
$$

Essentially, (2.9) says that for a fixed $m,|\operatorname{Pr}(A)|$ can vary by nearly a factor of N.
3. Node Ordering for a Small Bandwidth

The reasons most often presented for reducing the bandwidth of a mstrix are to reduce the storage and computation required to solve the associated linear system or eigenproblem. However, these reasons are valid only if we plan to store and process the matrix as a dense band matrix. In view of Prop. 1.1, prop. 2.1 and (2.9), the only justification for ordering to achieve a small bandwidth is to simplify data management. In this section we discuss the reasons for bandwidth reduction and present some algorithms for obtaining small bandwidth orderings. Note that the question here is not whether we should. use the $B C$ or $P C$ 2.lgorithms for a fixed ordering α, but rather, when we shoula use m (instead oì $|\operatorname{Pr}(A)|$ or θ_{P}) as a criterion (objective function) to minimize over all orderings α of A .

To begin with, regardless of the ordering α of A, if A is symmetric and positive definite, there sems to be no reason to use the BC rather than the $P C$ algorithm. We say this because $V_{P} \leq V_{B}$ (usually), $\theta_{P} \leq \theta_{B}$, and the computational overhead of the $P C$ over the $B C$ algorithm is negligible. However, the linear system we want to solve may not always be positive definite; although elliptic problems will yield positive definite matrices, many methods for solving the associated eigenproblem involve shifts of origin which destrcy the positive definiteness O_{\perp} the system being solved [W2]. When A is indefinite, partial pivoting is required to maintain numerical stability, and the profile storage scheme is no longer applicable since we are now computing $P A=L J$ for some (a-priori) unknown N by N permutation matrix P. The only storage scheme which is well adapted to partial pivoting is method 4. For an Algol orocedure for computing the LU decomposition of inảefinite band matrices, see [M1]. Thus, in this
situation $m=m^{A}$ is important, since we can only guarantee that $m^{P A} \leq 2 m^{A}$, and the combined storage requirement for L and U (using the diagonal storage schene of Section 4.2) is therefore ($3 \mathrm{~m}+1$) N.

The work of Bunch [B1.3] on stable decompositions of symmetric indefinite systems may be important in this regard since a shift of urigin does not aestroy symnetry. We compute $P A P^{T}=L D D I^{T}$, where D is block diagonal with 1 by 1 anき 2 by 2 blocks. Unfortunately, there does not appear to be any way to bound $\mathrm{m}^{\text {PAP }}$ a-priori. Thus, to be competitive (with the band UU algorithm) with respect to storage \{computation\} we should. have $m>N / 6 \quad\{m>N / 2 \sqrt{3}\}$.

Another situation in which we might wish to have a small bandwiath is when auxiliary storage must, be used. Overlay versions of band decomposition algorithms can be implemented most efficiently if $\mathrm{kn}^{2} \quad(1 \leq \mathrm{k} \leq 3)$ storage units of main memory are available. Hence, it is important to have m small. Note that this does not preclude the possibility of using the PC algorithm, if applicable. Having m small simply limits the number of rows or columns we should have available at any given time.

If a matrix A can be stored in such a way that only its non-zero elements need to be stored and considered in a residual calculation, it is clear that bandwidth ordering makes no sense for iterative schemes that require oniy a residual calculation.

Obviously, a useful bandwidth reducer must consume less time tinan it saves the linear equation solver, or else significantly reduce the anount of storage required. It will be relatively unimportant in practice whether the minimum handwidth is achieved, but we should get reasonably close to the minimum bandwidth in an economical amount of time. No'te that an easily ascertained lower bound for the bandwidth (not necessarily attajnable) can
be obtained jy finding $\lceil k / 2\rceil$, where k is the largest number of non-zero elements in any row.

Two basic approaches to ordering for a smanl bandwidth are in current use. They can be classed as direct (or one-pass) and iterative. The direct schemes [R3, ©5] usually work closely with the associated graph, and proceed by successively removing (i.e., numbering) the nodes of the graph according to some strategy based on the (usually local) structure of the graph. The iterative schemes, on the other hand, assume a given ordering and attempt to improve the ordering (again according to some strategy) by finding appropriate row and/or column interchanges. Since the direct methods only need a single staxting node to begin, while the iterative schemes need an initial ordering, a reasoreble proceaure is to use a direct method to obtain an initial ordering and then use an iterative scheme to improve it. The problem of finding an initial starting noil is discussed in Section 5.

We now describe two popular direct methods for bandwidth ordering.
A. Spanning Tree Methoã (Cuthill and McKe: [c5]).

1. Choose a starting node x_{1}, and define $Q=\left\{x_{1}\right\}$.
2. For each noue in Q (in the order in which they are numbered), number their unnuinbered neighbors in order of increasing degree.
3. Set $Q=$ \{nodes assigned numbers in the last execution of Step 2\}.
4. If $|Q|=0$, then stop; otherwise go to Step 2 .

The algorithm is equivalent to finding a spanning tree (rooted at the initiai node) of the graph G, hence the name. [A tree is a connected graph with N nodes arä $N-1$ edges. A spanning tree of the graph G is a subgraph of G which is a tree and contains all N nodes.]

The obvious advantage of this method is that it is very efficient. The reyired work is proportional to N times the average degree of the ver.ices, and thus only increases linearly with \mathbb{N}. Very good results are obta: ned, provided a good starting node is selected.

The minimum degree aigorithm [R3] is similar to method A above and is as follows:
B. Minimum Degree Algorithm

1. Set $i=1$.
2. In the elimination graph G_{i-1} choose x_{i} to be any vertex satisfying

$$
\left|n\left(x_{i}\right)\right|=\min _{y \in X_{i-1}}|n(y)|
$$

where $G_{i-1}=\left(X_{i-1}, E_{i-1}\right)$.
3. Set $i=i+1$.
4. If $i>N$, then stop; otherwise go to Step 2 .

From a practical point of view this algorithm has little to offer over Method A, and is obriously inferior with respect to the amount of work that is required; $N(\mathbb{N}+1) / 2$ vertices must be tested. A practical modification that drastically reduces the amount of work required, and actually improves the results obtained as weli, is to restrict the candidates considered in Step 2 to those having at least one numbered neighbor. Nevertheless, experience has shown that the Cuthill-McKee algorithm seldom
produces a larger bandwidth than the minimum degree algorithm, and even With the above modifications the latter requires substantially moxe work than the former.

We now turn to iterative methods for reducing the bandwidth of a matrix [R4, T3]. Here it is more convenient to speak in matrix, rather than graph-theoretic, terms. The differences among these iterative schemes are largely matters of programing techniques rather than fundamental ideas. The general idea follows: Assume we are given an initial ordering yielding a bandwidth of m. Non-zero elements satisfying $|i-j|=m$ will be referred to as edge elements. Since we are assuming that the matrix is zero/non-zero symmetric, we will preserve the symmetry by interchanging corresponding columns whenever rows are interchanged.

1. Set $\max =m$.
2. Try to interchange rows containing edge elements with rows not containing edge elements so as to reduce the bandwidth, and simultaneously interchange columns.
3. Re-compute m. If $m<\max$, then set $\max =m$ and go to Step 2.
4. If \max is greater than or equal to its value when Step 4 was last executed, then stop. Otherwise compute a vector v of N values as follows:

$$
v_{i}=\sum_{j=1}^{\mathbb{N}}\left\{j \mid a_{i j} \neq 0\right\} / \sum_{j=1}^{\mathbb{N}}\left\{1 \mid a_{i, j} \neq 0\right\}
$$

Order the equations in increasing order of v, and order the columns correspondingly. The first time this is done the bandwidth may increase; after the first step repeat as long as the bandwidth decreases. Re-compute m, set max $=m$, and go to Step 2.

Step 4 has the effect of reordering the rows so that as nearly as possible each row has the same number of non-zero elenents on each side of the diagonal element. It could be called the balancing siage. For matrices that have ar: innerent band structure (as ours have), Step 4 does not have much effect, but for randomly sparse matrises step 4 can improve the performance of the reducer remarkably.

4. Node Ordering to Reduce $|\operatorname{Pr}(A)|$

In the light of Prop. 1.1 and Prop. 2.1, it should be clear that if A is symmetric and positive definite, a potentially profitable strategy for ordering is to look for orderings which reduce θ_{P} or $|\operatorname{Pr}(A)|$ $(=|\operatorname{Pr}(L)|)$.

The term "near oprimal" as it appears in the literature [R3,T3] usually means near-optimal with respect to fill-in. Under our assumption that $\operatorname{Pr}(I) \approx N_{Z}^{L}$, a near optimal ordering should "nearly" minimize $|\operatorname{Pr}(A)| \cdot\left[\right.$ Since ∂_{p} is a more difficult function to work with, we have not tried to look for orderings to reduce it. Tacitly, we have assumed thut an α yielding a small $|\operatorname{Pr}(A)|$ will also yield an acceptable $\left.e_{P} \cdot\right]$

As with bandwidth ordering algorithms, there are direct and iterative schemes for near-optimal ordering. In order to explain the first (direct) method we define the deficiency $D\left(x_{i}\right)$ [R3] of a vertex x_{i} in a graph G by

$$
\begin{equation*}
D\left(x_{i}\right)=\left|\left\{\left(x_{j}, x_{k}\right) \mid x_{j} \in \eta\left(x_{i}\right) \wedge x_{k} \in \eta\left(x_{i}\right) \wedge x_{j} \in \eta\left(x_{k}\right)\right\}\right| \tag{4.1}
\end{equation*}
$$

Recall the construction of elimination graphs. It is easy to verify that if $D\left(x_{i}\right)=0, G_{i}=\left(X_{i}, E_{i}\right)$ is obtained from $G_{i-1}=\left(X_{i-1}, E_{i-1}\right)$ by deletion of x_{i} and its incident edges; no edges are added. This provides the motivation for the
A. Minimum Deficiency Algorithm [R3,T3]: Let $G_{O}=(X, E)$. Then

1. Set $i=1$.
2. In the elimination graph G_{i-1}, choose X_{i} to be any vertex such that

$$
\left|D\left(x_{i}\right)\right|=\min _{y \in X_{i-1}}|D(y)|
$$

where

$$
G_{i-1}=\left(X_{i-1}, E_{i-1}\right)
$$

3. Set $i=i+1$.
4. If $i>N$, stop; otherwise go to Step 2.

In this direct algorithm the next node to be numbered is the one that will introduce the fewest non-zero elements when it is eliminated. It is obviously fairly expensive to find this node, since a deficiency test of a node y involves $|n(y)| \cdot \mid n(y)+1) \mid / 2$ edge tests. Since the graph usually must be stored as a bit matrix, and few machines are bit-addressable, these tests may involve considerable overhead. As with the minimum degree algorithm (Section 4.3) we have found that restricting the candidates in Step 2 to those nodes that have at least one numbered neighbor does not hurt the ordering produced by the minimum deficiency method, and this restriction drastically reduces the amount of computation involved.

The following iterative scheme has been found to significantly reduce $|\operatorname{Pr}(A)|$. Again we will revert to matrix notation. The rector f^{A} is as defined in Section 4.1.
B. Profile Reduction Algorithm.

1. Compute $Q^{*}=\sum_{i=1}^{N}\left(i-f_{i}^{A}\right)$.
2. Let the vector v be defined by

$$
v_{i}=\sum_{j=i}^{N}\left\{I \mid f_{j}^{A}=i\right\}
$$

3. For each row i having $v_{i}>0$, examine those rows $j=i+1, i+2, \ldots, i+k$ for some (small) $k>0$, and determine the number of words $s_{i j}$ of storage that can be saved bj_{j}

$$
\begin{aligned}
& \text { interchanging rows (and corresponding columns) } i \text { and } j \text {. } \\
& \text { If the maximum } s_{i j} \text { is positive, interchange rows } i \text { and } j \\
& \text { (and corresponding columns), adjusting the vector } f^{A} \text { accordingly. } \\
& \text { 4. Compute } Q=\sum_{i=1}^{N}\left(i-f_{i}^{A}\right) \text {. If } Q<Q^{*} \text {, then set } Q^{*}=Q \text { and } \\
& \text { go to Step } 2 ; \text { otherwise stop. }
\end{aligned}
$$

The actual search for the best interchange (Step 3) is by far the most expensive pari of the algorithm, and in a practical situation only those rows with v_{i} greater than some threshold should be tested since the maximum possible gain in storage resulting from incerchanging row i and row j is $s_{i j} \leq v_{i} \times(j-1)$. A reasonable threshold seens to be 3 or 4 . Good results have been obtained with the parameter k mentioned in Step 3 set to 5 .

5. Souse Experiments with Ordering Algorithms

The coefficient matrix A obtained from the finite element formulation of a probian tends to have considerably less uniformity in structure than the matrix arising from a finite difference method applied to the same problem. First, the node points of the finite element mesh may not all play the same role, and as a result have different connectivities. Whether a parameter is associated with a vertex, side or interior node and whether there is more than one parameter associated with the node will greatly affect the number of non-zero elements in its equation. Second, the finite element mesh will very likely be graded, which also causes disorder in the structure of A .

Our aims in this section are
(a) to report on the performance of several ordering alforithms and demonstrate the savings attainable by using profile instead of band methods for storege and computation;
(b) to report on an intriguing and agreeable property of the reverse Cutnill-Mckee ordering (our verminology) which we have discovered. That is, if the Cuthill-McKee algonithm numbers the nodes $1,2, \ldots, N$, th - the reverse Cuthill-McKee (KCM) ordering would be $\mathrm{N}, \mathrm{N}-1, \ldots, 1$;
(c) to present some experimental evidence supporting our implicit assumption that the profile of $L \quad$ i usually quite dense; i.e., $|\operatorname{Pr}(L)| \approx i N_{\mathrm{Z}}^{\mathrm{T}}$.

We will make use of the following labels for the different algoxithms and quantities in this section. Some of them are repeated in other sections.

Y_{B}-- storage required to store a symmetric or lower triangular matrix using the band oriented method 4 (Section 4.2)
V_{P}-- storage required to store a symmetric or lower triangular matrix using the (profile) storage method 3 (Section 4.2)
$\operatorname{Pr}(A)$-- profile of the matrix A.
$\mathscr{A}(\operatorname{Pr}(\mathrm{A}))$ - density of the profile of A.

In order to keep the number and size of our tables at a level where the information can be readily assimilated, we have eliminated the MDG algorithm from consideration because we found it to be much inferior to the CM algorithm. As we mentioned before, it is natural to use a direct ordering algorithm to obtain an initial ordering for the iterative improvement schemes (BR or PR). We have ijmited our stuaies to the orderinge provided by CM, CM-PR, RCM and MDF. [The hyphen should be read as "followed by".] The application of the $B R$ algorithm to the $C M$ and $R C N$. orderings reduced m by only one or two, and so the results are not included. The application of the PR algorithm to the RCM and MDF ordering resulted in only a small reduction in $\operatorname{Pr}(A)$, and was also
not included. We have limited our studies to elements 1-3, 2-6 and 3-10 (sea Appendix A), and to the three domains shown below:

Halt-I Mesh

Hollow-Square Mesh

Inverted-T Mesh

Figure 5.1

For the experiments, the meshes were subdivided by various factors as described in Section 2.3 in such a way that for a given domain each element yielded the same N. The reported times are in seconds for an IBM $360 / 91$ computer. The values of θ and V for each algorithm have been scaled by the values for the CM ordering. The actual values for the CM ordering are reported in parentheses. As before, we indicate the bandwidth by m.

We mace use of the geometry of the domain to choose an initial node for the "initial ordering" al.gorithms. We arbitrarily picked a node from one of the two most widely separated triangles in the domain. For "long, straight" domains this will obviously work well, but for U-shaped domains, for example, it could lead to a bad cnoice. One should have the capability of forcing the algorithms to begin at a particular rude in cases where the above strategy could lead to an unfortunate choice. From a practical point of view, designing and executing a sophisticated algorithm in order to search for a good starting node would probably be more expensive than i+s ultimate value would warrant.

The results of the experinents are cortained in the following three tables.

Matrix and Elimination Statistics for Several Ordering Algorithms for the Half-I Domain

Element		CM	CM-PR	RCM	ITF
1-3					
$\begin{aligned} & N=241 \\ & N_{Z}^{A}=1585 \end{aligned}$	$\begin{aligned} & \text { Tine } \\ & m \\ & \theta_{B} \\ & \theta_{P} \\ & V_{B} \\ & V_{P} \\ & \mathscr{D}(\operatorname{Pr}(A)) \\ & \theta(\operatorname{Pr}(L)) \\ & \text { FiII-in } \end{aligned}$.183 20 $1(50053)$ $3 .(37545)$ $1(5061)$ $1(4197)$.231 1.000 3043	$\begin{gathered} 1.5 \\ 20 \\ 1 \\ 1 \\ 1 \\ 1 \\ .231 \\ 1.000 \\ 3043 \end{gathered}$	$\begin{array}{r} .183 \\ 20 \\ 1 \\ .96 \\ 1 \\ .97 \\ .236 \\ 1.000 \\ 2950 \end{array}$	$\begin{gathered} 16.124 \\ 83 \\ 13 \\ .91 \\ 6 \\ .95 \\ .243 \\ 1.000 \\ 2844 \end{gathered}$
2-6					
$N=241$. $N_{Z}^{A}=2581$	$\begin{aligned} & \text { Time } \\ & \mathrm{m} \\ & \theta_{\mathrm{B}} \\ & \theta_{\mathrm{P}} \\ & V_{\mathrm{B}} \\ & V_{\mathrm{P}} \\ & \partial(\operatorname{Pr}(\mathrm{~A})) \\ & \mathcal{D}(\operatorname{Pr}(\mathrm{L})) \\ & \operatorname{Fill-in} \end{aligned}$	$\begin{gathered} .26 \\ 42 \\ I(196302) \\ I(123342) \\ I(10363) \\ I(7413) \\ .197 \\ .979 \\ 5608 \end{gathered}$	$\begin{aligned} & 10.3 \\ & 48 \\ & 1.27 \\ & .36 \\ & 1.15 \\ & .61 \\ & .328 \\ & .979 \\ & 2805 \end{aligned}$.26 42 1 .36 1 .60 .337 . 930 2734	$\begin{gathered} 20.83 \\ 52 \\ 1.47 \\ .30 \\ 1.25 \\ .54 \\ .361 \\ .996 \\ 2484 \end{gathered}$
3-10					
$N=24.1$ $N_{z}^{A}=3793$	$\begin{aligned} & \text { Tine } \\ & \mathrm{m} \\ & \theta_{\mathrm{B}} \\ & \theta_{\mathrm{P}} \\ & V_{\mathrm{B}} \\ & V_{\mathrm{P}} \\ & A(\operatorname{Pr}(\mathrm{~A})) \\ & A(\operatorname{Pr}(\mathrm{~L})) \\ & \text { Fill-in } \end{aligned}$	$\begin{gathered} .25 \\ 63 \\ I(406188) \\ I(239873) \\ I\left(154 a^{\prime} 4\right) \\ I(10172) \\ .203 \\ .979 \\ 7707 \end{gathered}$	$\begin{gathered} 9.9 \\ 81 \\ 1.55 \\ .30 \\ 1.28 \\ .58 \\ .353 \\ .985 \\ 3606 \end{gathered}$.25 63 1 . 21 1 .49 .428 . 990 2655	$\begin{aligned} & 27.24 \\ & 84 \\ & 1.4 \\ & .19 \\ & 1.3 \\ & .44 \\ & .467 \\ & .996 \\ & 2.77 \end{aligned}$

Table 5.1

Matrix and Elimination Statistics for Several Ordering Algorithms for the Hollow Square Domain

Element		CM	CM-PR	RCM	MDF
1-3					
$\begin{aligned} & N=252 \\ & \mathrm{ir}_{\mathrm{Z}}^{\mathrm{A}}=1620 \end{aligned}$	Time m θ_{B} θ_{p} V_{B} V_{P} $\mathscr{O}(\operatorname{Pr}(A))$ $\theta(\operatorname{Pr}(L))$ Fill-in	.17 16 $I(34776)$ $I(26299)$ $I(4284)$ $I(3098)$.272 1.000 2510	$\begin{gathered} 1.79 \\ 16 \\ 1 \\ 1 \\ 1 \\ 1 \\ .272 \\ 1.000 \\ 2505 \end{gathered}$	$\begin{gathered} \hline .17 \\ 1.6 \\ 1 \\ .99 \\ 1 \\ .99 \\ .273 \\ 1.000 \\ 2!.89 \end{gathered}$	$\begin{aligned} & 9.2 \\ & 20 \\ & 1.5 \\ & .95 \\ & 1.2 \\ & .97 \\ & .278 \\ & 1.000 \\ & 2421 \end{aligned}$
2-6					
$\begin{aligned} & N=252 \\ & N_{Z}^{A}=2628 \end{aligned}$	Time m θ_{B} θ_{P} V_{B} V_{p} $\theta(\operatorname{Pr}(A))$ $\theta(\operatorname{Pr}(L))$ Fili-in	.23 $\quad 36$ $I(155609)$ $I(95520)$ $I(9324)$ $I(6337)$.219 .982 5029	$\begin{aligned} & 10.49 \\ & 46 \\ & 1.56 \\ & .35 \\ & 1.27 \\ & .60 \\ & .372 \\ & .972 \\ & 2328 \end{aligned}$	$\begin{gathered} .23 \\ 36 \\ 1 \\ .36 \\ 1 \\ .62 \\ .362 \\ .991 \\ 2493 \end{gathered}$	$\begin{gathered} 18.3 \\ 42 \\ 1.32 \\ .33 \\ 1.16 \\ .59 \\ .381 \\ .994 \\ 2316 \end{gathered}$
3-10					
$N=252$ $N_{Z}^{A}=3852$	Time m $\hat{\theta}_{B}$ θ_{p} V_{B} V_{p} $\theta(\operatorname{Pr}(A))$ $\theta(\operatorname{Pr}(L))$ Fill-in	$\begin{gathered} .32 \\ 71 \\ 1(528758) \\ 1(232516) \\ 1(18144) \\ 1(18325) \\ .204 \\ .988 \\ 7898 \end{gathered}$	$\begin{gathered} 10.6 \\ 78 \\ 1.17 \\ .31 \\ 1.10 \\ .57 \\ .367 \\ .988 \\ 3468 \end{gathered}$	$\begin{gathered} .32 \\ 71 \\ 1 \\ .22 \\ 1 \\ .49 \\ .426 \\ .994 \\ 2738 \end{gathered}$	$\begin{array}{\|c} 25.1 \\ 63 \\ .81 \\ .19 \\ .89 \\ .44 \\ .465 \\ .996 \\ 2345 \end{array}$

Table 5.2

Matrix and Elimination Statistics fur Severai Ordering Algorithms for the Inverted 9 Domain

Element		CM	CM-PR	RCM	IDF
1-3					
$N=301$ $N_{Z}^{A}=1009$	Time m θ_{B} θ_{P} V_{B} V_{P} $\theta(\operatorname{Pr}(A))$ $\theta(\operatorname{Pr}(\mathrm{L}))$ Fill-in	$$	$\begin{gathered} 2.52 \\ 20 \\ 1 \\ 1 \\ 1 \\ 1 \\ .280 \\ 1.000 \\ 2847 \end{gathered}$.22 20 1 .88 1 .95 .296 1.000 1886	$\begin{gathered} 9.32 \\ 35 \\ 2.82 \\ .74 \\ 2.52 \\ .88 \\ .321 \\ 1.000 \\ 2334 \end{gathered}$
2-6					
$\begin{aligned} & \mathrm{N}=301 \\ & N_{Z}^{A}=2628 \end{aligned}$	Time m ${ }^{\theta}$ B θ_{p} V_{B} V_{P} $\mathcal{O}(\operatorname{Pr}(\mathrm{A}))$ $\mathcal{D}(\operatorname{Pr}(L))$ Fill-in	.30 $\quad 40$ $I(230017)$ $I(103348)$ $I(12341)$ $I(7422)$.238 .981 5292	$\begin{gathered} 12.36 \\ 46 \\ 1.3 \\ .34 \\ 1.15 \\ .60 \\ .405 \\ .983 \\ 2414 \end{gathered}$	$\begin{gathered} .30 \\ 40 \\ 1 \\ .34 \\ 1 \\ .59 \\ .415 \\ .985 \\ .9368 \end{gathered}$	$\begin{gathered} 18.38 \\ 42 \\ 1.1 \\ .28 \\ 1.05 \\ .56 \\ .44 .1 \\ .994 \\ 2130 \end{gathered}$
3-10					
N $=301$ $N_{Z}^{A}=4525$	Time m θ_{B} θ_{p} V_{B} V_{P} $\theta^{\prime}(\operatorname{Pr}(A))$ $\theta(\operatorname{Pr}(\mathrm{L}))$ Fill-in	$\begin{gathered} .30 \\ 57 \\ I(1411244) \\ I(188422) \\ I(17458) \\ I(9887) \\ .252 \\ .981 \\ 6993 \end{gathered}$	$\begin{array}{r} 11.5 \\ 72 \\ 1.52 \\ .30 \\ 1.26 \\ .57 \\ .455 \\ .972 \\ 2737 \end{array}$	$\begin{gathered} .30 \\ 57 \\ 1 \\ .23 \\ 1 \\ .51 \\ .515 \\ .821 \\ 1428 \end{gathered}$	22.2 65 1.26 .19 1.14 .47 .560 . 995 1881

Table 5.3

The information in the above tables leads us to the following conclusions:
(1) We appear to be fully just: ied in assuming that L is almost dense. [We have computed the fill-in for some random orderings as well, and although $\mathcal{D}(\operatorname{Pr}(L))$ was smaller for some other orderings, we observed that $\left|\operatorname{Pr}\left(A_{i}\right)\right| \leq\left|\operatorname{Pr}\left(A_{j}\right)\right| \Rightarrow \mathbb{N}_{Z}^{L_{i}} \leq \mathbb{N}_{Z}^{L_{j}}$, where A_{i} is the matrix A with sone ordering α_{i}, and $A_{i}=I_{i} I_{i}^{T}$. In other words, reducing the profile appears to reduce the fill-in.]
(2) The RCM algorithm seems to be easily the best algorithm. The ordering not only supplies a near optimal bandwidth, but also yields a profile almost as good as the MDF algorithm, which is prohibitively expensive [mrere are several reasons why methods based on elinination graphs are expensive to use. First, even if we restrict the candidates to be ordered first to those having at least one numbered neighbor, the nunber of candidates tends to be quite large, particularly for elements with relatively many nodes. Secondly, we not only must test edges of the graph, but we also must usually add edges as new elimination graphs are formed. This addition of edges requires computer time, and also increases the degree of the nodes which are candidates or jutential canaidates for subsequent orderjng. Since the required work for each step of the MDF algorithm is proportional to the sum of the sauares of the degrees of the nodes being tested, these added edges can iramatically increase the amount of work involved.]

The reason that the RCM ordering is superior to the CM order (profilewise) can be explained as follows. The CM algorithm tends to order the neighbors of each node consecutively, and the non-zero elements of A thus tend to be arranged in sequences in successive rows (columns) of the lower (upper) triangle of A. This is just the reverse of what we want for a
small profile; hence the discovery of the RCM ordering.
(3) It is very beneficial to use profile methods rather than band methods. The following table, which can be obtained from the tables above, brings out this point dramatically.

Domain	Hallf-I	Hollow Square	Inveried Tlement
$1-3$.72	.75	.44
.82	.86	.64	
2.6	.21	.22	.14
$3-10$.43	.45	.35
.32	.28	.28	

Table 5.4: $\theta_{P}(R C M) / \theta_{B}(R C M)$ and $V_{P}(R C M) / V_{B}(R C M)$ for
Each Element--Domain Combination.
(4) Although we make no claims about tue programming of the ordering algorithms (they could be improved by programming some of the bit-pushing in machine language), the reported times are an accurate reflection of relative numbers of edge tests (zero/non-zero tests) required by each algorithm. Hence, although the magnitudes ol the times might be improved by a more careful implementation, we would not expect their reiative size to change much.
6. The Value of N_{Z}^{A} for Arbitrary Elements and Trisngular or

Quadrilaterai Meshes

Suppose we have an arbitrary triangular mesh with N_{Δ} triangles,
V_{B} boundary vertices, and V_{I} interior vericices. Let S_{B} be the number of triangle sides lying on the boundary and S_{I} be the number of sides lying in the interior of the mesh. Let H be the number of holes in the mesh (domain).

In order to characterize the stencil, let $n_{V},{ }_{S}$ and n_{I} be the number of panameters associated respectively with vertex nodes, the node(s) on each side, and the interior of eaen triangle. For example, element 3-10 (Appendix A) would yiela $n_{V}=1, n_{S}=2$, and $n_{I}=1$. As in Chapter 3, we let $n=3\left(n_{V}+n_{S}\right)+n_{I}$.

Our aim in this section is to obtain N_{Z}^{A} in terms of N_{Δ}, V_{B}, S_{B}, n_{C}, n_{S} and n_{I}. Our method of proof is similar to that in [EI], where the following reiations between mesh parameters are proved.

$$
\begin{equation*}
N_{\Delta}=\frac{1}{3}\left(S_{B}+2 S_{I}\right)=V_{B}+2 V_{I}+2 H-2 \tag{6.1}
\end{equation*}
$$

Consider the following typical mesh:

Figure 6.1

Our strategy is to successively remove triangles fron the mesh in surh a way as to leave all remaining triangles vith at least one side inside the mesh. (Thus, triangles 1 or 2 in Figure 6.1 can be removed, but 3 cannot.) As we remove triangles, we will count the number of non-zero elements removed frrom A. We ignore those cases where elements are accidentally zero because of the regular properties of the mesn and/or the coefficients of the differential operator. We neel the following

Lemma 6.1

Let a triangle of type 1 (having two external sides) be removed from the inesh. Then N_{Z}^{A} is reduced by

$$
\begin{equation*}
\sigma_{1}=n^{2}-\left(n_{S}+2 n_{V}\right)^{2} \tag{6.2}
\end{equation*}
$$

Proof:
The total number of elements in A due to the interaction of parameters associated with a triangle is n^{2}. However, not all the connections are removed by the deletion of triangle i; those corresponding to parameters lying on the remaining side of triangle l (including its end nodes) are not removed, and there are $\left(n_{S}+2 n_{V}{ }^{\prime}{ }^{2}\right.$ such non-zero elements. This proves the lemma.

Lemma 6.2
Iet a triangle of type 2 be removed from the mesh. Then N_{Z}^{A} is reduced by

$$
\begin{equation*}
\sigma_{2}=2 n\left(n_{I}+n_{S}\right)-\left(n_{I}+n_{S}\right)^{2}+2\left(n_{S}+n_{V}\right)^{2} \tag{6.3}
\end{equation*}
$$

Proof:
As in Lemma 6.1, we first note that the total contribution to N_{Z}^{A} from the connections of parameters in triangle 2 is n^{2}. However, two of the triangle sides and their incident vertex remain in the mesh, so the comections of their parameters must not be counted unless they correspond to diffferent remaining sides. The truth of (6.3) can be demonstrated by assuming the equations in question are all grouped last in A and examining Figure 6.2. The submatrices marked with an asterisk are the parts removed from A (in the diagram below)

Matrix A

Figure 6.2

Summing the elements in the marked submatrices yields (6.3).
Now suppose the mesh has a hole in it. Eventually we will reach a situation where the hole is bounded at one place by a single side such as depicted below.

Figure 6.3

Such a side will be referred to as a connecting side. We present the following

Iemma 6.3

Let n_{V}, n_{S} and n_{I} be as above. Then the renoval of a connecting side from the mesh reduces N_{Z}^{A} by

$$
\begin{equation*}
\sigma_{3}=n_{S}^{2}+4 n_{S} n_{V}+2 n_{V}^{2} \tag{6.4}
\end{equation*}
$$

The proof is similar to that employed in Lemma 6.2 and we omit it.
We can now prove the following

Theorem 6.4
Let V, S nd H be the number of vertices, sides and holes respectively in a two dimensional triangular mesh. Let $n, \sigma_{1}, \sigma_{2}$ and σ_{3} be defined as above. Then N_{Z}^{A} is given by
(6.5) $\cdot n^{2}+(V-3) \sigma_{1}+(S+3-H-2 V) \sigma_{2}+H \sigma_{3}$.

Proof:

Suppose we reduce our mesh to a single triangle by successively removing triangles of type 1 and type 2, (and connecting sides if any), leaving A with n^{2} non-zero elements. In order to reduce the mesh to one triangle we must remove $V-3$ triangles of type 1 , since removal of a type 2 triangle or a connecting side removes no vertex. Thus the removal of type 1 triangles results in the reduction of $\operatorname{IN}_{Z}^{A}$ by $\sigma_{1}(V-3)$. Now each hole will result in the occurrence of one connecting side being removed during the reduction of the mesh, and this will reduce $\mathrm{N}_{\mathrm{Z}}^{\mathrm{A}}$ by $\sigma_{3} \mathrm{H}$. These two forms of demolition account for the removal of $2(\mathrm{~V}-3)+\mathrm{H}$ triangle sides, and three sides remain in our final triangle. Hence, we must have removed $\mathrm{S}-3-2(\mathrm{~V}-3)-4$ triangles of type 1 , accounting for $\sigma_{2}(\mathrm{~S}+3-2 \mathrm{~V}-\mathrm{HI})$ non-zero elements. Summing the above expressions yields (6.5).

Using (6.1), $\quad N_{Z}^{A}$ can be expressed in terms of other (perhaps more commonly available or easily obtainable) mesh parameters.

A similar analysis can be carried out for quadrilateral elements. If the mesh has no holes, there are three cases:

If n is the number of quadrilaterals in the mesh, we can ontain the following expressions using the same tecnniques as we did for the triangular mesh:

$$
\begin{equation*}
N_{Z}^{A}=\sigma_{1} \gamma_{1}+\sigma_{2} \gamma_{2}+\sigma_{3} \gamma_{3}+n^{2} \tag{6.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \sigma_{I}=n^{2}-\left(2 n_{V}+n_{S}\right)^{2} \\
& \sigma_{2}=n\left(n_{I}+n_{V}+2 n_{S}\right)-\left(n_{I}+n_{V}+2 n_{S}\right)^{2}+2\left(n_{V}+n_{S}\right)^{2}, \\
& \sigma_{3}=n\left(n_{I}+n_{S}\right)-\left(n_{I}+n_{S}\right)^{2}+6\left(n_{S}+n_{V}\right)^{2}, \\
& n=4\left(n_{V}+n_{S}\right)+n_{I},
\end{aligned}
$$

and γ_{1}, γ_{2} and γ_{3} are non-negative integers satisfying

$$
\begin{aligned}
& 2 \gamma_{1}+\gamma_{2}=\mathrm{V}-4 \\
& 3 \gamma_{1}+2 \gamma_{2}+\gamma_{3}=\mathrm{S}-4 \\
& \gamma_{1}+\gamma_{2}+\gamma_{3}=\square^{-1}
\end{aligned}
$$

The numbers γ_{1}, γ_{2} and γ_{3} are, respectively, the number of instances of case 1 , case 2 and case 3 encountered during the reduction of the mesh. The coefficient matrix of (6.7) is singular, rorlecting the fact that there are alternate weys to demonush the mesh, resulting in different values of γ_{1}, γ_{2} and γ_{3}. We can resolve the problem as follows. First we observe that $-\sigma_{3}=\sigma_{1}-2 \sigma_{2}$. Using (6.7) in (6.6), we have

$$
\begin{align*}
N_{Z}^{A} & =\sigma_{1} \gamma_{1}+\sigma_{2}\left(V-4-2 \gamma_{1}\right)+\sigma_{3}\left(2 N_{\square}-S+2+\gamma_{1}\right)+n^{2} \tag{6.8}\\
& =\gamma_{1}\left(\sigma_{1}-2 \sigma_{2}+\sigma_{3}\right)+\sigma_{2}(V-4)+\sigma_{3}\left(2 N_{\square}-S+2\right)+n^{2} \\
& =\sigma_{2}(V-4)+\sigma_{3}\left(2 N_{\square}-S+2\right)+n^{2} .
\end{align*}
$$

If our mesh has H noles in it, and we rename the σ_{3} of Lemma 6.3 as σ_{4}, equation (6.8) becomes

$$
\begin{equation*}
N_{Z}^{A}=\sigma_{2}(V-4)+\sigma_{3}(2 N-S+2+H)+\sigma_{4} H+n^{2} . \tag{6.9}
\end{equation*}
$$

This information is inportant because it allows us to allocate the exact amount of storage for the non-zero elements of A as soon as we know the mesh and the characterization of the polynomial on each element. It is also useful in checking that our mesh is consist,ent and our program is working correctly.

The expressions we have derived allow us to obtain an estimate for the density $D(A)=N_{Z}^{A} / N^{2}$ for finite element coefficient matrices. Using (6.4) and (2.5.6), along with (2.5.2) and (2.5.3), we have
(6.10)

$$
\begin{aligned}
\mathscr{A}(A) & \doteq \frac{\left(\frac{\sigma_{1}+\sigma_{2}}{2}\right) N_{\Delta}}{\left[\left(n_{I}+\frac{1}{2} n_{V}+\frac{3}{2} n_{S}\right) N_{\Delta}\right]^{2}} \\
& =\frac{\Gamma\left(n_{V}, n_{S}, n_{I}\right)}{\mathbb{N}_{\Delta}} .
\end{aligned}
$$

where

$$
\begin{equation*}
\Gamma^{\prime}\left(n_{V}, n_{S}, n_{I}\right)=\frac{\sigma_{1}+\sigma_{2}}{2\left(n_{I}+\frac{1}{2} n_{V}+\frac{3}{2} n_{S}\right)^{2}} . \tag{6.11}
\end{equation*}
$$

The average number of non-zero elements per yow of the coefficient matrix is obviously given by $\frac{1}{2}\left(\sigma_{1}+\sigma_{2}\right) /\left(n_{I}+\frac{1}{2} n_{V}+\frac{3}{2} n_{S}\right)$.

Some typical values of Γ and average number of non-zero elementis per row are tabulated below.

Element;	$\Gamma\left(n_{V}, n_{S}, n_{I}\right)$	Average number of non-zero elements per row
$1-3$	14.00	7.00
$2-6$	5.75	11.50
$3-4$	8.08	20.20
$3-10$	3.78	17.00
$4-6$	6.59	29.67
$4-15$	2.94	23.5
$5-6$	10.15	45.67
$5-21$	2.48	31.00

Table 6.1
7. Analysis of Storafe and Computational Requirements for a

Model Problem

In this section we obtain estimates of $\theta_{B}, \theta_{P}, \gamma_{B}$ and γ_{P} for a particular mesh, in oider to demonstrate the savinfs attainable by using profile methods rather than band methods. The mesh we consider is obtained by subdividing a unit square into \underline{p}^{2} small squares of side $1 / \underline{p}$, and then subdividing each small square into two right triangles. An example with $\mathrm{p}=6$ is given below.

Figure 7.1. Six by Six Regular Right Triangular Mesh

As in Section 4.6, let n_{V}, n_{S} and n_{I} denote the number of parameters associated respectively with vertex nodes, the node(s) on each side, and the interior of each triangle. We number the nodes diagonal by
diagonal, beginming at the lower left hand corner, and considering nodes lying between consecutive diagonals as a row. For example, stencil 3-10 (Appendix A) would yield the numbering shown below:

Figure 7.2

As usual, we denote our symmetric positive definite coefficient matrix by A, with Cholesky factorization $L I^{T}$. Making use of (6.1), and recalling the meaning of N_{Δ}, V_{B}, S_{B} and H, we can write

$$
\begin{equation*}
N=n_{v}\left(\frac{N_{N}+V_{B}}{2}-H+I\right)+n_{S}\left(\frac{2 N_{\Delta}+S_{B}}{2}\right)+n_{I} N_{\Delta} \tag{7.1}
\end{equation*}
$$

where N is the dimension of A. For a p by p mesh such as Figure 7.1, $N_{\Delta}=2 p^{2}$ and $S_{B}=V_{B}=4 p$, yielding

$$
\begin{equation*}
N=\left(n_{V}+3 n_{S}+2 n_{I}\right) p^{2}+0(p) \tag{7.2}
\end{equation*}
$$

For this ordering, the bandwiath of A is given approximately by

$$
\begin{align*}
m & \doteq(p+2) n_{V}+3 p n_{S}+(2 p-1) n_{I} \doteq\left(n_{V}+3 n_{S}+2 p n_{I}\right) p \\
& =\beta_{D} p
\end{align*}
$$

Thus, $\quad \theta_{B} \doteq \frac{\beta_{B}^{3}}{2} p^{4_{4}}$ and $v_{B} \doteq \beta_{B}^{2} p^{3}$.

We now wish to obtain estimates for θ_{P} and V_{P}. To simplify the algebra, we assume $n_{V}=1, n_{S}=n_{I}=0$ (piecewis: Linear polynomials). We can then prove the following

Theorem 7.1
For a $p \times p$ regular rectangular gria, the coefficient matrix A obtained using piecewise linear poiynomials satisfies

$$
\begin{equation*}
|\operatorname{Pr}(A)|=\frac{2 p^{3}}{3}+\frac{7}{2} p^{2}+\frac{23}{6} p \tag{7.4}
\end{equation*}
$$

Proof:

Considering the first node point as diagonal 1 , and recalling the definition oi \hat{o}_{i}^{A} (Section 4.1), we see that

$$
\begin{aligned}
& \delta_{I}^{A}=0 \\
& \delta_{2}^{A}=1 \\
& \delta_{3}^{A}=2, \quad \delta_{4}^{A}=2 \\
& \delta_{5}^{A}=3, \\
& \delta_{6}^{A}=3, \quad \delta_{7}^{A}=3
\end{aligned}
$$

$$
\vdots
$$

$$
\begin{equation*}
\delta_{i}^{A}=r, \quad \frac{r(r-1)}{2}+2 \leq i \leq \frac{r(r+1)}{2}+1 \quad, \quad 1 \leq r \leq p \tag{7.5}
\end{equation*}
$$

Now for the main diagonal, $\delta_{i}^{A}=p+1$, and for the diagonals above the main diagonal we can show that

$$
\begin{equation*}
\delta_{N-i}^{A}=r \quad, \quad \frac{(r-1)(r-2)}{2} \leq i \leq \frac{r(r-1)}{2}-1, \quad 3 \leq r \leq p+1 \tag{7.6}
\end{equation*}
$$

Using the formula $|\operatorname{Pr}(A)|=\sum_{i=1}^{N}\left(\delta_{i}^{A}+1\right)$ along with (7.5) and (7.6), we have

$$
\begin{aligned}
|\operatorname{Pr}(A)| & =\sum_{i=1}^{p} i(i+2)+p(p+2)+1+\sum_{i=1}^{p} i(i+1) \\
& =\sum_{i=1}^{p} 2 i^{2}+3 i+p(p+2)+1 \\
& =\frac{p(p+1)(2 p+1)}{3}+p^{2}+2 p+1=\frac{2 p^{3}}{3}+\frac{7}{2} p^{2}+\frac{23 p}{6}+1 .
\end{aligned}
$$

Thus, using the profile storage scheme rather than the band storage scherne, we can save about one third of the storage for A or I. It is
straightforward (but tedious) to show that for a general stencil;

$$
\begin{equation*}
|\operatorname{Pr}(\mathrm{A})| \leq \frac{2}{3} \hat{\mathrm{p}}_{\mathrm{p}}^{2} \mathrm{p}^{3} \tag{7.7}
\end{equation*}
$$

with $\beta_{P} \leq \beta_{B}$.
Recall that in Section 4.1 we showed that

$$
\begin{equation*}
\theta_{P}=\sum_{i=1}^{N} \frac{\delta_{i}^{A}\left(s_{i}^{A}+3\right)}{2} \tag{7.8}
\end{equation*}
$$

Again assuming $n_{V}=1$ and $n_{S}=n_{I}=0$, we can prove the following

Theorem 7.2

Let the PC algorithm be applied to A. Then the number 0 : multiplicative operations required to computo I is given by

$$
\theta_{p}=\frac{1}{4} p^{4}+3 p^{3}+\frac{41}{4} p^{2}+\frac{19}{2} p
$$

Proof:
Using (7.8) along with (7.5) and (7.6), we have

$$
\begin{aligned}
\theta_{P} & =\sum_{i=1}^{p} \frac{i(i+1)(i+4)}{2} \cdot \frac{p(p+2)(p+5)}{2}+\sum_{i=1}^{p} \frac{i(i \div 2)(i+5)}{2} \\
& =\sum_{i=1}^{p}\left(i^{3}+6 i^{2}+7 i\right)+\frac{p^{3}+7 p^{2}+10 p}{2} \\
& =\frac{1}{4} p^{4}+3 p^{3}+\frac{41}{4} p^{2}+\frac{19}{2} p .
\end{aligned}
$$

Again, with some tedious algebra, we can show that

$$
\begin{equation*}
\partial_{p} \leq \frac{1}{4} \beta_{p}^{3} p^{4} . \tag{7.10}
\end{equation*}
$$

It is, therefore, possible to halve the computation required to compute I by using profile instead of band methods. Note that we did not prejudice our comparison by ordering diagonally, since the bandwidth would be the same if we numbered our nodes in the usual row by row fashion.

8. Miscellaneous Topics and Concluding Remarks

In this section we discuss several modifications oi elimiration methods which are useful in various circumstances.

We begin by discussing a technique often referred to by engineers as "static condensation" (SC), which can be employed to eliminate some of the unknowns in (3.4.4) at the element level [Fl]. As we described in Chapter 1, a basis function corresponding to an internal node of T^{ν} is non-zero cnly on T^{V}. Hence, the corresponding parameter is connected only to parameters associated with i^{ν}. Suppose we partition q^{ν} into q_{1}^{ν} and q_{2}^{ν}, where q_{2}^{ν} corresponds to interior node parameters. We can write (3.4.1) in the form

$$
\left(\begin{array}{cc}
B_{11}^{v} & E_{12}^{v} \tag{8.1}\\
B_{21}^{v} & B_{22}^{v}
\end{array}\right)\left(\begin{array}{l}
v \\
q_{1} \\
q_{2}^{v}
\end{array}\right)=\binom{b_{1}^{v}}{b_{2}^{v}}
$$

where q_{2}^{ν} is independent of $T^{\nu}, \gamma \neq \nu$. Then (8.1) can be replaced by (8.2) by eliminating q_{2}^{ν} :

$$
\begin{equation*}
\left[B_{11}^{v}-B_{12}^{v} B_{22}^{v} B_{21}^{v}\right] q_{1}^{v}=b_{1}^{v}-B_{12}^{v} B_{22}^{v^{-1}} b_{2}^{v} \tag{8.2}
\end{equation*}
$$

In this way, the dimension of A_{1}. (see Section 3.4) can be reduced by ${ }^{N} n_{I}$. We can carry out a somewhat superficial enalysis of the model problem discussed in Section 4.7 to show the savings possible by uring this technique. 'To simplify the analysis we will consider the use of the band Cholesky algorithr, and consider element $3-4$. It is easy to show that using the ordering of Section 4.7, the band wiath m is about $5 p$ and the number of equations N is about $\mathrm{sp}^{\hat{z}}$, yielding

$$
\begin{equation*}
\theta_{B} \doteq 125 p^{4} \tag{8.3}
\end{equation*}
$$

Now consider the corresponding quantities if we apply static condensation and elircinate $2 x^{2}$ variables before assembly. The bandwidth m is now only about $3 p$, and $N \doteq 3 p^{2}$. Thus

$$
\begin{equation*}
\hat{\theta}_{B} \doteq 27 p^{4} \tag{8.4}
\end{equation*}
$$

It is fairly easy to show that the number of multiplicative operations required to eliminate tine variables is

$$
\begin{equation*}
\theta_{S C} \doteq 32 p^{2} \tag{8.5}
\end{equation*}
$$

which means the technique pays (in terms of multiplicative operations) for this particular element, problem, and solution method for all p. Of course, its use might be justified for storage reasons alone, even if it did not reduce the computation.

In general; θ_{SC} is given by

$$
\begin{equation*}
\left[\frac{n_{I}^{3}}{6}+3 n_{I}\left(n_{I}+1\right)\left(n_{S}+n_{V}\right)+9 n_{I}\left(n_{V}+n_{S}\right)^{2}\right] N_{\Delta} \tag{8.6}
\end{equation*}
$$

Another technique sometimes used in connection with solving finite element equatiors is the so-called irontal-solution method [I2, K2]. The basic strategy is to zombine the assembly and decomposition of A by a.lternating between the accumulation of coefficients of the equations (most of the coefficients depend on more than one element) and the elimination. A square submatrix of A (in some stage of reduction) is the only main storage required. The matrix corresponds to "active" variables; that is, variables which have not been eliminated and for which there are non-zero coefficients in the equastions so far encountered. The subset of active variables continuously changes as new elements are processed. The main point that is usually made in favor of these schemes is that variables are
eliminated as soon as possible, rather than in a predetermined order. However, this flexibility is obtained at a rather high cost in programming complexity, and the question of ordering has really only been moved a level higher. The problem of optimal equation ordering has been replaced by the problem of optimal order or element assembly. Our general impression is that these methods will be most valuable when main storage is at a high premium.

CHAPTER 5

GTNITE ELEMENT SOLUTIONS TO SOME SELEATED PROBLEMS

1. Introduction

In this chapter we will present finite-element solutions to some much-studied problems for which numerical solutions have been presented in the literature. Our purpose is not necessarily to present more accurate solutions than have been presented before, but rather to demonstrate that the finite element method enables us to obtain comparatively good resuits efficiently and without resorting to special methods. We will provide evidence suggesting that the finite-element method is not only desirable because of its flexibility regarding irregular domains but is competitive or superior to common alternate methods with respect to efficiency.

The term efficiency is somewhat difficult to define quantitatively since storage requirements, computer time, and manpower have different relative costs in different situations. Loosely, efficiency will mean "number of co:rrect digits per dollar".

We would like to emphasize that the finite-element solitions presented in this chapter have been produced by a general program. No i.e was made of any sp (ial characteristics of the problems other than those an engineer would reasonably expect. For exanple, we graded the net small near the re-entrant corner of the L-shaped membrane eigenvalue problems (Section 2 , this chapter), but we did not attempt to incorporate "singular functions" into the basis [F2,F6].

Since we are using a Ritz procedure, our computed eigenvalues for the problems below are upper bounds for the true eigenvalues.
2. The L-Shaped Membrane Eigenvalue Problem

The L-shaped membrane eigenvalue problem has been studied by many authors. For background materizl, see Forsythe and Wasow [F5] and Moier [M3], and for various special computational methods, see Reid and Wal.sh [R2], Fix [F2], Schwartz [S7], and Fox, Henrici, and Moler [F6]. The domain R consists of the union of three unit squares, and we wish to find the stationary values $\lambda_{i} \quad\left(0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots\right)$ of the functional:

$$
\begin{equation*}
I[u]=\iint_{R}\left[u_{x}^{2}+u_{y}^{2}\right] d x d y / \iint_{R} u^{2} d x d y \tag{2.1}
\end{equation*}
$$

where $u=0$ on the boundary S.
The interesting aspect of this problem is provided by the re-entrant corner, which leads to unbounded derivatives of the fundamental eigenfunction in the neighborhood of the corner. Thus, the eigenfunction is difficult to approximate by functions which do not exhibit a similar behavior. The value $\lambda_{1}=9.63972$ reported in [F6] is accurate to the last digit, and we will use it for comparison.

Our first experiments make use of the following trianguler mesh:

Figure 5.1

We are obviously making use of the symmetry of the ifrst eigenfunction here, and have graded the net appropriately near the corner. In the tables below k is the factor by which the mesh of Figure 5.1 was sub-divided. The eigenvalues we found using inverse iterativ? [w2] with an initial guess of 9.6 . The computed λ_{1}^{*} is believed to be correct to the last digit. Set-up tine includes the time required to generate the mesh and order the nodes as well as the time required to generate and assemble the equations. The missing times in the table wera so snall that they were meaningless. All times are in seconds on an IBM 360/91.
$\lambda_{2}^{*}-\lambda_{1}$ for piecewise linear functions

k	Number of Equations	Bandwidth	Set-up Time	Solution Time	$\lambda_{1}^{*}-\lambda_{1}$
1	5	.3	.33	--	3.4003
2	22	6	.57	.05	1.0089
3	51	12	.62	.10	.4605
4	92	12	.93	.17	.2640
5	145	15	1.33	.30	.1718
6	210	18	2.34	.55	.1210
7	287	21	2.73	.90	.0901
8	376	24	3.53	1.28	.0699

Table 2.1
The rate or convergence of the computed λ_{1}^{*} to λ_{1} as $k \rightarrow \infty$ is obviousliy exceedingly slow.

The systems of linear equations involved in the inverse iteration routine we solved using a band Gaussian elimination routine. The code appears in Appendix 3. It is interesting to note that the set-up time dominates the solution time in all cases. This is due in part to the characteristics of the IBM $360 / 91$, which has a very fast floating-point arithmetic unit and a look-ahead instruction stack. Both features tend to make "number crunching" tasks, such as Gaussian el.inination, proceed rapidly and efficionliy. The set-up psucedure, on the other hand, requires considerable boorkeepi"ig and hranching. Programs of this type do not make effective use of the powerful machine features mentioned above. Another reason for the relatively large set-up time is that we are using low degree polynomials. The number of triangles to be processed (and the associated overhead) is larger with respect to \mathbb{N} than it would be for quadratics, for example. Note, however, that the ratio
(Set-up time)/(Solution time) is steadily (if slowly) decreasing.
Our second experiment again makes use of the mesh of Figure 5.1, but we now use polymomials of higher degree to demonstrate how efficient they can be. Table 2.2 contains results for polynomials of degrees 1 through 6 ; in all cases the original mesh was used. Our inverse iteration routine for these experiments used a symmetric indefinite equation solver using the pivoting algorithm of J. R. Bunch [B13]. The code for this computation appears in Appendix B.

Degree	Number of Equations	Bandwidth	Set-up Time	Solution Time	$\lambda_{1}^{*}-\lambda_{I}$
1	5	3	. 33	--	3.4003
2	22	11	. 43	. 1	. 3720
3	51	24	. 70	. 25	. 0160
4	92	42	. 87	. 95	. 0063
5	145	65	1.7	3.02	. 0034
6	210	101	2.68	6.02	. 0021

Table $2 . .2$

It is obvious that for this problem the use of polynomials of derree >1 are considerably more effective than linear ones.

It is interesting to note that the $:_{I}^{*}$ r.btained using quintic polynomials (Table 5.2) yieldins 145 equations is comparable to the λ_{1}^{*} obtained by Moler [M3] using finite ifference methods on a uniform mesh with $h=1 / 100$ (yielding $. .5,000$ equations). Our storage requirements
were virtually the same; we required 15385 words (including the storage of A and B of the generaized eigenvalue problem $A x=\lambda B x$). Moler's Fortran program, written specifically for this problem, took about 12 minutes to execute on an IBM 7090. Thus there is a factor of roughly 150 in execution times. The ratio of speeds of the arithmetic units is about 100, while the erfective memory spead ratio is about 10. The ratio of times for other operations lie somewhere between these two extremes. We feel we can safely say that the finite element method is at least fully competitive with finite difference methods for this problem.

It was, of course, not necessary to use inverse iteration. We could have used a method due to Peters and Wilkinson [Pi] which essentially finds the zeros of $\operatorname{det}(A-\lambda B)$. Although the running times would be considerably larger than for inverse iteration, the required storage for our quintic problem would be a total of 10,536 words (storage for A and B and an additional $((m+1) \times(2 m+1))$ words for the determinant evaluation). Both this method and inverse itexation can be used to find subdominant eigenvalues, whereas the metnod used in Moler [M3] is applicable only for an end eigenvalue. To find subdominant eigenvalues using his technique would require some form of deflation to render the dominant eigenvalues equal to zero. To avoid making the coefficient matrix dense, the deflation would have to be done implicitly which inplies that the eigenvectors corresponding to dominant eigenvalues would have to be available. We feel that the ability of the high order finite element methods to obtain respectable 1 ssults using only moderate numbers of parameters is particularly important for eigenvalue problems because it enables us to
apply well known, dependable methods for finding the eigenvalues of the discrete problem.

We again emphasize that we are not implying that finite element methods are the best ones to use for solving this particular problem. Indeed, the method proposed by Fox, Henrici and Moler [F6] is probably the best known method for finding the eigenvalues of the L-shaped membrane. However, the use of such techniques requires information which may only be known to an expert in the field, and the utilization of them in a general code is complicated.

3. Eigenvalues of Rhombical Iomains

Bounds for the eigenvalues of rhombical domains have been obtained by Moler [M4], Birkhoff and Fix [B7], and Stadter [S4]. Moler obtains his bounds using a method of particular solutions, and Stadter obtains bounds using the method of intermediate problems [S4]. In this section we will show that with finite element formulations having relatively few parameters we can get close to or within the bounds produced by the methods described in the above references.

The problem we consjdered is the equation (2.1) of Section 2 with a rhombical domain of side π and skew angle ∂ as indicated below:

Figure 5.2

Our first experiment takes no account of symmetry, and the results are compared with some of the bounds presented by Moler [M4]. These results are summarized in the table below. As before, k indicates the factor by which the input mesh (indicated by the dashed line in Figure 5.2) has been subdivided. N is the mimioer of equations, m is the bandwidth and d is the degree of the piecewise polynomials.

The method employed by Mnlei utilizes particular solutions to the Laplacian operator, and the 20 particular solutions used were carefully chosen to agree with symmetries of the eigenfunction being approximated. Each bound calculation required about 20 seconds on an IBM $360 / 67$. Our calculations were done on an IBM 360/91. Our set-up times (for each example) and solution times (for each eigenvalue) have been included in Table 3.1 for comparison purposes. The $360 / 67$ and $360 / 91$ have radically different design features and a comparison between the two machines is difficult. The largest ratio of execution times this author has encountered between identical prcgrams run on the two machines is 15, and that was for a very special program. Usually the ratio is from three to six and is almost always less than ten.

Case 1: Rhombical Membrane Eigenvalues: $\theta=30^{\circ}$.

	λ_{2}^{*}	λ_{2}^{*}	λ_{3}^{*}	λ_{4}^{*}	set-up and Solution times
Moler's Bounds	$\begin{aligned} & 2.51921 \\ & 2.52606 \end{aligned}$	$\begin{aligned} & 5.33333 \\ & 5.33334 \end{aligned}$	$\begin{aligned} & 7.24150 \\ & 7.29028 \end{aligned}$	$\begin{aligned} & 8.47510 \\ & 8.50997 \end{aligned}$	$\approx \cong 0 \mathrm{sec}$ per eigenvalue on an IBM 360/67
$\begin{aligned} & \mathrm{k}=2, \\ & \mathrm{~N}=49 \\ & \mathrm{~m}=22, \\ & \mathrm{~d}=4 \end{aligned}$	2.52302	5.33341	7.26942	8.5047	$\begin{aligned} & .41 \\ & .13 \end{aligned}$
$\begin{aligned} & \mathrm{k}=3 \\ & \mathrm{~N}=121 \\ & \mathrm{~m}=43 \\ & \mathrm{~d}=4 \end{aligned}$	2.52284	5.33339	7.26653	8.49424	$\begin{array}{r} .69 \\ .95 \end{array}$
$\begin{aligned} & k=4, \\ & N=225, \\ & m=65, \\ & a=4 \end{aligned}$	2.52279	5.33334	7.26611	8.49374	$\begin{aligned} & 1.36 \\ & 3.7 \end{aligned}$
$\begin{aligned} & k=2, \\ & N=81 \\ & m=35, \\ & d=5 \end{aligned}$	2.52284	5.33340	7.26651	8.4 .9420	1.2 .4

Table 3.1

Case ¿: Rhombical Membrane Eigenvalues: $\theta=5^{\circ}$

	λ_{1}^{*}	λ_{2}^{*}	λ_{3}^{*}	λ_{4}^{*}
Moler's Bounds	$\begin{aligned} & 2.01218 \\ & 2.01248 \end{aligned}$	$\begin{aligned} & 4.90375 \\ & 4.50403 \end{aligned}$	$\begin{aligned} & 5.15659 \\ & 5.15750 \end{aligned}$	$\begin{aligned} & 7.99206 \\ & 7.99394 \end{aligned}$
$\begin{aligned} & \mathrm{N}=49 \\ & \mathrm{~m}=22, \\ & \mathrm{~d}=4, \\ & \mathrm{k}=2 \end{aligned}$	2.01232	$4 \cdot 90567$	5.16407	8.00979
$\begin{aligned} & \mathrm{N}=121, \\ & \mathrm{n}=43, \\ & \mathrm{~d}=4, \\ & \mathrm{k}=3 \end{aligned}$	2.012 .26	4.90405	5.15735	7.99516
$\begin{aligned} & \mathrm{N}=81, \\ & \mathrm{~m}=35, \\ & \mathrm{~d}=5, \\ & \mathrm{k}=2 \end{aligned}$	2.01226	4.90108	5.15730	7.99851
$\begin{aligned} & N=196 \\ & m=69 \\ & \mathrm{~d}=5, \\ & \mathrm{k}=3 \end{aligned}$	2.01225	4.90389	5.15705	7.99308

Tabie 3.2

Our first observation is that again the higher degree polynomials appear to be more effjcient. For example, in Case l, using quintics With $N=81$ and $m=35$ yields resuits as good as the quartic example having $N=121$ and $m=43$. For Case 2, the singulerities in the derivatives of the eigenfunctions near the corners are less troublesome, and the value of the higher degree polynomials is less pronounced, aithough still apparent. We point out that our numbers are upper bounds to the true eigenvalues.

Moler's method is clearly superior if accurate upper and lower bounds are required, or if approximations to many eigenvalues are desired. However, his method may be expensive and/or difficult to apply to problems whose operators do not have simple or easily generated familits of particular solutions.

Moler's results are for moderate values of θ, and only for the fixed membrane proslem. We now wish to make some comparisons with the results of Stadter [S4] and Birkhoff and Fix [B7]. They report bounds for $\theta=30^{\circ}\left(15^{\circ}\right) 75^{\circ}$ for the rhombus fixed at all edges, and Stadter reports bounds for the rhombus fixed at two opposite edges and free on the remaining two edges.

We begin with the fixed membrane problem. The bounds reported are for eigenvalues corresponding to eigenfunctions which are symmetric with respect to both diagonals. For purposes of comparison, we restricted our first experiment correspondingly. Our domain is the hatched area shown below:

Figure 3.1

The boundary coudition $u_{n}=0$ is imposed along the boundary of the hatched region interior to the rhombus. This is easy to do since it is a natural boundary condition.

In the discussion below λ_{n}^{A} and λ_{n}^{B} are computed eigenvalues reported by Birkhoff and Fi: [D7]. The values λ_{n}^{A} were obtained using the Rayleigh-Ritz method with the approximating space spanned by the affine uransforms of the first 30 eigenfunctions of the square membrane. The values λ_{n}^{B} were obtained using a second space of dimension 30 which included special singular functions having the appropriate behaviour at the corners. In both cases, on? the even-even symmetry class was sought.

The eigenvalues $\lambda_{n}^{U, k}$ and $\lambda_{n}^{L, k}$ below are upper and lower bounds supplied by the method of intermediate problems as applied to the rhombical membrane nroblem by Stadter [S4]. The superscript k indicates the number of intermediate problems used, and is the size of the two (dense) matrix eigenvalue problems which must be solved to obtain the bounds. In [S4] Stadter reports bounds for $k=15$ and $\theta=30^{\circ}\left(15^{\circ}\right) 75^{\circ}$, and in [WI] he reports bounds for $k=30$ and $\theta=45^{\circ}$.

The eigenvalues $\lambda_{n}^{l, k}$ below are our finite element results for piecewise polynomials or̂ degree ℓ yielding k by k (band) eigenvalue problems.

Ir Table 6 we compare $\lambda_{n}^{B}, \lambda_{n}^{5,55}, \lambda_{n}^{i, 50}$ and $\lambda_{n}^{U, 50}$. For the following reasons, we feel it is fair to compare λ_{n}^{B} with $\lambda_{n}^{5,55}$ even though the space which produced λ_{n}^{B} is only of dimension 30. First, Birkhoff and Fix report that $2 \frac{1}{2}$ times as much computer time was needed to find the $\lambda_{n}^{B_{r}} s$ as the $\lambda_{n}^{A_{1}} s$ for a given angle θ. (We assume this increase was caused by complications introduced by the incorporation of the singular functions.) Second, our eigensystems have band structure, whereas theirs are dense. A tnird somewhat qualitative reason might be termed the "nuisance factor". All our finite element computations were done with a general purpose program; no special modifications with regard to special basis functions or geometry were necessary.

The time required to generate the finite element eigenproblem for each angle on the IBM $360 / 91$ was about 0.6 seconds. About 0.2 seconds were required to find eack eigenvalue using inverse iteration. By comparisor, 2 minutes were required on an IBM 7094 to produce the $\lambda_{n}^{B_{r}} s$ for a given θ. [Since it appears that the major portion of the time used was for the generation of the eigenproblem racher than its solution, the fact that Birkhoff and Fix used a method yielding all the eigenvalues of the discrete problem is relatively unimportant.] Roughly 4 seconds of IBM 360/9]. time was required to produce the upper and lower bounds ($\lambda^{U, 50}$ and $\lambda_{n}^{L, 50}$) for each angle using the method of intermediate problems. The results are tabulatued below for $n=1,2, \ldots, 6$ and $\theta=30^{\circ}, 45^{\circ}, 60^{\circ}$ and 75°.

Symmetric Eigenvalues for the Fixed Rhombical Domain

n	$\lambda_{r .}^{5,55}$	λ_{n}^{B}	$\lambda_{n}^{I}, 50$	$\lambda_{\mathrm{n}}^{\mathrm{U}, 50}$
Case 1: $\theta=30^{\circ}$				
1	2.5228	2.5238	2.5224	2.5241
2	8.1933	8.5060	8.4916	8.5008
3	14. 233	14.256	14.224	14.261
4	17.156	17.183	17.139	17.167
5	27.173	27.110	26.983	27.096
6	29.606	29.620	29.433	29.537
Case E: $\theta=45^{\circ}$				
1	3.5210	3.5210	3.5201	3.5263
2	10.158	10.190	10.154	10.173
3	18.785	18,864	18.737	18.802
4	22.115	22.135	22.095	22.214
5	30.153	30.289	29.785	29.942
6	39.663	39.582	39.493	39.777
Case 3: $\theta=60^{\circ}$				
1	6.3238	6.3598	6.3217	6.3485
2	14.968	15.088	14.958	15.005
3	25.333	25.571	25.202	25.338
4	38.064	38.981	37.436	37.774
5	43.581	43.717	43.480	44.013
6	54.267	56.379	51.883	52.575
Case 4: $\theta=75^{\circ}$				
1	20.194	20.283	20.185	20.407
2	36.373	36.452	36.301	36.617
3	53.595	53.562	52.794	53.499
4	76.746	80.125	70.951	72.660
5	110.20	111.52	90.964	94.982
6	154.89	144.38	112.87	121.75
		Table 3.3		

We offer the following observations:
(1) The remarks of Birkhoff and Fix suggesting that their Rayleigh-Ritz nethods yield much more accurate upper bounas than the method of intermediate problems seems to be barely justifiable. In [B7] their comparisons of λ_{n}^{A} and λ_{i}^{F} are sgainst $\lambda^{U, 15}$ for $\theta=30^{\circ}, 60^{\circ}$ and 75°. For $\theta=45^{\circ}$ the comparison is against $\lambda_{n}^{U}, 30$, and for this case λ_{n}^{A} was a sharper upper bound in only half of the ceses, and although λ_{n}^{B} was better in all cases, it was only marginelly better in most of them.
(2) The upper bounds produced by the finite element method appear to be fully competitive with the $\lambda_{n}^{B_{1}} s$, and are appreciably better for the lower eigenvalues.
(3) Experiments with polynomials of various degrees again indicate that efficiency increases with increasing polynomial degree.
(4) Our finite element solutions made no use of
(a) information about the behavior of the solution near the corners of the domain
(b) the fact that the domain is affinely equivalent to one in which the eigenproblem can be sclved exactly.

We feel that these psints are important because the utilization of (a) appears to be awkward in ε general implementation, and (b) places a rather severe restricticn on the application of the method of internediate problems.

We now turn briefly to the fixed-free rhombical membrane eigenvalue problem. Stadter [S4] restricted his attention to eigenvalues corresponding to eigeafunctions symmetric with respect to the center of the rhombus. It
was not convenient for us to restrict our problem correspondingly, so we solvea the "full" problem. We report results for $\lambda_{1}^{4,15}$ and $\lambda_{3}^{4,15}$.
$\lambda_{1}^{4,15}$ and $\lambda_{3}^{4,15}$ for the Fixed-Free Rhombical Membrane

θ	$\lambda_{1}^{4,15}$	$\lambda_{1}^{\mathrm{L}, 15}$	$\lambda_{1}^{\mathrm{U}, 15}$	$\lambda_{3}^{4,15}$	$\lambda_{3}^{\mathrm{L}, 15}$	$\lambda_{3}^{\mathrm{U}, 15}$
30	1.2343	1.1820	2.8550	4.9105	4.6585	5.1547
60	2.8550	2.5046	3.6533	7.6453	6.9881	9.5382
75	8.3400	6.8038	13.043	19.177	14.233	27.438

Again, with a moderate number of parameters we can easily improve on the upper bounds produced by the method of intermediate problems.

4. A Dirichlet Froblem

We now consider finite element solutions to the following problem:

$$
\begin{align*}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \text { on } R \tag{4.1}\\
& u=e^{x} \cos y \text { on } S U T .
\end{align*}
$$

The boundary S is a 1.28×1.28 square and T is a $.25 \times .25$ square with lower left corners at $(0,0)$ and (.5,.5) respectively. The input mesh is indicated by the dashed lines in the diagram above. Experiments were run on an IBM $360 / 91$.

Details of the various polynomials can be found in Appendix A. As before, N indicates the number of finite element equations and k is the factor by which the input mesh was subdivided. The profile Cholesky algorithm and the RCM ordering (see Chapter 4) were employed in all cases.

We begin by comparing different element/mesh combinations which yielded roughly the same accuracy.

Element	N	k	Set-up (Sime Seconds)	Solution Time (Seconds)	Operations for Solution $\times\left(10^{+3}\right)$	Error $\times\left(10^{-5}\right)$	L Storage	A
$2-6$	540	5	3.18	.53	154	1.86	10,544	3000
$3-4$	216	3	1.56	.22	37	1.28	3,099	1620
$3-10$	180	2	1.13	.13	28	1.63	2,425	1188
$4-15$	72	1	.65	.04	7	1.14	684	468

Table 4.1

Table 4.1 demonstrates dramatically the value of using high degree polynomials for solving this problem. Set-up times, solution times and storage requirements decrease as the degree d of the polynomial increases. Observe the striking decrease in the operations required to solve the generated linear system.

We now present some experiments using the initial mesh and varying the degree.

Element	N	Set-up Time	Solution Time for	Solution $\left(\times 10^{3}\right)$	Error	I	A
$3-10$	36	. .482	--	2	$2.35(-4)$	209	144
$4-15$	72	.65	.04	6	$1.14(-5)$	684	468
$5-21$	120	1.10	.13	21	$4.06(-7)$	1692	1.140
$6-28$	180	1.86	.20	53	$1.16(-8)$	3465	2340

Table 4.2

Again the case for higher decxee polynomials is apparent. Compare, for example, the third entries in Tables 4.1 and 4.2. Their demands on system resources are about the same, but the error for the quintic is more than an order of magnitude less.

To compare the above iesults with what could be expected using finite difference methods we solved the problem using the standard fiveッpoint difference operator on a uniform square mesh witin nesh width of $1 / 100$. The solution was obtained using an imbedding approach [G1,B15] which makes use of very fast direct methods for solving the discrete Laplacian equations on a rectangular domain. The set-up time for this procedure is lerge (≈ 25 seconds for our problem on the IEM 360/91) and consists of computing a $q \times q$ "capacitance matrix". In our problem $\mathrm{q}=100$ and the computation of the capacitance matrix involves solving q 127×127 rectangular problems. However, once this initialization is done, we can obtain a solution to our given problem by solving 2 rectangular problems and a dense q by q system of linear equations. Assuming that we have computed and decomposed the capacitance matrix beforenand, we can solve our problem in about .7 seconds. This latter "solution tine" has been found to be superior to $S O R$ or $A D I$ solution times (by factors of 5 to 8) for a number of typical problems [Bly].

Thus, a (conservative) entry in Table 4.2 for finite dififerences would be

N	Solution Time	Operations	Error	Storage
15,504	.7	10^{6}	$7 \cdot 10^{-6}$	$2 \prime 2000$

Each solution of the 127×127 rectangular probiem requires àout .3 seconds on the IBM $360 / 91$. Thus, even asing the iterative scheme (based on fast direct methods', proposed by George [Gl] which avoids 'ne calculation of the capacitance matrix is unlikely to compare favorably in overall time (solution and set-up time) with the last entry in Table 4.2. Anyway, an equally important consideration is storage requirements, and the last entry in Table 4.2 requires only 5805 words. The observed error for the sixth degree polynomial was 1.16×10^{-8} compared to 7×10^{-6} for the difference equations.

Again we should point out that there are still better ways to solve this problem if we are prepared to take advantage of its particular sharacteristics. Moler (private communicatjon) solved the problem by using a linear combination of particular solutions as a trial solution and determining the coefficients of the expansion by minimizing the two-norm of the error at a discrete jet of points on the boundary SUT. The least squares solation of a 26×15 problem was all that was required and the program was only a few pages long; the error, hrowever, was around 10^{-10}.

Referonces

Al B. Allen, "Procedures for the nunerical selution of elliptic partill differential equations," Culham Operating System note no. 1/07, Culhar Laboratory, England, 1967.

D1 Ivo Babuska, "Nunsrical solution of boundary value problems by the perturbed variational principle," Technical Note BN-524, Inst. for Fluid Dynamics and Appl. Math., University of Mary?and, Collers Park, Maryland, 1969.

B2 Ivo Babuska, "Error bounds for finite element mothot," Numer. liath., 16 (1971), pro. 322-333:

B3 Ivo Babuska, "Finite element :isthot for domains with corners," Technical Note BN-63\%, Inst. for Fluid Dynamics and Appl. itath. University of Marylant, Collere Park, Marylanr, 197\%.

3't U. D. Barfield, "Numerical mottot for senerating orthozonal curvilinear meshes," J. Conputational Phys., 1 (1970), pp. 23-33.

Bj G. P. Bazeley, Y. K. Cheuñ, B. M. Irons, and O. C. Zienkiewicz, "Triangular elements in olate bending conformios and nun- conformin solutions," Proc. Conf. Hatrix 'ieth. Struct. Mect., Vri ht Patterson Air Force Base, Dayton, Ohio, 1955

Bú Koblein Bell, "A refined trianzular alate benting elenent," interiat. J. Numer. Meth. En?rヶ., 1 (1069), 2p. 101-122.

37 Garrett Birkhoff and Georse Fix, "Accurate eizenvalue computations for elliptic orolipris," po. 111-151 of B9.

38 G. Birkhoff. M. H. Schu!tz ant R. S. Varea, "Piecowise dermite interpolation in one and tuo variables with applications to dartial ifferuntial equations," Numer. Path., 11 (1968), pp. 232-256.

B9 Fiarrett Birkhoff and Richart S. Varaa, atitors, Humerical Solution oi field Problems in Continuum llechanics, SIAM-AMS Proceedinus, American Mathematical Society, Providence, Rhode island, 107?.
(21) James 4 . Bramble, editor, Numerical Solution of Partial Differential Equations, Aczemic Press, New York, 1956.

B11 J. H. Bramble and Alfred Schatz, "Rayleirh-RitzGalerkin methods for Dirichlet's problem usins subspaces without boundary conditions," Comm. Pure Appl. Math., 23 (1970), pp. 653-675.

B12 James H. Bramble and Milos Zlámal, "Triangular elements in the finite element method," Math. Comp., 24 (1970), pp, $x \times x-x \times x$.

B13 J. R. Bunch, "On direct methods for solving symnetric systems of linear equations," Technical Report No. 33, Computer Center, University of California at Berkeley, 1969.

B14 Robert G. Busacker and Thomas L. Saaty, Finite Graphs and Networks: An Introduction with Applications, McGraw-Hill Book Company, New York, 1965.

B15 B. L. Buzbee, F. V. Dorr, J. A. George, and G. H. Golub, "The direct solution of the discrete Poisson equation on irregular regions," Computer Science Dept. Technical Report CS195, Stanford University, Stanford, California, 1970.

C1 R. W. Clough and J. L. Tocher, "Finite element stiffness matrices for analysis of plate bending," Proc. Conf. Matrix Meth. Struct. Mech., Wright Patterson Air Force Base, Dayton, Ohio, 1965.

C2 Lothar Collatz, The Numerical Treatment of Differential Equations, Sprinser Verlag, Berlin, 1960.

C3 Colin W. Cryer, "Topological problems arising when solving boundar! value proilems for elliptic partial differential equations by the method of finite differences," J. Assoc. Comput. Mach., 18 (1971), pp. 63-74.

C4 Y. K. Cheung and J. O. Pedro, "Automatic preparation of data cards for the finite element method," Research Report, Civil Engineering Division, School of Engineerint, University Colleg? of Swansea, Encland. 1966.
E. Cuthill and J. McKee, "Reducing the bandwidth of sparse symmetric matrices," Proc. 24 th National Conf., Assoc. Comput. Mach., ACM Publication P-63, 1122 Ave. of the Americas, New York, N. Y., 1969.
Alfonso F. Cárdenas and Walter J. Karplus, "PDEL - A language for partial differontial equations," Comm. Assoc. Comput. Mach., 13 (1970), pp. 184-190.

01 Robert C. Daley and Jack R. Dnanis, "Virt:ałl יemory, processes, and sharins in Multics," Con:. Assoc. Comput. Mach., 11 (1969), op. Ses-312.

D2 F. iv. Dorr, "The tirect solution of the liscrote Poisso. equation on a rectan:le," S|A:1 Rev., 12 (1970), pp. $2+8-263$.

03 Gaorye Dupuis and Jean-Jacques ؟oël, "Elements finis raffinés en elasticite bicimensionello," Z. Anqew. iA3th. Phys., 20 (1970), pp. 858-981.

El D. J. F. Ewing, A. J. Fawkes, ant J. R. Griffiths, "Rules soverning the number of ofes an' zlements in a finite elemant mesh," Internat. J. lumer. Meth. Engrs., 2 (1970), op. 597-50n.

E2 \quad. Engeli, "Design and implamontatinn of an alrehraic orocessor," Habilitationsschrift, lastitut fuir Angewandte Mathematik fer ETH, Zurich, 190F.

F1 Carlos Felippa and Ray W. Cinart, "The finite element method in solid mechanics," po. 21n-252 of E9.

F2 Georre Fix, "Hist orter Rayleith-Ritz aparoximations," J. Math. Mech., 18 (1963), 3p. 645-657.

F3 Goorse fix and Kathren Larsen, "lterative anthons for finite element aporoximations to ellintic imundary value problems," to appear.

F4 Jeorse E. Forsythe an Cifeve D. Moler, Computer Solution of Linear Alsebraic Systems, Prentice-Hall Inc., Enslewood Cliffs, New Jersey, 1907.

F5 acorie E. Forsythe and W. R. Wasow, Finite-niffarsnce Methods for Partial Diffor?ntial Enuations, John Wiley and Sons lac., dew York, 19 in.

FG L. Fox, P. Henrivi, and C. Moler, "Apprexirations an: bounds for ei senvalues of ellintic onorators," siar. J. Numer. Anal., 4 (1967), pp. (9-102.

F7 C. O. Frederick, Y. C. Wone ant F. N. Edre, "Two dimensional automatic mesh zeneration for structural analysis," Internat. J. ivuner. Meth. Emyr.., 2 (1970), ip. 133-144.

F8 Kurt Fuchel and Sidney Heller, "Considerations in the design of a multiple computer system with an extended core storage," Comm. Assoc. Comput. Niзch., 11 (1969), pp. 334-340.

G1 J. Alan George, "The use of direct methods for the solution of the discrete Poisson equation on non-rectangular regions," Computer Science Dept. Technical Report STAN-CS-70-159, Stanford University, Stanford, California, 1970.

G2 J.-J. Goël, "Construction of basic functions for numerical utilization of Ritz's method," Numer. Math., 12 (1968), pp. 435-447.

G3 F. Gustavson, W. Liniger, and R. W!lloughby, "Symbolic generation of an optimal Crout algorithm for sparse systems of linear equations," J. Assoc. Comput. Mach., 17 (1970), pp. 87-109.

H1 R. J. Herbold, M. H. Schultz, and R. S. Varga, "The effect of quadrature errors in the numerical solution of boundary value problems by variational techniques," Aequationes Math., 3 (1969), pp. 96-119.

H2 M. J. L. Hussey, R. W. Thatcher, and M. J. M. Bernal, "Construction and use of finite elements," J. Inst. Math. Appl., 6 (1970), pp. 262-283.

H3 John K. Hayes, "Four computer programs using Green's third formula to numerically solve Laplace's equation in inhomogeneous media," Report LA-4423, Los Alamos Scientific Laboratory of the University of California, Los Alamos, New Mexico, 1970.

11 Bruce M. Irons, "A conforming quartic triangular element for plate bending: " Internat. J. Numer. Meth. Engrg., 1 (1969), pp. 29-45.
12 Bruce M. Irons, "A frontal solution program for finite element aralysis," Internat. J. Numer. Meth. Engrs., 2 (1970), pp. 5-32.

J1 A. dennings, "A compact storage scheme for the solution of symmetric linear simultaneous equations," Comput. J., 9 (1966), pp. 281-285.
$K 1$ ii. A. Kamel ant H. K. Eisenstein, "Automati= iest generation in two and three dimensional interconnected domains," Symposium on Hir' Speed Computin.r of Elastic Structures, Liege, Belsium, 1970.

K2 Ian P. King, "An automatic reordering sclinnp for simultaneous equations derived from network systems," Internat. J. Numer. Meth. Ener.., 2 (137!), po. 523-533.

K3 L. V. Kantorovich and V. I. Krylov, Approxipate lethois of Higher Analysis, P. Noor hoff Ltd., The Metherlands, 1958.
thl R. S. Martin and J. H. Wilkinson, "Solution of symmetric and unsymetric band eruations and calculation of eizenvectors of band matrices," :lumer. ilath., 9 (1367), pp. 279-301.

12 R. S. Martin and J. H. Wilkinson, "Reduction of the symetric eifenprohlem $A x=\lambda B x$ and relatel. ron bems to standard form," Numer. Math., 11 (1368), po. 39-11?.
:13 Cleve B. Moler, "Finite difforance methots for the eigenvalues of Laplace's operator," Computer Science Dept. Technical Renort CS22, Stanford University, Stanford, California, 1965.

M4 Cleve B. Moler, "Accurate bounts for the eirenvaluas of the Laplacian and applications to rhomilizal domains," Computer Science Dept. Teclinicol Report CS121, Stanford University, Stanfor!, Califorinia, 1965.

Mj Cleve B. Moler, "Matrix comnutations with Fortran and pasinc," Computer Science Dept. Technical Report CSISG, Stanford University, Stanford, Californin, 1970.
*16 Stanley M. Morris and Nilliam E. Schiesser, "SALE:" - A prozraming system for the simulation of systems described by partial differential equations," Proc. AFIFE Fall Joint Comput. Conf., The Thompson Book Co., Nationa! Press Bldg., Washinzton, D. C., 1568, pp. 353-357.
$N 1$ B. Nivilet, L, Schmidt, G. Terrine and J. Cea, "Techniques numériques de l'anproximation variationelle des problèmes ellintiques," Publication MiC/10.12.5/Al, Centre National de la Recherche Scientifique, Institut Blaise Pascal, Paris, 1966.

N 2
S. Nordbeck and B. Rystedt, "Comouter =artorraphy point-in-polygon proqrams," BlT, 7 (1967), pp. 3n-E4.

P1 G. Peters ans J. H. Wilkinson, "Eisenvalues of $A x=\boldsymbol{\lambda} B x$ with band symmetric A and $B, "$ Comput. J., 12 (1369), pp. 398-404.

R1 J. K. Reid and A. B. Turner, "Fortran su')routires for the solution of Laplace's equation over a general region in two dimensions," Report T.P. 422, Theoretical Physics Division, Atomic Enersy Research Establishment, Harwell, England, 1970.

R2 J. K. Reid and J. E. Walsh, "An elliptic eigenvalue probiem for a reentrant corner," SIA:1 J. Appl. Math., 13 (1965), pp. 837-850.
$R 3$ Donald J. Rose, "Symmetric elimination on sparse positive definite systems and the potential flow problem," Ph. D. Thesis, Div. of Engre. and Appl. Phys., Harvard University, Cambridge, Massachusetts, 1970.

R4 Richard Rosen, "Matrix bandividth minimization," Proc. 23rd National Conf., Assoc. Comput. Mach., AC": publication P-62, Brandon/Systems Press Inc., Princeton. Neiv Jersey, 1968.

S1 Martin H. Schultz, "Elliptic spline functions and the Rayleich-Ritz-Galerkin method," Iath. Comp., 24 (1970), pp. 65-80.

S2 Cesar Simoes Salim and Helene K. Salim, "The spars? system," Computer Science Dept. Report, Rio Datacenter, fio de Janeiro, Brazil, 1970.

S3 Jitka Segethova, "Elimination procedures for soarse symmetric linear algebraic systems of a special structure," Technical Report 70-121, Computer Science Center, University of Maryland, College Park, Maryland, 1970.

S4 James it. Stadter, "Bounds to eigenvalues of rhombical membranes," SIAM J. Appl. Math., 14 (1966), PD. 324-341.

S5 Gilbert Strans, "The finite element method and approximation theory," Symposium on the Numerical Solution of Partial Differential Equations, University of Maryland, College Park, Marylant, 1970.

S6 G. Strang and G. Fix, "A Fourier analysis of the finite element method," to appear.

S7 Blair K．j：パtz，＂Exi！icit O（h）bounir，N！thr．
』．）40－5y．

Ti R．P．Tewarson，＂Computations witi snarss atricas，＂ SIA：l Rev．， 12 （1970），2p．5？7－543．

T2 Coyt C．Tillinan，＂EPS：An intoractive system for solvin．r elliptic boundary vaide prosl lus \because ith facilitios for data maninuletiol in＇rennral nurvos？ computation，＂User＇s Guide，Proisct＇IAC Beoort ： $14 C-T R-62$ ，iassachusetts lnstitute of Tecinnolory， Cambrid；e，；Aassachusetts， $1 ; 09$.

T3 iVilliam F．Tinney，＂Coments on wsirm sparsity tec！niques for nower system oronlers，＂ro．25－3it of 13.

Tif James L．Tocher an l Carlos 1．Feliup：＂Comoutor ；raphics applies！to protuction structural analysis，＂ Internat．Union of Treor．an：Anpl．＇lech．Conf．， Liege，Belyiun， 1970.
－il 1．Weinstein，＂Some numericul resuits i• intermiste oroblens for ticenvalues，＂\because ， $167-122$ of B1！．

H2 J．H．Wilkinson，The Alsobraic Eiranvalu Pronlum， Clarendon Press，Oxford，En，iland，liss．
i3 R．A．ivillourthby，oditor，lB！＇Eparse＇latrix Proceedinis， $1 B^{\prime \prime}:$ ？eport RAl（Mo．11707），Thomas J． Watson Research center，Yorlowi Hei hts，low lork， 1359.

SH R．V．Villouzhty，＂Sjarse merix alorit＇s．s ont their relation to problem classes and comouter frehitneture，＂ IBil Report RC 2833 （！o．13j1s），Thomes d．＇latenn Riscarih Center，Yorktown＇foi hits，＇in：i Yor＇i，1＂7：．
＇15 A．＇I．！！inslow，＂Equi－sotancial zoni！e for Ewn tinensional meshes，＂？aport＂！o．UC？L－73ľ，Lawronce Radiation Laboratory，Univorisity of California， l．iveriore，Calif．，İCt．
21 Alexancer Ženišek，＂later olation molyonifis on tion

Z2 Alexander Kenishk and Milos Zlaral，＂Corvortence of a finite alement procedur：for solviar I nuntary value problems of the fourth oricr，＂Inter？at．d．Wurier．

Z3 0. C. Zienkiewicz, The Finite Element Methof in Structural and Continuum Mechanics, MCEraw-Hill Book Company, London, 1967.

24 M. Ziámal, "On the finite element methot," Numer. Math., 12 (:968), pp. 394-402.

Z5 M. Zláal, "On some finite element procedures for solving second order boundary value probleris," yumer. Math., 14 (1969), pp. 42-48.

Z6 M. Zlámal, "A finite element procedur? for the seconi order of accuracy," Numer. Math., 14 (1979), pp. 394-402.

Aphridix A: Stan Represert tive Triangular Elements

The labels on the stencils below indicate the parameters associated with eash nule. When no label appears, the function value v is to be tiomed. The two-part hyphenated name refers respectively to the degree If trie pulynumisl and the number of nodes associated with the element.

Elemerit Name:

Stencil

$$
4-15
$$

$$
5-6
$$

Appendix B: $0 / \mathrm{S} 360$ Fortran Code for Finite Element Methods

The codes : n this appendix are all written in $0 / \mathrm{S} 360$ Fortran. There are five separate programs whose relation is depicted in the following chart:

The transmission of data from one program to the next is done via Fortran units 1, 2 (and 3 if an eigenvalue problem must be solved). All data sets read and written are sequential, so the program would work without alteration whether the storage devices are disks, drums, or tape units. Only changes in the job control language would be necessary.

The program is set up to find the stationary values of $I_{1}[v]+I_{2}[v]$ and $I_{1}[v] / J[v]$, where

$$
\begin{aligned}
& I_{1}[v]=\iint_{R} c_{1} v_{x}^{2}+c_{2} v_{y}^{2}+c_{3} v^{2} d x d y \\
& I_{2}[v]=\iint_{R} c_{4} v d x d y
\end{aligned}
$$

and

$$
J[v]=\iint_{R} v^{2} d x d y
$$

Here c_{1}, c_{2}, and c_{3} are constants, and c_{4} is a function supplied by the user in the subroutine FUNC. For further details and sample input see the comments in the code of PHASE 2 and in Appendix C.

With minor changes in the mainine of PHASE 2, other terms can be included in I_{1} and I_{2}, and with somewhat more substantial changes variable coefficient quadratic terms could be handled. Hote that phases 1 and 3 would not need to be altered.

Piecewise polynomials of degree $d(1 \leq \alpha \leq 9)$ utilizing $\binom{d+t 2}{2}$ value and first-derivative parameters can be selected by the user and are automatically generated by the program.

The choice of method for solving the generalized eigenvalue problem depends on the relative size of the number of equations and the bandwidth, as discussed in section 4.3. Both programs assume that the initial shift (SHIFT) supplied by the user is a good one; the decomposition of A-SHIFT*B is done only once at the beginning of the iteration.

Prase 1

```
Generation of the Mesh and Ordering
    of the Nodes
```


GC io 400^{14}

complat
hritesta, parnsi

$C R V=0$
$S 1=0.000$
$S T=0.000$
EACTH $=. F A$

call triancinoce, merz, enc, ccrner, crv, st, S2, 2, 69001 end tpiangle-descripticn-input lonp.
if (.nct. endtr) or tc 1
 $\operatorname{ArCF}(3)=10.0$
$\operatorname{EnC}(1)=0^{10}$
$\operatorname{anc}(1)$
$\operatorname{enc}(3)=0$
0

 novivs $=1$
novi $=?$ CALL friangincce, remz, bnc, ccrner, crv, s:, sz, z, egoci call timfriccepaers ceneratec ']

L
171

Phase 2

1

Phase 3

Assembly of the Equations and Solution of Dirichlet Problems

 YMz－ 4×3 NATR：X HITM 1 IBL2I：， $31=1 / 2 F$ THF 1 －TK ACOE
 ENUACAPYI，OTHEXWISE IT IS LERO．
MU（I）－POSI：ICN OF YME OIAJOUAL FLEMEVY OF YHE ：－TH

WAP－VECTIJR USE FITR COMPACT STGRAGE NADP！NG．CORRESPONOS
TG TME VECTOR OMEGA IH METHOR 1 ，SFF． 2 CHAPTER 4 ．

RHSI－LOAD VECTOR GOR CIMRENT TRAIVGLE．
al（HL）－OVEKALL STIfFNESS（MASS）MATRIX．
lfita－nivbigr of ton－lero elenents in thf overall stiffness

rhS－overall load vectar．

－ISDL（E）－IMOICES INTC iRNG FOR TRUE SCLLIION，IF KNCKN，
（1）－Malx WNO f8：B for u VALLE．
－ybods＝iunager of rolis of lgno to be lapli．

1-x.itl כeos aisingora

$2 \times$

 ご2ECTIVV．

$$
\begin{aligned}
& \text { weo By alan rerrofe } \\
& \text { in SClf:CE orpaztufirt, }
\end{aligned}
$$sumevitioe tiniti in dhass？．

 WRITEC6, PARMSZ;

$\stackrel{n}{2}$

solve genematen limear systfn lising profile methetos.

 * LAST, IENA, IFAA, KPIS, IEIG, IRHS, ISNE(3), IANOCR, 3:

Call pager ${ }^{\text {n }}$ numerical solutions."

on $1=1$, xprs
RMATIC COJRDINA

If (J,GT: KA .ANO. !PKINT ECG, 1) hRITE(6, 1C4)

 IF: © 0 HS .eq. ©) GO IC 1
 COHI:NUE ourinic contrive
pancess ismle tionnoa bcutionay conditions ... if (vep efo. a) retupn
m \quad i $1=1$, NCR
gift the aetempice :umber.

gnumotizy valije is spectafied.

 curnives

ư

(1581)

$$
\begin{aligned}
& \text { crivirin } \\
& \text { cuvirige }
\end{aligned}
$$

Grereftif wl.

$$
\begin{aligned}
& 12 \text { ciritiout } \\
& \text { witera. }
\end{aligned}
$$

cintinct
cinidue
contigige

-apllac

CENERATE ITOL 2. SEE COHAENTS IM PAIALINE FOR OETAZLS. 19BL21:.11 = 1

1.0 conitinue

\qquad

 ---INTEGER* 4 1014
ITTECER 2×1,

$C \begin{array}{ll}C- \\ C\end{array}$

 $t=0$ (ixis. . 11

$C \quad$ WRITEIS, $1021(P P I 1,1=1, \operatorname{HPTS})$

 SOM,
Sint

	0) $4 x=1$, !os	
4	Covidue ${ }^{\text {cosen }}$	
	noc = CPC + InEl + 1	
c -		
1	contives	
c		
	writelg. lCJ) y, ofe	
tro.	 	
,		
	रहT12	
C************************-********************************		
c		
C Sotvf ri* $x=8 \ldots$		
c com		
© 1 ! - $2:$		
$10=$ Misi:		
$k_{1}=17-\mathrm{Mu}(1-1)-1$		
	ODC $=\operatorname{rac}+\mathrm{kl}+1$	
-	00 ? J = 1, $\times 1$	
2	costlyue A	
C 3		
1		
1	continue	
c SOLVE UL(t) * $x=x \ldots$		
co ${ }^{4}=\mathrm{k}=2, \mathrm{t}$		
$10=\operatorname{mon} 11$		
$x_{1}=10-9011-1$		
T1 = x!1/ Uelloy		
$x(1)=r!$ ff (ki Le. O l go TC 4		
c		
	$03 \mathrm{ra}=1, \mathrm{Kl}$	

$=$

Inverse Iteration Using a Band Linear Equation Solver

Solver Based on the Work oI J. R. Burch

pEALPA(I), X(I), RII), Tl
 peturn
if if .ct. or ec ic 7 cc EAD

IC = PCRU(I)
SAVE ACl

$c_{c}^{c^{301}}$

 IT $=1$? 10 ?

ric to 400
. ive o.x

$$
1=1
$$

$\begin{array}{lr}401 \\ c \\ 4 \\ 4 & \\ 458\end{array}$

芯
B(1)
n
0
0
scs

60 C

207

Appendix C: Sample Deck Set-ups ana Runs.

The following pages contain deck set-ups and the output of the resulting runs for a sample problem. The runs were made on an IBM 360/91 at the Stanford Linear Accelerator Center. All the cards with "//" or "/*" in columns 1-2 are $0 S / 360$ job control language cards, and do not change from problem to problem. Thus the actual required input is rather small. For information about the input parameters, see the comments at the beginning of each of the program modules.
 avoid the rigidity of formatted input.

Ooject modules for Phase 1, Phase 2, and Phase 3 are contained in the data sets PUB.JAG.POI, FUB.JAG.PO2, and PUB.JAG.TMP, respectively.

The sample problem is the following:
$v_{x x}+u_{y y}=4$ in $(0,1) \times(0,1)$
$u=x^{2}+y^{2} \quad$ on $x=0,1, \quad 0 \leq y \leq 1$, $y=0,1, \quad 0 \leq x \leq 1$.
The solution to this problem is $u=x^{2}+y^{2}$.
The first run solves the problem using piecewise quadratics (ejement 2-6), and the second run uses piecewise cubics (element 3-4). In both cases the error in the parameters is at rounding error level, as is to be expected.

The final two pages of this Appendix contain a deck set-up for an eigenvalue problem. The deck listed is the one used to produce the quiatic entry in Table 5.2.2.

Deck Set-up for Sample Problem.
//JAGXXTST JOR 'JAG\$CG: 54, CLASS=E,REGION=3OOK
//STP1 EXEC LOANGO,PARI, GO ='SIZE=28EnクO'
//GO.SYSLIN2 DD DSNAFIE = PUB.JAG, PO1,DISP=OLD,UNIT=2314.
// VOLUME=SEP=PUBOO1
//GO.FTOIFOO1 DC DSNAME =JAGCG.OUT1, UNIT $=S Y S D A, ~ R I S P=(N E M, P A S S)$, // SPACE $=(C Y L,(1,1)$, RLSE $)$
//GO.SYSIN DD *
\&PARI,S NDIVS $=2$, NPS $=1$, NCEN $=0$, LAST $=1,1 B U G=0$, \&END
\&POINTS $\operatorname{PT}(1)=(0,0), \operatorname{PT}(2)=(1,0), \operatorname{PT}(3)=(1,1), \operatorname{PT}(4)=(0,1)$ \&ENC
$\& T R \operatorname{MODES}=1,2,3, \operatorname{BND}(1)=1, \operatorname{BND}(2)=2$ \&END
$\therefore T R$ NODES $=1,3,4, \operatorname{BND}(2)=3, \operatorname{BND}(3)=4, \operatorname{ENDTR}=\mathrm{T} \& E N D$
/*
//STP2 EXEC LOADGO, PARII.GO='SIZE=288000'
//GO.SYSLIN2 DO DSNAME=PUB. JAG.P02, DISP=0LD,
// UNIT=2314, VOLUME=SER=PUBO03
$/ / G 0 . F T O 1 F 001$ DD DSNAME $=J A G C G . O U T 1, D I S P=(O L D, P A S S), U N I T=S Y S C A$
//GO.FTO2F001 DD DSNAIIE=JAGCG.OUT2,DISP=(NEII, PASS), UNIT=SYSDA,
$1 /$
SPACE $=(C Y L,(2,1)$, RLSE $)$
//GO.SYSIN DD *
\&PARMS $|B U G=0,|D E G=2, \quad \operatorname{NCP}=1, \quad| C P(1)=1, \quad \operatorname{NSP}(1)=1, \quad \operatorname{ISP}(1,1)=1$, 1 RHS $=2, \cup \times 2=1, \cup Y 2=1, \cup 2=0,|E| G=0$ \&END
/*
//STP3 EXEC FORTHLG
//LKED. JAGPO3 DD DSNAME=PUB.JAG. TAPP, $D I S P=0 L \Gamma, U N I T=2314$, // VOLUPE=SER=PUB00.
//LKED.SYSIN DD *
INCLUDE JAGPO3
/*
//GO.FTO1FOO1 DD DSNAME=:AGCG. NUT1, UNIT=SYSDA, DISP=(OLD, DELETE)
$/ / G O . F T 02 F 001$ DD DSNANIE=JAGCG.OUT2, UNIT=SYSNA, DISP=(OLD, DELETE)
//GO.FTO3F001 DD DSNANE=JAGCG.OUT3, UNIT=SYSDA, DISP=(NEH, PASS),
$\therefore \quad$ SPACE $=(C Y L,(1,1), R L S E)$
//GO.SYSIN DO *
$\& P A R M S$ NBNDS $=4,1 P P I N T=1, \mid S O L(1)=10$, \&END
110
210
310
410
/*

These cards and input solve the sample problem using piece-wise cubics (element 3-4). The output from this run appears on the following pages.
i/ JAGXXTST $J O B$ ' JAG $\$ C G^{\circ}, 54, C L A S S=E, R E G I O N=300 K$ //STPI EXEC LOADGO, PARM.GO='SIZE=28s000'
//GO.SYSLIN2 DC DSNANE=PUR. $A G$. PO1, DISP=OLD, UNIT=2314, // VOLUME=SER=PLB001 //GO.FTO1F001 DD DSNAME=JAGCG.OLTI, UNIT=SYSDA,DISP=(NEII,PASS), // SF'ACE $=(C Y L,(1,1), R L S E)$ //GO.SYSIN DE *
8:PARNS NDIVS $=3, N P S=0, N C E N=1, L A S T=1,1 B U G=0$, \&END \&POINTS $\operatorname{PT}(1)=(0,0), \operatorname{PT}(2)=(1,0), \operatorname{PT}(3)=(1,1), \operatorname{PT}(4)=(0,1)$ हEND $\varepsilon T R \operatorname{NODES}=1,2,3, \operatorname{BND}(1)=1, \operatorname{BND}(2)=2$ \&END.
$\varepsilon T R$ NODES $=1,3,4, \operatorname{BND}(2)=3, \operatorname{BND}(3)=4, E N D T R=T$ \&ENC
/*
$/ / S T P 2$ EXEC LOADGC, PARRA.GO='SIZE $=288000^{\prime}$
//GO.SYSLIN2 DD DSNAME=PUB. JAG.PO2,CISP=OLIR,
// UNIT=2314, VCLUTE=SER=PUB003
//GC.FTO1F001 DD DSNAR:E=JAGCG.OUT1,DISP=(OLC,PASS), (INIT=SYSDA

// SPACE=(CYL, $(2,1)$,RLSE)
//GO.SYSIN DD *
$\therefore P A R A S$ IBLG $=0,1 D E G=3, N C P=3, I C P=1,2,3$,
$\mid \mathrm{BHS}=2,1 \times 2=1, U Y 2=1, \mathrm{U} 2=0,1 E 1 G=0$ \&END
/*
//STPJ EXEC FORTHLG
//I.KED.JAGPO3 DD DSNANE=PUB. JAG.TMP, DISP=0ILD,LIITT=2314. // VOLUKE=SER=PUP001
//LKED.SYSIN DD *
INCLUDE JAGPO3
/*
//GC.FTOIFOO1 DD DSNAME=JAGCG.OUT1,UNIT=SYSDA,CISP=(OLD, DELETE)
//GO.FTU2F001 DD DSNAME=JAGCG.OUT2, UNIT=SYSCA,DISP=(CLD,DELETE)
//GO. FTOSFOO1 DD DSNAME=JAGCG. OUT3, UNIT=SYSIA, DISP=(MEI; PASS),
// SPACE=(CYL, $(1,1)$,RLSE)
//GO.SYSIN DD *
8 PARI:S NBNDS $=4, \mid$ PRINT $=1,150 L(1)=10,1 S C I .(2)=11,1 S O L(3)=11,8$ ENR
$\begin{array}{lll}1 & 101111\end{array}$
2101111
3101111
4101111
/*

$$
\text { 2,IEIG= } 0
$$

$\begin{array}{lll}\text { TRUE YALUE: } & 0.98765432 \text { ERROR: C. } 00000000 \\ \text { TRUE VALUE: } 0.91355025 \text { ERROR: } & 0.00000000\end{array}$
TRJE VALUE: $0.80240^{\circ} 914$ ERROR: C. 00000000
TRUE VALUE: 0.65432099 ERRGR: C. 09000000
$\begin{array}{lll}\text { TRUE VALUE: } & 0.98765432 \text { ERPOR: } & \text { C. } 00000000 \\ \text { TRUE VALUE: } & 0.91358025 \text { EPRROR: } & \text { C. } 00000000\end{array}$
TRUE VALUE: 0.80246914 ERROR: C. 00000030

$\underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\omega} \underset{\alpha}{\omega} \underset{\sim}{\sim}$

[^0]

$\begin{array}{lll}\text { CCJROHATES: } & \text { O.7771778 } & \text { C. } 8888889 \\ \text { CODROINATES: } & 0.8888889 & 0.7777778\end{array}$

$\begin{array}{lll}\text { COORCINATES: } & \text { C. } 2888889 & 0.44444444 \\ \text { COROINATES: } & 0.7771778 & 0.5555556\end{array}$
c. 1111111
0.2222222

1. $\operatorname{cose} 00$

O. 8 2e8889
2. cocoono
3. 7777778
G. 6666667
c. 5555556
n. 4444444
0.3333333

C. 6666667

0
0
0

.8888989
.2000000

CUJRDINATES:	
CHORDIGATES:	0.7777778
	$0.6 \in 66667$

$\begin{array}{ll}\text { CNOROIPATES: } & 0.4444454 \\ \text { CUOPDINATES: } & 0.5555550 \\ \text { COORDINATES: } & 0.3333333\end{array}$

CUORDINATES:	0.1111111
CUORDINATES:	0.0

0.2222222
0.0656667

0.6666667

m
$\underset{\sim}{m}$
$\underset{\sim}{m}$
$\underset{\sim}{m}$
$\dot{0}$
219
$\begin{array}{llll}\text { tRUE VALUE: } \\ \text { TRUE VAI.UE: } & 0.06172840 \text { ERROR: } \\ 0.06172840 \text { ERKOR: } & 0.00009000 \\ \text { C. } 00900000\end{array}$

cojrctiates:	0.0	0.3333333	value:	0.0	E:
			VALJE:	c. 11111111	TPPC:
			value:	0.3	TYPF:
			value:	0.66660667	TrPE:
cosrdinates:	9.1121111	0. 2222222	value:	0.06172840	TYPE:
Cuigulirates:	0.2222222	c. 1111111	value:	0.00172840	TYPE:
colkotmates:	-. 0	0.c ${ }^{\text {c }}$	value:	c. 0	TYPE:
			value:	$0 . \mathrm{c}$	TYPE:
			value:	0.0	TYPE:
maximum erhja in parameter of type 1 is: $2.0580760-14$					
haxtaum [krjz	in paramet	Of type	5: 4.2	271740-14	
maximum erroz	in parame	Of irpe	5: 3.8	9:3320-14	
nutput cove.	tim	used:	SEC		

These cards and input produced the quintic entry in table 5.2.2. Note that the object decks for the inverse iteration code using Bunch's symmetric solver are stered in the data set PUB.JAG.INV.
//JAGXXHL5 JOB 'JAG\$CG',54,CLASS=E,REGION=300K $/ / S T P 1$ EXEC LOADGO,PARH. $G O=' S I Z E=288000^{\prime}$ //GO.SYSLiN2 DD DSNAME = PUB. $2 A G . P 01, D I S P=0 L D, U N I T=2314$, // VOLUME=SER=PUBOO1 //GO.FTOIFGOI DD DSNAME=JAGCG.OUT1, UNIT=SYSDA,DISP=(NEW,PASS), // SPACE=(CYL, (1,1),RLSE)
//GO.SYSIN DD *
\&PARMS ND:VS $=1$, NPS $=4, ~ N C E N=6, ~ L A S T=1, ~ I B U G=0, ~ \& E N D$ $\& \operatorname{PO} \mid N T S \operatorname{PT}(1)=(0,0), \operatorname{PT}(2)=(1,0), \operatorname{PT}(3)=(2,0), \operatorname{PT}(4)=(2,1)$, $\operatorname{PT}(5)=(1.3, .7), \operatorname{PT}(6)=(1, .7), \operatorname{PT}(7)=(.6, .6), \operatorname{PT}(8)=(.9, .9)$, $\operatorname{PT}(9)=(1.1, .9), \operatorname{PT}(10)=(1.2,1), \operatorname{PT}(11)=(1,1)$ \&END
\&TR $\operatorname{NOUES}=1,2,7, \operatorname{BND}(1)=1$ \&END
\&TR NODES $=7,2,6$ \&END
\& 1 TR NODES $=6,2,5$, \&END
\&TR $\operatorname{NODES}=2,3,5, \operatorname{BND}(1)=1$ \&END
$\& T R \operatorname{NODES}=3,4,5$, $\operatorname{BND}(1)=1$ \&END
\&TR NODES $=7,6,8$ \&END
\&TR NODES $=6,9,8$ \&END
\&TR NODES $=6,5,9$ \&END
\&TR NODES $=8,9,11$ \&END
$\& \operatorname{TR} \operatorname{MODES}=9,10,11, \operatorname{BND}(2)=1 \& E N D$
\&TR NODES $=9,5,10$ \&END
$\& T R$ NODES $=5,4,10, \operatorname{BND}(2)=1, \operatorname{ENDTR}=T \& E N D$
/*
//STP2 EXEC LOADGO, PARM.GO $=$ ' $S I Z E=288000^{\prime}$
//GO.SYSLIN2 DD DSNAME=PUB.JAG.PO2,DISP=OLD,
// UNIT $=2314, \mathrm{VOLUME}=S E R=P U B 003$
$/ / G 0$. FTOIFOO1 DD DSNAME $=J A G C G, O U T 1, D I S P=(O L D, P A S S), U N I T=S Y S D A$ $/ / G 0 . F T 02 F 001$ DD DSNAME -JAGCG.OUT2, DISP = (NEV!, PASS), UNIT=SYSDA, // SPACE=(CYL, (1,1),RLSE)
//GO.SYSIN DD *
\&PARMS $|B U G=0, \quad| D E G=5, \quad N C P=1, \mid C P(1)=1, \quad \operatorname{NSP}(1)=1, \quad \operatorname{NSP}(2)=1$, $\operatorname{nsp}(3)=1, \operatorname{NSP}(4)=1, \operatorname{iSP}(1,1)=1, \quad \operatorname{SP}(2,1)=1, \operatorname{|SP}(3,1)=1$, $\operatorname{isp}(4,1)=1, \quad|R H S=0, \quad U \times 2=1, \quad U Y 2=1, U 2=0,|E| G=1$ \&END
/*

```
//STP3 EXEC FORTHLG
//LKED.JAGP03 DD DSNAME=PUB.JAG.TMP,DISP=0LN,UNIT=2314,
// VOLUME=SER=PUB001
//LKED.SYSIN DD
    INCLUDE JAGPO3
/*
//GO.FTO1F001 DD DSNAME=JAGCG.OUT1,UNIT=SYSDA, DISP=(OLC,DELETE)
//GO.FTO2F001 DD DSNAI/E=JAGCG.OUT2,UNIT=SYSDA,DISP=(OLD,DELETE)
//GO.FTO3F001 DD DSNALAE=JAGCG.OUT3,UNIT=SYSNA,DISP=(NEH,PASS),
// SPACE=(CYL,(1,1),RLSE)
//GO.SYSIN DD *
    &PARA:S NBNDS=1, IBUG=0 &END
        1 5
/*
//STPS EXEC FORTHLG
//LKED.JAGP4 DD DSNAME=PUB.JAG.INV,DISP=0LD,UNIT=2314,
// VOLUME=SEP=PUB00I
//LKED.SYSIN DD *
I A!CLUDE JAGP4
f*
//GO.FTO2FOO1 DD DSNANE=\AGCG.OUT3,UNIT=SYSDA,DISP=(OLD,DELETE)
//GO.SYSIN DD *
    &PARMS SHIFT=9.6 &END
    &PARMS SHIFT=-1 &END
/*
```


[^0]:

