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Introduction to the Data Link Layer

5.1 The Data Link Layer: Introduction, Services
In the previous chapter we learned that the network layer provides a communication service between two hosts. As 
shown in Figure 5.1-1, this communication path starts at the source host, passes through a series of routers, and ends at 
the destination host.  We'll find it convenient here to refer to the hosts and the routers simply as nodes (since, as we'll 
see shortly, we will not be particularly concerned whether a node is a router or a host), and to the communication 
channels that connect adjacent nodes along the communication path as links. In order to move a datagram from source 
host to destination host, the datagram must be moved over each of the individual links in the path. In this chapter, we 
focus on the data link layer, which is responsible for transferring a datagram across an individual link. We'll first 
identify and study the services provided by the link layer.  In sections 5.2 through 5.4, we'll then examine important 
principles behind the protocols that provide these services (including the topics of error detection and correction,  so-
called multiple access protocols that are used share a single physical link among multiple nodes, and link-level 
addressing).  We'll see that many different types of link-level technology can be used to connect two nodes. In sections 
5.5 through 5.10, we'll examine specific link-level architectures and protocols in more detail. 
  
  

 
Figure 5.1-1: TheData Link Layer

5.1.1 The Services Provided by the Link Layer

A link-layer protocol is used to move a datagram over an individual link. The link-layer protocol defines the format of 
the packets exchanged between the nodes at the ends of the link, as well as the actions taken by these nodes when 
sending and receiving packets. Recall from Chapter 1 that the packets exchanged by a link-layer protocol are called 
frames, and that each link-layer frame typically encapsulates one network-layer datagram. As we shall see shortly, the 
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Introduction to the Data Link Layer

actions taken by a link-layer protocol when sending and receiving frames include error detection, retransmission, flow 
control and random access. Examples of link-layer protocols include Ethernet, token ring, FDDI,  and PPP; in some 
contexts, ATM and frame relay can be considered link-layer protocols as well.  We will cover these protocols in detail 
in the latter half of this chapter. 

Whereas the network layer has the end-to-end job of moving transport-layer segments from the source host to the 
destination host, a link-layer protocol has the node-to-node job of moving a network-layer datagram over a single link 
in the path.  An important characteristic of the link layer is that a datagram may be handled by different link-layer 
protocols on the different links in the path. For example, a datagram may be handled by Ethernet on the first link, PPP 
on the last link, and frame relay on all intermediate links.  It is important to note that the services provided by the 
different link-layer protocols may be different. For example, a link-layer protocol may or may not provide reliable 
delivery. Thus, the network layer must be able to accomplish its end-to-end job in the face of a varying set of 
individual link-layer services. 

In order to gain insight to the link layer and how it relates to the network layer, let's consider a transportation analogy. 
Consider a travel agent who is planning a tr for a tourist traveling from Princeton, New Jersey to Lausanne, 
Switzerland. Suppose the travel agent decides that it is most convenient for the tourist to take a limousine from 
Princeton to JFK airport, then  a plane from JFK airport to Geneva airport,  and finally a train from Geneva to 
Lausanne's train station. (There is a train station at Geneva's airport.) Once the travel agent makes the three 
reservations, it is the responsibility of the Princeton limousine company to get the tourist from Princeton to JFK; it is 
the responsibility of the airline company to get the tourist from JFK to Geneva; and it is responsibility of the Swiss 
train service to get the tourist from the Geneva to Lausanne. Each of the three segments of the trip is "direct" between 
two "adjacent" locations.  Note that the three transportation segments are managed by different companies and use 
entirely different transportation modes (limousine, plane and train). Although the transportation modes are different, 
they each provide the basic service of moving passengers from one location to an adjacent location. This service is 
used by the travel agent to plan the tourist's trip. In this transportation analogy, the tourist is analogous to a datagram, 
each transportation segment is analogous to a communication link, the transportation mode is analogous to the link-
layer protocol, and the travel agent who plans the trip is analogous to a routing protocol. 

The basic service of the link layer is to "move" a datagram from one node to an adjacent node over a single 
communication link. But the details of the link-layer service depend on the specific link-layer protocol that is 
employed over the link. Possible services that can be offered by a link-layer protocol include: 

●     Framing and link access: Almost all link-layer protocols encapsulate each network-layer datagram within a 
link-layer frame before transmission onto the link. A frame consists of a data field, in which the network-layer 
datagram is inserted, and a number of header fields. (A frame may also include trailer fields; however, we will 
refer to both header and trailer fields as header fields.)  A data link protocol specifies the structure of the frame, 
as well as a channel access protocol that specifies the rules by which a  frame is transmitted onto the link.  For 
point-to-point links that have a single sender on one end of the link and a single receiver at the other end of the 
link, the link access protocol is simple (or non-existent) - the sender can send a frame whenever the link is idle.   
The more interesting case is when multiple nodes share a single broadcast link - the so-called multiple access 
problem.  Here, the channel access protocol serves to coordinate the frame transmissions of the many nodes; we 
cover multiple access protocols in detail in section 5.3 .  We'll see several different frame formats when we 
examine specific link-layer protocols in the second half of this chapter. In section 5.3, we'll see that frame 
headers also often include fields for a node's so-called  physical  address,  which is completely distinct from 
the node's network layer (e.g., IP) address.

●     Reliable delivery: If a link-layer protocol provides the reliable-delivery service, then it guarantees to move 
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each network-layer datagram across the link without error. Recall that transport-layer protocols (such as TCP) 
may also provide a reliable-delivery service. Similar to a transport-layer reliable-delivery service, a link-layer 
reliable-delivery service is achieved with acknowledgments and retransmissions (see Section 3.4). A link-layer 
reliable-delivery service is often used for links that are prone to high error rates, such as a wireless link, with the 
goal of correcting an error locally, on the link at which the error occurs, rather than forcing an end-to-end 
retransmission of the data by transport- or application-layer protocol. However, link-layer reliable delivery is 
often considered to be unnecessary overhead for low bit-error links, including fiber, coax and many twisted-pair 
copper links. For this reason, many of the most popular link-layer protocols do not provide a reliable-delivery 
service.

●     Flow control: The nodes on each side of a link have a limited amount of packet buffering capacity. This is a 
potential problem, as a receiving node may receive frames at a rate faster than it can process the frames (over 
some time interval). Without flow control, the receiver's buffer can overflow and frames can get lost. Similar to 
the transport layer, a link-layer protocol can provide flow control in order to prevent the sending node on one 
side of a link from overwhelming the receiving node on the other side of the link.

●     Error detection: A node's receiver can incorrectly decide that a bit in a frame to be a zero when it was 
transmitted as a one (and vice versa). These errors are introduced by signal attenuation and electromagnetic 
noise. Because there is no need to forward a datagram that has an error, many link-layer protocols provide a 
mechanism for a node to detect the presence of one or more errors. This is done by having the transmitting node 
set error detection bits in the frame, and having the receiving node perform an error check. Error detection is a 
very common service among link-layer protocols. Recall from Chapters 3 and 4 that the transport layer and 
network layers in the Internet also provide a limited form of error detection. Error detection in the link layer is 
usually more sophisticated and implemented in hardware.

●     Error correction: Error correction is similar to error detection, except that a receiver can not only detect 
whether errors have been introduced in the frame but can also determine exactly where in the frame the errors 
have occurred (and hence correct these errors). Some protocols (such as ATM) provide link-layer error 
correction for the packet header rather than for the entire packet. We cover error detection and correction in 
section 5.2.

●     Half-Duplex and Full-Dulpex: With full-duplex transmission, both nodes at the ends of a link may transmit 
packets at the same time. With half-duplex transmission, a node cannot both transmit and receive at the same 
time.

As noted above, many of the services provided by the link layer have strong parallels with services provided at the 
transport layer. For example, both the link layer and the transport layer can provide reliable delivery. Although the 
mechanisms used to provide reliable delivery in the two layers are similar (see Section 3.4), the two reliable delivery 
services are not the same. A transport protocol provides reliable delivery between two processes on an end-to-end 
basis; a reliable link-layer protocol provides the reliable-delivery service between two nodes connected by a single 
link. Similarly, both link-layer and transport-layer protocols can provide flow control and error detection; again, flow 
control in a transport-layer protocol is provided on an end-to-end basis, whereas it is provided in a link-layer protocol 
on a node-to-adjacent-node basis. 

5.1.2 Adapters Communicating 

For a given communication link, the link-layer protocol is for the most part implemented in a pair of adapters. An 
adapter is a board (or a PCMCIA card) that typically contains RAM, DSP chips, a host bus interface and a link 
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interface. Adapters are also commonly known as network interface cards or NICs. As shown in Figure 5.1-2, the 
network layer in the transmitting node (i.e., a host or router) passes a network-layer datagram to the adapter that 
handles the sending side of the communication link. The adapter encapsulates the datagram in a frame and then 
transmits the frame into the communication link. At the other side, the receiving adapter receives the entire frame, 
extracts the network-layer datagram, and passes it to the network layer. If the link-layer protocol provides error 
detection, then it is the sending adapter that sets the error detection bits and it is the receiving adapter that performs the 
error checking. If the link-layer protocol provides reliable delivery, then the mechanisms for reliable delivery (e.g., 
sequence numbers, timers and acknowledgments) are entirely implemented in the adapters. If the link-layer protocol 
provides random access (see Section 5.3), then the random access protocol is entirely implemented in the adapters. 

 
Figure 5.1-2: The link-layer protocol for a communication link is implemented in the adapters at the two ends of the 

link. DG abbreviates "datagram".

A computer in itself, an adapter is a semi-autonomous unit. For example, an adapter can receive a frame, determine if a 
frame is in error and discard the frame without notifying its "parent" node. An adapter that receives a frame only 
interrupts its parent node when it wants to pass a network-layer datagram up the protocol stack. Similarly, when a node 
passes a datagram down the protocol stack to an adapter, the node fully delegates to the adapter the task of transmitting 
the datagram across that link.  On the other hand, an adapter is not an completely autonomous unit. Although we have 
shown the adapter as a separate "box" in Figure 5.3.1, the adapter is typically housed in the same physical box as rest 
of the node, shares power and busses with the rest of the node, and is ultimately under the control of the node. 

 
Figure 5.1-3: The adapter is a semi-autonomous unit.

As shown in Figure 5.1.3, the main components of an adapter are the bus interface and the link interface. The bus 
interface is responsible for communicating with the adapter's parent node. It sends to and receives from the parent node 
network-layer datagrams and control information. The link interface is responsible for implementing the link-layer 
protocol. In addition to framing and de-framing datagrams, it may provide error detection, random access and other 
link-layer functions. It also includes the transmit and receive circuitry. For popular link-layer technologies, such as 
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Ethernet, the link interface is implemented by chip set that can be bought on the commodity market. For this reason, 
Ethernet adapters are incredibly cheap -- often less than $30 for 10 Mbps and 100 Mbps transmission rates. 

Adapter design has become very sophisticated over the years. One of the critical issues in adapter performance has 
always been whether the adapter can move data in and out of a node at the full line speed, that is, at the transmission 
rate of the link. You can learn more about adapter architecture for 10Mbps Ethernet, 100 Mbps Ethernet and 155 Mbps 
ATM by visiting the 3Com adapter page [3Com]. Data Communications magazine provides a nice introduction to 
Gbps Ethernet adapters [GigaAdapter]. 
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Error Detection and Correction

5.2 Error Detection and Correction 
Techniques

In the previous section, we noted that bit-level error detection and correction - detecting and correcting the 
corruption of bits in a data-link-layer frame sent from one node to another physically-connected neighboring 
node - are two services often provided by the data link layer.  We saw in Chapter 3 that error detection and 
correction services are also often offered at the transport layer as well.  In this section, we'll examine a few of 
the simplest techniques that can be used to detect and, in some cases, correct such bit errors. A full treatment 
of the theory and implementation of this topic is itself the topic of many textbooks (e.g., [Schwartz 1980]), and 
our treatment here is necessarily brief. Our goal here is to develop an intuitive feel for the capabilities that 
error detection and correction techniques provide, and to see how a few simple techniques work and are used 
in practice in the data link layer. 

Figure 5.2-1  illustrates the setting for our study. At the sending node, data, D, to be "protected" against bit 
errors  is augmented with error detection and correction bits, EDC. Typically, the data to be protected includes 
not only the datagram passed down from the network layer for transmission across the link, but also link-level 
addressing information, sequence numbers, and other fields in the data link frame  header. Both D and EDC 
are sent to the receiving node in a link-level frame. At the receiving node, a sequence of bits, D' and EDC' are 
received. Note that D' and EDC'  may differ from the original D and EDC as a result of in-transit bit flips. 
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Figure 5.2-1: Error detection and correction scenario

The receiver's challenge is to determine whether or not D' is the same as the original D,  given that it has only 
received D' and EDC'. The exact wording of the receiver's decision in Figure 5.2-1 (we ask whether an error is 
detected, not whether an error has occurred!) is important. Error detection and correction techniques allow the 
receiver to sometimes, but not always, detect that bit errors have occurred. That is, even with the use of error 
detection bits there will still be a possibility that  undetected bit errors will occur, i.e., that the receiver will  
be unaware that the received information contains bit errors. As a consequence, the receiver might deliver a 
corrupted datagram to the network layer, or be unaware that the contents of some other field in the  frame's 
header have been corrupted. We thus want to choose an error detection scheme so that the probability of such 
occurrences is small. Generally,  more sophisticated error detection and correction techniques (i.e., those that 
have a smaller probability of allowing undetected bit errors)  incur a larger  overhead - more computation is 
need to compute and transmit a larger number of error detection and correction bits. 

Let's now examine three techniques for detecting errors in the transmitted data -- parity checks (to illustrate the 
basic ideas behind error detection and correction), checksumming methods (which are more typically 
employed in the transport layer) and cyclic redundancy checks (which are typically employed in the data link 
layer). 
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5.2.1 Parity Checks

Perhaps the simplest form of error detection is the use of a single parity bit. Suppose that the information to 
be sent, D in Figure 5.2-1, has d bits. In an even parity scheme, the sender simply includes one additional bit 
and chooses its value such that the total number of 1's in the d+1 bits (the original information plus a parity 
bit) is even. For odd parity schemes, the parity bit value is chosen such that there are an odd number of 1's. 
Figure 5.2-2 illustrates an even parity scheme, with the single parity bit being stored in a separate field. 
  
  

 

Figure 5.2-2: One-bit even parity

Receiver operation is also simple with a single parity bit. The receiver need only count the number of 1's in the 
received d+1 bits. If an odd number of 1-valued bits are found with an even parity scheme, the receiver knows 
that at least one bit error has occurred. More precisely, it knows that some odd number of bit errors have 
occurred. 

But what happens if an even number of bit errors occur? You should convince yourself that this would result 
in an undetected error. If the probability of bit errors is small and errors can be assumed to occur 
independently from one bit to the next, the probability of multiple bit errors in a packet would be extremely 
small. In this case, a single parity bit might suffice. However, measurements have shown that rather than 
occurring independently, errors are often clustered together in ``bursts.''  Under burst error conditions, the 
probability of undetected errors in a frame protected by single-bit-partity can approach 50 percent [Spragins 
1991]. Clearly, a more robust error detection scheme is needed (and, fortunately, is used in practice!).  But 
before examining error detection schemes that are used in practice, let's cosider a simple generalization of one-
bit parity that will provide us with insight into error correction techniques. 
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Figure 5.2-3: Two-dimensional even parity

Figure 5.2-3 shows a two-dimensional generalization of the single-bit parity scheme. Here, the d bits in D are 
divided into i rows and j columns. A parity value is computed for each row and for each column. The resulting 
i+j+1 parity bits are the data link frame's error detection bits. 

Suppose now that a single bit error occurs in the original d bits of information. With this  two-dimensional 
parity scheme, the parity of both the column and the row containing the flipped bit will be in error. The 
receiver can thus not only detect the fact that a single bit error has occurred, but can use the column and row 
indices of the column and row with parity errors to actually identify the bit that was corrupted and correct that 
error! Figure 5.2-3 shows an example in which the 0-valued bit in position (1,1) is corrupted and switched to a 
1 -- an error that is both detectable and correctable at the receiver. Although our discussion has focussed on the 

http://www.behzadakbari.com/networking/ross/ec.htm (4 of 8) [5/13/2004 12:02:26 PM]



Error Detection and Correction

original d bits of information, a single error in the parity bits themselves is also detectable and correctable. 
Two dimensional parity can also detect (but not correct!) any combination of two errors in a packet. Other 
properties of the two-dimensional parity scheme are explored in the problems at the end of the chapter. 

The ability of the receiver to both detect and correct errors is known as forward error correction (FEC). 
These techniques are commonly used in audio storage and playback devices such as audio CD's.  In a network 
setting, FEC techniques can be used by themselves, or in conjunction with the ARQ techniques we examined 
in Chapter 3. FEC techniques are valuable because they can decrease the number of sender retransmissions 
required. Perhaps more importantly, they allow for immediate correction of errors at the receiver. This avoids 
having to wait the round-trip propagation delay needed for the sender to receive a NAK packet and for the 
retransmitted packet to propagate back to the receiver -- a potentially important advantage for real-time 
network applications [Rubenstein 1998]. Recent work examining the use of FEC in error control protocols 
include [Biersack 1992, Nonnenmacher 1998, Byers 1998, Shacham 1990]. 
  

5.2.2 Checksumming Methods

In checksumming techniques, the d bits of data in Figure 5.2-1 are treated as a sequence of k-bit integers. One 
simple checksumming method is to simply sum these k-bit integers and use the resulting sum as the error 
detection bits. The so-called Internet checksum  [RFC 1071] is based on this approach --  bytes of data are 
treated as 16-bit integers and their ones-complement sum forms the Internet checksum.  A receiver calculates 
the checksum it calculates over the received data and checks whether it matches the checksum carried in the 
received packet. RFC1071 [RFC 1071] discusses the Internet checksum algorithm and its implementation in 
detail. In the TCP/IP protocols, the Internet checksum is computed over all fields (header and data fields 
included). In other protocols, e.g., XTP [Strayer 1992], one checksum is computed over the header, with 
another checksum computed over the entire packet. 

McAuley [McAuley 1994] describe improved weighted checksum codes that are suitable for high-speed 
software implementation and Feldmeier [Feldmeier 1995]  presents fast software implementation techniques 
for not only weighted checksum codes, but CRC (see below) and other codes as well 
  

5.2.3 Cyclic redundancy check

An error detection technique used widely in today's computer networks is based on cyclic redundancy check 
(CRC) codes. CRC codes are also known as polynomial codes, since it is possible to view the bit string to be 
sent as a polynomial whose coefficients are the 0 and 1 values in the bit string, with operations on the bit string 
interpreted as polynomial arithmetic. 
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Figure 5.2-4: CRC codes

CRC codes operate as follows. Consider the d-bit piece of data, D,  that the sending node wants to send to the 
receiving node. The sender and receiver must first agree on a r+1 bit pattern, known as a generator, which we 
will denote as G. We will require that the most significant (leftmost) bit of G be a 1. The key idea behind CRC 
codes is shown in Figure 5.2-4. For a given piece of data, D, the sender will choose r additional bits, R, and 
append them to D such that the resulting d+r bit pattern (interpreted as a binary number) is exactly divisible by 
G using modulo 2 arithmetic. The process of error checking with CRC's is thus simple: the receiver divides the 
d+r received bits by G.  If the remainder is non-zero, the receiver knows that an error has occurred; otherwise 
the data is accepted as being correct. 

All CRC calculations are done in modulo 2 arithmetic without carries in addition or borrows in subtraction. 
This means that addition and subtraction are identical, and both are equivalent to the bitwise exclusive-or 
(XOR) of the operands. Thus, for example, 

1011 XOR 0101  =  1110 
1001 XOR 1101  =  0100

 Also, we similarly have 

1011 - 0101 = 1110 
1001 - 1101 = 0100

Multiplication and division are the same as in base 2 arithmetic, except that any required addition or 
subtraction is done without carries or borrows. As in regular binary arithmetic, multiplication by 2k left shifts a 
bit pattern by k places. Thus, given D and R, the quantity D*2r XOR  R yields the d+r bit pattern shown in 
Figure 5.2-4. We'll use this algebraic characterization of the d+r bit pattern from Figure 5.2-4 in our 
discussion below. 

Let us now turn to the crucial question of how the sender computes R. Recall that we want to find R such that 
there is an n such that 
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D*2r XOR R = nG

That is, we want to choose R such that G divides into D*2rXOR R  without remainder. If we exclusive-or (i.e., 
add modulo 2, without carry) R to both sides of the above equation, we get 

D*2r  = nG XOR R
This equation  tells us that if we divide D*2r  by  G, the value of the remainder is precisely R.  In other words, 
we can calculate R as 

R = remainder ( D*2r / G ) 
  

 
Figure 5.2-5: An example CRC calculation

Figure 5.2-5 illustrates this calculation for the case of  D = 101110, d = 6 and  G = 1001,  r=3.  The nine bits 
transmitted in this case are 101110 011. You should check these calculations for yourself and also check that 
indeed D2r =  101011 * G XOR R. 
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International standards have been defined for 8-, 12-, 16- and 32-bit generators, G.  An 8-bit CRC is used to 
protect the 5-byte header in ATM cells. The CRC-32 32-bit standard, which has been adopted in a number of 
link-level IEEE protocols, uses a generator of 

GCRC-32 = 100000100110000010001110110110111

Each of the CRC standards can detect burst errors of less than r+1 bits and any odd number of bit errors. 
Furthermore, under appropriate assumptions, a burst of length greater than r+1 bits is detected with probability 
1 - 0.5r. The theory behind CRC codes and even more powerful codes is beyond the scope of this text. The 
text  [Schwartz 1980]  provides an excellent introduction to this topic. 
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