Best Available Copy
 for all Pictures

COMPUTER MATCHING OF AREAS IN STEREO IMAGES

Stanford University Computer Science Department Stanford, CA

Jul 74

STANFORD ARTIFICIAL INTELLIGE:VCE LABC :ATORY

 MEMO AIM- 239STAN-CS-74-438

JULY 1974

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences STANFORD UNIVERSITY

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dat Entered)

[^0]
PWCOS SUBEET TO OUNGE

KEY WORDS (Continue on reverse side il necessary and identlfy by biock number)
20. ABSTRACT (Continue on revorse eide If necessary and Identify by block number)

This dissertation describes techniques for efficiently matching corresponding areas of a stereo pair of images. Measures of match which are suitable for this purpose are discussed, as are methods for pruning the search for a match. The mathematics necessary to convert a set $n f$ matchings into a workable camera model are given, along with calculations which usa this model and a pair of image points to locate the corresponding scene point. Methods are included to detect some types of unmatchable target areas in the original data and for detecting when (continued)
DD , FORM 731473 EDITION OF I NOV 65 IS OBSOLETE:

SECURITY CLASSIFICATION OF TIIIS PAGE(Whan Date Entored)

a supposed match is invalid. Region growing techniques are discussed for extend matching areas into regions of conitant parallax and for delimiting uniform regions in an image. Also, two algorithms are presented to show some of the ways in which these techniques can be combined to perform useful tasks in the processing of stereo images.

computer matching of areas in stereo images

by

Marsha Jo Hannah

ABSTRACT: This dissertation describes techniques for efficiently matching corresponding areas of a stereo pair of images. Measures of match which are suitable for this purpose are discussed, as are methods for pruning the search for a match. The mathematics necessary to convert a set of matchings into a workatie camera model are given, along with calcuiations which use this model and a pair of image points to locate the corresponding scene point. Methods are included to detect some types of unmatchable target areas in the original data and for detecting when a suppoeed match is invalid. Region growing techniques are discussed for extend matching areas into regions of conetant parallax and for delimiting uniform regions in an image. Aiso, two aigorithms are presented to show some of the ways in which these techniques can be combined to perform ueaful taeks in the proceseing of etereo images.

This research was supported in part by the Advanced Research Projects Agency of the Office of Defense under Contract No. OAHC-15-73-C-8435, in part by a Meitional Sclence Foundation Graduate Fellouship, in part by the Nationai deronautics and Space Administration under Grant No. NGR-85-828-588 Suppliment No. 1, and in part by Jet Propulsion Laboratory sub-contract No. 952489.

The viewe and conclusions in this document are those of the author and shouid not be interpreted as necessarily representing the officiai policlee, either expreeeed or implied, of ARPA, NSF, NASA, JPL or trie U.S. Government.

Reproduced in the USA. Available from the Natlonal Technical Information Service, Springfield, Virginla 22151.

- Copyright 1974
by
Marsha Jo Hannah

ACKNOWLEDGEMENTS

There were certain peopls and institutions without whom this research would not have been possibie. Most important, perhaps, was the Stanford Artificial Inteliigence Project, which providsd ths facllities and atmosphere to encourage research.

Individual thanks go to my adviser, John McCarthy, the creator and director of Stanford A. I. He, Jerry Feldman, and especially Tom Binford put in many hours reading and crlticizing the multiple versions of this dissertation.

I am most indebted to Lynn Quam, who laid the programming groundwork for image processing at A. I. and bullt the vidso synthesizer hardware, both of which greatly simplified my work. He alsc actsd as a sounding board on whom ideas could be trisd out and lent a great deai of moral support. Special thanks to him for repeated proof-readings of this dissertation and for time sperit converting my video synthesizer output to the final photographs.

Other peopie to whom I owe specific thanks inciude Andy Mooren. who also helped with the final photographs and was of much aid in getting i., head together about FFT's. Bob Tucker gave willingly of his time in early attempts to get my video syntheslzer output converted to photographs. Bo Eross wrote User Disk Pack code to simplify my handling of massive image data and helped in the optimization of critical code.

Finally, I would like to thank collectively all of the hardware and software hackers at A. I. who crea'ed and maintalned the facilities. Particular thanks to those responsible for the TV and ET text editors, the SAIL language and compiler, the RAID debugger, the Data Disk television terminals, the Xerox Graphics Printer and its fonts, and A. 1.'s PDP-10 timesharing system.

table OF CONTENTS

CHAPTERS F'AGE

1. INTRODUCTION 1
STATEMENT OF THE PROBLEM 1
DESIGN OF THE INVESTIGATION 2
DEFINITIONS 3
CONVENTIONS OF PICTURE PROCESSING 3
NOTATIONAL CONVENTIONS 4
other conventions 4
2. basic area matching tools ano techniques 5
CORRELATION 5
DIFFERENCE MEASURES 6
COMPARISON OF THE MEASURES DF MATCH 6
FAST FOURIER TRANSFORMS FOR CONVOLUTION 8
AREA SAMPLING 9
ILLUSTRAT:ONS 10
3. SEARCH STRATEGIES ANO REFINEMENTS 11
GRIODING 11
REOUCTION 12
SIMILARITY 13
CAMERA MOOELS 17
WORLD MODELS 19
ILLUSTRATIONS 28
4. unmatchable target areas 24
detectable bad targets 24
Low Information 24
Linear Edge 25
taRGE TS WHICH DO NOT MATCH 25
NON-UNIOUE MATCHINGS 26
WHAT TO OO WHEN A TARGET WON'T MATCH PROPERLY 26
ILLUSTRATIONS 29
5. EXTENOING MATCHES 31
REGION GROWING: THE BASIC TECHNIQUE 31
EXPEOITING REGION GROWING 32
EXTENDING MATCHING REGIONS 32
how region growing solves the problems 33
GROWING UNIFORM REGIONS 34
ILLUSTRATIONS 36
6. ALGORITHMS ANO EXAMPLES 38
INOIVIOUAL MATCHES 38
Choosing a Target Area 38
Program Outline 39
a COMPLETE MATCHING 40
ILLUSTRATIONS 43
7. CONCLUSION 46
ACHIEVEMENTS 4ε
APPLICATIONS 47
AREAS FOR FUPTHER INVESTIGATION 48
APPENDICES PAGE
A. THE IMAGES 49
THE BARN PICTURES 49
the lab picfures 50
THE CÁNYON' PICTURES 51
THE YAR־ PICTURES 5.
ILLUSTRATIONS 53
B. BASIC CORRELATION TOOLS 57
AREA CORRELATION 57
COLOR CORRELATION 58
MASKEO CORRELATION 59
WEIGHTEO CORRELATION 60
POINTER CORRELATION 61
AUTOCORRELATION 62
the match subroutine 64
THE LMATCH SUBROUTINE 65
INTERPOLATION 66
ILLUSTRATIONS 67
C. CAMERA MOOEL CALCULATIONS 70
OERIVATION OF CAMERA MOOEL EQUATIONS 78
CAMERA MOOEL ERROR MEASURE 74
OEPTH RANGING 77
OERIVATION OF TWO MATCHING LINES 78
ILLUSTRATIONS 80
D. OISTORTION 85
MATHEMATICAL OESCRIPTION 85
LIMITING OISTORTION 86
SMALL OISTORTIONS 87
GROSS OISTORTIONS 88
Global Rotations and Scale Factor Changes 88
Local Scale Factor Changes 90
ILLUSTRATIONS 91
BIBLIOGRAPHY 92

Chapter 1

INTRODUCTION

Early computer vision research was mainly concerned with operations on pictures-such as encoding, enhuncement, and edge detection [Rosenfeld, 1969a]--and with analysis of single images--for example, interpreting images containing bodies from a known set of objects [Roberts, 1963; Guzman, 1968].

5arly matching work fell into the domain of pattern recognition--matching a description of an idealized object against descriptions generated from analysis of an image containing that object. Some pixel-by-pixel matching was done in matching a template of an alphanumeric character against sictures of hand-printed characters. (Rosenfeld [1969b and 1973] provides excellent surveys of the literature for single image processing.)

Stereo vision was for a long time the domain of psychologists and physiologists, whose interests were in understending human stereo vision [Julesz, 1961]. The major use of stereo was in photogrammetry--converting aerial photographs to contour maps, usually by optical methods [Bouchard and Moffitt, 1965).

Eventually, computer stereo image processing became attractive. Julesz [1963] saw it as a method of studying human stereo perception. Computer photogrammetry techniques were developed and used to deal with telemetered image data from satellites. Image processors began to use stereo to determine depth information [Quam et. al., 1972].

All of these applications required efficient ways of matcining areas of one picture with the corresponding areas of another, similar picture. Quam [1971] developed a spiraling, stepping algorithm io facilitate his aligning of Mariner spacecraft images for variable feature detection. Barnea and Silverman [1972] reported a sequential decision algorithm which they used in matching weather satellite photos. Other general investigations of matching have been done by Fischler [1971] and by Fischier and Elschlager [1971].

STATEMENT CE THE PROBLEM

What is matching? By matching, we mean the process of iinding, for a given sub-area (window) of an image X, the sub-area of image Y which sontains point for polnt the same intensity information. Matching should not be
confused with mapping. Mapping implies that there is some general function (ly, $\left.{ }^{\prime} y\right)=f(I x, J x)$ which gives the position of corresponding points in image Y for a given set of points in image X. Matching is a sosecial case of mapping--the case in which the mapping function is a simple tianslation of axes, $(\mid y, J y)=(\mid x, j x)+(T i, T j)$ within the area buing matched.

This thesis is concerned with matching, not mapping. Therefore, we are limited to those areas of pairs of images which do not have large perspective changes from one view to the other. This condition is met by small angle sterec and by distant objects in larger angle stereo pairs. We must also exclude areas of images representing objects which themselves move or are moved so as to present differing projections to the cameras. Similarly, we w'l also limit ourselves to high-quality pictures, i.e., those without scratcies or other blemishes on the negatives, those having low noise, etc. These limitations assure that our target areas will have matching candidate areas.

The subject of this thesis is as follows: given two images of a scene, constrained as above, use the information in the pictures to match target area A of image X with its corresponding candidate area in image Y We will discıss general techniques for matching, efficient methods by which matching can be done, some of the problems that can occur when matching real data, and ways of extending matching areas. In addition, we will describe some of the algorithms which have been implemented to use these techniques.

DESIGN OF THE INVESTIGATION

Pisture processing is, for the most part, an applied science. It seeks to show that something is possible, not by formally proving that it can be done, but by doing it. In keeping with this spirit, this dissertation will contain no formal proofs of existence, termination, correctness, or running time. it will contain discussions of techniques and algorithms and reports on how well these techniques work when implemented.

There is, underlying all techniques presented in this thesis, a very basic philosophy. Machine vision will in the near future be used for those tasks which man can do but doesn't want to, such as assembly line drudgery, or those tasks which he wants to do but can't, such as exploring inhospitable planets. In the first case, the structure of the task environment is well known and can be usect to make the performance of the task more efficient. This is the problim addressed and approach used by the Hand-Eye group at the Stanford Artificial Intelligence Project [Feldman, 1969]. In the second case, the structure of the environment is only crudely known, hence can only loosely be used to ex.edite the task.

It is this latter variety of problem for which the techniques of this thesis were to be designed. Consequently, we will avoid whenever possible
overspecialization through the use of particular assumed structure or semantics in the completion of our tasks. Our techniques may not be as powerful as those using such information, but they will be more general.

Most of the techniques described in this thesis have been programmed; those which have not will be so noted. The photographic illustrations in this thesis are derived from visual output generated by these programs on a television monitor. No photographic trickery has been done; what the reader sees is roughly what a person operating that program would see on his monitor.

DEFINITIONS

Some of the terms from the field of computer vision which are used in this thesis are defined below.

Picture-a two-dimensional array of integer values which represent the light intensities of a scene at some set of grid points.

Point--one of the array elements of a picture.
Pixel--(contraction of picture element) a point in a picture.
Color picture--a set of three pictures, representing the red, green, and blue filter components of a color photograph or a color television picture.

Inage--the set of pictures representing a photograph-one picture for a black-and-white photograph or three pictures for a color photograph.

CONVENTIONS OF PICTURE PROCESSING

In keeping with the conventions used in the television industry, pixels are identified by their $(1, J$ positions with respect to the upper left-hand corner of the picture, which has position $(0,0)$. The l-dimension increaség to the right: ihe J-dimension increases downward.

The intensities at each pixel are represented by numbers from 0 through $k=2^{n}-1$, with 0 representing no light, or black, and k representing full light, or white. Pixels are stored packed, as many as will fit per word of computer memory.

NOTATIONAL CONVENTIONS

As in normal programming usage, the following compromises with standard mathematical notation have been made.

Sruare root signs are replaced by the function SQRT.

The ralsed dot for multipllation is replaced by *.

The following mathematical conventions are used.

Summation signs are indicated by a sigma. The variable which is being summed over is written below the sigma. When exact ranges for the summation are to be given, they are glven as a boolean expression in the place of the summation variable. The function being summed is written to the right of the sigma. Parentheses are used only when necessary to avoid confusion.

Examples: $\quad \Sigma X_{i}$ and $\Sigma \quad X_{i}$ $i \quad a \leq i<b$

The mean of a variable is indicated by overbar notation.

OTHER CONVENTIONS

Illustrations are numbered with Arabic numerals within chapters and are prefaced by the chapter number, e.g. the flrst illustration in Chapter 3 is lllustration 3-1. All illustrations for a given chapter appear together at the end of the chapter. Prints of the original data appear in Appendix A.

Equations are numbered with lower case Roman letters within chapters and are prefaced by the chapter number, e.g. the flrst equation in Chapter 2 is Equation 2-a.

Chapter 2

BASIC AREA MATCHING 「EOLS AND TECHNIQUES

Suppose one has been given two digitized photographs which were taken of the same scene, but which differ in some respect, such as point of view. Consider the problem of using a computer to determine whict area of picture Y (candidate area) best matches a given area of picture X (target area).

Geometrically, two areas match if they both are projections of the same three-dimensional piece of scene. Intuitively, two areas match if they "look the same". Computationally, two areas match if a calculated measure of match between them is sufficiently optimal.

CORRELATION

Since we are dealing with the probability of a match occuring, some statistical measure is desirable as the measure of tatch. The common measure for this is discrete correlation,
$\operatorname{COR}=\Sigma X_{i} * Y_{i}$ i
which can be normalized by the means of the samples

or by the second moments of the samples

$$
\sum_{i} X_{i} * Y_{i}
$$

COR .

$$
\operatorname{SORT}\left(\sum_{i} X_{i}{ }^{2} * \sum_{i} Y_{i}{ }^{2}\right)
$$

or by both.

$$
\sum_{i}\left(x_{i}-\bar{X}\right) *\left(y_{i}-\bar{Y}\right)
$$

COR

$$
\operatorname{SaRi}\left(\sum_{i}\left(X_{i}-\bar{X}\right)^{2} * \sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}\right)
$$

The last is the nicest to work with, since is has an absolute value less than or equal to one, and its absolute value equals one if and only if $X_{i}=a * Y_{i}+b$ for $a l l i$.

DifFERENCE MEASURES

Also used are measures based on the difference between the samples over the two areas, such as root-mean-square error.

RMS $=\operatorname{SQRT}\left(1 / n \Sigma\left(X_{i}-Y_{i}\right)^{2}\right)$
i
which can also be normalized by the means of the samples.
RMS $=\operatorname{SQRT}\left(1 / n \sum\left(\left(X_{i}-\bar{X}\right)-\left(Y_{i}-\bar{Y}\right)\right)^{2}\right)$
i
Absolute difference is also used.
$A D=\sum_{i}\left|X_{i}-Y_{i}\right| Y_{n}$
It too can be normalized by the means.
$A D=\sum_{i}\left|\left(X_{i}-\bar{X}\right)-\left(Y_{i}-\bar{Y}\right)\right| / n$

The caiculation of normalized absolute difference, however, requires two passes over the data--one to calculate the sample means and one to sum the absolute differences which include these sample means. All other measures mentioned here, including normalized correlation and normalized RMS, can be calculated in one pass over the data. What distinguishes normalized absolute difference from the rest is the presence of summations both inside and outside of the absolute value sign. Absolute value is not a linear operator, therefore effectively foils the algebraic manipulations of summations which permit the other normalized measures to be calculated in one pass. Because of the added inconvenience of a second pass over the data, normalized absolute difference is rarely used.

Both RMS and absolute difference yield values between zero and a number bounded by the largest lifference between the samples, which is in turn bounded by the maximum possible intensity at a pixel.

COMPARISON OF THE MEASURES JF MATCH

Perhaps at this point a few words should be said about the reletive merits of correlation, RMS, and absolute difference as measures of match.

RMS and absolute difference are slearly related. There is 2iso a relationship between normalized RMS and normalized correlation. In the following, let

$$
T(X, Y)=\sum_{i}\left(X_{i}-\bar{X}\right) *\left(Y_{i}-\bar{Y}\right)
$$

Correlation can now be expressed as

Equation 2-a expends to
$\left.R^{\prime} 1 S=\operatorname{SQRT}\left(1 / n \sum\left(1 X_{i}-\bar{X}\right)^{2}-2 *\left(X_{i}-\bar{X}\right) *\left(Y_{i}-\bar{Y}\right)+\left(Y_{i}-\bar{Y}\right)^{2}\right)\right)$ $=\operatorname{SQRT}(1 / n(T(X, X)-2 * T(X, Y)+T(Y, Y))) \quad$.

Hence, we have

$$
\frac{T(X, X)+T(Y, Y)-n * R M S^{2}}{2 * \operatorname{SORT}(T(X, X) * T(Y, Y))} .
$$

Being related, correlation, RMS, and absolute difference might be expected to give similar results when used as the measure match.

The cireapest measure of match, in terms of the number of instructions required to implement it, is absolute difference. Two samples which match exactly have an absolute difference of zerc. It may be the case, however, that the pixel intensities in the candidate area equal those in the target area plus a constant (offset), that is, $Y_{i}=X_{i}+b$. In this case, the absolute difference betueen the two intuitive matching areas would be non-zero, perhaps greater than the absolute difference for some other area which is similar, but not intuitively the matching area.

Normalized RMS takes care of this problem by subtracting the means of the two areas from each of the intensity values within the samples. It trades a little more time in the calculation of the measure of match for more flexibility in its application.

Suppose, however, that the pixel intensities from the matching area are equal to a constant factor lgain) times the intensities from the target area, plus some constant offset, tha, is, $Y_{i}=a * X_{i}+b$. The value of RMS over matching areas in this case is non-zero. This can result in rejection of a matching area should some non-matching but relatively similar area contain data which has a relative gain of one.

Normalized correlation, a!though more expensive, is designed to handle both a constant gain and a constant offset. Subtracting the means removes the problem of the offset; dividing by the variances takes care of the gain. This can lead to multiple match candidares if several areas of different relative gains and offsets resemble each other. Hewever, this merely introduces impostors, it does not discard true matches.

Becauss relative gain and offset are frequently present in digital stereo images, the author prefers normalized cross-correlation to the other measures of match, and has developed matching techniques centered around correlation. However, if gain and offset are not a problem, or are known and can be taken into account in the calculation of the difference measures, then the techniques presented in this thesis can be adapted to normalized RMS or absolute difference. Since the techniques if this thesis were developed and originally implemented with correlation, they are discussed in terms of correlation.

FAST FOURIER TRANSFORMS FOR CONVOLUTION

Fast Fourier convolution is often mentioned as a tool for matching. It is a method for zaiculating the $\Sigma X Y$ term used in correlation and RMS error somewhat mor's efficienily.

This $\sum X Y$ term is the discrete convolution of the two samples; the Fourier transform of this convolution is equivalent to the product of the Fourier transforms of the two samples. Thus it is possible to do the summation by taking the transforms of the two samples, multiplying them, then taking the inverse Fourier transform of the result. If this is done for a target area out of picture X and all of picture Y, the result is an array, each element of which contains the value of tre convolution between the candidate area centered at that point and the target area.

With the fast Fourier transform, it is possible to de a transform of a sample of $m=2^{n}$ points in time proportional to $m \log 2 m$ [Singleton, 1967]. Let N be the maximum dimension of picture X and W be that of the window being matched. Oue to the aliasing problem, it is necessary that m be not less than N+W [Cooley, et. al., 1967], as well as being a power of two. If we let L be the constant necessary to bring $N+W$ up to 2^{n}, then the $\Sigma X Y$ for N^{2} correlations can be done in time proportional to $(N+W+L)^{2} \log 2(N+W+L)^{2}$ by the FFT method, as compared to time proportional to $N^{2} W^{2}$ for the direct computation. Of course, for normalized correlatlon or normallzed RMS, it is still necessary to compute $\Sigma X, \Sigma X^{2}, \Sigma Y$, and ΣY^{2} directly, and to combine them in order to calculate each of th.e measures of match. Employing sliding sums to calculate these terms adds time proportional to N^{2}; time proportional to N^{2} is also added to combine the sums for calculating the measures of match.

Which method is faster for a giverı problem will depend on the valuee of N and W and the constants of proportionality, which depend on the Implementations. Illustration 2-1 compares the FFT approach with the diree: approach for the implementations used at Stanford A.I. and several values of N and W.

AREA SAMPLING

Considerabie time is wasted in calculating the measure of match over all the pixels in every candidate area in the second picture. Like most searches, the search for a match spends most of its time failing--calculating ine measure of match for areas that don't match. If one can reduce the amount of time spent failing, a significant saving will result.

Barnea and Silverman [1972] observed that: for most candidate areas, it becomes obvious after a small fraction of the points in the area have been processed that the measure of match is going to have a non-optimal value. If processing of that area is aborted when the area's non-optimality is discovered, a considerable savings of time results.

Toward this encl, they propose the following sequential decision algorithm. Start calculating the measure of match, taking corresponding pairs of sample elements out of the two areas in pseudo-random order. At intervals, monitor the value of the measure of match. If at any time the measure is non-optimal according to their decision criteria, discontinue the calculations and discard the area as non-matching. Otherwise, continue adding in samples randomly until either the whole area has been included or the measure becomes non-optimal.

Barnea and Silverman claim that this algorithm is up to 50 times faster than matching by ordinary correlation techniques. Uriortunately, they do not separate the savings due to their using absolute difference as the measure of match from the savings due to the algorithm itself. Quam [unpublished research, 1973] finds, in ons particular application, that their algorithm used with normalized RMS is five to ten times as fast as ordinary normalized correlation techniques.

Reducing the number of points handled in some of the sample areas is one side of the coin. The other side represents the possibility of not calculating that measure of match for every candidate area in the second picture.

Direct method. Tabulated values are B.088826 $N^{2} W^{2}$ seconds.

	11	13	15	17	19	21
iv						
188	31.4600	43.9480	58.5888	75.1488	93.8688	114.6688
150	78.7850	98.8658	131.6250	169.0658	211.1850	257.9858
200	125.8400	175.7600	234.0008	380.5600	375.4408	458.6408
250	196.6258	274.6250	365.6250	469.5250	586.6250	716.6250
300	283.1408	395.4600	526.5000	676.2600	844.7400	1031.9408
350	385.3850	538.2650	716.6250	924.4650	1149.7850	1484.5850
480	503.3600	703.8408	936.0808	1202.2400	1501.7688	1834.5688
450	637.8658	889.7850	1184.5250	1521.5850	1900.6650	2321.8650
500	786.5000	1898.5880	1462.5000	1878.5000	2こ46.5088	2866.5800

FFT method. Tabulated values are $0.088888 * 4(N+W+L)^{2} \log 2(N+W+L)$ seconds, ie. 2 FFT's--one for the window, one to inverse FFT the product of the FFT of the window and the FFT of Picture Y. This neglects the time needed for N^{2} complex multiplies to form the product.
$\begin{array}{lllllll}W & 11 & 13 & 15 & 17 & 19 & 21\end{array}$ N

100	36.7002	36.7082	36.7002	36.7882	36.7082	36.7802
150	167.7722	167.7722	167.7722	167.7722	167.7722	167.7722
260	167.7722	167.7722	167.7722	167.7722	167.7722	167.7722
250	754.9747	754.9747	754.9747	754.9747	754.9747	754.9747
300	754.9747	754.9747	754.9747	754.9747	754.9747	754.9747
358	754.9747	754.9747	754.9747	754.9747	754.9747	754.9747
408	754.9747	754.9747	754.9747	754.9747	754.9747	754.9747
450	754.9747	754.9747	754.9747	754.9747	754.9747	754.9747
588	754.9747	3355.4432	3355.4432	3355.4432	3355.4432	3355.4432

lllustration 2-1. These tables compare the relative efficiencies of the direct method and FFT for calculating the convoiution $\sum X Y$ of a window of W^{2} points with a picture of N^{2} points. The constants of proportionality are derived from machine language codings on the PDP-10 at Stanford A.I. by Lymn Quam (direct method) and Don Destereicher (FFT).

Chapter 3

SEARCH STRATEGIES AND REFINEMENTS

The idea of shortening a search by "pruning" the search space is not a new one. Heuristic search has been a part of artificial intelligence from the beginning [Nilsson, 1972]. The basic idsa is simple: arrange the search in such a way that entire sets of solutions are considered at once. Attach to each set some way of measuring whether or not it has a good chance of containing the desired solution. Work in detail on only those sets which show promise. Whenever possible, work first on those sets which show most promise.

With most pictorial data, there is a fair amount of local coherence. By this, we mean that an area centered at one pixel does not usually difier greatly from an area centered at a neighboring pixel. An alternate expression of this would be to say that most pictorial data consists primarily of low frequency information. This makes it possible to use one candidate area as a representative of a set of areas centered at adjacent points. The evaluation of some computationally inexpensive measure of agreement over the representative area serves as the evaluation of the set. A number of variations on this technique can be used in pruning the search for a match.

GRIDDING

Consider for a moment the surface formed by plotting correlation as a function of position of candidate area centers in the vicinity of the matching candidate area. Because of the local coherence of most target areas, this correlation surface usually falls off gradually as one moves away from the matching area's center. (See lllustration 3-1). Therefore, in the immediate vicinity of the peak in a correlation surface which indicates a match, the correlations will usually be above some threshold.

One can take advantage of this fact by calculating the correlations between the target area and candidate areas centered at points on an n by n grid over picture Y. For suitable n and threshold, it is clear that one of the grid candidates must lie somewhere on the match peak above the significance threshold. By searching in detail the immediate vicinity of any crid candidate showing a significant correlation, one can locate the match peak. This is the technique of gridding.

If one uses an n by n grid on an N by N picture and finds k
correlations above the significance threshold Q, one calculates about $(N / n)^{2}+k * n^{2}$ correlations of area W^{2} in finding the match. In comparison, the direct method requires N^{2} correlations to locate the match. Since in most cases, k is small, gridding results in a savings of a factor of n^{2} over the direct method.

The success of gridding, of course, lies in the choice of n and of Q, which influences k. Examining the first pair of correlation cross sections in Illustration 3-1, we see that for $0=.5$, n must be 1 , but $i f ~ Q=.1, n$ can be 5. For the second pair, $Q=.5$ means $n=6$, and $Q=.1$ means $n=10$. The allowable values for n and 0 are not only interconnectsd, but also depend on the indivldual correlation peak.

However, when we begin our search for a match and are ready to set n and Q, we do not yet know what the correlation peak will look like. We do know that, under ideal conditions for matching, the target area will very closely resemble its match. If the matching area ex.ctly duplicated the target area, then the correlaticn surface would be identical to the autocorrelation surface. (See Appendix B.) In practice, this precise equivalence does not hold; however, the correlation and autocorrelation surfaces do resemble each other (Sss lllustration 3-2). Hence the autocorrelation peak can glve a good indlcatlon of the proper n and a for a givei, target area. Extracting this information can be done by inspection, by fitting a second order surface to the correlation peak and measuring its parameters, or by examining the Fourier transform of the data.

In theory, gridding will always work, since the worst it can do is degenerate to the standard method of evaluating the correlation at every point when nul. In practice, however, gridding is not used if the autocorrelation peak indicates a grid spacing of 1 or 2. Such an autocorrelation peak can oteur if the target area contains malnly high frequency information, as is the case in the distant treee along the skyllne in the Lab pictures. (See the copies of the original data in Appendix A, coordinates $(112,20)$ in the first image and $(113,26)$ in the second, window radius.7.) It also occurs in extremely noisy Images and ie a feature of come artiflcially generated images [Julesz, 1961 and 1963].

REDUCTION

One technique for utilizing local coherence to make the amount data to be handed more manageable is reduction lsee e.g. Kelly, 1978). In our application, this means making a new pair of picturee by spatially reducing the originals--effectively replacing m by m squares of pixels by one pixel having the average intensity of that square. Appropriate areas are then matched in the reduced pictures. Finally the correlatlon peaks for the areae found to match best In the smaller pictures ars searched In the origlnal, ilgher resclution plctures.

Doing an m by m spatial reduction on the pictures means that there are now $(\mathrm{N} / \mathrm{m})^{2}$ potential areas for the reduced target area to match instead of N^{2}, a savings of a factor of m^{2} in the number of correlations to be calculated. If the target area is to represent the same objects, then Its size is also reduced from W^{2} to $(\mathrm{W} / \mathrm{m})^{2}$ plxeis. This resuits in a savings of a factor of m^{2} in the correlation calculation loop, for an overail savings factor of m^{4}.

If the target area is not very big to start with, reducing the images may cause the target area to no longer represent a valid statistical sample. If one is not constrained to matching any particular area, but can enlarge the effective area to maintain a valiA sampie slze in the reduced plotures, then reduction can be used. The savings factor will depend on the exact size of the window which must be $\mathrm{li}=3 \mathrm{~d}$, but should be somewhere between m^{2} and m^{4}.

As with griclding, there is an additive term of $k k^{2}$ fuli scale correlations necessary to determine the location of the unreduced match. Here, k depends on hou many areas within the reduced second image will resemble the reduced target area, which is difficult to predict. There is also the overhead of reclucing the two images, but this can oftei be combined with some other necessary processing.

The success of reduction depends on the choice of m, which In turn depends on the information within the picture. Intuitively, if most of the information in the picture lies in features which are p pixels wide, then one does not wish to reduce the picture by a factor of p or greater. Computationally, if the Fourier transform of the picture reveals that a significant part of the power is in spatial frequencies higher than N / p, one should reduce the picture by a factor of less than p. In general, one shouid avoid reduction by a factor sufficiently large to change the spatial frequency or information content of the pictures. One way to check on this is to examine the autocorrelation peak in both the original and reduced pictures. If the peak is much narrower in the origlnal than in the reduced image, too much reduction has happened.

If one allows the choice of m to be retermined by the data, then in theory, reduction will always work, since it simply degenerates to the standard method for $m=1$. If a larger than recommended redisction is employed--for example to decrease noise--then the possibillty exlsts that the technique of reduction will iail to produce the proper match.

SIMILARITY

The technique of similarity differs from prevlously descrlbed techniques in that it does not use correlation as the basls for pruning the search for the match. The idea behind similarity is slmple--if two areas match, then statistical measures calculated over them, euch as means and varlances, should be simllar.

To employ the basic technique of similarity, one first calculates a vector of statistics for the target area and for each of the candidate areas. The most promlsing candidate areas are those which have vectors of statistics similar to the vector for the target area, as determined by a weighted distance metric. Then the correlation values between the target area and those candidate areas are used to decide which promising candidate area is the matching area.

Comparing similarity to the standard method is not as simple as comparing gridding or reduction. We can no longer just count the number of correlations calculated, since most of the time involved in using similarity is spent doing things other than correlating.

Calculating the statistics over N^{2} areas in picture Y with sllding sums will requlre time proportional to N^{2}. The constant of proportionality will, of course, depend upon how many statistics are calculated and upon the statistics themselves. For instance, on the PDP-18, it takes 0.525 ms per pirel to calculate 5 statistics--mean and variance of intensity and vector mean (2 components) and variance of color--for a color image. It takes 0.145 ms per pixe! to calculate 2 statistics--mean and variance of intensity--for a black-and-white image.

Comparing the r statistics in the target vector to the r statistics in N^{2} candidate vectors will require time proportional to $r * N^{2}$. Example: it takes 0.175 ms to compute a weighted distance metric for 5 statistics and store the resulting distance; it takes 8.075 ms for 2 statistics. Sorting n distances to order the areas by how promising they are requires 0.870* (log n)*($n+\log n$) ms. Finally, calculating the correlations for the k most promising areas, using a window of area W^{2}, requires $0.865 * k * W^{2} \mathrm{~ms}$. By comparison, it takes $8.065 * \mathrm{~N}^{2} \mathrm{KW}^{2} \mathrm{~ms}$ to calculate all of the correlations directly.

To better illustrate the comparison, consider matching a 21 by 21 area out of a 150 by 150 picture, let $k=16$, and use the 5 component vectors from color images. For this example, it would require about 645 seconds to compute the correlations recessary to determine the match uirectly; similarity spends about 11.8 seconds calculating the vectors, 3.9 seconds calculating the distances, 25.2 secondis sorting them, and 0.3 seconds calculating the k correlations, for a total of about 41.2 seconds, representing a savings factor of about 16.

As savings factors go, 16 is neither trivial nor wonderful. So far, however, we have implemented similarity in a brute force style comparable to the direct method for flnaling the match. It is posslble to refine simllarity in order to make it much more efficient.

We have pointed out before that most images have a local coherence which causes area-based measures such as mean and variance to change slowly as the area center is moved by one or two pixels. This means that we really
do not need to calculate the distances between the target area vector and vectors for areas centered at every point in the second image. We can allow an area centered at one point to represent those areas centered at adjacent points and apply heuristic search methods.

For instance, one could sort only those vectors of statistics which fall on an m by m grid, reducing the number of distances which must be calculated and sorted to $(\mathrm{N} / \mathrm{m})^{2}$. Then, from the most promising k such grid points, one could hill-climb in the vector distance space until one found the most promising vectors, which would be checked via correlation to determine the match. Here we spend the same amount of time calculating the vectors, but only $0.175 *(\mathrm{~N} / \mathrm{m})^{2}$ ms calculating distances, 0.070*(log2 $\left(M / m^{2}\right) *\left(\log 2(N / m)^{2}+(N / m)^{2} \quad \mathrm{~ms}\right.$ sorting the distances, 0.175*k*m² ms calculating distances for the hill climb of promising vectors, and B.865*k*W ${ }^{2} \mathrm{~ms}$ cloing the correlations for these promising hill tops.

Suppose that we set $N=150, W=21, k=10$ as before and let $m=10$. As before, we spend 11.8 seconds calculating the vectors, 0.04 seconds calculating grid point distances, 3.13 seconds sorting these distances, 0.18 seconds calculating distances for the hill climbs, and 0.30 seconds doing the correlations for these promising hill tops. This is an overhead of 11.8 seconds, plus 0.65 seconds per match. For only one match, this gives a savings factor of slightly over 50. if the overhead is spread among 20 matches, the savings factor goes up to over 508!

This technique has not been implemented, however, because of the large amount of storage memory it requires. In addition to the $15 \mathbf{D}^{\mathbf{2}}$ 6-bit intensity values of the second image (which amounts to 3,750 computer words), that are needed for the brute force currelation method, this method also requires $5 * 150^{2} 36$-bit numbers to store the vectors for the second image. This amounts to 112,500 additional words of computer memory, which on most systems is hard to come by. Our speedup of a factor of 500 is acccmpanied by a very large increase in the space required to do the job.

Nos, instead of keeping all of our vectors of statistics from every point, we only keep them for areas centered on an m by m grid over the second picture. The most efficient way to do this for the general case is still with sliding sums. Recording only every m-th vector in both directions means that this now takes 8.065*iv ${ }^{2}+0.080 *(N / m)^{2} \mathrm{~ms}$ for the black-and-white and $0.340 * N^{2}+B .185 *(N / m)^{2} \mathrm{~ms}$ for the color vectors described earlier. This time we calculate $(\mathrm{N} / \mathrm{m})^{2}$ distances and sort them as before. For the best k dietances, we employ some form of local correlation search to cover that m by m area, uhich potentially holds the match.

For $N=150$, W-21, k r10, and $m=10$ as before, we now spend 7.69 secorids forming the vectors. For each target area, we spend 0.04 seconds calculating the distances and 0.13 seconds sorting them. If we calculate all m^{2} correlations for each of the k promising areas, we will sperid 28.67 seconds in the correlation loop. Employing gridding or some other form of efficient
correlation search can reduce this tarm significantly. Realistically, if we share the overhead among 20 matches and do about 150 correlations in searching the most promising areas (see lllustration 3-3), then matching one target area will take ar sund 4.85 seconds, a savings of a factor of approximately 130 over the direct method. The extra space required is a mere $5 * 15^{2} 36$-bit words, or 1,125 words, 3 reasonable amount.

Clearly, similarity is a very complicated technique whose relative efficiency depends on a great number of things. The overhead depends heavily on the number and type of statistics used, which will depend on the data and the ingenuity of the experimenter in using it. An increased number of complex statistics makes the overhead greater and increases the amount of time spent calculating the distance measures. But, as Illustration 3-3 shows, having more statistics in the vector can reduce the number of areas which look promising, hence tive number of correlations. which must be calculated.

The type of statistics used can affect the success of similarity. Averaging measures such as mean and variance have the advantage of being quick and easy to calculate, fairly insensitive to noise, and, as noted before, usually insensitive to s.nall changes in position. In general, statistics that average are prefered to those that count or those that difference.

The calculation of the distances for the vectors and the sorting of the vectors depend on the number cf representative areas, hence on the gridding over which the representative areas are taken. Too small a gridding results in a large number of vectors to be compared and sorted; too large a gridding may let the matching area go urrecognized because it fell between two representative areas which didn't resemble it. As with the grid spacing for correlation gridding, the best way to set this grid spacing is to examine the vector surfaces for the neighborhood of the target area.

The technique of similarity usually works, but rot always. If the pictures are very homogeneous, all areas will be similar, resulting in many candidate areas to be searched via correlaticn, hence little savings. If the pictures have much fine detail or are noisy, then the candidate gridding may be so fine that the technique loses its usefulness.

The presence of objects which have moved relative to their backgrounds in the second image may cause the technique of similarity to fail completely for some target areas. For instance, consider the pair of areas in the barn pictures (see Appendix A for the originals) which are centered in the trees to the left of the telephone pole, and have the pole itself in the right half of the areas. These areas will match very well. However, if it should happen that the representative area which has its center physically closest to that of the matching area contains a part of the foreground post, it will not be similar to the target area. Because that representative area is not similar, it will not be searched and the match will be missed.

Indeed, any condition which causes the matching area to require a finer similarity grid than the target area will endanger the success of similarity.

CAMERA MOCELS

Abstract

So far. "s have been discussing methods of reducing the search which do not assume anything not directly contained in the picture data. This was the case for our data; however, in general we will know somewhat more about our pictures. A reasonable design constraint on a picture-taking system is that it recors how it was oriented when it took the pictures. This information enables one to model the relative positions ard orientations of the cameras.

If complete camera model information is not known, as it was in our case, it still is possible to derive a workable model from the pictures themselves. Several things are known to be undecidable giver, just the informatior, in the pictures. Alssolute position, for instance, is not derivable; it requires external knowledge such as measurenents made when the picture was taken or recognition of some landmark in the picture. Likewise, it is impossible to say exactly how large or how far away a given object is without measurements or landmarks to establish scale.

It is possible, however, to derive relative positions and relative sizes for objects in the pictures. This is done by assigning an arbitrary position and orientation to one of the cameras and by fixing some distance, such as the distance between the cameras. With these hypotheses and a suitable number of point-pair matches derived by the previously mentioned techniques, the relative orientations of the cameras and positions of objects which appear in both pictures can be calculated.

Theoretically, if one has N unknowns in the camera model and N constraints in the form of matching point pairs, one can obtain a closed form solution for the camera model. In practice, the constraining equations dc not usually permit analytical solution. Therefore, a more common technique is to approximate the unknouns by least-squares techniques, either in closed form or by numerical l.ethods. By either method, one needs at least N/2 point pairs. The locations of these pcint pairs within the images and the location in 3 -space of the points they represent is important. If these point pairs are concentrated in one area of the image or if they represent 3-dimensional points whi , are all coplanar, then $N / 2$ point pair "is not sufficient. For numerical least-squares approximation of the camera model parameters, the author likes to have at least twice as many point pairs as there are parameters to be derived, and to have these pairs well distributed in both images.

Several different approaches have been taken to the probien of deriving cemera models from picture information. (See, e.g. [Sobel, 1978])

Since this author was faced with pictures for which no camer model was given and since no available model derivation code was applicable, yet another camera model derlvation method has been developed.

This author's approach is based on searching for the camera mrsdel which minimizes a least-squares measure of camera model error. Each pair of matching areas is first characterized as a pair of points--the centers of the areas. For every proposed camera model in the search, each pair of points is placed on the image planes of the cameras, and the mays from the principal points of the cameras through these image plane points are calculated. The error is a function of how close these pairs of rays come to each other in 3-space, normalized by the mean distance to the point of approach. (A mathematical explanation of this measure appears in Appendix C.)

This author, not being a numerical analyst, implemented a very unsophisticated function minimlzer to search for the best cimera model for a given set of points. That program showed that the technique would work, but was slow and unreliable. The calculations presented in Appendix C have since been re-prog, ammed bụ another student, Donald Gennery, whose program works very reliably and quite fast. It is his program which has derived most of this author's camera medels.

For the purpose of limiting the search space, it matters not whether the camera model is given or derived. The existence of a camera model makes possible another search-reduction technique.

With a camera model, it is possible to constrain the search for the matching area to a line in the second image. To do this, the target is characterized by a point, usually its center of mass. This point is projected through the first camera as a ray in 3-space. The 3-dimensional point corresponding to the original point in the image plane must lie n this ray. The ray is now back-projected into the second camera becoming a line segment on the second image plane (whose exact equation is derived in Appendix C). Since the 3-dimensional point was on the ray, its projection into the second image plane must lie on this line segment.

With this knouledge, it is not necessary to search the entire picture for a match; searching along the line segment will suffice. Illustration 3-4 shows for two different areas of the barn pictures a target area in the first Image, its center point, the line which this point projects to, and the matching area found by searching along the line segment. This technique reduces the search space in an $N \times N$ picture from the N^{2} candidate ar,eas centered at the points of the picture to the N or fewer candidate areas centered on the points of the line segment. Performing a one-dimensional analog of the technique of gridding along the line can result in an additional savings of a factor of m, the grid spacing.

Techniques involving camera models will work whenever a camera model exists, but their efficiency in reducing the search depends on the accuracy
of the camera model. An exact camera model will give the line exactly. A moderately inaccurate camera model will usually put the line in the right area, although some local searching may bs necessary. The better the model, the smaller the local search.

WORLD MODELS

If, in addition to a canera model, there exists a model for the world, then it is possible to preaict precisely where the center point of the matching area will be. The ray from the first camera will intersect the world model at a 3-dimensional point which can be back-projected into the second camera, giving the center point of the predicted match.

Even a fragmentary world model can reduce the search significantly. For instance, knowledge of the position of the ground p'ane limits the depth at which an object can lie [Falk, .969]. Thus the matching ceriter point is constrained to lie on that part of the back-projected line segment between the points which represent the camera and the ground plane.

If the world model is not given, it is still possible to derive it from the matched area pairs. However, derived world models are more often the result of the matching process, not the means for its improvement.

One trivial sort of world model which dors not require a camera model (although it can be used with one) is the continuity assumption. It consists merely of assumlng that if areas A and R are adjacent In the first image, then their matches will be adjacent in the second image. This, of course, reduces the search space considerably--to the immediate neighborhood of the last match found.

How effective the use of world models is depends on the accuracy of the model. Small errors in the model may make little difference in the predicted position of the match. Large errors, like assuming continuity near a depth discontinuity will cause no match to be found. In this case, a retreat must be made to one of the more general techniques of matching.

Each of the techniques described in this chapter results in a fair!y large savings when matching areas in stereo images. Combining two or more of them increases the savings. The author has had excellent success with programs combining reduction, similarity, and gridding and with ones combining reduction, camera models, and gridding. (See Chapter 6 for descriptions of some of the programs.) The author has not implemented any of the world models save the continuity assumption (see Chapter 5), but the Hand-Eye group at Stanford A.I. uss8 the ground plane model to good advantage, and Bruce Baumgart lunpublished research, 1972] has done some work with exact world models.

Illustration 3-1. Two sets of correlation cross sections, graphing $C(X, I x, J x ; Y, I y+d l, J y)$ against $d l$ and $C(X, I x, J x ; Y, I y, J y+d J)$ against dJ. (See Appendix B for an explanation of the notation.l Most correlation surfaces are like these, falling off gradually as one moves away from the match peak.

LQB PICTURES, $(45,65)$ - $(51,71)$
lllustration 3-2. The top row contains graphs of $C(x, I x, J x ; Y, I y+d I, J y)$ against $d l$ and $C(X, I x, J x ; Y, I y, J y+d J)$ ageinst $d J$, as before. Bottom row contains graphs of $C(x,|x, J x ; x| x+,d l, J x)$ against $d l$ and $C(x,|x, J x ; x| x,, J x+d J)$ against $d J$, l.e. ths autocorrelation crose sections for the same target area. Like these, most match correlation closely ressmble their autocorrelation peaks.

LAB PICTURES AREA		INTENSITY APEAS COR. TRiED CALC.		COLOR	
IX	JX			TRIED	CALC.
145	25	-	30		30
85	25	11	523	3	124
65	25	2	85	1	42
25	25	10	675	4	252
65	45	5	242	3	148
25	5	6	338	2	92
185	5	9	408	3	126
45	5	1	61	1	61
25	85	2	114	2	135
65	5	4	182	3	188

Illustration 3-3. Tabulated results of correlation searches using the search reduction technique of similarity with correlation grlading in the promising areas. The first two columns give the area center in the first Lab picture; the second two tell how many promising areas were found and how many correlations were calculated for the black-and-whlte vectors described in the text: the third two give the number of promising areas and correlations calculated for the color vectors described. The color vectors are usually worth the increased time needed to calculate them. Either set of vectors results in a significant reduction in the amount of time needed to find the match.

Illustration 3-4. Tho pairs of barn pictures, showing camera model searches for a match. In each pair, the first image shows the target areas with their central points; in the second image the line to which the center point projects is shoun, along with the matching area and its center.

Chapter 4

UNMATCHABLE TARGET AREAS

Careful analysis of the techniques discussed so far wlli show that, in addition to the assumptions stated in Chapter 1 , we have been maklng one other, unstated assumption. We have assumed that there existe eome window-based algo-ithm by which all target areas can be matched.

Unfortunately, there are entire classes of target areas which do not fit this assumption, i.e., which require global techniques to determine which area is their intuitive match. These fall into two major groups--those which can be detected before matching is attempted and those which come to light only when ratching fails.

DETECTABLE BAD TARGETS

The first group of unmatchabie targot areas are those containing data Which is by its very nature unmatchable. inese unmatchable areas can be detected before matching is attempted by examining the target data.

Low Information
When the target area contains little or no information, matching that area is impossible by area-based measure-of-match techniques. For example, consider a window taken out of the cloudiess sky of the barn pictures. Baeed on just the information in that window, it is impossible to say precisely which piece of sky in the second image matches this area. In the absence of noise, a low-information target area will match almost any low-information candidate area, for there is nothing in the target to distinguish which candidate it really matches.

An area of low information is an area of low variance. This le perhaps the most computationally expedient way of ditermining whether or not an area has sufflcient information to be matchable. In the presence of noise, this technique may fail, eince nolse ereates variance. In this case, some other test, such as the presence of an edge, should be used.

An area of low information will also have an autocorrelation peak which, except for a value of 1.8 at zero displacement, will be almost flat. IIlustration 4-1 shows the correlation and autocorrelation graphs for an area of the sky in the barn pictures.) This flatness can be recognized by
inspection of the peak, or, if more precise determination is desired, a bivariate normal distribution surface [Freund, 1962] can be fitted to the peak and the parameters of the curve examined. Any area having a very flat autocorrelation peak is unsuitable for matching.

Linear Edge
When the target area has a single linear edge across it with little or no information on either side of this edge, matching is very difficult. An attempt to match such a target will show that the area matches quite well with candidate areas all along the edge in the second image.

This condition is observable in the autocorrelation peak. (See lllustration 4-2l If one fits a bivariate normal distribution surface to the autocorrelation and examines the contours of this surface, one discovers that the peak is raally a ridc!e aligned with the edge.

If we use only the information in the target area, there is nothing to resolve which candidate along the edge is the rea! match. Target areas displaying this property must be regarded as unmatchable unless further information, such as a camera model or a set of other matches to tle to, is available.

Pre-processing of a target area to determlne whether or not it is suitable for matching is expensive. However, if one compares this expense with the expense of searching futilely for a match, such pre-processing becomes wor tnwhile.

TARGETS WHICH OO NOT MATCH

The second group of unmatchable target areas are those whose counterparts simply do lot exist in the second image, due to relative motion between the camera and part or all of the scene. Such unmatchabilities cannot be detected by examining either picture alone, but are discovered only after the expense of attemp wing to match has been incurred. Since, in this case, the target area has no proper match, the candidate area having the highest correlation will bo an incoriect match. It is desirable to be able to detect these incorrect satchings as they occur.

If two areas do not match, the correlation between them should be low. It seems reasonable, therefore, to detect bad matches by seeing if the best correlation obtained was too low. Matters are complicated by the fact that some good matches have low correlations. In fact, for almost any pair of pictures and fixed threshold, it is possible to find either a target area for which there is a bad match with a correlation above that threshold or a target area whose proper match has a correlation below the threshold.

So, how cloes one distinguish between good matches with low correlations and bad matches? As previously stated, the correlation peak for a proper match should very closely resemble the autocorrelation peak for the target area. In particular, if we have restricted our target areas to those with distinct autocorrelation peaks, a flat or chaotic correlation peak is an indication of a questionalsle match.

The fact that the correlation and autocorrelation peaks should be similar can be used to derive an autocorrelation threshold for the match correlation. By examining the autocorrelation surface at points near the summit of the autocorrelation peak, it is possible to predict what the correlation should be. (See Appendix B.) Any match below this autocorrelation threshold is highly suspect.

Of course, global information, such as continuity from neighboring points can also be used to determine the credibility of a match.

NON-UNIQUE MATCHINGS

A related problem is that of multiple matches. Since we have not specifically limited the subject matter of our piztures, it is possible that more than one of some object can appear in the pictures. If several of these objects appear against similar backgrounds, a target area can quite reasonably have not one but several matches.

If several areas match the target area, they can be expected to all have about the same correlation. If they are good matches, all of them should be greater than the autocorrelation threshold for the target area. Therefore, to detect multiple matches, one checks to see if there is more than one correlation above the autocorrelation threshold. If so, one checks how well they group. If the top few correlations above the autocorrelation threshold are roughly the same in value, multiple matches are indicated. This can be confirmed by checking to see if the multiple candidates correlate well with each other.

If only the information in the areas is present, an area with more than one match indicated is no more ueaful than an area with no match indicated, since in neither case has the location of the match been determined. Additional, nore global information in the form of a camera model or other matches to tiu to can be used to resolve the ambiguity.

hHat to do hhen a tarcet won't match properly

For some of the target areas which won't match properly using measure of match techniques, there is nothing that can be done. Target areas whose
matches fall out of the field of view of the second camera are clearly in this class. Target areas of low information cannot be matched reliably, therefore are assigned to this class. Target areas containing distortion due to perspective change by definitlon do not have matches, therefore are also assigned to this class. The unly reasonable thing to do with targets of these varieties is to give up on them.

Other types of unmatched target areas may be matchable by some different algorithm, prolzably utilizing more global information. If, for instance, we are employing the similarity heuristic, and it fails for some reason, it may be that pure gridding will find the match. Ambiguous matches and linear edges betueen areas of low information (which can be thought of as extended ambiguities) can usually be resilved by algorithms which employ additional information, such as a good came‘a model.

Having a camera model enables one to find the line segment in the second image which corresponds to the center point of the turget area. If one of the proposed candidate areas has a center point that lies within one pixel of this line segment, then the match is resolved. This algorithm fails if more than one proposed candidate lies within one pixel of the magic line segment, ie. if two or more of the nominated objects are approximately coplanar with the two camera principal points. This is a fairly common occurrence, since a man-made world containing identical objects is likely to have these objects on a flat surface.

The presence of a set of other matches san also be used to resolve ambiguities. The target area will have some spatial relatlonship to the target areas of the set; the match is the proposed candidate whict most closely approximates this relationship with the candidate areas of the match set [Fischlor and Elschlager, 1971]. Of course, cary must be exercised in the choice of the set of points. If, for instance, one's mnchor points are all in the foreground in the barn pictures, and one is trying to match the fence posts across the field, one will get a meaningless answer. The anchor point pairs used should be at the same depth as the target area to guarantee correct resulis.

In the casf of depth discontinuities, one could employ edge techniques [Hueckel, 1969] to segment the target area into regions. These irregular areas could then have matching attempted on each of them separately, using masked correlation or pointer correlation. (See Appendix B.)

Various methods exist for handing indivldual unmatchable target areas. In each case, it is first necessary to determine which variety of unmatchabillty one has, then apply the proper method. Quite often, this is done by the experimenter peeking; that ls, the experimenter figures cut what kInd of unmatchability he has and tells the "algorithm" what to do.

Thls author has found, however, that the best thing to do with an
unmatchable tar et area is to give up on it and try a different target area. Eventually, target areas that have good matches will come along. (If not, the experimenter SHOULD peek to see If he has the right two pictures l) With good matches, the technique of region growing becomes applicable. Most of the problems related to unmatchable areas can be solved or greatly simplified by the use of region growing.

BARN PICTURES, $(85,25)-(101,19$,

[I.

Illustration 4-1. Correlation and autocorrelation graphs for an area of low inform_ 'on, showing the two-dimensional flatness of such peaks.

Illustration 4-2. Correiation and autocorrelation graphe for an area with a strong linear edge, showing the one-dimensional fiat ?ss of such peaks.

Chapter 5

EXTENDING MATCHES

In Chapter 3, we mentioned the contiruity assumption as a crude form of world model which greatly shortened most searches for a match when there was an adjacent match available. This continuity assumption forms the basis for the technique of extending matches.

REGION GROWING: THE BASIC TECHNIQUE

Uncier the continuity asstmption, if the target area cencered at ($l x, J x$) matches the candidate area centered at (ly,Jy), then one woald expect the four adjacent target areas (lx+1,Jx), (lx-1,Jx), (1x,Jx+1), ald (1x,Jx-1) to match the four adjacent candidate areas (ly+1,Jy), (ly-1,Jy) (ly, ly+1), and (ly, Jy-1), respectively. lf (lx,Jx) matches (ly,Jy), then the correlation between these two areas represents the peak of the correlation surface and is greater than the autocorrelation threshold for (lx,Jx) mentioned in Chapter 4 and described more thoroughly in Appendix B. If the four adjacent expected matches are indeed matches, then each of them should meet this same criterion. Once one of the expected matches meets the criterion, then the paired areas adjacent to it become expected matches, etc., and a region of constant (dl,dJ) - (ly, Jy) - (Ix, Jx) is grown.

Expressed more formally, given a criterion for judging whether or not a point belongs within a region and at least one point at which that criterion is met, the following algorithm extends the region.

1. Push onto the stack at least one point which meets the criterion.
2. Pop one point off of the stack and examine the points lying above, below, right, and left of it. Examining a point consists of first checking to see if it is marked as having been processed; if so, nothing further is done to it. Otherwise, if it meets the criterion of the region being grom, then it is marked 6000 and pushed onto the stack, else it is marked BAD and not pushed.
3. Continue step 2 until the stack is empty.

Marking the points not only leaves behind a record of which are good and which are bad matches, but also keeps the algorithm frum repeating work which has already been done. Since there are only a finite number of pointa avallable to try, this avoidance of repeated work guarantees that the algorithm will terminate.

EXPEDITING REGION GROWING

As its criterion for a match having occurred, the preceding algorithm uses the fact that we are at a correlation peak and that the maximum correlation is greater than the autocorrelation threshold. For each match pair, this requires ten correlations--nine to determine if the expected match is indeed a correlation peak and one to calculate the autocorrelation threshold.

In practice, eight of the nine correlations are not usually needed. The autocorrelation threshold is derived from expected values of the correlation surface at one pixel displacement from the match. In most caees, the actual correlation at one pixe! displacement ie lower than the expected currelation at that displacement, so that the only part of the correlation surface which lies above the autocerrelation threshold is the match peak itself. Testing to see that the correlation ls greater than the autocorrelation threshold is usually a sufficient criterion for determining whether or not the expected match is indeed a match.

The correlation between the proposed matching areas and the autocorrelation threshold for the target area still need to be calculated. These two measures each require covering the target area while forming sums. If the sums for both measures are calculated together in one pass over the data, the target area need only be covered once, rather than twice. Thus the combination of the correlation and autocorrelation will take about thres-quarters of the time necessary for calculating both separately, or approximately 1.5 times as long as an ordinary correlation.

This is effectively the optimum technique for determining a match. It requires only 1.5 correlations, as opposed to N^{2} correlations for the direct method, a savings of a factor of N^{2}.

EXTENDING MATCHING REGIONS

In our revised algorithm, an area center would be marked BAD if its correlation were not greater than its autricorrelation. For such pointe, the pair of areas may or may not represent a correlation peak.

If the pair of areas does not represent a correlation peak, the continuity assumption need not have beet violated. It could well be thai this particular part of the scene is cortinuous, but that the normal to the surface is at a moderate angle to the cimera principal axes. Thie can cause a gradual change in (d l, $d J$) as one movis across the picture. If this ie the case, then a ehort local search should reveal the correlation peak which represente the match. For this purpose, ueing one "loop" of the epiraling eearch eubroutine MATCH, described in Appendix B, worke quite well.

Once the peak is found, it may or may not pass the autocorrelation threshold. If it does, then this new pair of ($1 x, J x$) and ($(1 y, J y)$ becomes a candldate for the appllcation of the region growing algorithm, and the region continues to expand. Illustration 5-1 shous one of the results of this ex:ended region grower.

Any pair of areas that represents a correlation peak but does not pass the autocorrelation test remains unmatched for the present, since in theory that target area has a match elsewhere, which a later region growing will locate.

HOW REGION GROWING SOLYES THE PROBLEMS

In Chapter 4, we promised that region growing would solvi, or at least simp!ify, most of the problems encountered in matching. We divided the unmatchable areas into two categories--those, such ae ambiguities and depth discontinuities, which could be matched or partially matched by special means and thoee which simply had no match, whether due to obscurations, distortions, or changes in the field of vlew. The problem was that, except for ambiguities, we had no way of telling which variety of unmatchability a given target area might be. If a given target wouldn't match, "peeking" was the only way of telling whether the area wae a depth discontinuity which should be segmented or an obscuration which should have no further time wasted on it. Region growing from a few good matches spread about the picture helps here.

Suppese, for instance, a target area which previcusly failed to match now falls within a region of grown matches. If the target falled to match because of an ambiguity, whether one caused by multiple objects or a Ilnear edge, thie ambiguity has been resolved. If the target area didn't match because of a failure of the heuristlcs, the difficulty has now been surpaesed.

Suppose the unmatched target lies just outside of a grown region. If target areae leading up to the unmatched target should match candidate areas leading to the edge of the image, then the intuitive match for our unmatched target area falls out of the field of view of the second camera. In a similar fashion, an unmatched target whose intuitive match has been obscured. can now be detected; target areas leading up to the unmatched target will match candidates that lead into a region of candldates having a different matching (dl,dJ)--that of the obscuring object.

If the unmatched target lies in the midst of a "hole" in a groun region, then a moving object which hae disappeared, such as the man on the eteps in the lab pictures, is indicated. If the unmatched target liee near the edger of two groun regions with rather different matching (dl, c, l), then chances are that the unmatched target contains the depth discontinuity between these two regione.

For most paris of most allowable pairs of stereo images, the continuity assumptlon holds, so region growing can usually match almost all of the areas of most pairs given just a few "starter" matches. For sxample, all of the matchable area of the lab pictures can be grown from one match in the background; in the canyon pictures, three matches are required--one on the background canyon wall, one on the foreground promontory, and one on the pinnacle at the right.

Because of the area-based nature of matching, region growing stops when the area reaches a depth d scontinuily or touches a distorted region. In the finished products, such as Iliustration 5-1, what is displayed is the outer line of center points which the region grower found not to match. Consequently, these products do not precisely outline depth discontinulties or areas of distortion, but fall W pixels away from these edges, where W is the area radius. However, if one is willing to iterate around the edges using smaller and smaller values of W, then clossr and closer approximations of these outlines can be found [Levine, 1973].

Thus we see that region growing not only makes it easy to distinguish what type of unmatchability one has, but also doss what matching or partial matching is needed. This is why ws claimed that region growing would solve or simplify all of the problems attendant to unmatchabilities.

GROWING UNIFORM REGIONS

Indeed, match extension region growing helps with all of the unmatchable areas save thoss due to low information. As we notsd in Chapter 4, areas of low information tend to be arsas of low varlance. Once such an area has been located in the first imags, the techniqus of region growling can bs used to mark that rigion so that future attempts at matches can be forewarned of the condition.

For this application, the region growing algorithm prssented in this chapter need only be modified slightly. As its crlterion for a good polnt, the uniform region grower will uss the fact that the variancs over the area centered at that point is below a given threshold. Thus instead of comparing areas out of two images and continuing growth if they match, we are evaluating an area in a single picturs and growing if that area ls of low variance.

As lllustration 5-2a shows, uniform regions grown by this method will stop a bit short of their edges, since any point whose area touches the edge will have a higher variance, thus be rejscted. Whether this is bad or good depends on whsther the user wanted to delimit the entire uniform region or only that part of it which had too little information to match upon.

If the desired effect was that of lllustration $5-2 b$ then a somewhat
different criterion needs to bs employed. Low variance means that the avsrage squared difference between the intensity at a pixel and the mean Intenslty over the area is small. For an arsa to have a small variance, most of thsse differencss at individual pixels must be small. Hence, we substitute into the uniform region growing algorithm the critsrion that the absolute differencs between the intensity at a point and the mean intensity over the uniform region be small.

Whether the mean intensity is taksn over all of the region grown so far or only over a local part of the region depends on whether the user wishes the uniform region grower to stick strictly to a particular intensity or allow it to follow shading, or to allow it to follow gradual changes in intensity or color, such as occur in a clear summer sky. How small the absolute difference in intensities must be at each point is based. on how much variation is expected for desired) within the area to be grown, and can either be a constant or a statistical msasurs, such as a multiple of the standard deviation of the intensities within the area. Which uniform region grower one uses, of course, zpends upon the sffect uhich ths user wishes to produce.

Illustration 5-1. Two pairs of pictures with overlays to show regions delimited by the extended region grower. In the barn pair, the foreground post has been outlined; in the canyon pair the nearest spine of the foreground promontory is shown. Each of these regions consists of several eub-regions at siightly different displacements.

Illustration 5-2. Uniform regions delimited by the region grower. Part (a) shows regions groun by the variance-over-a-window method; part (b) shows the same regions grown by the deviation-from-the-mean method.

Chapter 6

ALGORI THMS AND EXAMPLES

So far, we have presented a variety of techniques, mentioning only briefly how they might be used. In this chapter, we discuss algorithms which use these techniques ard give examples of their results.

INDIVIDUAL MATCHES

Sets of individual matches can be used for a variety of things. They can be used to align data for furtier processing such as differencing (Quam, 1971]. They can be used to derive camera models (see Appendix C). With a camera model, a pair of matching points can be used to determine the relative depth to an object in a scene (see Appendix C). Matches and a camera model make it possible to create a 3-dimensional world model [Baumgart, unpublished research, 1973].

For most applications, there is no need to match particular areas. What is needed is a set of matches that are well distributed in both images. Since very precise matches are usually needed for modelling work, it will be necessary to interpolate discrete matches in order to determine the exact translation. (See Appendix B for a discussion of the need for and techniques of interpolation.l Whenever possible, one should choose the target areas so that matching will be easy and interpolation will be accurate.

Choosing a Target Area

Interpolation is most accurate if the match peak is well behaved--not too flat, not too sharply peaked, and definitely not multi-modal. Slnce the correlation peak should closely resemine the autocorrelation peak, target areas should be limited to those with well behaved autocorrelation peaks. line target areas whose autocorrelation peaks can be easily fitted by a bivariate normal distribution surface are most likely to yield accurate interpolated match displacements.

Requiring well behaved autocorrelation peaks will also exclude targeta which wlll be hard to match. Flat autocorrelation peaks due to low information, sharp peaks due to only hig̣h frequency Information being present, and multi-modal peaks due to ambiguities will all be avoided.

To make matching easy, target areas should flrst of all contain
sufficient information. Therefore, only areas having a variance above threshold should be considered. A reasonable strategy ls to flret moich those target areas that have the highest varlance. Of course, hlgh varlance can indicate the presence of sharp edges, so each such target area should be checked to see that it is not crossed by a strong IInear edge between two low variance areas.

If similarlty is to be employed in matching, a quick perueal of the vectors for the representative areae in the second Image can be informative. For instance, if the second image contains lots of green areas, but only a few red ones, then one cán get some matches cheaply by first matching target areas with red in them.

Program Outline

A program which is to produce a set of well distributed good matches might proceed ae follows.

INITIALIZATION. First of all, reduce both Images and divide them into representative areas the size of the correlation windowe to be ueed. (Unless otherwise stated. all of the steps that follow are to be carried out in the reduced pictures.l The areas in the first image may simply cover the picture: those in the second image should be on a finer grld eo that they overlap significantly. (See lllustration 6-1) Then calculate the vactors of statietice for these representaiive areas. Hietogram each of tha componants of tha vectors for each picture.

RANK TARGET AREAS. Now, do any of the component histograms shou only a few targets areas having some property (like being red)? Do at leaet that number of candidates show that property lif not, some of the target areae will be out of the field of vien in the second image, hence unmatchable). Put any areas whicn seem likely to be easy to match at the head of a llet of target areas to be tried.

Next, eort the remaining target areas by their variance. Flace those Wlth variances above the low Information threshold on the list. Also sort the candidate areas by variance and remove any with too low variance. Sinca we have removed the low variance target arries, it is unlikely that any of the low variance candidate areas wlll be neoded. Start matching targete off the top of the llet.

TARGET MATCHING. For each target area, check to sea if ite aurocorralation surface ie well bshaved. If so, establish tha autocorrelation threshold and grid spacing parameters for that targat area and contlnus. If not, discard the area and try the next one.

Calculate the similarity measure between the targat area and each of tha ramainlng candidate areas and sort them. Start on the most likaly araa.

Using the grid spacing establishsd for that target. grid ire candidate areas and ook for a correlation above the noise threshold. Then search the immed ate neighborhocá for the best correlation (or simply employ MATCH, descr lbed in Appendix B).

If ambiguous matches are not anticipated to be a problem, stop examining candidate areas as soon as a candidate is found that has a correlation above the target area's autocorrelation threshold. Otherwise, continue examining areas until the measurs of similarity becomes too dissimilar. If no candiciate had a correlation that was high enough, forget that target area.

Now go back into the original, full resolution pictures. Re-determine the autocorrelation threshold for the full resolution target area. Re-optimize the correlation for each of the promising cancidate areas. Test these correlations for bad matches and ambiguity. Discard the target area if it fails these tests, otherwiss interpolate tne match in the full resolution pictures and record it. Go on to the next target area.

Continue matching target areas in this fashion until enough matches with the proper spatial distribution ars obtained or the list of matchable areas is exhausted. Take the results and do your thing with them.

The algorithm described here has not been implemented in totality, however, most of its jieces have been implemented. Reduction of images is accomplished by a program called PICSEE by Lynn Quam. The initialization and sorting of target areas is done by the author's program VECTDO which calculates the color vectors described ir. Chapter 3 or VECTBO which does the black-and-white vectors. The target matching is done by the author's program NEWPTS. FInal decisions in the full-scals images are done by thic author's program REFINE. All of these programs are written in the SAAL dialect of ALGOL (VanLehn, 1973) at the Stanford Artificial Intelligence Project. Critical inner loops are writtsn in START_CDDE, an embedding of PDP-18 assembly language into SAIL.

Illustration 6-2 shows a set of matches produced by this system of programs and run through the author's program DEPTH to figure the depthe at each point pair in meters.
a COMPLETE MATCHING

The ultimate combination of matching techniques occurs in an algorithm for creating a complete matching. Such an algorithm puts together all of the techniques we have developed and shows how they interrelate.

We begin with the algorithm described in the first section of thie chapter. This gives us a set of precise interpolated matching areas. We
feed the point palrs to a camera model derivation routine which returne a camera model.

Next we seek low variance regions and employ one of the uniform region growere described in Chapter 5 to color these regions unmatchable. All region growing is done in an auxiliary "picture" which we will uee to keep track of the parte of the first image that we have proceeeed and to record the matches which have been made.

The matches which determined the camera model are then un-interpolated--that ie, they revert to the discrete form. they had before interpolation-and put onto a stack of regions to be extended. A match palr le popped off of thie etack and passed to the reglon grower for extending matchee. Ae the region grower proceeds, it marks in the areas it growe in the recording pleture and in a second auxillary plcture whlch keeps track of whlch area centers in the second Image have been matched.

When the region grower finishes each sub-region having the same dleplacement (dl,dJ), a cleanup algorithm goes around to all of the points marked BAD on that round. So that future growings can have a chance to work on them, they are re-marked as being unmatched and placed on the etack of palrs of polnts waiting to have the region grower applied.

Each pair of points taken off of this stack ie re-MATCHed (see Appendix B) to find the correlation peak, which is compared to the autocorrelation threehold. Point pairs which pass this criterion, and haven't been overgrown by some previous extenslon, are paseed to the region rrower, untll the stack of point paire awaiting the region grower becomss empty.

When the orlginal set of matches has been exhausted, we begin looking In the recording picture for areas whlch have not been marked. For a representative polnt in the midst. of euch a region, we attempt matchlng ueing the camera model ae deecribed In Chapter 3. In thle caee, we can further limit our eearch along the back-projected line in the second image with the knowledgy that eome of the points in the second image have already been matched, hence do not need to be considered. For each match found this way, the region grower ie etarted up again. This continuee until all of the unmatched areas have either been examined or are smaller than some critical eize, below whlch we do not bother with them.

Ae yet, this algorithm has not been Implemented as a whole. However, most of the parte do exist is separate programs whlch communicate with each other via disk fllee of data. In addltion to the programs described in the last estion for finding a set of well-distrlbuted matchee, we wee CAMERA, written by Donald Gennery at Stanford A.l. to determine the camera model corresponding to our set of polnt palrs. The finding and marking of low variance areae le done by the author's progrem LOWINF. The actual extension of reglons from alle of matching arsa centers is dono by the author's
program MGROW. The camera model search for matching point paire is implemented by the author's program CAMSCH. As with the programs from the last section, these were written in SAIL on the PDP-10 at the Stanford Artificial Intelligence Laboratory.

Illustration 6-3 shows the results of the author's program EMAKE on a complete mapping generated by this system of programs.

\square
\square
\square

1
\square
\square
\square
Illustration 6-1. Yard pictures, with overlaid grids for target and candidate areas. Notice that the candidate areas are on a much finer grid than the target areas. A typical target and the representative candidate which most closely resembles it are indicated by squares.

Illustration 6-2. Barn pictures, showing a set of matches produced by NEWPTS. The dots indicate the center points of the matching areas; the numbers by the dots give the distances in meters from the first camera to the 3-dimensional points which correspond to the point pairs.

Illustration 6-3. The canyon pictures, showing a complete matching. The outlines show major depth discontinuities and delimit areas which could not be matched.

Chapter 7

CONCLUSION

It was the purpose of this thesis to investigate techniques by which areas of one picture could be matched wlth the corresponding areas from the second image of a stereo pair. We started with the assumpticn that we had two images of the same scene which differed somewhat, but the majority of which could be matched las opposed to mapper, which is a different procesel. That is, we treated those parts of the scene for whlch no gross dietortione had been introduced between the two views. Our objective of making matches efficiently (ie. without calculating the correlation between the target area and candidate areas centered at every polnt in the second picture), was to be reached by presenting techniques by which this could be accomplished.

ACHIEVEMENTS

In thls thesis, we have presented tools and techniques by which areae in one picture can be efficiently matched with the corresponding areas in the second picture.

We have discussed three measures of match which are suitable for thie purpose, normalized cross-correlation, rcot-mean-square error and absolute difference. In addition to the ordinary one dimensional versions of these measures, we have doclimented correlation for use in two dimenslons, derived color or vector correlation, masked correlation, and weighted correlation, and explained function correlation, which can be used for mapping. We have discussed some properties and relative efficiencics of the baeic measures. We have mentioned the existing techniques of fast Fourier convolution and sampling for making the calculation of these basic measures more officient, but pointed out their shortcomings. it is our position that our techniquee have none of these shortcomings and are more efficient that theee other me thods.

We have discussed several methods for pruning the search for a match. Gridding and reduction each give a savings factor of n^{2}, where n depende on the data in the images, but is typically 3 (savings factor is 9) for gridding and 5 to 18 (savings factor is 25 to 188) for reduction. Similarlty glves a savings factor of 188 to 158 for the author's data. Camera models give a savings factor of N, the width of the plcture--typically about 208. World model assumptions can result in a savings factor of almost N^{2}, the area of the plcture--typically 10,808 to 48,800 .

For those who do not have camera models given, is have included the mathematics necessary to convert a set of matchings into a workabie camera todel. We have also included calculations whlch use this modei to find the depth of the 3 -dimensional point corresponding to a given pair of image points.

We have discussed the fact that, with real data, not all target areas are matchable. We have given methods by which some of the major typee of these unmaichabilities can be detected in the original data. Since some unmatchable targets cannot be detected directly, we have developed methods for detecting when a proposed match is not really a matcin.

We have discussed region growing techniques which can be used to extend matching areas. Because these are based on the continuity assumptlon, a sort of low level world modei assumption, thsy are quite efficient methods of finding matches. We have aiso presented region growing techniques which can be tmployed to delimit uniform regions in one image.

Finally, we have presented two aigorithme demenstrating how the abetract techniques we have developed and documented can be combined to perform useful functions in the processing of stereo images.

APPLICATIONS

Some of the techniques of this thesis have aiready been adapted for use in various artificial intelligence and robotics tasks. In addition to the author's programs mentioned in Chapter 6, the reduction, gridding, and eimilarity techniques and the uniform region growing have been incorporated into ρ rograms for servo-ing a computer driven cart [Quam, undocumented research, 1973]. Gridding and the continuity assumption form the basis for programs in a feasibllity study for automating photogrammetrlc etudies of the planet Mars during the 1975 Viking mission [Quam, unpublished research proposal, 1973J. The complete matching techniques described in Chapter 6 will undoubtedly play a part in this applicatlon, also.

Applicatlons of multiple image processing also occur in medicai research. The registratlon of time-lapse x-rays for further processing is only one of many possibilitles.

Another eventual appllcation ls pianetary exploration. For inhospitable environments and extreme distances, on-board computer processing of images wili be vital to mission success.

AREAS FOR FURTHER INVESTIGATION

In the process of our investigations, we have discovered a number of areas which need more work, as well as several interesting extensions of our work.

The field of area mapplng is for the most part untouched. We have scratched the surface with this thesls on matching and our brief comments in Appendix D. Much more can and should be done In thls field. Complete, separate investlgations of techniques for motion and near-field stereo are needed.

We have excluded noise from our data. There needs to be exteneive work on the effects of noise on matching. Also in nesd of exploration are the techniques for alignment of regions by boundary matching, touched upon in Appendix D .

We leave these as challenges to future investigators.

Appendix A

the images

The techniques and algorithms described in this thesis have been developed and tested using principally four pairs of pictures, which are described and presented in this section. Other pairs of picturse have had isolated techniques used on them, but not sufficiently to warrant their being presented here.

The images used were mainly of outdoor scenes. Some contained man-made objects while others did not. The main eriterion for selecting these particular pictures to work with was that they were avaiiable and that they had a certain esthetic appeal to the author.

Due to the limited facilities available for printing this thesie, it is not feasible to reproduce the images in color. Consequentiy, the illustrations presented here are black and white vsrsions of the images used.

THE BARN PICTURES

The first and most used pair of pictures is of a barn and field near the author's home. The barn, a rather rustic building of unpainted wood with a tin roof, appears at the left of the picture. In the foreground ie a etock fence of woven. wire topped by 3 strands of barbed wire nung on hand-split fence posts. Due to the relative camera motion between the two images of the etereo pair, ons of these fenceposte appears at the right of the first image ind at the left of the second.

The area in front of the bern is covered with green grase, on which rest several abandoned objects, including two barreis, a lawn chair, and a bench lying on its side. The shadow of a tree behind the camera and to the right fails diagonally across this grassy area.

The grassy area extends into the distance. It is crossed by several fences, one of boards near the barn and the rest of the eame materials as the foreground fence. The land rises somewhat; the skyline ie a ridge about 128 meters from the camera positions. Tho groves of oak trees cover most of thie ridgu. A telephone pole stands in the small open area on the skyline between the two groves.

The originai photographs were 35 mm color alides. The cameras were hand held in the field; the distance between the two camera positione ie
slightly over one meter. The slides were photographed under standard red, green, and blue filters to produce black and white negatives, which were then digitized commercially. The risulting 888 by 1288 pixels of data were windowed to remove a light leak in the lower portion of the foreground fence and spatially reduced by a factor of five to produce 150 by 150 imagee. lllustration A-1 shows the intensity picturse, mads by averaging the red, green, and blus component pictures.

The colors in the picture are mostly blues, greens, and browns. The sky ie a clear, saturated blue; the tin on the roof has a blue tinge. The trees and the foreground grass are green. The barn and fence poets are a rusty brown. while the grass in the distance is yellowish brown.

Tris barn pictures have been used as both color and intensity images. They are the most referred to images in this thesis, partly because they were the first images tried, partly because they present so many different probems and exercises for matching, and partly because they are the author's favor tes among the images used.

Actually, the br.. rictures violate the hypothesis that the change in point of view does not significantly change the perspective of the scene. The barn door is half-again as wide in the second imags ae it is in the first, a significant change. Thess changes, along with the "moved" foreground post, are what make this pair of picturss difficult, hence valuabls.

THE LAB PICTURES

The second pair of pictures is of Stanford University's D. C. Powers Lsboratory, where the Artificial Intelligence Project is housed, and where the author works. The laboratory building crosses the picture in the middle distance. Behind it is a row of eucalyptus trees, through which the skyline, a ridge about five miles away, can be sesn.

The immediate foreground is a roadway. Between ine road and the lab building is a parking lot filled with a variety of cars. A grassy area is immediately in front of the building, divided by a concrete walk with eteps. A few cars ars parked on this grassy arsa slightly left of the center of the images. Due to the elight time difference betwesn the actual taking of the two photographs, there is a man walking down the eteps in the first picture who does not appsar in the second picture. Also, ons parking space has been emptied and another fillsi in that time interval.

Lighting is from overhsad, with the sun slightly ill front of the camera. Thus the near faces of the building, cars, and even the treee are in ehadow. Some reflection occurs from automoblle windshielde. Since the day was elightly enoggy, shadows ars silghtly diffuse and the dietant hills hardly vielble.

The original photographs were 35 mm color slides. The camerae were hand held in the field; the distance between the two camera poeitions is approximately ten meters. The slides were photographed under standard red, green, and blue filters to produce black and white negatives, which were then digitized commercially. The resulting 1280 by 888 pixels of data were windowed to remove a light leak at the right end of the building and spatially reduced by a factor of five to produce 150 by 158 images. Illustration $A-2$ shows the intensity pictures, made by averaging the red, gremn, and blue component pictures.

Coisrs are predominantly blues and yellows. The shadows on the trees and building o:srride their true colors with a blue tinge. Most of the cars in the lot are blue, grey, or white; the station wagon in the first row is red, but again its color is !argely masked by the shadowed near side and the glare off of the hood. The grassty areas are yellow, with some green along the walkway.

The lab pictures have been used as both color and intensity images. In spite of the wide separation between the cameras, all of the objects are far enough away to avoid problems with perspective distortior. However, the presence of many man-made objects of uniform color and having linear edges makes this pair of pictures interesting.

the canyon pictures

The third pair of pictures were taken from the rim in Bryce Canyon National Park of one of their sandstone formations. In the middle distance are pinnacler and a narrow spine of croded sandstone running across the picture. In the far distance is the other side of the canyon with sparse evergreen trees clinging to it. Lighting is from the right, casting many of the faces of the pinnacles into shadow.

The original photographs were 35 mm color slides. The cameras were harid held in the field; the distance between the two camera positions is approximately fifty meters. The slides were digitized by use of a special illuminating attachment to one of the A.I. Lab Hand-Eye television camerae. The pictures in Illustration A-3 are rull ecale 188 by 120 windows out of the middle of the originals, to pick up the most challenging features.

This was a particularly interesting pair of piatures from an artificial intelligence point of view. Using only the intensity information, humans were, for the most part, unable to pick out the exact location of the edges of the mid-ground formations. Color information helped, since the background formations are yellow-orange, while the midground ones are more red; also the green of the trees helped to distinguish them from dark shadowe in crevasses. Still, some edges required looking at both of the color picturee before people could locate them exactly. The challenge wae to see
whether the matching and depth discontlnulty algorlthms could do weli with only stereo Intensity information.

IHE YAFIU PICTURES

The four th palr of pictures is of a portion of the area around the author's home. Part of the cinder-block garage wall is visible at the right side of the picture, with ivy growing lim it. A bard fence extends from the corner of the building across the picture. Pyracantha bushes obscurs the fence at the left edge of the picture. The fence is broken in the middle of the picture by a wooden gate, which is standing open, away from the camera. There is a small rug hanging on the gate, a pair of gloves on the fence, and a jar sittling on the gate latch post.

Two large firewood logs ars in the foreground in the middle of the picture, one lying on its side and one standing on end. The one on end has an ax handle lying across it; the ax head is embedded in the top of the log. An automobile wheel lies between the upright \log and the ivy. There ie a plastic dish-pan upside down under the pyracantha nearest the gate. The roof Iine of another building is visible just over the fence. Tree tops form the background of the picture.

The original photographs were 35 mm black and whlte negativee. The cameras were hand held in the field; the distance between the two camera positions ie approximately one meter. The negatives were digitized commerciaily, and the 800 by 1280 pixels of deta were windowed eifghtly and spatially reduced by a factor of flve to produce 220 by 168 imagee. lllustration A-4 shows the resulting images.

Again, parts of this pair violate the hypothesis of no perepective distortion. Specifically, the foreground logs and the ax handle show significant differences in orientation in the two images. However, the other parts of the images make excellent material for matching. Like the canyon pictures, humans have some difficulty separating the background from the foreground in this pair, particularly where the pyracantha bushes blend into the background trees.

Illustration $\mathrm{A}-1$. The barn pictures.

Illustration $\mathrm{A}-3$. The canyon pictures.

Appendlx B

BASIC CORRELATION TOOLS

For the purposes of this thesis, the measure of match between two areas will be normalized cross-correlation. It wlll ordlnarily be calculated between areas that are rectangular in shape and have odd dimenslons, le. $2 m+1 \times 2 n+1$ windows. This makes it easy to characterize the area by its center point.

In this and the follwing appendices, the following mathematical conventions are used.

Vectors are indicated by an arrow ${ }^{-}$over the capital letter which names the vector, e.g. \vec{A} is the vector named "A". Unit vectors are indicated by a hat "over the lower case letter which names the vector, e.g. \hat{a} is the unit vector named "a". Specific 2- and 3-dimensional vectors may be written out (x, y) or (x, y, z), respectively.

Vector dot product is indicated by a raised dot \cdot.
The norm or length of a vector \vec{A} is denoted by $|\vec{A}|$.
The mean of a vector quantity \vec{A} is denoted by $\overline{\vec{A}}$.
Exporentials of the quantity e (the base of natural logarithms) are represented by using the function EXP.

area correlation

The basic measure of match is the "corrolation coefficient" discussed in most elementary statistlcs books. (For exampis, see freund [1962]) In our notation, thls correlation is

For our purposes, \ddot{x}_{i} and Y_{i} ere Intensity values at corresponding pixels within the rectangular windows. ihls ls implemented as

$$
\begin{equation*}
C O R=C(X, I x, J x ; Y, I y, J y) \tag{B-b}
\end{equation*}
$$

where ($\mid x, J x)$ and $(\mid y, J y)$ are the centers of the target and candidate areae, respectively. Since this is rather cumbersome to write, we will abbreviate it with the notation of Equation B-a, leaving the center points and the fact that i ranges in two dimensions over the $(2 n+1) *(2 m+1)$ pixele in the surrounding windows implicit. The means, of couree, are calculated over thie same area.

This is our ordinary form of corr:lation. It ie primarily ueeful in an application where eash image consists of ne (black-and-white) picture.

COLOR CORRELATION

In the case of color images there are three pictures involved. Since the color images we currently are working lith were obtained by digltizing three black and white picturee which resulted from photographlng an ordinary color elide under red, green, and blue filters, respectively, we ehall conelder the components of our color pleturee to be red, green, and blue, which we will symbolize as R, G, and B.

It le eomewhat more convenient to think of a color pleture P as one array of vector-valued points (PR, PG, PB) inetead of three separate arrays of ecalar-valued pcinis PR, PG, and PB. This suggeets regarding the text-book verslon of norifilized cross-correlailon, Equation (B-a), ae the one-dimensional case of a vector function

$$
\sum_{i}\left(x_{i}-\bar{X}\right) \cdot\left(\bar{n}_{i}-\bar{y}\right)
$$

VCOR $=$

$$
\operatorname{sart}\left(\sum_{1}\left|X_{i}-\overline{\bar{X}}\right|^{2} * \sum_{1}\left|\bar{P}_{i}-\bar{P}\right|^{2}\right)
$$

Coneidering only the numerator of VCOR, and letting \bar{X}_{i} be (XR, XG, XB) ; and \vec{Y}_{i} be $(Y R, Y G, Y B)_{i}$, we have

$$
\begin{aligned}
& \sum_{i}\left(\bar{X}_{i}-\bar{X}\right) \cdot\left(\vec{Y}_{i}-\bar{Y}\right) \\
&=\sum_{1}\left((X R, X G, X B)_{i}-\overline{(X R, X G, X B)}\right) \cdot\left((Y R, Y G, Y B)_{i}-\overline{(Y R, Y G, Y B)}\right) \\
&=\sum_{1}\left(X R_{i}-\overline{X R}, X G_{i}-\overline{X G}, X B_{i}-\overline{X B}\right) \cdot\left(Y R_{i}-\overline{Y R}, Y G_{i}-\overline{Y G}, Y B_{i}-\overline{Y B}\right) \\
&\left.=\sum_{1}\left(X R_{i}-\overline{X R}\right) *\left(Y R_{i}-\overline{Y R}\right)+\left(X G_{i}-\overline{X G}\right) *\left(Y G_{i}-\overline{Y(}\right)+i X B_{i}-\overline{X B}\right) *\left(Y B_{i}-\overline{Y B}\right)
\end{aligned}
$$

If we notice that all three terms withln thls sum are the same in form and change the definitlon of 1 so that it ranges over all components ae well ae all elements of components, we get

$$
=\sum\left(X_{i}-\bar{X}\right) *\left(Y_{i}-\bar{Y}\right)
$$

Which is the numerator of the formula for ordinary correlation Equation ($B-a$). By slmilar manipulations, the two terms iri the denominator of VCOR become the same as the two terms in the uenominatur of Equation ($\mathrm{B}-\mathrm{a}$). Thie means that color correlation is really a dressed up form of ordinary correlation. This is convenient, for it means that color correlatlon will have all of the properties that ordinary cnrrelation has teen observed to have.

MASKED CORRELATION

Obviously correlation need not be restricted to rectangular wirdows; the correlatlon coefficient can be calculated over any eample, regardieee of shape. The only reason for usin ihe rectangular windows was that it is easier to set up indices to cover a rectangular area than to make indices trace out an arbitrarlly shaped area.

To do correlricion over oddly sisaped areas, it is first neceseary to implement a way of covering arbitrarily shaped areas easily. Yoward this end, the idea of i, correlation mask has been instituted. The mask consists of a rectangular irray M which completely covers the area of interest and is fllled with ones In the area of Interest, and zeros elsewhere. In effect, M is a template for the irregular area.

To use the mask, one sets up Indices to cover the rectingle, as in ordinary correlation, then uses each paint of the maek as a predicate to tell whether or not to include the correnponding plxels in the sums for the
correlation coefficient. Mathematically, this is equivalent to multiplying each term of the sums by the corresponding term of the mask, that is

where it is understood that the summations necessary to calcuiate the means are done only over the valid part of the mask.

When !e attempt to use a zero-one correlation mask to match the top of the foreground fence post in the barn pictures, we discover that the masked post correlates best with a piece of the barn wall bsiow and t the right of the intuitive match. Using the inverse of this correlation mask--keeping the background and masking out the post--works fine; the trees and sky match up as ons would intuitively expect them to.

Wrat is the difference betwsen thess two cases? In the second case, we are attempting to remove an intruding object and match around it. We don't care what shape the object is; ws merely want to get rid of it.

In the first case, we are attempting to match a specific object with definite boundaries. In masking out ths background, we have aiso masked out the fact that the post has edges, turning the post into a pisce of wood which matches the wood of the barn as well as it matches its true counterpart in the second image.

In order to match specific objects, it is necessary to somehow retain information about the borndaries of the objecte. One way to do thie is, rather than maeking out everything outside the areae of intereet with zeroee, uc instead weight the corrsiation so that all of the window is considered, but the areas of interest influsncs the correlation mors than does their background.

WEIGHTED CORRELATION

This suggests replacing the zsro-ons correlation mask M by a weight maek W, yielding,

$$
\text { WCOR }=\frac{\sum_{i} W_{i} *\left(x_{i}-\bar{X}\right) *\left(Y_{i}-\bar{Y}\right)}{\operatorname{SQRT}\left(\sum_{i} W_{i} *\left(X_{i}-\bar{X}\right)^{2} * \sum_{i} W_{i} *\left(Y_{i}-\bar{Y}\right)^{2}\right)}
$$

This necessitates changing the nature of the mean used from the ordinary averaging mean to a weighted mean. Thus, instead of using
$\bar{x}=\frac{\sum_{i} X_{i}}{\sum_{i} 1}$
we want to use

Indeed, when the correlation mask for the foreground post is filled with ones and sevens, instead of zeroes and ones, the algorithmic match is the same as the intuitive match: post matches post.

In addition to being used in moet template match, ing, WCOR can also be used to place arbitrary weights in a wind sw, as shown in lilustration B-1.

POINTER CORRELATION

Most correlation is implemented in a very orderly fashion. A pointer starts at the upper left-hand corner of the rectangle to be covered and moves across the row of pixels. When it gets to the right edge of the rectangle, it returns to the left edge in the next row. The reason for this ie efficiency.

No matter whether the pixels are placed one per word for fixed-length byte) or are packed and unpacked by special byte handling instructions, the most efficient way to access an area of bytes is to have a pointer which one increments. The efficiency consideration pretty well constrains one to scanning lines of the picture.

Correlation does not demand this. Ail that correlation requires is to be given paire of points, ore out of each picture, which are then incorporated into the sums. Another way to implement correlation is to first
set up a table of pointers, then simply run a secondary pointer down the table of polnters. Implemented in this fashlon, correlation becomes

$$
\sum_{i}\left(X\left[P_{i}\right]-\bar{X}\right) *\left(Y\left[P_{i}\right]-\bar{Y}\right)
$$

PCOR

$$
\operatorname{SORT}\left(\sum\left(X\left[P_{i}\right]-\bar{X}\right)^{2} * \sum\left(Y\left[P_{i}\right]-\bar{Y}\right)^{2}\right)
$$

where i now ranges over the table of pointers, and the mear.s are calculated from this same set of pointed X and Y.

Once one has accepted the extra cost caused by looking up the pointer before one can use it, other benefits become obvious. For instance, we are no longer tied to rectangular areas. Once the pointers are set up, it is immaterial what shape they cover--hexagons, circles, trapezoids, and even grossly irregular shapes are all the same to this correlation. Thls does away with the need to cover a rectangular template which tells whether or not to include a given point in the currelatlon. SInce as much as half of a template is not used most of the time, not having to consider those points at all could result in a vast speedup of correlatirig Irregular areas.

This form of correlation also makes it posslble to correlate in pletures with known distortions. The polnters are simply set up to take the distortion mapping into account. For Instance, it one picture is known to have a scale-factor difference from the other, the target area can be coverad bu polnters at unlt spacing thile the candldate area le covered by pointers determined by the scale factor. Any other known distortion can be handled slmilarly.

One can even access the plxels in en area randomly, say to implement a Barnea and Silverman type sampllng algorlthm. All that ls needed are two parallel tables of pointers generated in some pseudo-random order.

AUTOCORRELATION

In signal processing, ths autocorrelation function is an Important tool for characterizing the frequency content of a slgnal. The fact that, for suitably constrained signals, the Fourler transform of the autocorrelation function is the power-denslty spectrum of the slgnal explalns why an examination of the autocorrelation peak can give such a good Indication of the presence of extremely hlgh or low frequency components in the Image [Lathi, 1968]. Dur main Interest In autocorrelation, however, is not as a tool for characterizing the image data, but as a tool for determining what correlation values might be expected for a given target area.

Let. $A(I x, J x ; d i, d j)$ denote the correiation between an area of picture X centered at $(I x, J x)$ and an area of picture X centered at $(I x+d i, J x+d j)$. Ini the notation of Equation $B-b$, this is expressed as

$$
A(\mid x, J x ; d i, d j)=C(x, \mid x, J x ; x, I x+d i, J x+d j)
$$

If the two images were identical except for a constant transiation $(T i, T j)$, gain A, and offset $B--i e . \quad Y[i, j]=A * X[i+T i, j+T j]+B$ for all (i, j) in the images--then the correlation and autocorrelation surfaces would be exactly Identical. For a pair of areas centered at (lx, Jx) and (ly,Jy) whlch are an intuitive match, we would have

$$
\begin{equation*}
A(\mid x, J x ; d i, d j)=C(X, \mid x, J x ; Y, I y+d i, J y+d j) \tag{B-C}
\end{equation*}
$$

for all (di,dj) within the two images.
Thie is rarsly the case, since most data of interest will have more meaningful changes between the two images than a constant translatlon, gain, and offset. However, when we assuned that there is little or no dietortion over windows of the size being correlated, we effectively postulated that the changes between the two images are small locally. Consequentiy, while Equation B-c usually will not hold for all (di,dj) within the two images, it might be expected to hold within the immediate vicinity of the matching area centers.

Now, we know that correlation of ($\mid x, J x$) with areas centered at points around (ly, Jy) yields values not greater than the correlation with (|y, Jy), ie., for $B<|(d i, d j)|<2$,

$$
\begin{equation*}
C(X,|x, J x ; Y,|y+d|, J y+d j) \leq C(X, I x, J x ; Y, \mid y, J y) \tag{B-4}
\end{equation*}
$$

for it was the fact that we were at a correlatloil peak which helped to determine (ly, Jy) to be the match. Substituting Equation B-c into the left slde of Equation $B-d$, we have for $B<|(d i, d j)|<2$

$$
A(|x, J x ; d|, d j \mid \leq C(x,|x, J x ; Y,| y, J y)
$$

ie. that the match correlation is not less than any of the immediate nelghboring $A(|x, J x ; d|, d j)$. Consequently, we would expect that the correlation ie not less than the maximum of these autocorrelations, that is,

$$
C(X,|x, J x ; Y,| y, J y) \geq \operatorname{MaX}_{B<|(d \mid, d j)|<2}^{\operatorname{Max}} A(|x, J x| d i, d j)
$$

Experimentation has shown that the match currolation meetis thie criterion for some 90% of the good matches found. In addition, the correlation at false matches falls to meet this criterion for about 95% of the cases examined.

A related measure, an autocorrelation calculated between the target area and a copy of itself crsated by displacing different parte of the correlatlon wlndow in different directions as shown in lllustration B-2 also works quite well as a floating threshold. This measure has the advantage that it can be calculated in one pass over the data, rather than the 8 paseee requlred to calculate the 8 neighboring autocorrelations for measures based on $A(l x, J x i d i, d j)$ for $B<|(d i, d j)|<2$. Effectively, this threshold measures how well the target area correlates with a slightly distorted version of itself. A large number of other distortion patterne can also be ueed.

This autocorrelation threshold passes about 98% of the good matches found, and rejects approximately 99% of the false matches encountered. It is this threshold which ie most commonly used in region growing, both becauee of its ease of calculation and its accuracy of prediction. Unfortunately, we do not know why it eeems to function better.

We have discussed autocorrelation in terms of the standard area correlation. Of course, if another form of correlatior is used to determine the match, then the autocorrelatlor must use that same type of correlation, be it maeking, weighting, or pointer correlation. Similarly, if the measure of matc'l used is not correlation at all, but one of the difference measures, then the "autocorrelation" becomss the "autodifference". Only the formula for calculating the "automeasure" changes; the mechanics of the procees remain the same.

Autocorrelation has a number of uses. As we mentioned in Chapter 3, the autocorrelatlon peak can be used to determine the proper width of the grid for the search roduction technique of gridding. The value of the autocorrelation threshold can also be included in the vectors used in the technique of similarity, since similar areas really ought to have similar autocorrelations. Autocorrelation surfaces help to determine whether or not a glven target area is suitable for matching. Most valuable, perhaps, ie deciding whether or not a match is good, elther for ieolated matchee or for region growing.

THE MATCH SUBROUTINE

Another basic part of correlation usage is the local strategy used to search for a matchlng point in an area thought to be promising. Most of our algorlthms for determining whether or not an area is promising are based on whether the center of the area looks promising. Therefore, it makes senee, when considerlng the area in detail, to look first at points near the center and gradually work out toward the edges of the area. We have already observed that the correlation nesd not be calculated at every point of an area--calculating the correlation over a grid is adequate.

Based on these observations, the following local search algorithm was
devised [Quam, 1971] to seek the highsst correlation within a square area. The algorithm is Implemented as a subroutine called MATCH, which takes four arguments. The flrst two are the coordinates of the center point of the area to be searched; when the routine rsturns, these variables contain the coordlnates of the point found to have the highest correlation. The third argument glves the radius to whlch the search will be carrled out; the fourth tells what value of correlation ie to be the threshold for search terminatlon.

As shown by Illustration B-3, the search starts at the center point of the candidate area, then sp nals outward In the pattern Indicated. At each polnt marked with $a *$, the correlation is calculated with the target area. The point having the highest correlation found so far is kept track of. Should the correlation excesd the preset threshold or the search radius be reached, the search stops spiraling and goes into hill-cllmbing mode at the polnt which had the highest correlation.

In hill-climbing mode, the algorlthm examines the correlation at each of the elght points Immediately surroundling the present point, and moves to the polnt which has the highest correlation. This loop is repeated untll there ls no higher point to move to, i.s. the summit of the hill has been reached.

The grld for the spiral is determined by a table within the routine. Orlginally, Quam set the table so that the algorlthm used a grid spacing of 2 for the flrst loop, 3 for the next 3 loops, 4 for 2 loops, then 5 . This author has lmplemented a version which uses a constant grid spacing for all loops, which is communlcated by a global variable MGRID. This parameter is set by a routine whlch examines the autucorrelation peak, as explained in Chapter 3.

the lmatch subroutine

MATCH ie a two-dimensional search etrategy. When the area of interest has been confined to a linu, however, we need a one-dimensional version, LMATCH. LMATCH has five argursents. The first four are the same as for MATCH, except that the center polnt is sypressed as a real point lying on the glven llne. The fifth argument is the elope of the glven line.

The search starts by calculating the correlation at the picture point closest to the glven center polnt. It then moves n unl ts up the line from the glven starting polnt and calculates the correlation at the closest pleture polnt, then repeate thle n unlte down the llne from the starting point, then $2 n$ unlts up the line from the starting point, then $2 n$ down, then $3 n$ up, then $3 n$ down, etc. Agaln, n is determined from the autocorrelation and communicated by MGRID.

Like MATCH, LMATCH kesps track of the best correlation found so far and exits from this "ping-pong" spiral when it reaches the radius or finds a correiation above the threshold. From the point having the best correlation, it goes into "inchworm" climbing mods, moving along the line in the uphill direction until it can't go up any more. Then it goes into the two-dimensionai hill climb of MATCH, just in case the line was a littie off and the matching point is not exactly on the line.

INTERPOLATION

It should be noted that all of the above techniques use correlation over arsas centered on integer points in the picture. In practice, however, the proper match (in the sense of the candidate area which represents the same piece of the scene as the target arsal for a given target will be an area csntered on a point in Picture Y with non-integer co-ordinates. Since the only correlation valuss which are avallabie are those at integer points, some form of interpolation is necepsary whsnever high pracision is desired.

Therefore, the final opsration on a match destined to be used for depth, camera modgi, or world model determination is an interpolation. We would like to fit a function of the form

$$
\operatorname{EXP}\left(-\left(A * D I^{2}+B * D J+C * D I * D J+D * D J^{2}+E * D J+F\right)\right)
$$

to the currelation values $C(x, I x, J x ; Y, I y+D I, J y+D J)$ for ($D I, D J$) within some radius of the matching center points. To do this, we fit the polynomial $A * D I^{2}+B * D I+C * D I * D J+D * D J^{2}+E * D J+F$ to the logarithm of the correlation values. Soising this function for a maximum gives the interpolated non-integer center point for the matching arsa in Picture Y.

When a model of the autocorreiation surface is desired, this same exponential fitting procsss is applied. Rather than being used to interpoiate the autocorreiation, this sxponential surface is used as an approximation to the autocorreiatior peak. Examination of the coefficients of Equation B-e provide an sasy way to determine the width of the peak, whether for calculation of the grid spacing or determination of the euitability of the area for matching.

[^1]
illustration B-2. A sketch showing the manner in which a window could be distorted to determine an autocorrelation threshold over it. Pixele within the four areas spaced about the center point C as shoun in the left drawing are correlated with pixels in the areas spaced about C as shown in the right drawing.

Illustration 日-3. A representation of the search pattern for the subroutine MATCH. The algorithm begins at the center point and spirals outward following the arrows and calculating correlations at the points marked $*$. It elope epiralling when it finds a sufficiently high correlation or reaches the radius of the spiral.

Appendix C

CAMERA MOOEL CALCULATIONS

For our purposss, a camera model consists of seven numbers which specify the principai distances of the two cameras and the poeition and orientation of the sscond camera with respect to the first. (The principai distance of a camera is the distance between its image piane and ite principal point aiong its principai axis as shown in lliustration C-1). Thie appendix contains the mathematics used in deriving and utilizing camera modeis.

DERIVATION OF CAMERA MGDEL EQUATIONS

We begin by arbitrarily placing a left-handed 3-dimensionai co-ordinate system on the worid in the following manner. The origin of this co-ordinate system is the principai point of the first camera. The principal axis of the camera bscomes the z-axis of the world. The scale of the co-ordinate system is such that one unit equals the width of one pixal on the image piane. (See Iilustration C-1)

Msthematicaliy, the principai point has position ($0,8,8$) ; a point on the principai axis is represented by $d *(\theta, 8,1)$, and the image piane hae the equation $2=F 1$. The I - and J-axes of the first camera piane are parailei to the X - and Y-axes of the reference co-ordinate system, respectiveiy, and in the plane $z=F 1$, that is,

$$
I=(0,8, F 1)+I \times *(1,0,0) \quad \text { and } \quad J=(0,0, F 1)+J \times *(0,1,0)
$$

The principai point of the second camera is the point in 3-8pace deecribed by the bassiine distance D, which is the distance between the principal points of the two cameras, and by two angies, $\alpha 1$ and $\alpha 2$. When the firet camera has been panned by $\alpha 1$ radians, then tilted by $\alpha 2$ radians, ite principal axis wiil point clown the baseline toward the principal point of the eecond camera. (Sec lilustration C-2)

Mathematically, panning is equivaient to a rotation about the Y-axis; tiiting ie equivalent to a rotation about the x-axis. The vector U is obtained by taking the vector $(0,0,1)$, pro-multipiying it by the matrix $R x(\alpha 2)$, representing a rotation of $\alpha 2$ degrees about the X-axie, pre-muitipiying this resuit by the matrix Ry(al), representing a rotation of αi about the Y-axis, and finaliy muitipiying this quantity by the scaiar D, i.e.

$$
\begin{aligned}
J & =D_{*}\left(R_{y}(\alpha 1) *\left(R_{x}(\alpha 2) *(\theta, \theta, 1)\right)\right) \\
& =R_{y}(\alpha 1) * R_{x}(\alpha 2) *(0,0,0)
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
\cos (\alpha 1) & 0 & \sin (\alpha 1) \\
0 & 1 & 0 \\
-\operatorname{SIN}(\alpha 1) & 0 & \cos (\alpha 1)
\end{array}\right] *\left[\begin{array}{ccc}
1 & 0 & 8 \\
0 & \cos (\alpha 2) & \sin (\alpha 2) \\
0 & -\operatorname{SIN}(\alpha 2) & \cos (\alpha 2)
\end{array}\right] *\left[\begin{array}{l}
\\
0 \\
0 \\
1
\end{array}\right]
$$

Where matrix multiplication is denoted by $*$ and done in the usual fashion. Performlng these multiplications, we have

$$
\begin{equation*}
U=D *(\sin (\alpha 1) * \operatorname{Cos}(\alpha 2), \sin (\alpha 2), \cos (\alpha 1) * \cos (\alpha 2)) \tag{C-a}
\end{equation*}
$$

The principal axis of the second camera is described by two more angles $\beta 1$ and $\beta 2$. When the first camera has been panned by $\beta 1$ radians, then tilted by $\beta 2$ radians, its axis parallels the axis of the second camera. (See llustration $C-3$) A point sn the principal axis is given by the position vector $\vec{U}+s * \hat{h}$, where s is the distance from the principal point \bar{U}, and \mathcal{K} ie a unit vector in the direction of the principal axis of the second camera,

Mathematically, \hat{h} is expressed by pre-muitipiying the vector $(\theta, \theta, 1)$ by the appropriate rotation matrices $R_{y}(\beta 1)$ and $R x(\beta 2)$, I.e.

$$
\begin{aligned}
\hat{f} & =R_{y}(\beta 1) *\left(R_{x}(\beta 2) *(0, \theta, 1)\right) \\
& =R_{y}(\beta 1) * R_{x}(\beta 2) *(0,0,1)
\end{aligned}
$$

Performing these multiplications, we have
$\hat{h}=(\sin (\beta 1) * \operatorname{Cos}(\beta 2), \sin (\beta 2), \cos (\beta 1) * \cos (\beta 2))$
The image pians of the second camera is the p!ans perpendicuiar to
the principal axis at distance $F 2$ from the principal point. See Illustration (C-3) According to a standard analytic geometry textbook [Schwartz, 1960], the plane perpendicular to the vector \vec{B} and passing through the polnt $\bar{\beta}$ has the equation

$$
\ddot{B} \cdot((x, y, z)-\vec{P})=B
$$

Our image plane is defined to be the plane perpendicular to the principal axis \hat{K} and passing through the point $\bar{U}+F 2 * \hat{h}$. Substituting these for \vec{B} and \vec{F}, respectively, ylelds

$$
\hat{h} \cdot((x, y, z)-\tilde{U}-F 2 * \hat{\kappa})=0
$$

The actual orientation of the second image plane is described by the angle $\beta 3$ through which the first imags plane must roll lafter having been panned and tilted to make the principal axes parallell in order to make the internal co-ordinate axes of the first cimsra agree with those of the second camera. (See Illustration $C-4$) Let the I- and J-axes of the second camera p lane be represented by the unit vectors \hat{f} and \hat{g}, respectively.

The orientations of \hat{f} and \hat{g} depend on the pan and tilt angles $\beta 1$ and $\beta 2$, as well as the roll angle $\beta 3$. Mathematically, a roll is equivalent to a rotation about the Z-axis. Let $R y(\beta 1)$ be the rotation matrix corresponding to panning by $\beta 1, R \times(\beta 2$ i be the rotation matrix corresponding to tilting by $\beta 2$, and $R_{2}(\beta 3)$ be the rotation matrix corresponding to rolling by $\beta 3, i . e$.
$\operatorname{Ry}(\beta 1)=\left[\begin{array}{ccc}\cos (\beta 1) & 0 & \sin (\beta 1) \\ 0 & 1 & 0 \\ -\operatorname{SIN}(\beta 1) & 0 & \cos (\beta 1)\end{array}\right]$,

then we can express $\hat{\gamma}$ and \hat{g} as

Multiplying out these matrices in the usual fashion gives
$\}=1 \operatorname{Cos}(\beta 1) * \operatorname{Cos}(\beta 3)+\operatorname{SIN}(\beta 1) * \operatorname{SIN}(\beta 2) * \operatorname{SIN}(\beta 3)$,
$-\operatorname{COS}(\beta 2) * \operatorname{SIN}(\beta 3)$,
$\operatorname{COS}(\beta 1) * \operatorname{SIN}(\beta 2) * \operatorname{SIN}(\beta 3)-\operatorname{SIN}(\beta 1) * \operatorname{COS}(\beta 3))$
$\hat{g}=(\operatorname{COS}(\beta 1) * \operatorname{SIN}(\beta 3)-\operatorname{SIN}(\beta 1) * \operatorname{SIN}(\beta 2) * \operatorname{COS}(\beta 3)$,
$\operatorname{Cos}(\beta 2) * \operatorname{COS}(\beta 3)$,
$-\operatorname{SIN}(\beta 1) * \operatorname{SIN}(\beta 3)-\operatorname{COS}(\beta 1) * \operatorname{SIN}(\beta 2) * \operatorname{COS}(\beta 3))$

The 1- and J-axes for the second camera radiate from the point $\overline{0}+F 2 * \hat{h}$, so we have

$$
I=U+F 2 * \hat{h}+l y * \hat{f} \text { and } J=\vec{I}+\dot{r} 2 * \hat{h}+J y * \hat{g},
$$

To derive a camera model, one takes a set of pairs of points found to be matches and ssarches in the space of $F 1, \therefore 2, \alpha 1, \alpha 2, \beta 1, \beta 2$, and $\beta 3$ for the values of these parametery which bes accounts for these point-pairs.

Actual determination of the model is done by least-equares minimization of the measure of camera model error presented below. As in most least-squaree technlques, the number of point-pairs must be greater than $N / 2$, where N is the number of parameters being sought, and should be independent points, i.e. no three co-linear in the image planes and no four representing co-planar points in 3-space. In practice, the number of rellable pairs available, p, should satisiy $p \geq 2 N$, or in our case of $N a 7, p \geq 14$. The program which derlves the camera model sets an upper limlt of 188 on the number of paire which can be ueed.

CAMERA MODEL ERROR MEASURE

There are many error measures possible. The one presented here is the average of the error in match for each of the polnt-pairs, calculated in the image plane. To calculate the error in match for each point-pair, we first use the first camera principal point to project point x of picture X Into space as a ray, then use tle second camera princinal point for the hypothesized camera model to projeut this ray Into the second image plane as a 2-dimensional line segment, and finally evaluate the distance in the second image plane between this line segment and the matching point y of picture Y.

Point x of Picture x is the point $(I x, J x)$ in the plane of the first camera, whlch is the point $\mathrm{S}=(1 \mathrm{x}, \mathrm{Jx}, \mathrm{F} 1)$ in 3-space. The projection of this point into space is the ray from the principal point of the first camera, (θ, θ, θ), through S]. In parameterized vector form, this ray is $r * S$, $r>F 1$.

Ueing the principal point of the second camera, this ray is projected into the imago planc of the second camera. Perhaps the simplest way to clerive this is to pick two arbitrary points on $r * S$ and project them into the second camera image plane, then calculate the 2-dimensional Ilne between them.

To facilitate this, first consider projecting an arbitrary point $\overrightarrow{\mathbb{Q}}$ in 3-space into the plane P lin our case, the image plane of the second cameral perpendicular to the vector f loirection of the principal axis of the second camera) at the point $\vec{C}=\vec{U}+F 2 * f$ lirtersection of principal axis and second image plane: using the point D (principal point of the second camera) as the principal point of the projection. Clearly, the projected point lies at some $d: s t a n c e ~ t ~ a l o n g ~ t h e ~ l i n e ~ f r o m ~ \overrightarrow{a l}$ to \mathbb{J}, so can be descrlbed by the position vector $\vec{O}^{\prime}=\mathbf{U}+t *(0 ̈-U)$.

We would like to express \bar{a}^{\prime} in terms of the vectors $\hat{\mathbf{q}}$ and \hat{a} which are or tho-normal and lie In the lmage plane P. That is, we would likd to know I and J such that

$$
\begin{aligned}
& 0+F 2 * \hat{h}+1 * \hat{f}+J * \hat{g}=0+t *(1-0) \text { or } \\
& 1 * \hat{i}+j * \hat{g}=t *(\hat{0}-\hat{U})-F 2 * h .
\end{aligned}
$$

Ootting both sides of this vector equation by fives

$$
(I * \hat{f}+J \hat{g}) \cdot \hat{q}=1 t *(\overrightarrow{\mathrm{a}}-0)-F 2 * \hat{h}) \cdot \hat{f} .
$$

Expanding this, and using the fact that \hat{f} is a unit vector and e perpendicular to both \hat{h} and \hat{g}, we have

$$
1=t *(\vec{a}-U) \cdot\{
$$

Had we dotted both sides of the equation by \hat{g}, we woutd have

$$
J=t *(\hat{Q}-\hat{U}) \cdot \hat{g} .
$$

Dotting both sides by \hat{h} would give

$$
\begin{array}{ll}
t *(\mathbb{Q}-0) \cdot \hat{G}-F 2=B & \text { or } \\
t *(\mathbb{O}-\mathbb{O}) \cdot \hat{h}=F 2 & \text { or } \\
t=F 2 /(\vec{Q}-\mathbb{U}) \cdot \hat{h} . &
\end{array}
$$

Sutstituting thie expression for t into the expressione for I and J, we have

Now we are ready to project two arbitrary pointe on the ray r*S̉ into the plane P using the above equations. In the co-ordinates $c f$ the second image plane, the points $c 8 * S$ and $c 1 * S$ become the points $(x 8, y 0)$ and $(x 1, y 1)$, reepectively, where

According to our analytic geometry text (Schwartz, 1968), the equation for the 2-dimensional line through these two points is

$$
y-y 1=\frac{(y 1-y 6)}{(x 1-x 8)} *(x-x 1) \quad \text { or }
$$

$(y 1-y 0) * x+(x 8-x 1) * y+(y 0 * x 1-y 1 * x \theta)=8$.
Evaluating (yl - yo), we have

Similar manipulations giva

Substituting into ($x 1 * y 0-y 1 * x 0$), we have

$$
=F 2^{2} *-
$$

$$
(c 1 * \vec{S}-\tilde{0}) \cdot \hat{h} *(c \otimes * \vec{S}-\nabla) \cdot \hat{f}
$$

Now, substituting these terms into the equation for the line gives

$$
(c 1-c \theta) *(S ̉ \cdot h * O \cdot \hat{g}-S \cdot \hat{g} * J \cdot \hat{f})
$$

$$
(c 1-c 0) *(5 \cdot\{* J \cdot h-S \cdot \hat{0} * 0 \cdot\})
$$

$$
\begin{aligned}
& (x 8-x 1)=F 2 \\
& (c 1 * \vec{S}-\boldsymbol{J}) \cdot \hat{h} *(c 0 * 5 \text { - } \mathbf{0}) \cdot \hat{h}
\end{aligned}
$$

$$
\begin{aligned}
& (y 1-y 0)-F 2 * \frac{(c 1 * \vec{S}-\tilde{U}) \cdot \hat{g}}{(c 1 * \vec{S}-\tilde{U}) \cdot \hat{h}}-F 2 * \frac{(c 0 * \vec{S}-\tilde{U}) \cdot \hat{g}}{(c 0 * \mathcal{S}-\tilde{U}) \cdot \hat{h}}
\end{aligned}
$$

Factoring out common terms and dividing by them gives
$(\vec{S} \cdot \hat{f} * \vec{J} \cdot \hat{g}-\vec{S} \cdot \hat{g} * \vec{J} \cdot \hat{h}) * \times+$
$(\vec{S} \cdot \hat{f} * \vec{J} \cdot \hat{h}-\vec{S} \cdot \hat{h} * \vec{J} \cdot \hat{f}) * y+$
$(\vec{S} \cdot \hat{g} * \vec{J} \cdot \hat{f}-\vec{S} \cdot \hat{f} * \overrightarrow{\mathrm{U}} \cdot \hat{\underline{g}}) * F 2=0 \quad$ (C-b)
the desired line segment in the second image.
The error for that point-pair is the square of the minimum distance between this line segment which corresponds to the point x and the point y which matches the point x. (See lllustration C-5)

DEPTH RANGING

Once one has a camera mociel, it is relatively trivial to find the distance from either of the cameras to an object in 3-space represented by a point-pair. One has the points $(1 x, J x)$ and $(l y, J y)$. The ray from the principal point of the first camera through ($\mid x, J x$) $:$, given by the vector $r *(\mid x, J x, F 1)$. The ray from the princlpal point of the eecond camera through (ly,Jy) ie given by
$\hat{0}+\varepsilon *(F 2 * \hat{h}+1 y * \hat{f}+J y * \hat{g})$ (C-c)

Due to minor errors in measurements of camera model parameters or in interpolation of the matching center point, these two ray may not intersect. Using the camera model, we can correct for this. We first back-project the point x into the second image plane, giving us the line of Equation $\mathrm{C}-\mathrm{b}$. Now, instead of the point (ly,Jy), we decree the point (ly', Jy') which is on this line and which is the shortest distance away from (ly, Jy) to be the true matching polnt. This gives us the ray

$$
\begin{equation*}
\hat{U}+s *\left(F 2 * \hat{h}+I y^{\prime} * \hat{f}+J y^{\prime} * \hat{g}\right) \tag{C-d}
\end{equation*}
$$

in iieu of Equation C-c.
To simplify the notation in the foliowing derivation, let

$$
\vec{F}=(\|x, J x, F\|)
$$

$\overrightarrow{\mathrm{a}}=\mathrm{F} 2 * \hat{\mathrm{~h}}+I y^{\prime} * \hat{\mathrm{f}}+J y^{\prime} * \hat{g} \quad$.
We know that the intersection of $r * \vec{P}$ and $\vec{U}+8 * \vec{Q}$ exists; that is the definition of ($1 y^{\prime}, J y^{\prime}$). Therefore, we need oniy soive for the r and s such that $r * \vec{P}=0+s * \vec{Q}$. The two necessary constraints are obtained by dotting both eides of this equation by $\overrightarrow{\mathbf{P}}$ or by $\overrightarrow{\mathrm{Q}}$, ie.

$$
\begin{aligned}
& (r * \vec{P}) \cdot \vec{P}=(\vec{U}+s * \vec{Q}) \cdot \vec{p} \\
& (r * \vec{P}) \cdot \overrightarrow{0}=(\vec{U}+s * \overrightarrow{0}) \cdot \vec{Q}
\end{aligned}
$$

These are equivalent to

$$
\begin{aligned}
& r * \vec{p} \cdot \vec{p}=\tilde{U} \cdot \vec{p}+s * \overrightarrow{0} \cdot \vec{p} \quad \text { and } \\
& r * \vec{p} \cdot \vec{Q}=\tilde{O} \cdot \overrightarrow{0}+s * \vec{Q} \cdot \overrightarrow{0}
\end{aligned}
$$

Solving this equation for s gives the distance of the 3-dimensionai point from the sacond camera

$$
s=\frac{\vec{U} \cdot \overrightarrow{\mathrm{O}} * \vec{p} \cdot \vec{p}-\vec{U} \cdot \vec{p} * \vec{p} \cdot \overrightarrow{\mathrm{a}}}{\vec{U} \cdot \vec{p} * \vec{p} \cdot \overrightarrow{0}-\vec{p} \cdot \vec{p} * \vec{Q} \cdot \vec{Q}},
$$

while solving the above systam for r gives the distance fiom the first camera

$$
r=\frac{\vec{U} \cdot \dot{d} * \vec{Q} \cdot \vec{p}-\vec{U} \cdot \vec{p} * \dot{Q} \dot{u}}{\vec{Q} \cdot \vec{p} * \vec{p} \cdot \vec{d}-\vec{p} \cdot \vec{p} * \vec{a} \cdot \vec{u}} .
$$

DERIVATION OF TWO MATCHING LINES

With a camera model, it is possible to place two lines, one in each picture, into correspondence, To see this, consider the two principal points of the cameras, (θ, θ, θ) and \bar{U}.

These two points, plus any third point, determine a plane in 3 -space. If we call the third point \vec{S}, then this plane has as its normal the vactor \vec{S} $\times \mathbb{Z}$ and goes through the point $(0,0, \theta)$. Our analytic geometry text teils us that the equation of a plane with normal \hat{N} through the point \vec{P} i.s

$$
\tilde{N} \cdot((x, y, z)-\vec{p})=0
$$

Therefore the equation of the plane determined by $(8,8,8), \vec{U}$, and \vec{S} hae the equation
$(\underset{\sim}{x} \times 1) \cdot(x, y, z)=0$
(C-e)

Except in a few degenerate cases, this plane interssets both of the camera image planes. The intersection of this piane with the second image plane in terms of that plane's coordinate system is given in Equation C-b: the Intercection with the first image plane 2 - F1 is
$(S \times 0) \cdot(x, y, F 1)=0$

Consider also the intersection of the plane of Equation C-e with the scene. All of the points of this curve lie on the plane of Equation $C-e$, obviously; therefore all of the projectlons of thess points onto the second image plane lie on the lins of Equation $\mathrm{C}-\mathrm{b}$ and all of the projections onto the flrst image plane lie on the line of Equation C-f. Thus all of the points on one line map to points on the other line.

Clearly, Sే can be almost any point. The mosi convenient such point is usually $(I x, J x, F 1)$, the centsr point of the target aria.

Illustration C-1. One of our simplified cameras in the standard position and orientation.

Illustration C-2. The first camera, panned and tilted to point to the principal point of the second camera.

Second Image Plane

Illustration C-4. The first camera image plane rolled to parallel the second camera image plane.

Illustration C-5. The error for a point pair (Ix, Ny; (Il, dy) is the distance from (ll, fy) to the line in the second image which corresponds to ($\mid x, J x$).

Appendix D

DISTORTION

Intuitivesly, if the parts of the two pistures which represent a given object differ in anything but position, then the object has been distorted from one view to the other. For our purposes, if, for displacements (di, dj) within some window and corresponding pointe (lx, Jx) and (Iy, Jy) in the two images, the point $(\mid x+d i, J x+d j)$ does not correspond to the point (Iy+di, Jy+dj), there is distortion over that window.

MATHEMATICAL DESCRIPTION

To express this mathematically, we start with two points in 3-space, \vec{R} and \vec{S}. According to the calculations in Appendix C, these points project to

$$
\begin{aligned}
& \vec{R} 1-(R 1 x, R 1 y)=\left(\frac{\vec{R} \cdot \hat{i}}{\vec{R} \cdot \hat{k}} * F 1, \frac{\vec{R} \cdot \hat{j}}{\vec{R} \cdot \hat{k}} * F 1\right) \\
& \vec{S} 1-i S 1 x, S 1 y)=\left(\frac{\vec{S} \cdot \hat{i}}{-* F 1}, \frac{\vec{S} \cdot \hat{j}}{\vec{S} \cdot \hat{k}} * F 1\right)
\end{aligned}
$$

and
in the first image plane and

Suppose we let \bar{S} be the reference point, that is, we set $(S 1 x, S 1 y)=(\mid x, J x)$ and $(S 2 x, S 2 y)=(1 y, J y)$. Aiso, iet $(R 1 x-S 1 x, R 1 y-S 1 y)$ be the (di,dj) of our intuitive definition. Thers is distortion if the point which corresponds to $(l x, J x)+(d i, d j)$ is not $(l y, J y)+(d i, d j)$, that ie
(R2x, R2y) ~ (S2x, S2y) + (R1x-S1x,R1y-S1y) or

$$
\begin{aligned}
& \vec{A} 2=(R 2 x, R 2 y)=\left(\frac{(\vec{R}-\hat{U}) \cdot \hat{f}}{(\vec{R}-\hat{U}) \cdot f} * F 2, \frac{(\vec{R}-\hat{U}) \cdot \hat{g}}{(\vec{R}-\hat{U}) \cdot \hat{h}} * F 2\right) \quad \text { and } \\
& \boldsymbol{S} 2-(S 2 x, S 2 y)=\left(\frac{(\vec{S}-\hat{U}) \cdot \hat{f}}{(\vec{S}-\hat{U}) \cdot \hat{h}} * F 2, \frac{(\vec{S}-\hat{U}) \cdot \hat{g}}{(\vec{S}-\hat{U}) \cdot \hat{h}} * F 2\right) \\
& \text { in the second image plane. }
\end{aligned}
$$

$$
\begin{aligned}
& (S 2 x, S 2 y)-(R 2 x, R 2 y)+(R 1 x-S 1 x, R 1 y-S 1 y)=\theta \text { or } \\
& (R 1 x-S 1 x-R 2 x+S 2 x, R 1 y-S 1 y-R 2 y+S 2 y)=8
\end{aligned}
$$

We define this last vector to te \vec{D}, the distortion vector.

For non-trivial camera models and windows larger than a single point, it is unlikely that this vector will be exactly zero for all of the (di,dj) within the window. Conssquently, there wlll almost always be distortion in a continuous image.

However, we are dealing, not with continuous imagee, but with images which are represented by discrete arrays. When, in such an array, the deeired image point falls between elenents of the image array, there are two things which can be done. Dne can approximats the deeired pixei by interpolating the neighboring array elements, or one can simply uee the array element thirh is closest to the desired point. In corrslating, the latter ie the more conmon practice.

The vector $\vec{D}_{1}=\vec{R} 1-\vec{S}_{1}$ will ordinarily be such that if its tail ie placed on an integer point of the array, its head will also fall onto an integer point. If the vector $\vec{D} 2=\vec{R} 2-\vec{S} 2$ is placed with ite tail on the same integer point as $\bar{O} 1$, its head will probably not fall on the head of Dil. However, if the head of $\vec{D} 2$ fails within $1 / 2$ pixel in each co-ordinate of the head of $\bar{O} 1$, we can not really tell the difference in position. Thus, for a discrete image, we can say that there is no distortion if, for ail (di,dj) withln the windo's, the x - and y-components of D are both lese than $1 / 2$ pixel.

LIMITING DISTORT!ON

Distortion s algebraically a very complicated quantity, for it depends 0.1 thirtuen parameters--the pan and tilt angles which describe the direction to the second camera, the pan, tilt, anci roll angles which describe the orientation of the second camera, the two focal lengths, and three parametere each te describe the relative 3-space points R and S. Graphing the distortion as function of ali 13 of theee parametere ie obviouely not feasibie; the graph is imposeible to rapresent phyeically and excesively large to tabulate.

If one holds all but one of the parameters constant, one can use the limitation on the components of the distortion vector to solve for limits on the laet parameter which will guarantee that ine distortion ie small. This is possible analytically (see [Fischler, 1971] for a treatment of change of focal length and for second camera roll angle), but le usually rather meeey, hence not very illuminating. To give a feel for the resulte for particular parametere, lllusiration D-1 tabulates eome of the dietortions for the camera model of the barn pictures with different object positions and orientatione.

The barn camera modei is aimost the standard slde-by-side stereo model. The second camera is placed at 81 degrees of pan from the first camera and .6 degrees of tilt, that 15 , to the right of the first calera, slightly forward of its position, and a little bit higher. Its pointing data is -3.2 degrees of pan, -1.3 degrees of tilt, and -1.4 degrees of roli, that is, it is pointed siightly to the left (back toward the first camera), down a little, with a minor clockwise roll.

The first group of data tabulates the distortion for two points in the first image plane $(-50,10)$, which is on the corner of the barn door, and $(-55,5)$, which is $(-5,-5)$ pixels away. The depths to the corresponding 3-space points are kept equal, that is, the 3 -space points are both on a plane perpendicular to the first camera's principai axis. As this depth increases from one meter to 100 meters, we observe the resuiting changes in the distortion.

The second group of data uses a different pair of points in the first image, $(10,18)$ and (17,17)--the point on the skyline where the traes show somewhat a notch and a point $(7,7)$ pixels away. For a depth of 18 meters at $(10,10)$, we vary the depth at $(17,17)$ on either side of 10 meters and observe the resuits.

In the third group of data, we have used the same first point $(10,10)$ and varied the vector to the second point, in effect examining the effect of varying the window radius from 1 to 10 pixels. For each palr of points, we have determined (to two decimai places) the depth at which the two 3-space points would have to lie (both at the same depth) in order to produce distortion of just less than half of a pixel.

It is hoped that thls tabie will give some feel for the relation between depth, window size, object orientation, and distortion. Those wishing to draw specific conclusions about the allowabie window size, etc., for their own data are advised to program the mathematics of the last section and produce similar tables for their cainera model, since the distorion vectors will change considerably with changes in the camera model parameters.

Under the definition of the last section, depth discontinuitiee are distortions. However, such discontinultles are effectively translatione, which our algorlthms can handle once they are located, so we will exclude depth discontinuities from the following discussions.

SMALL DISTORTIONS

For known smail rotations and scale factor changes it is possible to choose the correlation window to be distortion-free [Fischler, 1971]. This is done by calculating at what radius the global distortion causes pixels of matchlng windows to get one pixel out of registration, yielding local
distortion. Any window which would fit into a square of this radius will be distortion-free, at least from this source of distortion.

For other minor distortions, weighting the correlation window ae ehown in lllustration B-1 may also help. (See Appendix B for an explanation of weighted correlation.) Essentiallyt, this says that we are most interested in having the center of the correlation window maich up, and, while it would be nice to have the outer parts match up, it should not greatly effect the correlation if they do not.

GROSS DISTORTIONS

But what about large rotations and scale factor changes? Large distortions will cause matching to fail, since it causes the matching process to compare points which do not correspond. When ennugh points do not correspond, the correlation will fill below the confidence level, and the areas will fail to match. This necessitated our restrictions on the kind of pictures we can handle.

However, some of these restrictions can be lifted. The main technique for this consists of figuring out what caused the problem and compensating for it. Let us consider some of the causes of large dietortions and see what can be done about them.

Global Rotations and Scale Factor Changes

Global rotations and scale factor changes--those affecting the whole picture--are caused by a relative roll of one camera about its focal axis and by differences in the focal lengths of the cameras, respectively. Pairs of pictures having these distortions are somewhat rare. The human prejudice for order usually results in multiple photographs of a scene being taken with identical cameras and lenses, and with both cameras held upright.

There exists the case in which the pictures were taken by a machine, such as an independent roving vehicle. However, a reasonable design constraint on such a machine is for it to monitor its orientation with respect to the world, and report how much roll ie present if it must change angles. One would also expect to know if the focal length of one camera differed from that of the other. Given this data, it is possible to decalibrate the pictures, that is, put them into the same orientation and scale \{Quam, 1971].

In the rare case in which gross rotations or scale factor changee are present but of unknown magnitude, it is still possible to get rid of them. All that $i s$ required is to determine the rotation and scale factor sitange.

If the locations of enough pairs of points were known, the global rotation and scale factor change could be computed by least squares techniques as a part of the camera model (See Appendix C). This requires collecting several pairs of corresporiding points. Since we have assumed that distortions exist, we cannot use matching techniques, which depend on low distortion, to find these point pairs.

One possible method for discovering these correspondences is to extend the correlation technique. Instead of merely searching among all possible translations of the window, $I y=I x+C I$ and $J y=J x+C J$, we could also searches among all possible rotations and scale factor changes.

$$
\begin{aligned}
& I Y=S *(\operatorname{COS}(\beta) * I X+\operatorname{SIN}(\beta) * J X)+C I \quad \text { and } \\
& J Y=S *(-\operatorname{SIN}(\beta) * I X+\operatorname{COS}(\beta) * J X)+C J
\end{aligned}
$$

These new dimensions, S and β, will have to be quantized in order to make the searches finite. The window size used for the correlation will determine the maximum quantization possible without having to worr!, about distortion.

This search in 4 variables will be very long and slow: some method of shortening it is almost manditory. The technique of reduction will still work if the size of the window can be reduced along with the picture. Gridding will also still work for the translation part of the search, and is inherent in the quantization of the rotation angle and scale factor. Similarity will work only if the properties put inte the vectors are invariant under rotation and scale factor change. Camera model searches are not applicable, since we have no camera model. (If we did, we would know the the relative rotation and focal lengths, and wouldn't be looking for them the hard way.)

Another method which will give the rotations and scale factor changes directly was suggested by Lynn Quam. It calls for locating some object or area lying entirely in both pictures and finding its boundary. This could be accomplished by flat region growing (see Chapter 5) for an area of low variance, by conventional edge techniques [Hueckel, 1972], or by more sophisticated region arowing techniques [Yakimovsky, 1973]. The boundary is then tabulated as distance from the center of mass of the area vs. angle from some reference direction. It is now possible to correlate the resulting function tables to find the optimal displacement (i.e. angle) which aligns them. Once the rotational alignment is determined, the tabulated distances at corresponding points on the boundaries can be used to derive the scale factor change, as could the ratio of the perimeters.

To the knowledge of this author, these tychniques have not been implemented. Since totally unknown camera roll and focal length change tend to be the exception, rather than the rule, this author leaves the solution to someone who has the problem.

Local Scale Factor Changes

Local scale factor changes occur because the object is closer to one camera than to the other. This is particularly noticeable in forward motion stereo, as might be taken by a vehicle rolling along some path. If the approximate local scale factor is known, it can be taken into account, and a correlation function which does mapping insiead of matching can be employed to determine the area correspondence. (See Appendix B for descriptions of matching and mapplng correlation.)

The idea of finding boundaries and thus determining the relative scale factor change is still feasible; however, it requires knowing where the object is in bith pictures. Since this might well be the information we are trying to determine, this approach is usually not practical.

A second technique recently implemented by Quam uses a camera model Given a camera model and a pair of points, it is computationally rather simple to determine the distance from each camera to the point in 3-space corresponding to those two points (See Appendix C). For each proposed mapping, these distances are calculated using the center poinis of the proposed corresponding areas. From these distances and the focal lengths, one calculates the effective difference In scale between the two areas so that mapping tables $c 3 n$ be set and the correlation evaluated.

When the object lies at the same distance from both cameras, sut with a face at a large angle to the camera baseline, scale distortirin occurs primarily in one dimension in the image--the dimension most nearly parallel to the camera baseline. For instance, in the barn pictures the barn face is distorted from one view to the other, but the distortion is primarily horizontal--the direction of the camera baseline. This suggests making the correlation window more narrow in the direction of the camera baseline in order to reduce distortion to allow matching to take place.

Most other distortions cause the two images to contain different projections of the object. In general, it is unlikely that more than a small part of an object so distorted can be matched. Mapping i possible, of course--IF one has a 3-D model of the object, knows the o iginal 3-space position and orientation of the object and how it changed, anc has a reliable camera model. However, if one already knows that much about the scene, there is little polnt in dolng matching, or any other vision work.

For a given pair of points (Ir, Jr) and (ls,Js), examine the distortion vector ($D x, D y$) as a function of depth, r-depth $=s$-depth, i.e. all of the 3-space roints are in a plane perpendicular to the first camera's principal axis.

(lr.Jr)	r-depth	(ls, Js)		s-depth	Dx	Dy
-50 10	1.808	-55	5	1.000	-. 127	-. 565
-50 18	1.588	-55	5	1.588	-. 113	-. 387
-5818	2.888	-55	5	2.888	-. 899	-. 186
-58 18	5.888	-55	5	5.888	-. 865	. 817
-58 18	10.888	-55	5	18.888	-. 851	. 882
-58 18	15.888	-55	5	15.888	-. 846	. 183
-50 18	20.880	-55	5	28.808	-. 044	. 113
-50 10	58.888	-55	5	58.880	-. 848	. 132
-50 18	188.808	-55	5	188.888	-. 838	. 138

For a given pair of points and r-depth, examine the distortion vector as the s-depth varies.

(Ir,jr)	r-depth	(18, Js)	8-depth	Dx	Dy
1810	18.808	1717	18.868	. 515	-. 828
1810	10.808	1717	18.858	. 474	-. 827
1818	10.880	1717	10.988	. 272	-. 823
1010	10.888	1717	9.988	-. 138	-. 815
1810	18.808	1717	9.828	-. 472	-. 889
1818	18.888	1717	9.818	-. 514	-. 888

For given (Ir,Jr) and r-depth = s-depth, find approximate depth at which the maximum distortion of .5 occurs for a variety of ($1 \mathrm{~s}, \mathrm{~J} \mathrm{~s}$).

(Ir, Jr)	r-depth	($1 \mathrm{~s}, \mathrm{~J} \mathrm{~s}$)	s-depth	D×	Ly
1810	. 380	1111	. 388	-. 824	. 487
1818	. 618	1212	. 618	. 185	. 492
1810	. 828	1313	. 828	. 176	. 499
1818	1.838	1414	1.830	. 231	. 496
1818	1.228	1515	1.228	. 281	. 499
18:0	2.248	2028	2.248	. 508	. 448

Illustration D-1. A table of the distortian vectors in the barn pictures for different object positions and orientations. The depths given are in moters and repreeent the z-coordinate of that particular 3-space point.

BIBLIOGRAPHY

Barnea, Daniel 1. and Harvey F. Silverman [1972], "A Class of Algorithms for Fast Digital Image Registration", IEEE Transactions on Computers, Vol. C.-21, No. 2, February, 1972, pp. 179-186.

Bouchard, Harry and Frarcis H. Moffitt [1965], "Photogrammetry", Surveying, pp. 482-519, International Textbook Co., Scranton, Pa.

Cooley, J.W., P.A.W Lewis, and P.D. Welch [1967], "Applications of Fast Fourier Transform to Computation of Fourier Integrals, Fourier Series, and Convolution Integrals", IEEE Transactions on Audio and Electroacoustics, Vol. AU-15, No. 2, June, 1967, pp. 79-84.

Falk, Gilbert [1969], "Some Implications of Planarlty for Machine Perception", Stanford Artificial Intelligence Project Memo No. 187.

Feldman, J. A., G. M. Feldman, G. Falk, G. Grape, J. Pearlman, I. Sobel, J. M. Tenenbaum [1969], "The Stanford Hand-Eye Project", Proceedings of the International Joint Conference on Artificial Intelligence, May, 1969, pp. 521526.

Fischler, Martin A. [1971], "Aspects of the Detection of Scene Congruence", Proceedings of the Second Annual International Joint Conference on Artificial Intelligence, September, 1971, pp. 88-100.

Fischler, M. A., and R. A. Elschlager [1971], "The Representation and Matching of Pictorial Structures", Lockheed Missiles and Space Company, LMSC-0243781, September, 1971.

Freund, John E. [1962], Mathematical Statistics, Prentice-Hall, Inc., Englewood Cliffe, N.J.

Guzman, Adolfo [1968], "Computer Recogr,ition of Three-DImensional Objects in a Visual Scene", MIT Froject MAC MAC-TR-59.

Hueckel, Manfred H. [1969], "An Operator Which Locates Edges in Digitized Pictures", Stanford Artificial Intelligence Project Memo No. 185.

Julesz, B. [1961], "Binocular Depth Perception and Pattern Recognition", Proceedings of the Fourth London Symposium on Information Theory, pp. 212224.

Julesz, B. [1963], "Towards the Automation of Binocular Depth Perception", Proceedings of IFIP Congress, 1962, North Holland Publishing Co. Amsterdam, pp. 439-443.

Kelly, Mlchael D. [1970], "Visual Identification of People by Computer", Stanford Artificial Intelligence Project Memo No. 130.

Lathi. B. P. [1968], An Introduction to Random Signals and Communicution Theory, International Textbook Company, Scranton, Pa.

Levine, M. D., D. A. D'Handley, and G. M. Yagi [1973], "Computer Determlnation of Depth Maps", Jet Propulsion Laboratory, Pasadena, Ca.

Nilsson, Nils J. [1971], Problem Solving Methods in Artificial Intelligence, McGrawHill, Sar, Francisco, Ca.

Quam, Lynn H. [1971], "Computer Comparison of Pictures", Stanford Artificial Intelligence Project Memo No. 144.

Quam, Lynn H., Sidney Liebes, Jr., Robert B. Tucker, Marsha Jo Hannah, and Botond G. Eross [1972], "Computer Interactive Picture Processing", Stanford Artificial Intelligence Project Mero No. 166.

Roberts, L.G. [1963], "Machire Perception of 3-Dimensional Solids", MIT Lincoln Lahoratories Technical Report No. 315.

Rosenfeld, Azrisl [1969a], Picture Processing by Computer, Academic Press, New York, N. Y. .

Rosenfeld, Azriel [1969b], "Picture Processing by Computer", Computing Surveys, Vol. 1, No. 3, September, 1969, pp. 147-174.

Rosenfeld, Azriel [19731, "Progress in Picture Processing: 1969-71", Computing Surveys, Vol. 5, No. 2, June, 1973, pp. 81-108.

Schwartz, Abraham [1960], Analytic Geometry and Calculus, Holt, Rinehart and Winston, Inc., New York, N.Y.

Singleton, Richard C. [1967], "On Computing the Fast Fourier Transform", Communications of the ACM, Vol. 10, No. 10, Dctober, 1967, pp. 647-654.

Sobel, Irwin [1970], "Camera Models and Machine Perception", Stanford Artificial Intelligence Projert Memo No. 121.

VanLehn, Kurt [1973], "SAIL Users Manual", Stanford Artificial Intelligence Project Memo No. 204.

Yakimovsky, Yoram [1973], "Scene Analysis Using a Semantic Base for Region Growing", Stanford Artificial Intelligence Project Me.no No. 289.

[^0]: 17. DISTRIBUTION STATEMENT (of the abstract ontered In Block 20, If different from Roport)
[^1]: lilustration B-1. Windows of wsights, such as might be used when minor distortions are present.

