
Creativity is a marvel of the human mind, and an obvious

goal for AI workers. Indeed, the proposal that led to the famous

1956 Dartmouth Summer School often remembered as the time

of AI’s birth mentioned “creativity,” “invention,” and “discov-

ery” as key aims for the newly named discipline (McCarthy et

al. 1955, 45, 49ff.). And, 50 years later, Herb Simon—in an e-

mail discussion between AAAI Fellows (quoted in Boden 2006,

1101)—cited a paper on creativity (Simon 1995) in answer to

the challenge of whether AI is a science, as opposed to “mere”

engineering.

But if its status as an AI goal is obvious, its credibility as a

potential AI achievement is not. Many people, including many

otherwise hard-headed scientists, doubt—or even deny out-

right—the possibility of a computer’s ever being creative.

Sometimes, such people are saying that, irrespective of its per-

formance (which might even match superlative human exam-

ples), no computer could “really” be creative: the creativity lies

entirely in the programmer. That’s a philosophical question that

needn’t detain us here (but see the final section, below).

More to the point, these people typically claim that a com-

puter simply could not generate apparently creative perform-

ance. That’s a factual claim—which, in effect, dismisses AI

research on creativity as a waste of time.

However, it is mistaken: AI scientists working in this area

aren’t doomed to disappointment. It doesn’t follow that they

will ever, in practice, be able to engineer a new Shakespeare or

a neo-Mozart (although the latter goal has been approached

more nearly than most people imagine). But lesser examples of

AI creativity already abound. And, crucially, they help us to

understand how human creativity is possible.
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Computer Models 

of Creativity

Margaret A. Boden

n Creativity isn’t magical. It’s an aspect of nor-

mal human intelligence, not a special faculty

granted to a tiny elite. There are three forms:

combinational, exploratory, and transforma-

tional. All three can be modeled by AI—in some

cases, with impressive results. AI techniques

underlie various types of computer art. Whether

computers could “really” be creative isn’t a sci-

enti�c question but a philosophical one, to

which there’s no clear answer. But we do have

the beginnings of a scienti�c understanding of

creativity.



What Is Creativity?

Creativity can be defined as the ability to generate
novel, and valuable, ideas. Valuable, here, has
many meanings: interesting, useful, beautiful, sim-
ple, richly complex, and so on. Ideas covers many
meanings too: not only ideas as such (concepts,
theories, interpretations, stories), but also artifacts
such as graphic images, sculptures, houses, and jet
engines. Computer models have been designed to
generate ideas in all these areas and more (Boden
2004).

As for novel, that has two importantly different
meanings: psychological and historical. A psycho-
logical novelty, or P-creative idea, is one that’s new
to the person who generated it. It doesn’t matter how
many times, if any, other people have had that
idea before. A historical novelty, or H-creative idea,
is one that is P-creative and has never occurred in
history before.

So what we need to explain, here, is P-creativi-
ty—which includes H-creativity but also covers
more mundane examples. And our explanation
must fit with the fact that creativity isn’t a special
faculty, possessed only by a tiny Romantic elite.
Rather, it’s a feature of human intelligence in gen-
eral. Every time someone makes a witty remark,
sings a new song to his or her sleepy baby, or even
appreciates the topical political cartoons in the dai-
ly newspaper, that person is relying on processes of
creative thought that are available to all of us.

To be sure, some people seem to be better at it
than others. Some newspaper cartoonists have an
especially good eye, and brain, for the delectable
absurdities of our political masters. And a few peo-
ple come up with highly valued H-creative ideas
over and over again. Alan Turing is one example
(he did revolutionary work in mathematics, com-
puter science, cryptography, and theoretical biolo-
gy [Boden 2006, 3.v.b–d, 4.i–ii, 15.iv]). But some
people are better at tennis, too. To understand how
Wimbledon champions manage to do what they
do, one must first understand how Jo Bloggs can
do what he does at the municipal tennis courts. P-
creativity, whether historically novel or not, is
therefore what we must focus on.

Computer models sometimes aim for, and even
achieve, H-creativity. For example, a quarter cen-
tury ago, an AI program designed a three-dimen-
sional silicon chip that was awarded a patent—
which requires that the invention must not be
“obvious to a person skilled in the art” (Lenat
1983). And the AARON program (mentioned
below) that generates beautifully colored drawings
is described by its human originator as a “world-
class” colorist. So it’s presumably H-creative—and
it’s certainly capable of coming up with color
schemes that he himself admits he wouldn’t have
had the courage to use.

Often, however, computer models aim merely

for P-creativity. Examples discussed below include

drawing scientific generalizations that were first

discovered centuries ago (Langley et al. 1987), or

generating music of a type composed by long-dead

musicians (Cope 2001, 2006)

Even P-creativity in computers need not match

all the previous achievements of human beings.

Years ago, in the early days of AI, Seymour Papert

used to warn AI researchers, and their sceptical crit-

ics, against “the superhuman human fallacy.” That

is, we shouldn’t say that AI has failed simply

because it can’t match the heights of human intel-

ligence. (After all, most of us can’t do that either.)

We should try to understand mundane thinking

first, and worry about the exceptional cases only

much later. His warning applies to AI work on cre-

ativity, too. If AI cannot simulate the rich creativi-

ty of Shakespeare and Shostakovich, it doesn’t fol-

low that it can teach us nothing about the sorts of

processes that go on in human minds—including

theirs—when people think new thoughts.

Creativity without Magic

How is creativity possible? In other words, how is

it possible for someone—or, for that matter, a com-

puter program—to produce new ideas?

At first blush, this sounds like magic: literally,

producing something out of nothing. Stage magi-

cians seem to do that, when they show us rabbits

coming out of hats. But of course it’s not really

magic at all: members of the Magic Circle know

how it’s done. In the case of creativity, the psy-

chologist—and the AI scientist—need to know

how it’s done if there’s to be any hope of modeling

it on a computer.

If we look carefully at the many examples of

human creativity that surround us, we can see that

there are three different ways in which creativity

happens. Novel ideas may be produced by combi-

nation, by exploration, or by transformation

(Boden 2004).

Combinational creativity produces unfamiliar

combinations of familiar ideas, and it works by

making associations between ideas that were pre-

viously only indirectly linked. Examples include

many cases of poetic imagery, collage in visual art,

and mimicry of cuckoo song in a classical sym-

phony. Analogy is a form of combinational cre-

ativity that exploits shared conceptual structure

and is widely used in science as well as art. (Think

of William Harvey’s description of the heart as a

pump, or of the Bohr-Rutherford solar system

model of the atom.)

It is combinational creativity that is usually

mentioned in definitions of “creativity” and that

(almost always) is studied by experimental psy-

chologists specializing in creativity. But the other

two types are important too.
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Exploratory creativity rests on some culturally

accepted style of thinking, or “conceptual space.”

This may be a theory of chemical molecules, a style

of painting or music, or a particular national cui-

sine. The space is defined (and constrained) by a

set of generative rules. Usually, these rules are

largely, or even wholly, implicit. Every structure

produced by following them will fit the style con-

cerned, just as any word string generated by Eng-

lish syntax will be a gramatically acceptable Eng-

lish sentence.

(Style-defining rules should not be confused

with the associative rules that underlie combina-

tional creativity. It’s true that associative rules gen-

erate—that is, produce—combinations. But they

do this in a very different way from grammarlike

rules. It is the latter type that are normally called

“generative rules” by AI scientists.)

In exploratory creativity, the person moves

through the space, exploring it to find out what’s

there (including previously unvisited locations)—

and, in the most interesting cases, to discover both

the potential and the limits of the space in ques-

tion. These are the “most interesting” cases

because they may lead on to the third form of cre-

ativity, which can be the most surprising of all.

In transformational creativity, the space or style

itself is transformed by altering (or dropping) one

or more of its defining dimensions. As a result,

ideas can now be generated that simply could not

have been generated before the change. For

instance, if all organic molecules are basically

strings of carbon atoms, then benzene can’t be a

ring structure. In suggesting that this is indeed

what benzene is, the chemist Friedrich von Kekule

had to transform the constraint string (open curve)

into that of ring (closed curve). This stylistic trans-

formation made way for the entire space of aro-

matic chemistry, which chemists would explore

[sic] for many years.

The more stylistically fundamental the altered

constraint, the more surprising—even shocking—

the new ideas will be. It may take many years for

people to grow accustomed to the new space and

to become adept at producing or recognizing the

ideas that it makes possible. The history of science,

and of art too, offers many sad examples of people

ignored, even despised, in their lifetimes whose

ideas were later recognized as hugely valuable.

(Think of Ignaz Semmelweiss and Vincent van

Gogh, for instance. The one was reviled for saying

that puerperal fever could be prevented if doctors

washed their hands, and went mad as a result; the

other sold only one painting in his lifetime.)

Transformational creativity is the “sexiest” of

the three types, because it can give rise to ideas

that are not only new but fundamentally different

from any that went before. As such, they are often

highly counterintuitive. (It’s sometimes said that

transformation is exploration on a metalevel, so

that there’s no real distinction here [Wiggins

2006]. However, in exploratory creativity none of

the initial rules of the search space are altered,

whereas in transformational creativity some are.

We’ll see below, for example, that the style may be

varied by GAs, that is, metarules that change oth-

er rules, while remaining unchanged themselves.)

But combinational creativity is not to be sneezed

at. Kurt Schwitters and Shakespeare are renowned

for their H-creative collages and poetic images,

which depend not on stylistic transformations but

on associative processes for their origination (and

their interpretation, too). Exploratory creativity,

likewise, is worthy of respect—and even wonder.

Indeed, the vast majority of what H-creative pro-

fessional artists and scientists do involves

exploratory, not transformational, creativity. Even

Mozart and Crick and Watson spent most of their

time exploring the spaces created by their (rela-

tively rare) moments of transformation.

Despite what’s been said above, it must also be

said that there’s no clear-cut distinction between

exploratory and transformational creativity. That’s

because any rule change, however trivial, will

result in structures that weren’t possible before. So

one must decide whether to count superficial

“tweaking” as part of exploration. Since even the

average Sunday painter may make slight changes

to the style they’ve been taught, it’s probably best

to do so. And one will still have to judge, in any

given case, whether the stylistic change is superfi-

cial or fundamental.

But if creativity isn’t magic, it’s not immediately

obvious that it could be achieved or modeled by

the particular types of nonmagic offered by AI. Nor

is it immediately clear which of the three forms of

human creativity would be the easiest for AI work

to emulate, and which the most difficult.

Computer Combinations

That last question has a surprising answer. Con-

trary to what most people assume, the creativity

that’s most difficult for AI to model is the combi-

national type. Admittedly, there’s no problem get-

ting a computer to make novel combinations of

familiar (already stored) concepts. That can be

done until kingdom come. The problem, rather, is

in getting the computer to generate and prune

these combinations in such a way that most, or

even many, of them are interesting—that is, valu-

able. What’s missing, as compared with the human

mind, is the rich store of world knowledge (includ-

ing cultural knowledge) that’s often involved.

Certainly, AI programs can make fruitful new

combinations within a tightly constrained con-

text. For instance, a program designed to solve

alphabetical analogy problems, of the form If ABC
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goes to ABD, what does MRRJJJ go to? generates com-

binations that are valuable (that is, acceptable to

us as answers) and sometimes surprising, and it can

even judge one possible answer to be “better” than

another (Hofstadter 2002). In this case, for

instance, its answers included MRRJJD, MRRDDD,
MRRKKK, and MRRJJJJ; and when given XYZ
instead of MRRJJJ, it sometimes gave the surpris-

ingly elegant WYZ. Again, the chess program Deep

Blue came up with novel combinations of moves—

in one case, so seemingly uncomputerlike that

world champion Kasparov accused the computer

scientists of cheating. And programs with chemical

knowledge can come up with valuable new sug-

gestions for molecules that might have pharma-

ceutical uses.

But no current AI system has access to the rich

and subtly structured stock of concepts that any

normal adult human being has built up over a life-

time. A few systems already have access to a sig-

nificant range of concepts and factual knowledge,

stored in databases such as Wordnet, Wikipedia,

the CYC encyclopedia, and Google. And future

programs may also have increased associative and

inferential powers, based on the ontology of the

semantic web. But using huge databases sensibly,

and aptly, so as to match the combinations gener-

ated by linguistically—and culturally—sensitive

human beings is a tall order. Not impossible in

principle (after all, we don’t do it by magic), but

extremely difficult to achieve.

Consider, for instance, an example of H-creative

combinational creativity from Shakespeare. Mac-

beth, sleepless because tormented by guilt, says

this:

Sleep that knits up the ravelled sleeve of care,

The death of each day’s life, sore labour’s bath,

Balm of hurt minds, great nature’s second course,

Chief nourisher in life’s feast.

Describing sleep as someone knitting is certainly

an unfamiliar combination of two boringly famil-

iar ideas. And, assuming that Shakespeare didn’t

borrow this poetic imagery (like many of his plots)

from some previous writer, such as Petrarch, it’s H-

creative too. But why is it apt?

Well, the knitter imagined here is not producing

a new garment (the most obvious function of knit-

ting), but mending (“knitting up”) a torn sleeve.

And sleep, likewise, mends the worried mind. Sim-

ilarly, a bath (line 2) or balming ointment (line 3)

can cure the soreness caused by one’s daily work.

Moreover, in Shakespeare’s time, as in ours, the

second course of a meal (line 3) was the most nour-

ishing, the one best suited for replenishing the

body. In short, sleep provides desperately needed

relief.

It’s because we know all these things that we can

intuitively understand and appreciate Shake-

speare’s text. But a computer model needs its “intu-

ition” to be spelled out. Think what world knowl-
edge would be needed in the database even to rec-
ognize the aptness of these combinations, never
mind originating them as Shakespeare did.

Of course, AI workers could cheat. They could
build a toy system that knew only about worry-
induced sleeplessness, knitting, sleeves, ointment,
and dining customs and that—provided also with
the relevant combinational processes—could deci-
pher Shakespeare’s meaning accordingly. And even
that would be an achievement. But it wouldn’t
match the power of human minds to cope with the
huge range of creative combinations that can assail
us in a single day.

That power rests in the fact that our memories
store (direct and indirect) associations of many dif-
ferent kinds, which are naturally aroused during
everyday thinking. Shakespeare seemingly had
access to more associations than the rest of us or to
subtler criteria for judging the value of relatively
indirect associations. But our ability to understand
his poetry rests in this mundane fact about human
memory. Moreover, this fact is biological (psycho-
logical), not cultural. The specific associations are
learned within a culture, of course—as are the
socially accepted styles of thought that ground
exploratory and transformational creativity. But
the making of associations doesn’t have to be
learned: it’s a natural feature of associative memo-
ry. That’s why combinational creativity is the easi-
est of the three types for human beings to achieve.

One of the best current computer models of
combinational creativity is the joke-generating sys-
tem JAPE (Binsted, Pain, and Ritchie 1997). One
might call it a “toy” system when compared with
the human mind, but it’s more impressive than the
imaginary system just described.

JAPE’s jokes are based on combination but
involve strict rules of structure too. They are pun-
ning riddles, of a type familiar to every eight year
old. For example:

What do you call a depressed train? A low-como-

tive.

What do you call a strange market? A bizarre bazaar.

What kind of murderer has �bre? A cereal killer.

What’s the difference between leaves and a car?

One you brush and rake, the other you rush and

brake.

Hilarious, these are not. But they’re good enough
for a Christmas cracker.

Those four riddles, along with many more, were
created by JAPE. The program is provided with
some relatively simple rules for composing nine
different types of joke. Its joke schemas include:
What kind of x has y? What kind of x can y? What
do you get when you cross x with y?; and What’s
the difference between an x and a y?

The joke-generating rules are only “relatively”
simple—and much less simple than most people
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would expect. That’s par for the course: AI has

repeatedly shown us unimagined subtleties in our

psychological capacities. Think for a moment of

the complexity involved in your understanding

the jest (above) about the cereal killer, and the

rather different complexities involved in getting

the point of the low-comotive or the bizarre bazaar.
Sounds and spellings, for instance, are crucial for

all three. So making (and appreciating) these rid-

dles requires you to have an associative memory

that stores a wide range of words—not just their

meanings, but also their sounds, spelling, syllabic

structure, and grammatical class.

JAPE is therefore provided with a semantic net-

work of over 30,000 units, within which new—and

apt—combinations can be made by following

some subset of the links provided. The network is

an extended version of WordNet, a resource devel-

oped by George Miller’s team at Princeton Univer-

sity and now exploited in many AI programs.

WordNet is a lexicon whose words are linked by

semantic relations such as superordinate, subordi-
nate, part, synonym, and antonym. Dimensions cod-

ing spelling, phonology, syntax, and syllable-count
had to be added to WordNet by JAPE’s programmer

so that the program could do its work, for JAPE

uses different combinations of these five aspects of

words, in distinctly structured ways, when gener-

ating each type of joke.

It wasn’t enough merely to provide the five

dimensions: in addition, rules had to be given to

enable JAPE to locate appropriate items. That is,

the rules had to define what is appropriate (valu-

able) for each joke schema. Clearly, an associative

process that obeys such constraints is very differ-

ent from merely pulling random combinations out

of the semantic network.

The prime reason that JAPE’s jokes aren’t hilari-

ous is that its associations are very limited, and

also rather boring, when compared with ours. But,

to avoid the superhuman human fallacy, we

shouldn’t forget that many human-generated jokes

aren’t very funny either. Its success is due to the

fact that its joke templates and generative schemas

are relatively simple. Many real-life jokes are much

more complex. Moreover, they often depend on

highly specific, and sometimes fleetingly topical,

cultural knowledge—such as what the prime min-

ister is reported to have said to the foreign secre-

tary yesterday. In short, we’re faced with the

“Shakespeare’s sleep” problem yet again.

Computer Exploration

Exploratory creativity, too, can be modeled by AI—

provided that the rules of the relevant thinking

style can be specified clearly enough to be put into

a computer program. Usually, that’s no easy mat-

ter. Musicologists and art historians spend lifetimes

trying to identify different styles—and they aim

merely for verbal description, not computer imple-

mentation. Anyone trying to model exploratory

creativity requires not only advanced AI skills but

also expertise in, and deep insights into, the

domain concerned.

Despite the difficulties, there has been much

greater success here than in modeling combina-

tional creativity. In many exploratory models, the

computer comes up with results that are compara-

ble to those of highly competent, sometimes even

superlative, human professionals.

Examples could be cited from, for instance,

stereochemistry (Buchanan, Sutherland, Feigen-

baum 1969), physics (Langley et al. 1987, Zytkow

1997), music (Cope 2001, 2006), architecture (Kon-

ing and Eizenberg 1981, Hersey and Freedman

1992), and visual art. In the latter category, a good

example is Harold Cohen’s program, AARON

(Cohen 1995, 2002).

AARON’s creations have not been confined to

the laboratory. On the contrary, they have been

exhibited at major art galleries around the world—

and not just for their shock value. Under develop-

ment since the late-1960s, this program has gener-

ated increasingly realistic (though not

photo-realistic) line drawings, followed by colored

images. The latter have included paintings, where-

in the paint is applied by AARON to its own draw-

ings, using paint brushes (or, more accurately,

rounded paint pads) of half a dozen different sizes.

Most recently, AARON’s colored images have been

subtly multicolored prints.

It’s especially interesting to note Cohen’s recent

remark, “I am a first-class colorist. But AARON is a

world-class colorist.” In other words, the latest ver-

sion of AARON outstrips its programmer—much as

Arthur Samuel’s checkers player, way back in the

1950s, learned how to beat Samuel himself

(Samuel 1959).

This example shows how misleading it is to say,

as people often do, “Computers can’t do anything

creative, because they can do only what the pro-

gram tells them to do.” Certainly, a computer can

do only what its program enables it to do. But if its

programmer could explicitly tell it what to do,

there’d be no bugs—and no “world-class” color

prints from AARON surpassing the handmade pro-

ductions of Cohen himself.

A scientific example—or, better, a varied group

of scientific examples—of exploratory creativity

can be found in the work of Pat Langley and

Simon’s group at CMU (Langley et al. 1987,

Zytkow 1997). This still-burgeoning set of pro-

grams is the BACON family, a dynasty, including

close relations and more distant descendants, that

has been under development since the mid-1970s

(Boden 2004, 208–222). And it is this body of

research on which Simon was relying when he
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defended AI’s status as a science (see previous text).

Among the early achievements of the BACON

family were the “discovery” of several important

laws of classical physics (Boyle’s law, Ohm’s law,

Snell’s law, Black’s law, and Kepler’s third law) and

some basic principles of chemistry (an acid plus an

alkali gives a salt; molecules are composed of iden-

tifiable elements, present in specific proportions;

and the distinction between atomic and molecular

weight). These generalizations were gleaned from

the experimental data used by human scientists

hundreds of years ago (and recorded in their note-

books); initially, the data were cleaned up for

BACON.1’s benefit, but they were later provided in

the original noisy form. The BACON suite also

reinvented the Kelvin temperature scale, by adding

a constant of 273 to the Celsius value in the equa-

tion, and “discovered” the ideal gas laws (PV / t =

k).

The words discovery and discovered need to be in

scare quotes here because this was P-creativity

rather than H-creativity. Although a few results

were historically new (for example, a version of

Black’s law that is more general than the original

one), most were not.

Later members of this set of programs were

aimed at genuine discovery, or H-creativity. Some,

for instance, suggested new experiments, intended

to provide new sets of correlations, new observa-

tions, with which the program could then work

when testing a theory. Others could introduce new

basic units of measurement, by taking one object

as the standard (human scientists often choose

water). And Simon foresaw a future in which pro-
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grams modeling scientific creativity could read

papers in the scientific journals, so as to find extra

experimental data, and hypotheses, for them-

selves. (To some extent, that future has already

come: some bioinformatics software, such as for

predicting protein structure, can improve accuracy

by reading medical publications on the web. But

the ideas in more discursive scientific papers are

less amenable to AI.)

There’s an obvious objection here, however.

These programs, including the more recent ones,

all assume a general theoretical framework that

already exists. The physics-oriented BACON pro-

grams, for instance, were primed to look for math-

ematical relationships. Moreover, they were

instructed to seek the simplest relationships first.

Only if the system couldn’t find a numerical con-

stant or linear relationship (expressible by a

straight-line graph) would it look for a ratio or a

product. But one might say that the greatest cre-

ative achievement of the famous scientists mod-

eled here, and of Galileo before them, was to see

that—or even to ask whether—some observable

events can be described in terms of mathematics at

all, for this was the real breakthrough: not discov-

ering which mathematical patterns best describe

the physical world, but asking whether any math-

ematical patterns are out there to be found.

In other words, these programs were explorato-

ry rather than transformational. They were spoon-

fed with the relevant questions, even though they

found the answers for themselves. They have been

roundly criticized as a result (Hofstadter and FARG

1995, 177–179; Collins 1989), because of the

famous names (BACON and the like) used to label

them. To be sure, they can explore creatively. (And,

as remarked above, exploration is what human

chemists and physicists do for nearly all of their

time.) However, the long-dead scientists whose dis-

coveries were being emulated here did not merely

explore physics and chemistry, but transformed

them.

Could a computer ever do that?

Stylistic Transformations

Many people believe that no computer could ever

achieve transformational creativity. Given a style,

they may admit, a computer can explore it. But if

you want it to come up with a new style, don’t

hold your breath!

After all, they say, a computer does what its pro-

gram tells it to do—and no more. The rules and

instructions specified in the program determine its

possible performance (including its responses to

input from the outside world), and there’s no

going beyond them.

That thought is of course correct. But what it

ignores is that the program may include rules for

changing itself. That is, it may contain genetic algo-

rithms, or GAs (see Boden 2006, 15.vi).

GAs can make random changes in the program’s

own task-oriented rules. These changes are similar

to the point mutations and crossovers that under-

lie biological evolution. Many evolutionary pro-

grams also include a fitness function, which selects

the best members of each new generation of task

programs for use as “parents” in the next round of

random rule changing. In the absence of an auto-

mated fitness function, the selection must be made

by a human being.

Biological evolution is a hugely creative process,

in which major transformations of bodily form

have occurred. This has happened as a result of

many small changes, not of sudden saltations, and

few if any of those individual changes count as

transformations in the sense defined above. (Even

small mutations can be damaging for a living

organism, and larger—transformational—ones are

very likely to be lethal.) Nevertheless, over a vast

period of time, the evolutionary process has deliv-

ered unimaginable changes.

It’s not surprising, then, that the best prima facie

examples of transformational AI involve evolu-

tionary programming. For example, Karl Sims’s

(1991) graphics program produces varied images

(12 at a time) from which a human being—Sims, or

a visitor to his lab or exhibition space—selects one

or two for breeding the next generation. (There’s

no automatic fitness function because Sims doesn’t

know what visual or aesthetic properties to favor

over others.) This system often generates images

that differ radically from their predecessors, with

no visible family resemblance.

Sims’s program can do this because its GAs allow

not only small point mutations (leading to minor

changes in color or form) but also mutations in

which (for instance) two whole image-generating

programs are concatenated, or even nested one

inside the other. Since one of those previously

evolved programs may itself be nested, several

hierarchical levels can emerge. The result will be an

image of some considerable complexity. As an

analogy, consider these two trios of sentences:

(1) The cat sat on the mat; The cats sat on the

mat; The dog sat on the porch, and (2) The cat sat

on the mat; Aunt Flossie went into the hospital;

The cat given to me by Aunt Flossie last Christmas

before she went into the hospital in the neighbor-

ing town sat on the mat. Clearly, the second trio

displays much greater differences than the first.

So this program undeniably delivers transforma-

tions: images that are fundamentally different

from their ancestors, sometimes even from their

parents. But whether it delivers transformed styles

as well as transformed items is less clear, for family

resemblance is the essence of style. When we speak

of styles in visual art (or chemistry, or cooking), we
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mean a general pattern of ideas/artifacts that is sus-

tained—indeed, explored—over time by the artist

concerned, and perhaps by many other people too.

But Sims’s program cannot sustain a style, because

some equivalent of Aunt Flossie’s trip to the hospi-

tal can complicate the previous image at any time.

In brief, Sims’s program is almost too transfor-

mational. This lessens the importance of the selec-

tor. Even an automatic fitness function would not

prevent highly unfit examples from emerging. And

when human selectors try to steer the system

toward certain colors or shapes, they are rapidly

disappointed: sooner rather than later, unwanted

features will appear. This is frustrating for anyone

seriously interested in the aesthetics of the evolv-

ing images.

That’s why the sculptor William Latham, a pro-

fessional artist rather than a computer scientist,

uses evolutionary programming in a less radically

transformational way (Todd and Latham 1992).

His GAs allow only relatively minor changes to the

current image-generating program, such as altering

the value of a numerical parameter. Nesting and

concatenation are simply not allowed. The result

is a series of images that, he admits, he could not

possibly have imagined for himself, but that nev-

ertheless carry the stamp of his own artistic style.

The transformations, in other words, are relatively

minor and concern relatively superficial dimen-

sions of the original style (conceptual space).

It would be possible, no doubt, for an evolu-

tionary program to be allowed to make “Aunt

Flossie” mutations only very rarely. In that case,

there would be a greater chance of its producing

transformed styles as well as transformed items.

Indeed, the minor mutations might then be

regarded as exploring the existing style, whereas the

nesting/concatenating mutations might be seen as

transforming it.

Whether those stylistic transformations would

be valued is another matter. By definition, a cre-

ative transformation breaks some of the currently

accepted rules. It may therefore be rejected out of

hand—as Semmelweiss and van Gogh knew only

too well. But—as neither of them lived long

enough to find out—even if it is rejected, it may be

revived later. In biology, nonlethal mutations lead

to viable organisms, which then compete as natu-

ral selection proceeds. In human thought, social

selection takes the place of natural selection. So,

since being valuable is part of the very definition of

creative ideas, the identification of “creativity” is

not a purely scientific matter but requires socially

generated judgments.

Putatively creative ideas are evaluated by means

of a wide range of socially determined criteria. The

criteria for scientific evalutation are relatively

straightforward, and also relatively stable—even

though bitter disputes about new scientific theo-

ries can arise. Those for fashion and art are not. So
if structural transformation is necessary for a nov-
el idea to be hailed as a triumph of style-changing
creativity, it certainly isn’t sufficient.

Is Transformational 
AI Actually Possible?

I said, above, that the best prima facie examples of
transformational AI involve evolutionary pro-
gramming. Why that cautious “prima facie”?

Sims’s program, after all, does generate radically
transformed images. And Latham’s program gener-
ates new visual styles, even if the family resem-
blances to the ancestor styles are relatively obvi-
ous. Moreover, we don’t need to focus only on the
contentious area of art, nor only on cases where a
human selector decides on “fitness.” Even a very
early GA program was able to evolve a sorting algo-
rithm that could put a random set of numbers into
an increasing series, or order words alphabetically
(Hillis 1992). Since then, many other highly effi-
cient algorithms have been automatically evolved
from inferior, even random, beginnings. If that’s
not transformation, what is?

Well, the objection here comes from people who
take the biological inspiration for evolutionary
programming seriously (Pattee [1985]; Cariani
[1992]; see also Boden [2006, 15.vi.c]). They
assume that AI is either pure simulation or abstract
programming that defines what sort of interac-
tions can happen between program and world (as
in computer vision, for example). And they offer a
version of the familiar argument that A computer
can do only what its program tells it to do. Specifical-
ly, they argue that genuine transformations can
arise in a system only if that system interacts pure-
ly physically with actual processes in the outside
world, as biological organisms do.

Their favorite example concerns the origin of
new organs of perception. They allow that once a
light sensor has arisen in biology, it can evolve into
better and better sensors as a result of genetic
mutations that can be approximated in AI pro-
grams. So an inefficient computer-vision system
might, thanks to GAs, evolve into a better one. But
the first light sensor, they insist, can arise only if
some mutation occurs that causes a bodily change
that happens to make the organism sensitive to
light for the very first time. The light—considered
as a physical process—was always out there in the
world, of course. But only now is it “present” for
the organism. One might say that only now has it
passed from the world into the environment.

That acceptance of light as part of the organ-
ism’s environment depends crucially on physical
processes—both in the world and in the living
body. And these processes, they say, have no place
in AI.
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They grant that the generative potential of a

computer program is often unpredictable and may

even be indefinitely variable, as it is for most evo-

lutionary programs. But still, it is constrained by

the rules (including the GAs) in the program. And

if it interacts with events in the outside world, as a

computer-vision system or a process monitor does,

the types of data to which it is sensitive are preor-

dained. Certainly, they say, improved sensory arti-

facts can result from evolutionary computing. And

those improvements may be so surprising that we

naturally classify them as “transformations.” But

(so the argument goes) no fundamentally new

capacities can possibly arise.

For instance, if the physical parameters foreseen

by the programmer as potentially relevant don’t

happen to include light, then no artificial eye can

ever emerge. In general, then, there can be no real

transformations in AI.

That may be true of AI systems that are pure sim-

ulations. But it’s demonstrably not true of all AI

systems—in particular, of some work in so-called

embodied AI, for recent research in this area has

resulted in the evolution of a novel sensor: the very

thing that these critics claim can happen only in

biology.

In brief, a team at the University of Sussex were

using a GA to evolve oscillator circuits—in hard-

ware, not in simulation (Bird and Layzell 2002). To

their amazement, they ended up with a primitive

radio receiver. That is, the final (GA-selected) cir-

cuit acted as a primitive radio antenna (a “radio

wave sensor”), which picked up and modified the

background signal emanating from a nearby PC

monitor.

On investigation post hoc, it turned out that the

evolution of the radio-wave sensor had been driv-

en by unforeseen physical parameters. One of

these was the aerial-like properties of all printed

circuit boards, which the team hadn’t previously

considered. But other key parameters were not

merely unforeseen but unforeseeable, for the oscil-

latory behavior of the evolved circuit depended

largely on accidental—and seemingly irrelevant—

factors. These included spatial proximity to a PC

monitor; the order in which the analog switches

had been set; and the fact that the soldering iron

left on a nearby workbench happened to be

plugged in at the mains.

If the researchers had been aiming to evolve a

radio receiver, they would never have considered

switch order or soldering irons. Nor would either

of these matters necessarily be relevant outside the

specific (physical) situation in which this research

was done. On another occasion, perhaps, arcane

physical properties of the paint on the surround-

ing wallpaper might play a role. So we can’t be sure

that even research in embodied AI could confident-

ly aim to evolve a new sensor. The contingencies

involved may be too great, and too various. If so,
doubt about (nonaccidental) genuine transforma-
tions in AI still stands. But that they can some-
times happen unexpectedly is clear.

Computer Models 
and Computer Art

All computer models of creativity are aimed at the
production of P-creative ideas, and a few at H-cre-
ativity too. And many are intended also to throw
some light on creativity in human minds. Some,
however, function in ways that have no close rela-
tion to how the the mind works: it’s enough that
they generate creative outcomes.

Examples of the latter type include most of the
AI programs employed in the various forms of
computer art. (The different types are distin-
guished, and their varying implications for “cre-
ativity” outlined, in Boden and Edmonds [2009].)
One might say that these aren’t really computer
“models” at all, but rather computer programs—
ones that may sometimes seem to work in creative
ways. (AARON was unusual in that Cohen—
already a highly successful abstract painter—first
turned to AI techniques in the hope of under-
standing his own creativity better.) Most comput-
er artists are interested not in human psychology
but in the aesthetic value of their program’s per-
formance.

That performance may be a stand-alone matter,
wherein the computer generates the result all by
itself. Having written the program, the human
artist then stands back, hands off, to let it run.
These are cases of generative art, or G-art (Boden
and Edmonds 2009).

Where G-art is involved, it’s especially likely that
the AI system itself—not just its human origina-
tor—will be credited with creativity. In evolutionary
art too (see the following text), much of the cre-
ativity may be credited to the program, for here,
the computer produces novel results—images or
melodies, for instance—that the human artist
couldn’t predict, or even imagine. In yet other cas-
es of computer art, such as the interactive art
described below, some or all of the creativity is
attributed to the programmer or the human par-
ticipants. The interactive program isn’t designed to
be (or even to appear to be) creative in its own
right, but rather to produce aesthetically attrac-
tive/interesting results in noncreative ways.

The preeminent case of G-art in the visual arts is
AARON, whose programmer tweaks no knobs
while it is running. In music, perhaps the best-
known example is the work of the composer David
Cope (2001, 2006).

Cope’s program Emmy (from EMI: Experiments
in Musical Intelligence) has composed music in
the style of composers such as Bach, Beethoven,
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Chopin, Mahler … and Scott Joplin, too. Some are

pieces for solo instrument, such as a keyboard

fugue or sonata, while others are orchestral sym-

phonies. They are remarkably compelling, striking

many musically literate listeners—though admit-

tedly not all—as far superior to mere pastiche.

That’s sometimes so even when the listener

approached Emmy’s scores in a highly sceptical

spirit. For instance, the cognitive scientist Douglas

Hofstadter, a leading figure in the computer mod-

eling of creativity (Hofstadter and FARG 1995,

Rehling 2002), believed it to be impossible that tra-

ditional AI techniques could compose music of

human quality. But on playing through some

Emmy scores for new “Chopin mazurkas,” a genre

with which Hofstadter, a fine amateur musician,

was already very familiar, he was forced to change

his mind (Hofstadter 2001, 38f.).

Other examples of computer art are not stand-

alone, but interactive (Boden and Edmonds 2009;

Boden in press); that is, the computer’s perform-

ance is continually affected by outside events

while the program is running.

Those “outside events” may be impersonal mat-

ters such as wave movements or weather condi-

tions, but usually they are the movements/actions

of human beings. Given that what the system does

on any occasion depends in part on the actions of

the human audience, the causal relation may be

obvious enough for the person to choose what

effect to have on the program’s performance.

Sometimes, however, such predictions are impos-

sible: the audience affects what happens but, per-

haps because of the complexity of the causality

involved, they don’t know how. They may not

even realize that this is happening at all—for

instance, because of a built-in delay between

(human-generated) cause and (computer-generat-

ed) effect.

One interactive program, written by Ernest

Edmonds, was chosen by the curators of a Wash-

ington, D.C., art gallery to be run alongside the

works of Mark Rothko, Clyfford Still, and Kenneth

Noland, in a 2007 exhibition celebrating the 50th

anniversary of the “ColorField” painters. (So much

for the view that computer art can’t really be art—

see below.)

An interactive artwork commissioned for the

huge millennial exhibition filling London’s new-

built Millennium Dome was described by a Times

journalist as “the best bit of the entire dome.” This

was Richard Brown’s captivating Mimetic Starfish.

The starfish is a purely virtual creature: a visual

image generated by a self-equilibrating neural net-

work that’s attached to sensors in the vicinity. The

image is projected from the ceiling down onto a

marble table, and appears to onlookers to be a large

multicolored starfish trapped inside it. But despite

being “trapped” inside the table, it moves. More-

over, it moves in extraordinarily lifelike ways, in

response to a variety of human movements and

sounds. If someone shouts, for instance, or sud-

denly pounds the table, the starfish instantly

“freezes” as a frightened animal might do.

Interactive art isn’t wholly new: Mozart’s dice

music is one ancient example. (Someone would

throw a die to decide the order in which to play

Mozart’s precomposed musical snippets, and the

result would always be a coherent piece.) But

because of the general-purpose nature of comput-

ing, a very wide range of types of interaction can

be accommodated, many of which were previous-

ly unimaginable.

In computer-based interactive art, the aesthetic

interest is not only, or not even primarily, in the

intrinsic quality of the results (images and sounds).

Rather, it is in the nature of the interaction between

computer and human beings (Boden in press). The

“audience” is seen as a participant in the creation of

the artwork—especially if the causal relations

between human activity and computer perform-

ance are direct and intelligible. In the latter case,

one can voluntarily shape the computer’s perform-

ance so as to fit one’s own preferences. But whether

the the relatively direct cases are more artisticially

interesting than the indirect ones is disputed:

there’s no consensus on just what type of interac-

tions are best from an aesthetic point of view.

As for evolutionary art, two pioneering exam-

ples (Sims and Latham) have been mentioned

already. Today, young computer artists are increas-

ingly using evolutionary techniques in their work.

One main reason is the potential for surprise that

this (randomness-based) approach provides.

Another is its connection with A-Life, and with life

itself. Some evolutionary artists even claim that

their work, or something like it, may one day gen-

erate “real” life in computers (Whitelaw 2004).

(They are mistaken, because computers—although

they use energy, and can even budget it—don’t

metabolize [Boden 1999].)

Additional types of computer art exist, which

can’t be discussed here. But there is a debilitating

occupational hazard that faces all who work in this

area, whichever subfield they focus on. Namely,

many members of the general public simply refuse

point-blank to take their work seriously.

Consider Emmy, for instance. I said, above, that

Emmy composes music in the style of Bach and oth-

er composers. I should rather have said that it com-

posed such music, for in 2005, Cope destroyed the

musical database that had taken him 25 years to

build and that stored musical features characteris-

tic of the composers concerned (Cope 2006, 364).

His reason was twofold. First, he had found over

the years that many people dismissed Emmy’s

compositions (sometimes even refusing to hear

them at all), failing to take them seriously because
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of their nonhuman origin. Second, even those who
did appreciate Emmy’s scores tended to regard
them not as music but as computer output. As such,
they were seen as infinitely reproducible—and
devalued accordingly (Boden 2007). Now, howev-
er, Emmy has a finite oeuvre—as all human com-
posers, beset by mortality, do.

Some of Emmy’s detractors would be equally
adamant in dismissing every other example of
computer art. They might admit that the Mimetic
Starfish, for example, is both beautiful and—for a
while—intriguing. But they would regard it as a
decorative gimmick, not as art. For them, there can
be no such thing as computer art. Despite the fact
that there is always a human artist somewhere in
the background, the mediation of the computer in
generating what’s actually seen or heard under-
mines its status as art.

This isn’t the place to attempt a definition of the
notoriously slippery concept of art. (But remember
that a computer artwork was chosen by tradition-
al gallery curators for inclusion in Washington’s
“ColorField” exhibition; see above.) In other
words, it’s not the place for discussing whether
computer art is “really” art.

But we can’t wholly ignore a closely related
question, which is often in people’s minds when
they deny the possibility of computer art. Namely,
can a computer “really” be creative?

But Are Computers 
Creative, Really?

Whether a computer could ever be “really” creative
is not a scientific question but a philosophical one.
And it’s currently unanswerable, because it
involves several highly contentious—and highly
unclear—philosophical questions.

These include the nature of meaning, or inten-
tionality; whether a scientific theory of psycholo-
gy, or consciousness, is in principle possible; and
whether a computer could ever be accepted as part
of the human moral community. Indeed, you can
ignore creativity here, for many philosophers argue
that no naturalistic explanation of any of our psy-
chological capacities is possible, not even an expla-
nation based in neuroscience. In short, the philo-
sophical respectability of “strong” AI, and of
cognitive science in general, is hotly disputed.

These are among the very deepest questions in
philosophy. I’ve discussed them elsewhere (Boden
2004, chapter 11; Boden 2006, chapter 16). I’ve
also argued that the ultrasceptical, postmodernist
view is irrational and fundamentally self-defeating
(Boden 2006, 1.iii.b, 16.vi–viii). But there’s no
knock-down refutation on either side. That being
so, even the youngest readers of AI Magazine
shouldn’t expect to see these questions to be defin-
itively answered in their lifetimes.

The scientific questions offer more hope.
Enough advance has already been made in com-
putational psychology and computer modeling to
make it reasonable to expect a scientific explana-
tion of creativity. Optimists might even say that it’s
already on the horizon. This doesn’t mean that
we’ll ever be able to predict specific creative ideas,
any more than physicists can predict the move-
ments of a single grain of sand on a windswept
beach. Because of the idiosyncracy and (largely
hidden) richness of individual human minds, we
can’t even hope to explain all creative ideas post
hoc. But, thanks in part to AI, we have already
begun to understand what sort of phenomenon cre-
ativity is.

Still something of a mystery, perhaps. And cer-
tainly a marvel. But not—repeat, not—a miracle.
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