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Abstract
Computer modelling of light propagation in optical fibres formed by
vacancies in two-dimensional periodic lattices is performed using the MIT
Photonic-Bands package to calculate fully vectorial definite-frequency
eigenmodes of Maxwell’s equations with periodic boundary conditions in a
plane-wave basis. The lattices consist of cylindrical holes in bulk glass or of
glass tubes with the holes and gaps between the tubes filled with air.
Single-site hexagonal and square lattices, often studied both theoretically
and experimentally and used in manufacturing silica glass-based photonic
crystal optical fibres, are considered. The calculations are carried out for the
80TeO2–20WO3 tungsten–tellurite glass-based fibres with the refractive
index frequency dispersion taken into account. The numerical solutions are
analysed by the effective mode area approach. The modelled dependences
of fundamental mode dispersion on geometrical parameters of the fibres are
used to suggest tungsten–tellurite photonic crystal fibres of several types for
parametric devices.

Keywords: optical fibre applications, optical fibre dispersion, periodic
structure, photonic crystal optical fibre, tellurite glass

1. Introduction

Photonic crystal fibres have opened a new stage in fibre optics.
Nowadays the terminology concerning optical fibres with
spatially periodic refractive index is not yet established. Such
terms as Bragg, photonic crystal, holey, microstructure etc
fibres are used. In this paper we consider optical fibres formed
only by a fragment of two-dimensional photonic crystal with
the spatially periodic refractive index in transversal plane and
a defect in the central area. The defect forms fibre core, and the
surrounding refractive index lattice forms a fibre cladding. For
definiteness such optical fibre will be referred to as photonic
crystal fibre (PCF).

Owing to the photonic crystal cladding, PCFs are known to
possess a number of properties distinguishing them from usual
optical fibres. Thus, PCFs can be single mode in a very wide
wavelength range [1]. The value and slope of dispersion can
vary considerably depending on geometrical PCF parameters

allowing one, for example, to shift the dispersion zero point to
essentially shorter wavelengths in comparison with the glass
material dispersion, to obtain a low-slope dispersion in a wide
enough wavelength range, or a required dispersion value at a
given wavelength [2–5]. Scale transformation of geometrical
parameters of a single-mode PCF enables the effective mode
area to be varied in a wide range (practically up to two
orders of magnitude), thus controlling nonlinear effects in the
fibres [4, 6, 7].

Recently the PCFs based on silica (v-SiO2) glass
have been actively investigated and manufactured (see, for
example, [7, 8]). However, many applications require
materials with higher values of refractive index and nonlinear
susceptibilities than those of v-SiO2. In particular, TeO2-
based glasses are known to possess such properties (see, for
example, [9, 10]). Recent trends are toward a successful use
of tellurite glasses for manufacturing PCFs [11, 12].
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Figure 1. HH PCF: hexagonal lattice of holes in glass with a
vacancy (one filled hole is shown by a dashed line).

The primary goal of this work is to find the PCF structure
both simple and most applicable in parametric fibre devices
(amplifiers etc) operating at a pumping wavelength near
1.55 µm. The main requirements for such PCFs are known to
be as follows:

• high value of the third-order dielectric susceptibility;
• small enough fibre core diameter to produce high enough

power density in the core;
• zero dispersion of the effective refractive index near the

operating wavelength or, in a more general case, the
possibility to obtain a designated level of dispersion in
a certain wavelength range;

• single-mode fibres.

The first requirement can be satisfied well by using the
tellurite glass-based PCFs. To satisfy the others we performed
the computer modelling of light propagation in the PCFs
formed by a point defect in a two-dimensional periodic lattice
consisting of either cylindrical holes in bulk glass or glass
tubes, the holes and gaps between the tubes being filled
with air (ε = 1). We considered single-site hexagonal
and square lattices most often studied both theoretically and
experimentally and recently used in manufacturing silica glass-
based PCFs. As for the defects, we used both a single vacancy
(an absent lattice site, i.e. a single hole in the glass bulk,
or a single tube, filled with the same glass) and the same
vacancy with the nearest neighbours being holes with increased
diameter (or tubes with increased inner diameter) as compared
with the diameter of the lattice holes (or inner diameter of the
tubes, respectively). Fragments of the lattices in the vicinity
of the vacancy are shown in figures 1–4.

All calculations were performed for tungsten–tellurite
(80TeO2–20WO3) glass-based PCFs (for brevity, the
80TeO2–20WO3 glass is termed below ‘tellurite glass’), with
the frequency dispersion of the glass dielectric constant taken
into account. The two-pole Sellmeier approximation of the
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Figure 2. SH PCF: square lattice of holes in glass with a vacancy
(one filled hole is shown by a dashed line).

Figure 3. HH1 PCF: hexagonal lattice of holes in glass with a
vacancy (one filled hole is shown by a dashed line) surrounded by
first-neighbour holes with increased diameter.

wavelength dependence of the glass dielectric constant in the
transparency region was taken from [13]:

ε(λ) = A + B(1 − Cλ−2)−1 + D(1 − Eλ−2)−1

with λ being the wavelength in micrometres, A = 2.490 9866,
B = 1.951 5037, C = 5.674 0339 × 10−2 µm2, D =
3.021 2592, E = 225 µm2.

The following abbreviations are used below for the PCFs
under consideration:

HH PCF is formed by a filled central hole in a simple
hexagonal lattice of cylindrical holes in glass;

SH PCF is formed by a filled central hole in a simple square
lattice of cylindrical holes in glass;
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,

Figure 4. HT1 PCF: hexagonal lattice of tubes with a vacancy (one
filled tube is shown by a dashed line) surrounded by first-neighbour
tubes with increased inner diameter.

HH1 PCF is formed by a filled central hole in a simple
hexagonal lattice of cylindrical holes in glass surrounded
by first-neighbour holes with increased diameter;

HT1 PCF is formed by a filled tube in a simple hexagonal
lattice of cylindrical glass tubes surrounded by first-
neighbour tubes with increased inner diameter.

The following designations are used in the paper:

� is the refractive index lattice constant (in the lattice of tubes
� is obviously equal to the outer tube diameter, D),

d is the diameter of holes in bulk glass or inner tube diameter,
d1 is the diameter of holes in bulk glass (inner tube diameter)

in the first row around the vacancy (if d1 differs from d),
ε is the dielectric constant of glass,
λ is the incident light wavelength (in vacuum, λ = 2πc/ω),
ω is the incident light frequency,
c is the vacuum light velocity,
β is the fibre propagation constant,
k is the wavevector, and
A(i)

eff is the effective area of the i th mode.

The light is supposed to propagate along the z axis
transversely to the refractive index lattice plane, xy.

Effective mode area, Aeff , is determined according to [14]
by

A(i)
eff (λ) =

[∫
I (i) (r⊥) d2r⊥

]2 [∫ [
I (i) (r⊥)

]2
d2r⊥

]−1

where r⊥ are the coordinates in the refractive index lattice
plane, xy, and I (i) (r⊥) is the i th mode intensity.

Fibre numerical aperture, NA, is determined in
accordance with [15] as NA = sin ϑ in the far-field limit,
with ϑ being the half-divergence angle of the Gaussian field.
The numerical aperture is related to the effective mode area as
follows [15]:

NA ≈
(

1 + π
Aeff

λ2

)−1/2

.

Effective refractive index is as usual

neff = β
c

ω
.

Effective dispersion is given as

Meff = −λ

c

d2neff (λ)

dλ2
.

2. Modelling of photonic crystal fibres

All calculations are performed with the help of the MIT
Photonic-Bands package [16] (MPB in what follows), a
freely available program to compute fully vectorial definite-
frequency eigenmodes of Maxwell’s equations with periodic
boundary conditions in a plane-wave basis.

The system of source-free Maxwell’s equations for a
dielectric with ε = ε (r) is known to be reduced to one vectorial
equation and one scalar equation for the magnetic field H (t, r)
only [17]:

∇ ×
[

1

ε (r)
∇ × H (t, r)

]
= − 1

c2

∂2H (t, r)
∂t2

∇ · H (t, r) = 0.

(1)

In the medium with periodic dielectric constant the
electromagnetic fields satisfy the Bloch’s theorem. The
fields with definite frequency ω, i.e. with time-dependence
exp(−iωt), can be represented in such a dielectric in the form

H (t, r) = Hk(r)ei(kr−ωt),

where k is the Bloch wavevector and Hk (r) is a periodic
function completely determined by its values in the (first)
Brillouin zone. For such fields and a dielectric, the
equations (1) become a linear eigenproblem in the Brillouin
zone

AkHk (r) =
(ω

c

)2
Hk (r) , (2)

where Ak ≡ (∇ + k) × ε−1 (∇ + k) × is the Hermitian
operator. Representing the H field in a finite basis, one
transforms equation (2) to an eigenvalue equation for the
Hermitian matrix. In the MPB package the plane-wave basis
is used as

Hk (r) =
∑

b

hk+bei(k+b)r,

cut at large enough values of the reciprocal lattice vectors, b.
The cut-off radius determining the number of basis functions
is chosen from the required calculation accuracy (the computer
representation of a real number, by default). In view of
periodicity, the decomposition coefficients, hk+b, depend only
on k + b sums.

Features of the numerical methods and their realization in
the MPB and instructions for package users are described in
detail in [16, 18].

To calculate the PCF formed by a point defect in a two-
dimensional periodic refractive index lattice, the supercell
method was used [18]. In the described calculations a 12×12-
sized lattice constant and a vacancy in the supercell centre
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Figure 5. The effective fundamental mode dispersion in HH PCF
with � = 1.50 µm: • d/� = 0.40, � d/� = 0.52, � d/� = 0.60,
� d/� = 0.80.

were used. Calculations were performed for a single k point,
namely the Brillouin zone centre (the 	 point) of the supercell.
Such an approach enables studying the modes localized in the
vicinity of the vacancy with a diameter of the order of 4�. Our
calculation has proved that all the localized modes studied have
a significantly smaller diameter of their localization area, and
hence are practically not influenced by the periodic boundary
conditions for the supercell.

Calculations of the PCFs of each type were performed for
several lattice constant values, 1 µm � � � 3 µm, and at
each lattice constant value for several values of the relative
hole diameter (or inner tube diameter), d = 0.2, 0.4, 0.6 and
0.8. In the case of the HH1 and HT1 fibres calculations
were performed as well for several values of relative diameter
of the first row holes (or inner diameter of the first row
tubes), d1 = 0.6, 0.7 and 0.8. For each set of geometrical
parameters the effective refractive index of the fundamental
(first) mode of the PCF, its effective dispersion, the effective
area of the three lowest (twofold degenerated with respect to
polarization) modes of the PCF and the numerical aperture
for the fundamental mode were calculated. Based on the
data obtained in the calculation, the optimal values of the
geometrical parameters were derived to meet all the above-
mentioned requirements of PCFs for the parametric devices.
Thus several tellurite glass PCFs were selected with the
properties described below. In order to determine the stability
of the PCF properties in relation to possible variations of
geometrical parameters in manufacturing process, additional
calculations were performed for each of these PCFs with the
geometrical parameters differing from the optimal ones by
±5%. All the calculations were carried out for one and the
same set of wavelengths from the range 1.0 � λ � 2.4 µm.

Figure 6. Influence of geometrical parameters on the effective
fundamental mode dispersion in HH PCF with �0 = 1.50 µm,
d0/�0 = 0.52: � � = 1.05�0, � � = 0.95�0, ⊕ d = 1.05d0,
� d = 0.95d0.

3. Main results and discussion

HH PCF with the lattice constant � = 1.50 µm. Wavelength
dependences of the effective fundamental mode dispersion
are shown in figure 5 for several values of the relative hole
diameter. As is seen in the figure, for d = 0.52� = 0.78 µm
this PCF has zero effective dispersion at the wavelength
λ = 1.545 µm, the dispersion slope in the vicinity of this
wavelength being approximately 0.37 ps nm−2 km−1. At the
operating wavelength λ = 1.55 µm the effective area of the
fundamental mode is found to be A(1)

eff = 1.3096�2 ≈ 3.0 µm2

and the numerical aperture is approximately NA ≈ 0.60. Such
a PCF is single mode at λ � 1.1 µm.

Figure 6 shows changes in the effective dispersion curve
with the PCF geometrical parameters varying. With the
transversal sizes or the lattice hole relative diameter being
scaled within the ±5% range, the position of the effective
dispersion zero is shifted approximately by ±10 and ∓15 nm,
respectively, and the dispersion slope changes approximately
by 0.01 ps nm−2 km−1.

SH PCF with the lattice constant � = 1.20 µm. As is seen
from the wavelength dependences of the effective fundamental
mode dispersion shown in figure 7 for several values of the
relative hole diameter, for d = 0.53� = 0.64µm, the effective
dispersion becomes zero at λ = 1.551 µm, and the dispersion
slope in the vicinity of this wavelength is approximately
0.28 ps nm−2 km−1. The effective area of the fundamental
mode turns out to be A(1)

eff = 0.7665�2 ≈ 2.5 µm2 and the
numerical aperture is NA ≈ 0.47 at the operating wavelength
λ = 1.55 µm. In this case the PCF is single mode at
λ � 0.9 µm.

Change in the effective dispersion curve with the
geometrical parameters of the PCF varying within the ±5%
range is shown in figure 8. Owing to the transversal size
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Figure 7. The effective fundamental mode dispersion in SH PCF
with � = 1.20 µm: • d/� = 0.40, � d/� = 0.53, � d/� = 0.60,
� d/� = 0.80.

Figure 8. Influence of geometrical parameters on the effective
fundamental mode dispersion in SH PCF with �0 = 1.20 µm,
d0/�0 = 0.53: � � = 1.05�0, � � = 0.95�0, ⊕ d = 1.05d0,
� d = 0.95d0.

scaling, the effective dispersion zero is shifted approximately
by ±4 nm. With the relative diameter of lattice holes
changing by ±5%, the dispersion zero point is shifted by
∓40 and ±50 nm, respectively. Change in the dispersion
curve slope turns out to be about 0.02 and 0.05 ps nm−2 km−1,
respectively.

HH1 PCF with the lattice constant � = 2.20 µm
and relative diameter of the holes in the first row around
the central filled hole d1 = 0.80� = 1.76 µm. The

Figure 9. The effective fundamental mode dispersion in the HH1
PCF with � = 2.20 µm, d1/� = 0.80: � d/� = 0.60,
� d/� = 0.80.

calculations have shown that in the wavelength range under
consideration such structures possess light-guide properties
only if the diameter of the lattice holes is large enough, namely,
if d � 0.5� = 1.1 µm. The effective dispersion of the PCF
fundamental mode is plotted against the wavelength in figure 9.
Our calculations have revealed that the effective dispersion
practically does not depend on the lattice hole diameter in the
range d � 0.5�, becoming zero at λ = 1.542 µm with the
slope about 0.40 ps nm−2 km−1. At the operating wavelength
λ = 1.55 µm the effective fundamental mode area is found to
be A(1)

eff = 0.7342�2 ≈ 3.6 µm2, and the numerical aperture
NA ≈ 0.41. So the PCF is single mode at λ � 1.1 µm for
d � 0.7� = 1.5 µm.

Figure 10 shows how the effective dispersion changes
with the geometrical parameters of the PCF varying. As
indicated above, changing of the relative diameter of the lattice
holes in the range d � 0.5� does not influence the effective
dispersion. Scaling of the transversal sizes through the ±5%
range results in the dispersion zero point shifted by ±24 nm;
the same variation of the diameter of the holes in the first
row around the central filled hole shifts the dispersion zero
by ∓24 nm. The slope of the dispersion curve changes less
than by 0.01 ps nm−2 km−1 in both cases.

HT1 PCF with the lattice constant (outer tube diameter)
� = D = 2.70 µm and inner diameter of the tubes in the first
row around the central filled tube d1 = 0.80� = 2.16 µm.
According to the calculation results, in the wavelength range
under consideration these PCFs possess light-guide properties
for all values of inner diameter of the lattice tubes in the range of
practical interest, d � 0.1� ≈ 0.25 µm, and the PCF is single
mode at λ � 0.8 µm for any d � 0.3� ≈ 0.80 µm. The
effective dispersion of the PCF fundamental mode is shown
versus wavelength in figure 11. In the range d � 0.1�

the effective dispersion is virtually independent of the inner
diameter of the lattice tubes. The dispersion turns to zero at
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Figure 10. Influence of geometrical parameters on the effective
fundamental mode dispersion in the HH1 PCF with �0 = 2.20 µm,
d0/�0 = 0.60, d10/� = 0.80: � � = 1.05�0, � � = 0.95�0,
⊕ d = 1.05d0, � d = 0.95d0, ⊕ d1 = 1.05d10, � d1 = 0.95d10.

Figure 11. The effective fundamental mode dispersion in the HT1
PCF with � = 2.70 µm, d1/� = 0.80: • d/� = 0.20,
� d/� = 0.40, � d/� = 0.60.

λ = 1.548 µm, the dispersion slope in the vicinity of this
wavelength being about 0.40 ps nm−2 km−1. At the operating
wavelength, λ = 1.55 µm, the effective fundamental mode
area is A(1)

eff = 0.4564�2 ≈ 3.3 µm2 and the numerical
aperture is NA ≈ 0.42.

Figure 12 demonstrates the dependence of the effective
dispersion on the PCF geometrical parameters. Again,
variation of the inner relative diameter of the lattice tubes
does not influence the effective dispersion, while either the

Figure 12. Influence of geometrical parameters on the effective
fundamental mode dispersion in the HT1 PCF with �0 = 2.70 µm,
d0/�0 = 0.20, d10/� = 0.80: � � = 1.05�0, � � = 0.95�0,
⊕ d = 1.05d0, � d = 0.95d0, ⊕ d1 = 1.05d10, � d1 = 0.95d10.

transversal size scaling or changing of the inner diameter
of the tubes in the first row around the central filled tube
through the ±5% range leads to a shift of the dispersion
zero point by approximately ±22 and ∓10 nm, respectively.
Again, change in the dispersion curve slope does not exceed
0.01 ps nm−2 km−1 in both cases.

Among all of the PCFs studied, the SH one has the lowest
effective fundamental mode area, the least dispersion slope
near the dispersion zero point (approximately 25% less than in
other PCFs) and the dispersion curve most stable in relation to
the transversal sizes scaling (the displacement of the dispersion
zero point is approximately one-fifth that in other PCFs). On
the other hand, the SH PCF has the worst stability of its
dispersion zero point in relation to variation of the lattice hole
diameter: displacement of the dispersion zero point is about
twice as large as in other PCFs.

The distinctive feature of HH1 and HT1 PCFs with
increased diameter of the holes (or inner diameter of the tubes)
in the first row around the central filled hole (or tube) consists in
that the dispersion curve is practically insensitive to variation of
d, i.e. the diameter of the holes (or inner diameter of the tubes)
forming the rest of the lattice (see figures 9 and 11). However,
the diameter d determines the number of guided modes of the
PCFs, the HH1 and HT1 PCFs being single mode only for low
enough d values. The stability of the dispersion curve of both
PCFs in relation to the transversal size scaling appears to be
approximately identical and close to that of the HH PCF. On
the other hand, the HT1 PCF turns out to be much more stable
relative to the variation of the first-row hole diameter, d1, than
the HH1 one relative to variation of the inner first-row tube
diameter. Thus, the displacement of the dispersion zero point
is twice as small in the HT1 PCF as in the HH1 one. Obviously,
this results from the stabilizing influence of air gaps between
the tubes in the HT1 PCF.
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The HH1 and HT1 PCFs turn out to have approximately
the same effective fundamental mode areas, dispersion slopes
and numerical apertures, the numerical aperture value of these
PCFs appearing the lowest among all of the PCFs studied. On
the other hand, the largest numerical aperture is found in the
HH PCF.

4. Conclusion

In the present paper we consider the PCFs formed by point
defects (a single vacancy and a vacancy with holes of
increased diameter as the first nearest neighbours) in the two-
dimensional single-site hexagonal and square lattices of either
cylindrical holes in glass or glass tubes. The numerical
modelling of these PCFs is performed for tungsten–tellurite
glass 80TeO2–20WO3 (n ≈ 2.11 at 1.5 µm) with the refractive
index frequency dispersion taken into account. Results of
the calculations allow us to suggest several simple types of
tungsten–tellurite PCFs for parametric fibre devices. Namely,

(i) A PCF formed by a filled central hole in a simple
hexagonal lattice of cylindrical holes in glass (the centre-
to-centre distance is � = 1.50 µm; the hole diameter
is d = 0.78 µm). The fibre has a zero dispersion
at λ = 1.545 µm with the dispersion slope of about
0.37 ps nm−2 km−1. It is single mode for the wavelengths
λ � 1.1 µm with the effective fundamental mode area
A(1)

eff ≈ 3.0 µm2 and the numerical aperture NA ≈ 0.60
at the operating wavelength 1.55 µm.

(ii) A PCF formed by a filled central hole in a simple
square lattice of cylindrical holes in glass (the centre-
to-centre distance is � = 1.20 µm; the hole diameter
is d = 0.64 µm). The fibre has a zero dispersion
at λ = 1.551 µm with the dispersion slope of about
0.28 ps nm−2 km−1. The fibre is single mode for λ �
0.9 µm. At the operating wavelength, 1.55 µm, its
effective fundamental mode area is A(1)

eff ≈ 2.5 µm2 and
the numerical aperture is NA ≈ 0.47.

(iii) A PCF formed by a filled central hole in a simple
hexagonal lattice of cylindrical holes in glass (the centre-
to-centre distance is � = 2.20 µm; the diameter of
the holes in the first row around the filled hole is d1 =
1.76 µm; the diameter of other holes is in the 1.1 � d �
1.5 µm range). For any diameter of the holes from the
range mentioned above such a fibre has a zero dispersion
at λ = 1.542 µm with a dispersion slope of about
0.40 ps nm−2 km−1, an effective area of the fundamental

mode of A(1)

eff ≈ 3.6 µm2 and a numerical aperture of
NA ≈ 0.41 at the operating wavelength (1.55 µm). The
fibre is single mode for the wavelengths λ � 1.0 µm.

(iv) A PCF formed by a single filled tube in a simple hexagonal
lattice of cylindrical glass tubes (the centre-to-centre
distance (outer diameter) is � = D = 2.70 µm2, the
inner diameter of the tubes in the first row around the
filled tube is d1 = 2.16 µm2 and the inner diameter of
the other tubes is in the 0.25 � d � 0.80 µm range). For
any inner diameter of the tubes in the range mentioned
above this PCF has zero dispersion at λ = 1.548 µm
with the dispersion slope about 0.40 ps nm−2 km−1, the
effective fundamental mode area A(1)

eff ≈ 3.3 µm2 and
the numerical aperture NA ≈ 0.42 at the operating
wavelength, 1.55 µm, being single mode for λ � 0.8 µm.
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