
AD 2K DOPED ALKALINE EARTH FDLORIDES (U) NAVAL ACADEMY

ANNAPO LIS MD DEPT OF PHYSICS 0 d FONTANELLA ET AL.

(NCLASSIFIED 01 JUL 82 TR-4 F/G 9/2 NL

mhhhhommhhmhhls
smhhhhhhhhhhh
II-IEII



1.01 L*o' 121 25

III,,- *11111 1112 .

1111.25 I i 1 1111.6

111W ii~111 .

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963 A

Jimi
,i m* 1 ' ° - T , .. . ' " .., . '" " .- . •" " ' T '-i ,



OFFICE OF NAVAL RESEARCHI

P Contract N00014-82-AF-0001

Task No. NR 627-793

TECHNICAL REPORT NO. .4

Computer Modeling of Simple Point Defects in Rare

T-4 Earth Doped Alkaline Earth Fluorides

r4 by

(0 John J. Fontanella and Mary C. Wintersgill

Prepared for Publication

in the.

Journal of Physics C: Solid State Physics

U. S. Naval Academy
___ Department of Physics

Aninapolis, MD 21402

July 1, 1982

I~elroductioii in whiole or in part is p.ermitted for
any purpose of the United States Government - T ~ -

Tll.; docuncii t hits bieen approved for public i'e ISCse.'
aind sale; its distribution is uinli[mited

E

ILI

. U-..,". --77-7



4 SECURITY CLASSIFICATION OF THIS PAGE (When Data '1,t.'d)

REPORT DOCUMENTATIoN PAGE .READ INSTRUCTIONS
___ REPORTDOCUMENTATIONPAGE_ BEFORE COMPLFTING FORM

1. REPORT NUMBER 12. OOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4

4. TITLE (and Subtltle) S. TYPE OF REPORT & PERIOD COVERED

COMPUTER MODELING OF SIMPLE POINT DEFECTS IN RARE
EARTH DOPED ALKALINE EARTH FLUORIDES Interim Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORW, R.J. KIMBLE, JR., P.J. WELCHER, J.j. 1. CONTRACT OR GRANT NUMBER(@)

FONTANELLA, M.C. WINTERSGILL; C.G. ANDEEN,

NOOO1482AF00001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
U. S. Naval Academy AREA & WORK UNIT NUMBERS

Physics Department
Annapolis, Maryland 21402 NR No. 627-793

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research July, 1982
Attn: Code 413, 800 N. Quincy St. 13. NUMBER OF PAGES

Arlington, VA 22217 53
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling OffIce) IS. SECURITY CLASS. (of this report)

ISa. DECL ASSI FICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of $his Report)

Approved for public release and sale.
Distribution unlimited.

17. DISTRIBUTION STATEMENT (of the absttact entered In Block 20, It different from Report)

18 SUPPLEMENTARY NOTES

iurnal of Physics C: Solid State Physics, to be published.

" Y WORDS (Continue on rerer.,e s-le If neceeary and Identify by block number)

rOlid electrolytes, fluorine ion conductors, point defects, computer
ut lcii'lations

20 ABSTRACT (Continue on revere*side if noecesary and Identf ' by block number) The results of a package of
r0,QTRAN computer programs for modeling defects in ionic crystals and for

fitting experimental data are described. The fundamental concept of the
defect simulation is similar to HADES except that the minimization procedure
is different since the package is designed to run on small computers. As an

exv iple of the use of this package, the relative stabilities of nn and nnn
(omplexes for various rare earths, lanthanum, and yttrium are considered.

(Continued on reverse sij

DD , 1413 EDITION OF I NOV 61 IS OBSOLETE

11SECURITY CLASSIFICATION OF THIS PAGE (Whe.n Del Entered)

... 4A1. ...



.j4ITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. Abstract

First, the data fitting routine was used to analyze relaxation data for nn

and nnn complexes in rare earth doped strontiumufluoride. The experimental

results for strontium fluoride were then used in conjunction with the

defect simulation program to determine potentials for all of the rare earths,
yttrium, and lanthanum. Those rare earth potentials were then used in the

simulation of calcium fluoride and show that the nnn complex should not be

observable except for possibly the smallest rare earths. This implies that
the B site of Wright and co-workers or the RII relaxation requires another

explanation. Also, the potentials were used in the simulation of barium

fluoride, showing that the nn complex should be observable only for the

largest rare earths or lanthanum. Next, the enthalpy for nn-+nn reorientation

via the interstitialcy mechanism was calculated for rare earths in calcium

and strontium fluoride. In general, the calculated reorientation enthalpies

are larger than the experimental values. However, the variation of the
enthalpy with the size of the rare earth is in reasonable agreement with

experiment. Finally, the variation of the calculated enthalpy with

pressure is found to be in excellent agreement with experiment.

Ac .cessi!on Vo r

A

S;ErUfITY CL ASSIFICATION OF THIS PAO~r(W~hen Dill Entered)



Computer Modeling of Simple Point Defects

in Rare Earth Doped Alkaline Earth Fluorides

Robert J. Kimble, Jr. and Peter J. Welcher

Mathematics Department

U. S. Naval Academy

Annapolis Md. 21402, USA

and

John J. Fontanella and Mary C. Wintersgill

Physics Department

Ii. S. Naval Academy

Annapolis Md. 21402, USA

and

Carl G. Andeen

Physics Department

Ca-(e Western Reserve University

Cleveland, Ohio 44101, USA.

L I

1LL& ~



Abstract

The results of a packaqe of FORTRAN computer

programs for modeling defects in ionic crystals and for

fitting experimental data are described. The

fundamental concept of the defect simulation is similar

to HADES except that the minimization procedure is

different since the package is designed to run on small

computers. As an example of the use of this package,

the relative stabilities of nn and nnn complexes for

various rare earths, lanthanum, and yttrium are

considered. First, the data fitting routine was used

to analyze relaxation data for nn and nnn complexes in

rare earth doped strontium fluoride. The experimental

results for strontium fluoride were then used in

conjunction with the defect simulation proqram to

determine potentials for all of the rare earths,

yttrium, and lanthanum. Those rare earth potentials

were then used in the simulation of calcium fluoride

and shiw that the nnn complex should not he observable

except for possibly the smallest rare earths. This

implies that the B site of Wright and co-workers or the

RIT relaxation requires another explanation. Also, the

potentials were used in the simulation of barium

fJuoride, showing that the nn complex should he

observable only for the largest rare earths or

lanthanum. Next, the enthalpy for nn--3nn reorientation
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via the interstitialcy mechanism wvi cal:ulated for

rare earths in calcium and strontiim fluoride. In

general, the calculated reorientation enth3lpies are

larger than the experimental values;. However, the

variation of the enthalpy with the ;ize of the rare

earth is in reasonable agreement with experiment.

Finally, the variation of the calculated enthalpy with

pressure is found to he in excellent aqreernent with

experiment.



1. Introduction

In the past few years, the authors have been

studying defects in ionic crystals (Andeen et al, 1981;

Andeen et al, 1977), using dielectric relaxation

techniques. The relaxation spectra of many systems

previously thought to be quite simple, are found

actually to be very complex. For example, seven

relaxations are observed in rare earth doped calcium

fluoride (Andeen et al. 1981).

In order to aid in the interpretation of the

data, the authors have developed computer simulation

techniques similar to the HADES (Harwell Automated

Defect Evaluation System) program, which has produced

many significant results (Catlow, Norgett, and Ross

1977; Catlow 1976). The main concept is to model a

crystal by a central region of movable ions surrounded

by a dielectric continuum. Shell model potentials are

used for the movable ions. Defects may then be

introduced into the central region after which the ions

are allowed to relax to their minimum energy

configuration. However, the difficulty with HADES is

that the storage requirements are great, requiring a

very large and fast computer. Consequently, the

authors have developed an alternative p-ikaqe which

requires far less storage with only a modest increase

in the running time, making it suitable for more

4
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general use.

The particular system used by the authors has

the additional feature that all output may be displayed

on an Evans and Sutherland Picture System.

Stereographic display is available to enhance the

three-dimensional effect. Movie-making facilities also

tie in with the picture display.

As a related application of the minimization

procedure associated with the computer simulation, a

program for the least-squares fittinq of data has also

been developed. In the example presented in this

paper, both techniques are used to study simple point

defects in rare earth doped alkaline earth fluorides.

2. The Programming Technique

The key feature in computer programs of this

type is, of course, the minimization procedure. In the

case of data fitting, the sum of the squares of the

differences between the data and the best-fit curve is

minimized. In simulating a defective solid, the energy

of the central region will be minimized. The following

')rief discussion of the minimization procedure will be

in terms of the defect simulation. A similar technique

is used in data fitting, where adjustments are made in

the fitting parameters rather than ion positions.

In the presnt program, a modified block quasi-

5
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Newton method (Rheinboldt 1974) is used. By block, we

mean an iterative approach, where the position of each

ion is adjusted, one at a time. This is the analogue

of the Gauss-Seidel procedure for solving a linear

system. The position of each ion is represented by six

variables, three nuclear and three shell coordinates.

A standard Newton-Raphson method is used to determine a

new location for the chosen ion, except that for

stability of the algorithm, and as a safeguard against

local minima, the energy is evaluated at eight

positions nearby. These values are used to approximate

the derivatives called for in the Newton-Raphson

technique. There are, of course, risks involved in

numerical approximation of derivatives and great care

is taken to avoid the pitfalls.

However, convergence using this procedure is

slow. Thus, the procedure was modified to evaluate the

potential function twice in the direction of the

Newton-Raphson step, at the Newton distance and at half

that. Fitting to a parabola determines much more

accurately the minimum in this direction. As a check,

the energy is evaluated once more at the location

determined by the parabolic fitting. The ion is moved

to the position at which the energy was least. This

provides a safeguard aqainst error in the numerical

approximation of derivatives. R-linear converqence

1A



(Rheinboldt 1974) is expected and this has been

observed.

Symmetry is not invoked in our minimization

and thus configurations of low symmetry are easily

dealt with by the current program.

The most important feature of the present

implementation is that the proqram requires only 18,500

36-blt words together with the ability to perform

double precision computations in FORTRAN. This,

combined with the efficient minimization procedure

makes the program suited to small computers.

In the case of data fitting, at first inspection

it might appear that a more efficient minimization

technique such as that of Broydon or Fletcher-Powell

would be more desirable since the storage requirements

would be small. However, the present technique does

not require calculation of the derivative of the

function to be fit. Tn addition, the difference in

times involved in minimization by the different

techniques is small because of the the number of

variables inv-A.ved. Finally, the fits are done in an

iti'rative manner and the resultant graphical display

provides added evidence of the goodness of fit.

7
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Consequently, the minimization technique employed in

the defect simulation was also applied to the data

fitting.

Further details of the techniques are given in

Appendices A-C.

3. Defect Simulations

We now give further details of the operation of

the defect simulation package. The model. contains

about 150 movable ions (5x5x5 fluorines plus

appropriate cations). These are "surrounded" by a

continuum of fixed ions, each of which is assigned a

total (electronic plus ionic) polarizability. The

electrostatic calculations for a given ion in the

central region are performed exactly for the

surrounding cube of llxllxll fluorines plus cations.

The remaining electrostatic energy is approximated via

a Madelung sum.

One or more defect ions can be added to a

computer file containing the basic model inc]udinq

!;uhstittLional!, interstitial;, or vacancies. The

lattice is then allowed to relax to the minimum energy

configuration as described in the previous section.

The energy of a given ion is the sum of five

terms, E=ESP+ES+EN*ENR+ENR2. The spring energy, FSP,

is due to the relative positions of the nucleus and

.. , _ . i -T -- 8



shell. The shell component of the electrostatic enerqy

is ES and EN is the nuclear component. The near

neighbour repulsive interaction, ENR, is given by

summing the potentials A exp(-r/ P) over the nearest

neighbours of the ion being moved. A and P are

constants depending on the ions involved. The second

neighbour interactions, ENR2, are Included in exactly

the same manner as by Catlow et al. (1977).

The distance between ions is limited to be no

smaller than 1.25 times one lattice unit (defined as

half the average fluorine-fluorine distance), so as to

prevent computational instability in the form of two

ions "collapsing together." In each case the program

searches for the two ions having the smallest

separation after final convergence. In no case have

the two closest ions been near 1.25 lattice units

apart, implying that the arbitrary repulsion has not

affected the results.

In the present model, the continuum polarization

was not include(] in the minimization procedure.

Certainly, this has little effect in the case of

neutral defect;. However, in order to evaluate the

rnagnitude of this effect, the polariz'tion energy was

calculated after minimization, as follows.

The excess charge, 0, and dipole moment, P, of

the central movable region was evaluated. Then the

P
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enerqy of each ion was set equal

to:W .=Oti ( -2 6 Q2 r 2 +4PQr (Cos 0)+P +3P Cos 1 1)
c(47 ) 'LO Nr

where e' is the static dielectric constant and N is

the number of molecules per unit volume. This is

essentially a modified Mott-Littleton (1938) approach

since the polarizabilitles, defined by:

0

and

= (Iain+ 2(loie(3)

include both electronic and ionic polarizahilities.

Further, the polarizabilities were separated usinq the

empirical result that:

V 3

T '. '1) G([ 2 i

whei-e ,,is the isothormal. compressiblity.

T1his result is known as the Jarman rule (Gibbs and

arman 1962) and the experimental results for the

31k;iline earth fluorides usinq the data of Andeen et

al. (1972) are listed in table 1. Also listed there

are the values for some other ionic crystals usinq the

data of Fontanella et al. (1972). rt is seen that the

in
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above relation holds quite well. Since equation 4

implies that:

= (Constant)V
2

it is assumed that:

a (Constant)R
6

Using the ionic radii of Shannon (1971), a set of

polarizabilities was calculated and these are listed in

table 2.

4. Simple Point Defects in Rare Earth Doped Alkaline

Earth Fluorides

4.1. Data Fitting

Simple point defects in rare earth doped

strontium fluoride provide an excellent case in which

to apply data fitting and defect simulation techniques.

This can be seen in figure 2 of a previous paper

(Andeen et al. 1981) where it is seen that for

strontium fluoride the ratio of the two principal peaks

varies smoothly with a change in the size of the rare

earth. What is not apparent is that in cases where

bith peaks exist simultaneously, they are in thermal

equilibrium with one another. This is clearly shown in

figure 1 where the results for qadolinium doped

strontium fluoride are plotted. It is seen that the

ii



height of the higher temperature peak actually

incre-ses with temperature while the height of the

lower temperature peak decreases faster than expected

on the basis of Curie-Weiss behaviour. This implies

that the higher temperature peak grows at the expense

of the lower temperature peak. This problem has, of

course, been solved by Matthews and Crawford (1977) who

explain their ITC data for gadolinium doped strontium

fluoride by assigning the peaks to jumps of nn and nnn

dipoles. They assiqn an enthalpy difference:

E12 E 1 2 - 21

to the difference in bindinq enerqies of the two

complexes. This corresponds to the enthalpies shown in

figure 2, and E2 will be a key parameter in the

followinq discussion.

The model of Matthews and Crawford was applied

to the data in the followinq manner. Firstly, Cole-

Cole expressions were used to approximate the

relaxation peaks leadinq to:

2 A. cos (txi''i/2 )

2T cosh ( (1-a') xi +sin ( 1'n/2) (
i~ 11 (5)

where

x. n (C( )icxp(Eil/k'I')) (6)



1is the Cole-Cole parameter and is a measure of the

broadeninq of the peaks. The use of 11 and E21

follows from the approximation

F 1 > E 2and E21

as shown by Matthews and Crawford (1977). The 01

are the so-called reciprocal frequency factors. Also,

NP2

N.N.P.

where 1 is the dipole concentration and i is the

dipole moment. It follows that:

2 exp(AS1 2 /k - AE1 2 /kT) (7)

Conservinq the total number of dipoles:

N 1 + N 2 =N T

therefore:

C2

A2 (9)
2 i+exp)(AE 1 2 /kT 1- S 1 2 /k)l

RI13



Consequently, the theoretical expression given by the

above equations contains ten adjustable parameters,

Ci, Eil, Mt!, AS AE

il1 s12 ' A 12

This is, of course, a large number of parameters.

However, it should be remembered that effectively ten

peaks are being fitted simultaneously since there are

two different relaxations with five curves

(frequencies) for each. (Only three are shown in

figure 1.)

4,
The results of the two peak data analysis are

given in table 3 for the central four rare earths. A

typical best fit curve is shown with the data in figure

1. The value of AE12 for gadolinium, 0.058 eV, is

slightly larger than the values 0.046, 0.049, and 0.044

eV reported by Matthews and Crawford (1977), Fontanella

et al. (1978a), and Edgar and Welsh (1979),

respectively. However, they probably agree to within a

reasonable error. The value of 0.08 eV for europium is

close to 0.078 eV reported by Fontanella et al.

(1978a). The other values are new. The peaks for the

other materials were determined using sinqle peak fits

14
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4.2. Computer Simulations

4.2.1. Defect Stabilities

The computer simulation was then applied to the

same problem. The interionic potentials are the same

as those used by Catlow et al. (1977). As an initial

test of the model, a substitutional trivalent rare

earth was modelled merely by adjusting the shell charge

of the calcium ion, in the same way that Catlow (1976)

did. In this approximation, it was found that

(AEI 2)TH = -0.11 and -0.31 eV

for calcium and strontium fluoride, respectively.

These values are in reasonable agreement with the

values of

(AEI 2 )TH -0.03 and -0.4 eV

determined by Catlow (1976) using the HADES model. In

part, the smail difference is due tn the polarization

of the continuum. However, the important result is

that the theoretical values are much lower than the

experimental values listed in table 3 since the values

for Tb-Sm are all positive. Since the value of (E1 2)EXP

decreases as the size of the rare earth decreases, it

was conclided that the error in the theoretical

calculation was with the rare earth potential, the

effective ionic radius beinq too small.

15
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The simplest approach was taken to simulate

larger trivalents, namely, the pre-exponential in the

expression for the near-neighbour interaction

V(r) = A exp(-r/p)

was increased. The results of the calculations for

relative binding energies usinq various values of A are

listed in table 4. The best fit straight line for

(AE2)TH vs A was determined. Using (AE] 2 )EXP, it was

concluded that Sm, Eu, Gd, and Tb correspond to values

of A of 2488, 2408, 2349, and 2251 eV, respectively.

The average interval is about 79 eV per rare earth.

Extrapolating, then, values for A for all the rare

earths were determined and listed in table 9. Also,

yttrium is about the same size as erbium (Fontanella et

al. 1978b; Shannon 197q) so that A=2014 eV.

One of the advantages of the interface with the

3D picture system is that it is possible to see the

reason for the variation of the relative stability of

the two complexeM-. This is shown in figures 3 and 4

where orthographic projection plots of nn and nnn

dipoles are shown for an intermediate (A=2300 eV) and a

small (A=l600 eV) size trivalent ion in strontium

fluoride. Clearly, the suhstitutional-interstitial

interionic dis;tance is smaller for the smaller

trivalent for the nnn complex but is actually larger

m nL -- -- , "L ,



for the smaller trivalent for the nn complex. This is

an example of distortion causing nn complexes to become

less stable relative to the nnn complex as the size of

the rare earth decreases. That A=1273 eV corresponds

to a very small trivalent ion can be seen in figure 5.

Other examples of the output of the 3D picture system

are given in figures 3 and 4 of the paper by

Wintersqill et al. (1980) and figures 3 and 4 of the

paper by Andeen et al. (1981).

Following the determination of potentials for

various rare earths

in strontium fluoride those potentials were

used in simulations of calcium fluoride and barium

fluoride. The results of the calculations are listed

in table 4.

The results for calcium fluoride can be used to

comment on a recent controversy concerninq the RII

relaxation or the R-site of Wriqht and co-workers

(Moore and Wright 1979, 1981; Tallant and Wriqht 1975;

Tallant et al. 1977). It has been shown (Fontanella et

al. 1980) that the relaxation data for the RII peak

lead to difficulties concerning the relaxation

mechanism if it is assigned to a nnn complex.

Specifically, equilibrium studies indicate that RII

cannot be associated with a nnn--*nn jump. That is

because the low activation energy (O.li eV) implies

17
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that the nn and nnn sites should equilibrate quickly at

room temperature and thus remain in the same ratio.

*The experimental data do not support this conclusion.

The only alternative is a nnn-*nnn reorientation

mechanism; however, the very low activation enerqy

(0.15 eV) argues against this conclusion.

The results of the present work support the

assertion that RII or the B-site cannot be assiqned to

a nnn complex. That is because the calculations for a

rare earth the size of erbium (k=2014 eV' yield

(AEI 2 )TH = +0.21 eV

Consequently, at 100K, about the position of RII, only

about 2 in 1011 of the ions associated with the simple

point defect will be in the nnn position. This

conclusion is supported by Baker (1974) who, in his

review of the RSR literature implies that the nnn

complex has never actually been oh;,erv(] in rare earth

doped calcium fluoride using ESR techniques.

It is interestinq that RII is only observed for

small rare earths (Andeen et al. 1977). This is, of

course, the behaviour which might be expected for a nnn

.omplcx on the basis of the present calculations though

the magnitude of the site populations are not

consistent with this identification. However, this

same behaviour is observed for RrIE which has been

t8
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correlated with the D(2a) site of Wright and co-workers

(Fontanella et al. 1980; Andeen et al. 1981) and which

is some sort of cluster. In fact, it has been

suggested (Andeen et al. 1981) that this intimate

relationship between RII and RIII may lead ultimately

to the identification of these two complexes.

The simulation results for barium fluoride are

listed in table 4, and predict that the nn complex will

only be stable relative to the nnn complex for the

largest rare earths or lanthanum. This is observed

exoerimentally (Laredo et al. 1979, 1980;, Andeen et

al. 1981), a low temperature relaxation region being

present for lanthanum and cerium (nn) and and a higher

temperature relaxation region (nnn) beinq observed for

all of the rare earths. However, the higher

temperature relaxation region consists of two closely

spaced peaks (Laredo et al. 198n; Andeen et al. 19R1).

Laredo et al. (1980) have identified one of those as a

nn relaxation which they observe for small rare earths.

Clearly, the present calculations suqgiest that this is

unlikely as there is no tendency for the nn complex to

become stable relative to the nnn complex for small

rare earths.

As pointed out previously (Andeen et al. 1981),

the conclusion that only nnn complexes exist in barium

fluoride doped with small rare earths is supported by

19
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the selective laser excitation work of Miller and

Wright (1978a,b) in that they find only one type of

simple site in erbium doped barium fluoride.

Clearly, then, a nn--)nn reorientation mechanism

cannot be responsible for one of the peaks in barium

fluoride doped with small rare earths. It is tempting

to attribute the two peaks to nnn-ionnn and nnn-+nn

reorientations. However, that cannot he the

explanation as both peaks would not be observed via

ITC.

A better explanation for one of the two peaks in

barium fluoride doped with small rare earths is a

cluster. In particular, the position of one of the

peaks does depend moderately on the size of the rare

earth (Laredo et al. 1980). In fact, the RIV

relaxation, which has been observed in both calcium and

strontium fluorides (Andeen et al. 1977, 1981) and

which has been associated with a "gettered" 2:2:2

(Wintersqill et al. 1980; Andeen et al. 1981), depends

strongly upon the nature of the rare earth. However,

the experimental data concerning the barium fluoride

relaxations to date (Laredo et al. 1980; Andeen et al.

1981) do not support assigninq either to a cluster.

Further work is necessary for their identification.

20



4.2.2. Effect of Pressure on Reorientation Enthalpies

As a second test of the simulation program, the

reorientation enthalpy was calculated for jumps of an

interstitial between nearest neighbour equivalent sites

via the interstitialcy mechanism for calcium fluoride

and strontium fluoride. In the present calculations,

the saddle point of the migrating ion was not

predetermined. Only one coordinate of the diffusing

ion was fixed. The saddle point was then determined by

minimization at successive values of a single

coordinate of the diffusing ion. The activation

enthalpy was then taken to be the maximum value of the

lattice energy along the path of the diffusing ion.

The results are listed in table 6 together with the

corresponding experimental values. The theoretical

values are about 0.1-0.2 eV higher than the

experimental values. While it is tempting to assign

the discrepancy to the rare earth potential, the

difference may be more fundamental in that there is no

reason to expect a static calculation to accurately

simulate an inherently dynamical process. However, the

ralrcilations do show only a small decrease in the

enthalpy as the size of the rare earth decreases. That

is in agreement with experiment.

Next, the effect of pressure on the

reorientation enthalpy for nn-onn jumps in strontium

fluoride doped with a large rare earth was determined

21
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theoretically from

DP TH -XTV(2-) (10)

where XT is the isothermal compressibility for

strontium fluoride. The enthalpy was found to increase

by about 0.0042 eV when the lattice constant was

decreased by about 0.05% (0.1 GPa pressure). Thus,

(-Ej = 42 meV/GPa
apTH

which is in excellent agreement with the experimental

value of 41 meV/GPa (Fontanella et al. 1981). (In the

present calculation, zhe central region was not further

relaxed upon application of pressure, only the lattice

constant was chanqed.) The agreement is better than

expected considering the uncertainty in the experiment

and the nature of the theoretical calculation.

In !;nirmary, while the proqram does not yield

good values of reorientation enthalpies, the effects of

small perturbations, such as pressure or small shifts

in ion size, on the enthalpy are reproduced quite well.

5. Conclusions

In summary, then, the restlts of a new computer

pror(ram for modelinq ionic f;olids and hest-fittinq data

are presented. 'rh- techniques are applied to the
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problem of simple point defects in rare earth doped

alkaline earth fluorides. A combination of the

techniques has led to the following results:

1. Potentials are obtained for all the rare earths,

lanthanum, and yttrium. Those were obtained by a

combination of theoretical and experimental results for

rare earths in strontium fluoride.

2. Calculations for rare earths in calcium fluoride

clearly show that the nnn complex should not be

observable in the vicinity of room temperature or below

except for possibly the smallest rare earths and thus

rule out assigning the RII relaxation or the B site to

a nnn complex.

3. Calculations for barium fluoride clearly show that

the nn complex should only be observable for the

largest rare earths or lanthanum and thus rule out nn--*

nn reorientations for small rare earths.

4. Calculated nn-4nn reorientation enth~ilpies for

calcium fluoride and strontium fluoride are found to be

larger than the experimental values, however, the

variation of the enthalpy with the size of the rare

earth and with pressure agree reasonably well with

,xperiment.
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Table ~.Values of the logarithmic derivative of the

polarizability determined using the data of

Andeen et al. (1972) and Fontanella et al. (1972).

CaF 2  2.09

SrF 2  2.03

BaF2  1.92

LiF 2.01

NaF 2.32

Nadl 2.12

NaBr 2.05

KC1 2.05

KBr 2.00
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Table 2. Polarizabilities of ions in the alkaline

earth fluorides in units of 10- 40N/Coul 2 m.

The values include both electronic and ionic

effects.

a F UAE

Ca 1.96 5.02

Sr 1.66 6.54

Ba 1.39 9.17
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*Table 4. Results of the computer simulation for (AE 12) T

A(eV) (AE 12)TH (eV)

CaF 2  SrF 2  BF2

2700 +0.55 +0.19 -0.022

2600 +0.50 +0.16 -0.057

2400 +0.41 +0.079 -0.128

2200 +0.31 -0.002 -0.20

2000 +0.20 -0.08 -0.26

1800 +0.09 -0.15 -0.29
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Table 5. Values of A in the rare earth potential

V(r) = A exp(-r/0.2997R). The values with the

asterisks were determined by comparing (AEI2 )TH

and (AEI 2 )EXP and the remainder by extrapolation.

Rare earth A(eV) Rare earth A(eV)

La 2883 Tb 2251*

Ce 2804 Dy 2172

Pr 2725 Ho 2093

Nd 2646 Er(Y) 2014

Sm 2488* Tm 1935

Eu 2408* Yb 1856

Gd 2349* Lu 1777
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Table 6. Reorientation enthalpies foi nn-*nn jumps of an

interstitial via the interstitialcy mechanism.

CaF 
2

A(eV) Theory Experiment

2600 (~Nd) 0.69 04

2400 (.-..Eu) 0.670.1a

2000 (~'Er) 0.61 0.406a

S rF 
2

2600 ("-'Nd) 0.564 04

2400 (j--Eu) 0.562 0 .4 6 b

a. Andeen et al. (1977).

b. From table 3.
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Appendix A. The Minimization Philosophy.

The minimization strategy is the same in both

our parameter fitting of data and in the computer

modeling programs. While the basic idea is well known,

its implementation in this application is not.

In order to develop the notation, let us first

consider the question of finding a solution to the

vector equation:

g(a) = 0

where a = {a r...a},

38
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and

g (a ) = fg l (a ) ,g (a ) g .. .g (a )

Thus, we are trying to find a simultaneous solution to

the p nonlinear equations:

gi(alva2,. .,a p  0. J.

Suppose we refer to such a solution as

a* = {a*,a ,..,a*

1 2 p

and we are given a vector, a, which is close to our

solution, a*. Then in order to find our solution, we

have just to find

Aa = a* - a or Aa =a# - a.

If Aa is sufficiently small, then vector calculus

assures us of the approximation

gj(a+Ad) Z g(a) 4 ): Aa.

3 1
= gj (a) + (gj) .( aa

where

ag.
gjV = a1 a .. 'p

The above equations can be summarized by the equation:

g(a+Aa) g(a) + (Jg) (Aa) (1)
q
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J

where "g is the p by p Jacobian matrix given by:

J = ° g

Of course, we want Aa to satisfy g(a+ Aa)=O. Thus, we

use equation (1) to solve for

Aa - (a (g(a)). (2)

The technique for finding a* then amounts to

a
finding a close initial value, say 'o , and then

iterating by the formula

-1
an+l =a -(J) (g(an)) (3)

a a

where the Jacobian is evaluated at -n If -0 is

"sufficiently close," then the sequence

a0 ,a1 1 .. n' ...

will converge fairly rapidly to the solution,

This is of cour:so the Newton-Paphson iterative method

for finding a minimum. In the computer model, we let S

represent the total energy of the ions. For data

fitting, S is s-:e sum of the squares of the differences

between the data and fitted values.

,! 1" ,, i : t . ,Iiry _!, .I,_i L. __i ng..

For data fitt ing, we are given (lata values:

{xi,Yi
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and the equation to be fitted:

y= f(x,k)

where a represents the set of parameters to be fit. A

solution is merely a value, a*, that minimizes the

value of the function:

N
Y f X i." I)1 2(4)

where N is the number of data points. In this case, we

are attempting to find a solution to the vector

equation:

VS = )_a ' ...'Ds 0
1 2 p

Given a starting value, a 0 , we then iterate using the

appropriate modification of equation (3):

an+l =a2 - (H) (YS) (5)

where U is the !Ic~ssian (matrix of seconO partijals;) of

a
and 2S is the gradient, both evaluated at _n

For our curve-fitting, we have developed

software using APL on the local timesharing system,

NATS (Naval Academy Time-Sharing System), which Is

ha~ed n te fT5~(Pa-trmouti Time Sharinq Systmn). We

A!. Al i -'1L - j



chose APL for the following reasons:

1. APL is an interpreter and therefore lends

itself well to interactive programming.

2. APL has a wide range of built-in functions

including virtually all of the so-called scientific

functions.

3. Our implementation of API. has excellent

built-in graphics capabilities.

The APL package we have developed has routines

for data input, least squares fitting and graphics

display of the data along with the theoretical curve

given by the current values of the fitted parameters.

Some details about the least squares routine are

now in order. One of the functions included in the

package is a function S that depends only on the

a I  a

parameters 1 through P using equation (A). Thus, S

is the sum of the squares of the differences between

Y.

the measured value, , and the theoretical value,

x a x.
f( i , ) at each data point, . We use the vector

x.
notation for -'1 because there is no necessity for the

data points to he scalars. In fact, in this paper, the

are the frequencies and the temperature and

is the corresponding measured imaginary dielectric constant.

in order to use Newton's formula, we must then

calculate -- and 1. The appropriate partial

derivatives are calculated numerically by the following

42
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formulae:

a S S(a+6a i ) - S(a-6a i )

a. '~ 
.

1 26

and

a- {S(a+6ai+6aj) - S(a+6ai-6aj)

-S(a-6a.+6a.) + S(a-t a.-6a.)}

6a.

where 61 is a vector with 6 in the ith position

and zero elsewhere. The starting values for a are

supplied by the user. Also, the user supplies the

%ai , which are the sensitivity values by which the

parameters are varied in the calculation of the partial

derivatives. These sensitivity values are based on the

user's experience and are often varied as the fit

improves. In addition to this, parameters are

sometimes "transformed" in order to make them more

amenable to analysis. A case in point is 0, the

#,,iprot-i] fr-Itierncy factor. Rather than fit a

,arameter that can easily vary by a few orders of

i-!,_ni'ude, it is much better to fit ln( 1o) and then
T

determine 0 by exponentiation.

After determining sensitivities, the user then

commands the computer to begin the least squares fit.
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At the start of the routine, the computer calculates

and stores S(a) as well as the current parameter

values. In the process of calculating V S and H, it

evaluates S in the vicinity of a, using standard

difference quotient approximations for the derivatives.

If one of these values happens to be at the current

minimum value for S, both it and the corresponding

parameter values are stored. Finally, ,S and H are

used to obtain:

Aa:-(H) (VS)

The values for

S(a+Aa) and S(a+2Aa)

are then computed. A parabolic fit is applied to the

values

S(a -cAa) (c = 0,1,2)

to estimate the valve c* for which

S(a+c*Aa)

i:. a mininum. Finally,

S(a4c*,a)

is evaluated. At this point the routine chooses the

poi0 t , it*, for w, ich t It(' coinpii Icc 1  vai t1 or ,, War,
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smallest, and alters the current parameter values

accordingly. Iterations are continued until no further

significant progress is made.

There are several valuable features to the

routine that greatly enhance the purely numerical

techniques of minimization. The particular numerical

algorithm chosen for doing the minimization provides a

nice balance between the sure, but slowly converging,

grid search method, and the rapidly converging, but

somewhat unstable Newton method. As mentioned in the

introduction, the parabolic fit essentially recovers

the curvature in the Newton-Raphson (gradient)

direction and thus describes to some extent the metric

on the graph of the squared difference sum function or

the energy function.

Finally, and by far the most important feature

of all, is the inte-'active nature of the numerical

techniques and graphic display of the fit in its

current state. The ability of the individual to

interpret and evaluate graphical data is far superior

to any known ['rly numeric computer algorithm. At

times, especially when the numerical methods fail to

)!"provo Lhe fit when obvious improvements can he made,

the experienced user can manually adjust parameter

values and sensitivity values in ani attempt to qet the

parameters into a reqion where the numerical met.hods

45
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will once again converge. This interaction has proved

to be the most valuable feature of all.

This interactive aspect is of course not

available with the defect simulation package, but

experimentation has established that the above

minimization procedure nonetheless leads to rapid

convergence of ion location. The instability where one

ion converges to another's location (due to the two

getting too close) can be easily dealt with by giving

the ions an arbitrarily large repulsive potential

within an appropriate radius. Statistics kept during

all runs to date show that both the grid search and

parabolic fit in the Newton direction are techniques

well worth inclusion in the defect simulation package.

Specifically, inclusion of the parabolic fit feature

appears to have sped up convergence by a factor of ten.

This makes the running time requirements quite

acceptable.

Appendix C. Defect Simulations.

We now give more details of the operation of the

defect simulationl package. The mode] contains about

150 movable ions (IxNx9 fluorines plus appropriate

cations). These are "surrounded" by a continuum of

fixed ions each of which is assigned a total

(electronic and ionic) polarizability. The
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electrostatic calculations for a given ion in the

central region are performed exactly for the

surrounding cube of llxllxll fluorines plus cations and

the remaining electrostatic energy is approximated via

a Madelung sum.

One or more defect ions can be added to a file

containing the basic model including substitutionals,

interstitials, or vacancies. The lattice is then

allowed to relax to the minimum energy configuration.

That is, for each ion in turn an approximate energy

gradient is evaluated, representing the net force on

that ion due to the other ions in the model. The ion

is allowed to move an appropriate amount in the

direction specified by the force (gradient), and then

the computer moves on to the next ion. All this is

done a large number of times (1000 to 5000 moves being

necessary) . The energy function used will be

discussed in the next section.

One crucial factor is the question of how far

each ion is to move. This should depend on the force

exerted on that ion but should not be too great, as the

ions in actuality all move simultaneously. One does

not wish to teach a physically implausible

configuration by moving one ion around excessively.

We proceed by starting with initial values based

on experience and trial-and error experimentation with
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the model. Starting with a Newton-Raphson approach

loosely controlled, reasonable values for the move are

established, and these are what are initially used.

Subsequently, each ion is allowed to move only as far

as it moved the previous time; half as far in most

cases (down to a minimum size allowed move). Ions with

largest potential move are moved first. This helps

speed up the convergence process.

Having dealt with the question of how far to

move, the next question is in which direction each ion

is to be moved. For each ion, the following information

is stored: reference coordinates, type, shell

coordinates, nucleus coordinates, and move size. The

shell is specified by a given radius (ion size) and is

assumed to be roughly spherical. Its coordinates are

those of its center, which should be roughly the same

as the nucleus coordinates. Move size is the size of

the largest distance the shell center anO nucleus are

allowed to move.

The program calculates the energy

G (x , .... x6 )

Jemming from the ion under consideration heing at

shell location (xI 'x2 'x ) and nucleus position

(x ,x5 ,x6 ). The force on the ion is -VC which is

approximated using the first difference,

;)G r XI46,X2' ' 6 -G(x 1 -(''×2' 0 ) .
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As only the direction is needed, the division by the

step size 6 to give the difference quotient is not

performed, to save time. A standard Newton-Paphson

routine to locate a zero of the force function -VG is

performed. Thus the force on the ion is estimated to

be zero when the ion at location x is moved to the

new location given by x+ Ax, where Ax is given by

Ax = -(H)- (VG)

Here H is the Hessian matrix of second derivatives of G

or equivalently the matrix of partials of the force

F = -VG. See section 2 above.

The second partials in H are estimated as second

differences. Note that we thus take

-1
Ax -(I (V)

where H is the approximate Hessian and VG the

approximate gradient. In all these difference

quotients, division by the step size , can be

completely eliminated, thus avoiding unnecessary

expensive macl;ine divisions. A further benefit is the

increased numerical stability experienced in the

irversien of the matrix H.

The Newton-Raphson technique notoriously suffers

from poor efficiency when near the zero, i.e. when the

ion is nearly in a minimal energy position. This is

49
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also true near local minima or saddle points of the

energy function. Thus it has proved useful to test the

energy at the points being used in the partial

derivative approximations, i.e. conduct a "grid

search", as the energy has to be calculated anyway for

the partials.

Thus if the energy is lower at one of the

locations used in the partial derivative calculations

than at the Newton-Raphson site, the former is chosen

as the new ion location. A further refinement is

possible. It is plausible that near the local minimum

of the energy function (much as with a least squares

function) that the geometry is "parabolic", i.e. one

anticipates that along any line through the current

location of the ion the energy function's graph will be

parabolic. A parabolic fit in the Newton-Raphson

direction is performed, as described in section ?

above. That most moves are being made in this fashion

is not too ,iirprising, as the parabolic fit is

essentially euiva]ent to finding the curvature at the

'ewton-Raphson site in the direction of the gradient.

For maximum efficiency, the method of

a'pproximating partial derivatives is not quite as

described above. First, note that the matrix of seconO

Iart ials of the o.iergy function G for a liven ion may

be reasonably assumed to be symmetric. Theoretically

50
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this is justified as we are working with a matrix of

second partials, and continuity is not a drastic

assumption.

The shell and nucleus in the standard shell

model are joined by springs, i.e. our matrix H of

second partials is of the form

-k 0 0

A 0 -k 0

0 0 -k

-k 0 0

0 -k 01 B

0 0 -k,

Here k is the spring constant, A is the dependence of

the energy on the shell position, and B is the portion

due to the nucleus.

We return to the question of approximating the

remaining second partials of the energy function. So

as to combine a qrid search with a Newton-Raphson

technique, we should estimate the partial , for

r-xawple, as the difference quotient

G G( x1 4 
' x 2 , '  " 6)-G(x -  x2 , . . . ,x6)

, x
1 2 6

:;imilarly, the second partial should he

estimated as

51

wi 1%7



232G +1

a G 2G(xl+6,x 2 +,...,x 6 )-G(xl+6,x2-6...x 6 )axiax 2 462 1 26 1 26

Initially 6 differed for each coordinate but it was

found to be simpler to use the same 6 in each

coordinate.

However, this means that we must evaluate the

energy at 18 points. If one thinks of the ion under

study as being at the center of a cube of side 2 6

we are evaluating at the center of each face and edge

of the cube. Instead, the program evaluates the enerqy

at the 8 points corresponding to the corners of the

cube (i.e. all of the 3 shell/nucleus coordinates

varied by either + 6 , rather than just one or two

being simultaneously changed). The value at the

middle of an edqe is approximated as the average of the

two corner values, for the corners on the ends of that

edge. The value of the energy function at the middle

of a face of the cueh is approximated as the average of

the values at the four corners of that face. Thus at

the price of a little added complexity, the evajuations

)f the ener(ly function and hence the time demands of

the program may be halved.

Note that the previous move size 6 is the same
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as the 6 used in these difference quotients.

Other refinements are: (i) the move size 6 is

stored as > .001 unless a (smaller) Newton-Raphson move

has bee- made. (ii) if the Hessian is not stably

;nvertlble, only a "grid search" is performed. (iii)

no division by 6 or by 62 is performed.
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