

COMPUTER PROGRAM FOR DESIGN ANALYSIS

LOAP COPY: RETURN TO AFW . ICHNICAL LIBRARY OF RADIAL-INFLOW TURBINES

Kife iland AFb, N. M.

Arthur J. Glassman
Lewis Research Center
Cleveland, Obio 44135
national aeronautics and space administration - Washington, d. C. - february 1976

1. Report No.
2. Government Accession No.

NASA TN D-8164
4. Title and Subtitle

COMP UTER PROGRAM FOR DESIGN
 ANALYSIS OF RADIAL-INFLOW TURBINES

7. Author(s)

Arthur J. Glassman
9. Performing Organization Name and Address

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio 44135
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D. C. 20546
3. Recipient's Catalog No.
5. Report Date

February 1976
6. Performing Organization Code
8. Performing Organization Report No. E-8394
10. Work Unit No.

505-04
11. Contract or Grant No.
13. Type of Report and Period Covered

Technical Note
14. Sponsoring Agency Code
\qquad
15. Supplementary Notes
16. Abstract

Input design requirements are power, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include stator-exit angle, rotor radius ratios, and rotor-exit tangential velocity distribution. Losses are determined by an internal loss model. The program output includes diameters, efficiencies, temperatures, pressures, velocities, and flow angles. Presented are the loss model, the analysis equations, a description of input and output, the FORTRAN program listing and variable list, and sample cases.

17. Key Words (Suggested by Author(s)) Radial-inflow turbine Turbine design		18. Distribution Statement Unclassified - unlimited STAR Category 07 (rev.)	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 64	$\begin{aligned} & \text { 22. Price }{ }^{*} \\ & \$ 6.25 \end{aligned}$

[^0]
COMPUTER PROGRAM FOR DESIGN ANALYSIS

OF RADIAL-INFLOW TURBINES

by Arthur J. Glassman

Lewis Research Center

SUMMARY

This report presents a computer program for the design analysis of radial-inflow turbines. Input design requirements are power, mass flow rate, inlet temperature and pressure. and rotative speed. The design variables include stator-exit angle. rotor-exit-tip to rotor-inlet radius ratio, rotor-exit-hub to tip radius ratio, and the magnitude and radial distribution of rotor-exit tangential velocity. The turbine losses, which are determined by an internal loss model, include those due to stator and rotor boundary layers, tip clearance. disk friction, and exit velocity. The program output includes diameters, total and static efficiencies, and all absolute and relative temperatures, pressures, velocities, and flow angles at stator inlet. stator exit. rotor inlet. and rotor exit. At the rotor exit, these values are presented at any number of radial positions up to a maximum of 17 .

Presented in this report are the loss model, the analysis equations, an explanation of input and output. and the FORTRAN program listing and variable list. Sample cases are included to illustrate use of the program.

IN TRODUCTION

The analysis of a power or propulsion system involves many repetitive calculations of component performance and geometry over a range of conditions. Such calculations are most easily and quickly done by a computer. One component of interest for small gas turbine systems is the radial-inflow turbine. Radial-inflow turbine geometries for achieving maximum static efficiency are presented as a function of specific speed in reference 1. However, there appeared to be no readily available computer program for performing the velocity-diagram analysis required for determining geometry and estimating performance.

A computer program for the design analysis of radial-inflow turbines was, therefore, developed. Input design requirements are power, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include stator-exit angle, rotor-exit-tip to rotor-inlet radius ratio, rotor-exit-hub to tip radius ratio, and the magnitude and radial distribution of rotor-exit tangential velocity. The turbine losses include those due to stator and rotor boundary layers, tip clearance, disk friction, and exit velocity. The program output includes diameters, total and static efficiencies, and all absolute and relative temperatures, pressures, velocities, and flow angles at stator inlet, stator exit, rotor inlet, and rotor exit. At the rotor exit, these values can be presented at any number of radial positions up to a maximum of 17 .

This radial-inflow turbine design analysis computer program is described herein. Presented in this report are the loss model, the analysis method, an explanation of input and output, and the FORTRAN program listing and variable list. Sample cases are included to illustrate use of the program.

LOSS MODEL

An important part of any turbine design problem is the estimation of losses. The loss model used for this analysis is a modification and extension of the model used in reference 1. Accounted for by this model are the three-dimensional (profile plus end wall) viscous losses in the stator and the rotor, the disk-friction loss on the back side of the rotor, the loss due to the clearance between the rotor tip and the outer casing, and the exit velocity loss.

Viscous Loss

The stator and rotor viscous losses are each expressed in terms of a kineticenergy loss coefficient, which is defined as the loss in kinetic energy as a fraction of the ideal kinetic energy of the blade row actual flow. In terms of boundary layer parameters (see ref. 2), the two-dimensional kinetic-energy loss coefficient is expressed as

$$
\begin{equation*}
\overline{\mathrm{e}}_{2 \mathrm{D}}=\frac{\psi_{\mathrm{tot}}}{\mathrm{~s} \cos \Phi-\delta_{\mathrm{tot}}-\mathrm{t}} \tag{1}
\end{equation*}
$$

where the flow angle Φ is equal to α_{1} for the stator and β_{2} for the rotor. The symbols are defined in appendix A. The station designations are indicated on the
schematic cross section of a radial-inflow turbine shown in figure 1. An example velocity diagram indicating angle designations is shown in figure 2. Substituting

$$
\begin{equation*}
\psi=\mathbf{E} \theta \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=\mathrm{H} \theta \tag{3}
\end{equation*}
$$

into equation (1), introducing the surface length l, and dividing numerator and denominator by blade-row exit spacing s yield

$$
\begin{equation*}
\overline{\mathrm{e}}_{2 \mathrm{D}}=\frac{\mathrm{E}\left(\frac{\theta \text { tot }}{l}\right)\left(\frac{l}{\mathrm{~s}}\right)}{\cos \Phi-\frac{\mathrm{t}}{\mathrm{~s}}-\mathrm{H}\left(\frac{\theta_{\text {tot }}}{l}\right)\left(\frac{l}{\mathrm{~s}}\right)} \tag{4}
\end{equation*}
$$

The momentum thickness per unit of surface length is assumed to be expressed as a function of Reynolds number as

$$
\begin{equation*}
\frac{\theta_{\text {tot }}}{l}=\mathrm{C}\left(\frac{\theta_{\text {tot }}}{l}\right)_{\mathrm{ref}}\left(\frac{\mathrm{Re}}{\operatorname{Re}_{\mathrm{ref}}}\right)^{-0.2} \tag{5}
\end{equation*}
$$

The factor C is introduced as a convenience for modifying the loss level if desired. It is further assumed that the ratio of three-dimensional loss to two-dimensional loss is equal to the ratio of three-dimensional (blade surface plus end wall) surface area to two-dimensional (blade wall) surface area (see ref. 2); that is,

$$
\begin{equation*}
\bar{e}_{3 \mathrm{D}}=\overline{\mathrm{e}}_{2 \mathrm{D}}\left(\frac{\mathrm{~A}_{3 \mathrm{D}}}{\mathrm{~A}_{2 \mathrm{D}}}\right) \tag{6}
\end{equation*}
$$

Combining equations (4), (5), and (6) yields

$$
\begin{equation*}
\overline{\mathrm{e}}_{3 \mathrm{D}}=\frac{\operatorname{EC}\left(\frac{\theta_{\text {tot }}}{l}\right)_{\text {ref }}\left(\frac{\operatorname{Re}}{\operatorname{Re}_{\text {ref }}}\right)^{-0.2}\left(\frac{l}{\mathrm{~s}}\right)\left(\frac{\mathrm{A}_{3 \mathrm{D}}}{\mathrm{~A}_{2 \mathrm{D}}}\right)}{\cos \Phi-\frac{\mathrm{t}}{\mathrm{~s}}-\mathrm{HC}\left(\frac{\theta_{\text {tot }}}{l}\right)_{\text {ref }}\left(\frac{\operatorname{Re}}{\operatorname{Re}_{\text {ref }}}\right)^{-0.2}\left(\frac{l}{\mathrm{~s}}\right)} \tag{7}
\end{equation*}
$$

Equation (7) is used to determine the three-dimensional viscous losses in the stator and the rotor. Evaluation of the various terms in equation (7) is as follows.

Flow angle. - As mentioned previously,

$$
\begin{equation*}
\Phi_{\mathrm{S}}=\alpha_{1} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{r}=\beta_{2} \tag{9}
\end{equation*}
$$

Energy and form factors. - The energy and form factors are obtained from equations ($7-14$) and ($7-13$), respectively, of reference 2 using a velocity profile exponent of 0.2. Sufficient numbers of terms are used for each series such that additional terms affect the series sum by less than 0.1 percent. The resultant equations are

$$
\begin{equation*}
\mathrm{E}=\frac{2\left(\frac{1}{1.92}+\frac{\mathrm{Q}}{3.2}+\frac{\mathrm{Q}^{2}}{4.8}+\frac{\mathrm{Q}^{3}}{6.72}\right)}{\frac{1}{1.68}+\frac{\mathrm{Q}}{2.88}+\frac{\mathrm{Q}^{2}}{4.4}+\frac{\mathrm{Q}^{3}}{6.24}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{H}=\frac{\frac{1}{1.2}+\frac{3 \mathrm{Q}}{1.6}+\frac{5 \mathrm{Q}^{2}}{2.0}+\frac{7 \mathrm{Q}^{3}}{2.4}+\frac{9 \mathrm{Q}^{4}}{2.8}}{\frac{1}{1.68}+\frac{\mathrm{Q}}{2.88}+\frac{\mathrm{Q}^{2}}{4.4}+\frac{\mathrm{Q}^{3}}{6.24}} \tag{11}
\end{equation*}
$$

For the stator,

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{s}}=\frac{\gamma-1}{\gamma+1}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{\mathrm{cr}}}\right)_{1}^{2} \tag{12}
\end{equation*}
$$

and for the rotor,

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{r}}=\frac{\gamma-1}{\gamma+1}\left(\frac{\mathrm{~W}}{\mathrm{~W}_{\mathrm{cr}}}\right)_{2}^{2} \tag{13}
\end{equation*}
$$

Reference loss coefficients. - The reference values of momentum thickness per unit length and Reynolds number were combined into reference loss coefficients, which were evaluated by matching the program results with the experimental values of stator loss coefficient ($\overline{\mathrm{e}}_{3 \mathrm{D}, \mathrm{s}}=0.064$, which was obtained from unpublished data) and total efficiency ($\eta^{\prime}=0.88$) for the turbine of reference 3. This is considered to be representative state-of-the-art performance for a carefully designed turbine. With the coefficients C_{S} and C_{r} equal to unity, the reference loss coefficients are

$$
\begin{equation*}
\left(\frac{\theta_{\text {tot }}}{l \mathrm{Re}^{-0.2}}\right)_{\mathrm{ref}, \mathrm{~s}}=0.03734 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\theta_{\text {tot }}}{l \mathrm{Re}^{-0.2}}\right)_{\mathrm{ref}, \mathrm{r}}=0.11595 \tag{15}
\end{equation*}
$$

Reynolds number. - Blade-row chord is used as the characteristic length. For the stator,

$$
\begin{equation*}
\operatorname{Re}_{\mathrm{S}}=\frac{\rho_{1} \mathrm{~V}_{1} \mathrm{c}_{\mathrm{S}}}{\mu} \tag{16}
\end{equation*}
$$

and for the rotor

$$
\begin{equation*}
\operatorname{Re}_{\mathrm{r}}=\frac{\rho_{2} \mathrm{~W}_{2}{ }^{\mathrm{c}_{\mathrm{r}}}}{\mu} \tag{17}
\end{equation*}
$$

Expressing velocity in terms of its throughflow component, multiplying both numerator and denominator by annulus area, and applying the continuity equation yield

$$
\begin{equation*}
\operatorname{Re}_{\mathrm{S}}=\frac{\mathrm{w}}{\pi\left(\frac{\mathrm{~h}}{\mathrm{c}}\right)_{\mathrm{S}} \mu \mathrm{D}_{1} \cos \alpha_{1}} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}_{\mathrm{r}}=\frac{\mathrm{w}}{\pi\left(\frac{\mathrm{~h}}{\mathrm{c}}\right)_{\mathrm{r}} \mu \mathrm{D}_{2, \mathrm{~m}} \cos \beta_{2}} \tag{19}
\end{equation*}
$$

Length to spacing ratio. - For the stator, the surface length to exit spacing ratio is expressed as

$$
\begin{equation*}
\left(\frac{l}{\mathrm{~s}}\right)_{\mathrm{s}}=\left(\frac{l}{\mathrm{c}}\right)_{\mathrm{S}}\left(\frac{\mathrm{c}}{\mathrm{~s}}\right)_{\mathrm{S}} \tag{20}
\end{equation*}
$$

A stator solidity ($\mathrm{c} / \mathrm{s})_{\mathrm{S}}$ is input to the program and internally adjusted to correspond to an integral number of vanes. The stator surface length to chord ratio ($l / \mathrm{c})_{S}$ is unity for an uncambered vane and obtained from equation (B10) of appendix B for a cambered vane.

For the rotor, the surface length is obtained from equation (C2) of appendix C. The mean spacing at the rotor exit is

$$
\begin{equation*}
\mathrm{s}_{2, \mathrm{~m}}=\frac{2 \pi \mathrm{r}_{2, \mathrm{~m}}}{\mathrm{n}_{\mathrm{r}}}=\frac{\pi\left(\mathrm{r}_{2, \mathrm{~h}}+\mathrm{r}_{2, \mathrm{t}}\right)}{\mathrm{n}_{\mathrm{r}}} \tag{21}
\end{equation*}
$$

Trailing-edge thickness to spacing ratio. - Trailing-edge thickness is specified as a fraction of blade height using existing turbines as a guide. For the stator, the trailing-edge thickness is 5 percent of the stator blade height; that is,

$$
\begin{equation*}
\left(\frac{\mathrm{t}}{\mathrm{~s}}\right)_{\mathrm{S}}=0.05\left(\frac{\mathrm{~h}}{\mathrm{~s}}\right)_{\mathrm{s}}=0.05\left(\frac{\mathrm{~h}}{\mathrm{c}}\right)_{\mathrm{s}}\left(\frac{\mathrm{c}}{\mathrm{~s}}\right)_{\mathrm{S}} \tag{22}
\end{equation*}
$$

The solidity c / s is an input value, while the aspect ratio h / c is either input or computed from the stator geometry model depending on the case.

For the rotor, the trailing-edge thickness is 4 percent of the rotor blade exit height; that is,

$$
\begin{equation*}
\mathrm{t}=0.04\left(\mathrm{r}_{2, \mathrm{t}}-\mathrm{r}_{2, \mathrm{~h}}\right) \tag{23}
\end{equation*}
$$

Dividing equation (23) by spacing as expressed by equation (21) yields

$$
\begin{equation*}
\left(\frac{t}{s}\right)_{r}=\frac{0.04 n_{r}\left(1-\frac{r_{2, h}}{r_{2, t}}\right)}{\pi\left(1+\frac{r_{2, h}}{r_{2, t}}\right)} \tag{24}
\end{equation*}
$$

Three-dimensional- to two-dimensional-area ratio. - Stator vane surface area for one passage is

$$
\begin{equation*}
A_{b, s}=2 l_{s} h_{s}=2\left(\frac{l}{c}\right) c_{s} h_{s} \tag{25}
\end{equation*}
$$

Stator end-wall surface area for one passage is

$$
\begin{equation*}
\mathrm{A}_{\mathrm{w}, \mathrm{~s}}=\frac{2}{\mathrm{n}_{\mathrm{s}}} \pi\left(\mathrm{r}_{0}^{2}-\mathrm{r}_{1}^{2}\right) \tag{26}
\end{equation*}
$$

Expressing number of stator vanes as

$$
\begin{equation*}
\mathrm{n}_{\mathrm{s}}=\frac{2 \pi \mathrm{r}_{1}}{\mathrm{~s}_{\mathrm{s}}} \tag{27}
\end{equation*}
$$

and substituting equation (27) into equation (26) yield

$$
\begin{equation*}
A_{w, s}=\frac{s_{s}}{r_{1}}\left(r_{0}^{2}-r_{1}^{2}\right) \tag{28}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{A_{3 D}}{A_{2 D}}=\frac{A_{b}+A_{w}}{A_{b}} \tag{29}
\end{equation*}
$$

substitution of equations (25) and (28) into equation (29) yields

$$
\begin{equation*}
\left(\frac{A_{3 D}}{A_{2 D}}\right)_{s}=1+\frac{r_{0}^{2}-r_{1}^{2}}{2 r_{1}\left(\frac{l}{c}\right)_{S}\left(\frac{c}{s}\right)_{S} h_{s}} \tag{30}
\end{equation*}
$$

For the rotor,

$$
\begin{equation*}
\left(\frac{A_{3 D}}{A_{2 D}}\right)_{r}=1+\frac{A_{w, t, r}+A_{w, h, r}}{A_{b, r}} \tag{31}
\end{equation*}
$$

where $A_{b, r}, A_{w, t, r}$, and $A_{w, h, r}$ are obtained from equations (C5), (C13), and (C17), respectively, of appendix C.

Disk-Friction Loss

The disk-friction loss is calculated using equations (8-7), (8-10), and (8-15) of reference 4 with the coefficient $C_{I V}=0.085$. For one side of a disk, the friction loss is, therefrom, expressed as

$$
\begin{equation*}
\mathrm{L}_{\mathrm{df}}=\frac{0.02125 \rho_{1 \mathrm{a}} \mathrm{U}_{1 \mathrm{a}}^{3} \mathrm{r}_{1 \mathrm{a}}^{2}}{\mathrm{gJ}\left(\frac{\rho \mathrm{Ur}}{\mu}\right)_{1 \mathrm{a}}^{0.2} \mathrm{w}} \tag{32}
\end{equation*}
$$

Tip Clearance Loss

In accordance with the tip clearance discussion in reference 5, it is assumed that the fractional loss due to clearance is equal to the ratio of clearance to passage height at the rotor exit. Clearance is input to the program as a fraction of diameter. The loss due to clearance is, therefore, computed from

$$
\begin{equation*}
\frac{L_{c}}{\Delta h_{V D, a v}^{\prime}}=\frac{h_{c}}{r_{2, t}-r_{2, h}}=\left(\frac{h_{c}}{D_{t}}\right)_{2} \frac{2 r_{2, t}}{r_{2, t}-r_{2, h}}=\left(\frac{h_{c}}{D_{t}}\right)_{2}\left(\frac{2}{1-\frac{r_{2, h}}{r_{2, t}}}\right) \tag{33}
\end{equation*}
$$

where $\left(h_{c} / D_{t}\right)_{2}$ is the input parameter.

Exit Velocity Loss

The kinetic-energy loss associated with the turbine exit velocity is

$$
\begin{equation*}
\mathrm{L}_{\mathrm{ex}}=\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{gJ}} \tag{34}
\end{equation*}
$$

ANALYSIS METHOD

The flow analysis is one dimensional at the stator inlet, stator exit, and rotor inlet, each of these calculation stations being at a constant radius. At the rotor exit, where there is a variation in flow-field radius, an axisymmetric two-dimensional analysis is made using constant height sectors. Simple radial equilibrium is used to establish the static pressure gradient at the rotor exit.

The fluid energy corresponding to the shaft power requirement is

$$
\begin{equation*}
\Delta h_{\text {shft }}^{\prime}=\frac{C_{P} P}{J w} \tag{35}
\end{equation*}
$$

Disk friction and clearance losses, which are expressed by equations (32) and (33), respectively, are added to the shaft work to yield the average total fluid energy extraction; that is,

$$
\begin{equation*}
\Delta h_{\mathrm{VD}, \mathrm{av}}^{\prime}=\Delta h_{\mathrm{shft}}^{\prime}+\mathrm{L}_{\mathrm{df}}+\mathrm{L}_{\mathrm{c}} \tag{36a}
\end{equation*}
$$

which can also be expressed as

$$
\begin{equation*}
\Delta h_{\mathrm{VD}, \mathrm{av}}^{\prime}=\frac{\Delta \mathrm{h}_{\mathrm{shft}}^{\prime}+\mathrm{L}_{\mathrm{df}}}{1-\frac{\mathrm{L}_{\mathrm{c}}}{\Delta \mathrm{~h}_{\mathrm{VD}, \mathrm{av}}^{\prime}}} \tag{36b}
\end{equation*}
$$

The numerical values needed for evaluating $L_{d f}$ are not immediately known, and an iteration is used starting with $\mathrm{L}_{\mathrm{df}}=0$.

The turbine energy transfer equation is

$$
\begin{equation*}
\Delta \mathrm{h}_{\mathrm{VD}, \mathrm{av}}^{\prime}=\frac{1}{\mathrm{gJ}}\left(\mathrm{U}_{1 \mathrm{a}} \mathrm{~V}_{\mathrm{u}, 1 \mathrm{a}}-\frac{1}{\mathrm{w}} \sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{w}_{\mathrm{i}} \mathrm{U}_{2, \mathrm{i}} \mathrm{~V}_{\mathrm{u}, 2, \mathrm{i}}\right) \tag{37}
\end{equation*}
$$

Substituting

$$
\begin{equation*}
\mathrm{U}_{2, \mathrm{i}}=\frac{\mathrm{r}_{2, \mathrm{i}}}{\mathrm{r}_{1 \mathrm{a}}} \mathrm{U}_{1 \mathrm{a}} \tag{38}
\end{equation*}
$$

into equation (37) and manipulating terms yield

$$
\begin{equation*}
\Delta h_{V D, a v}^{\prime}=\frac{U_{1 a} V_{u, 1 a}}{g J}\left(1-\frac{1}{w} \sum_{i=1}^{\mathrm{k}} \mathrm{w}_{\mathrm{i}} \frac{\mathrm{r}_{2, \mathrm{i}} \mathrm{~V}_{\mathrm{u}, 2, \mathrm{i}}}{\mathrm{r}_{1 \mathrm{a}} \mathrm{~V}_{\mathrm{u}, 1 \mathrm{a}}}\right) \tag{39}
\end{equation*}
$$

The average change in tangential momentum is

$$
\begin{equation*}
\Delta\left(\mathrm{rV}_{\mathrm{u}}\right)_{\mathrm{av}}=\mathrm{r}_{1 \mathrm{a}} \mathrm{~V}_{\mathrm{u}, 1 \mathrm{a}}-\frac{1}{\mathrm{w}} \sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{w}_{\mathrm{i}} \mathrm{r}_{2, \mathrm{i}} \mathrm{~V}_{\mathrm{u}, 2, \mathrm{i}} \tag{40}
\end{equation*}
$$

As discussed in reference 5 , the rotor inlet gas tangential velocity and blade speed can be related as

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{u}, 1 \mathrm{a}}}{\mathrm{U}_{1 \mathrm{a}}}=1-\frac{2}{\mathrm{n}_{\mathrm{r}}} \tag{41}
\end{equation*}
$$

Substituting equations (40) and (41) into equation (39) and solving for blade speed yield

$$
\begin{equation*}
\mathrm{U}_{1 \mathrm{a}}=\left[\frac{\mathrm{gJ} \Delta \mathrm{~h}}{1-\frac{2}{\mathrm{VD}_{\mathrm{r}}} \mathrm{av}} \frac{\left(\mathrm{r} \mathrm{v}_{\mathrm{u}}\right)_{1 \mathrm{a}}}{\Delta\left(\mathrm{r} \mathrm{~V}_{\mathrm{u}}\right)_{\mathrm{av}}}\right]^{1 / 2} \tag{42}
\end{equation*}
$$

The $r V_{u}$ ratio is specified as input, and n_{r} is determined from equation (C19) of appendix C. With $U_{1 a}$ known, equation (41) is used to determine $V_{u, 1 a}$. Rotor inlet diameter is

$$
\begin{equation*}
\mathrm{D}_{1 \mathrm{a}}=\mathrm{C}_{\mathrm{N}} \frac{\mathrm{U}_{1 \mathrm{a}}}{\pi \mathrm{~N}} \tag{43}
\end{equation*}
$$

Stator Exit

The conditions at the stator exit, station 1, are computed from the following equations. The radius ratio $r_{1} / r_{1 a}$ and the stator exit angle α_{1} are known input values. Stator loss coefficient $\overline{\mathrm{e}}_{\mathrm{S}}$ can be either input or computed from the previously presented loss model. If the loss model is used, the stator-exit calculation is iterative between equations (50) to (54).

$$
\begin{gather*}
\mathrm{D}_{1}=\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{1 \mathrm{a}}}\right) \mathrm{D}_{1 \mathrm{a}} \tag{44}\\
\mathrm{~V}_{\mathrm{u}, 1}=\left(\frac{\mathrm{r}_{1 \mathrm{a}}}{\mathrm{r}_{1}}\right) \mathrm{V}_{\mathrm{u}, 1 \mathrm{a}} \tag{45}\\
\mathrm{~V}_{1}=\frac{\mathrm{V}_{\mathrm{u}, 1}}{\sin \alpha_{1}} \tag{46}\\
\mathrm{~V}_{\mathrm{rad}, 1}=\frac{\mathrm{V}_{\mathrm{u}, 1}}{\tan \alpha_{1}} \tag{47}
\end{gather*}
$$

$$
\begin{align*}
& T_{1}^{\prime}=T_{0}^{\prime} \tag{48}\\
& T_{1}=T_{1}^{\prime}-\frac{V_{1}^{2}}{2 g J c_{p}} \tag{49}\\
& \mathrm{~V}_{1, \mathrm{id}}^{2}=\frac{\mathrm{V}_{1}^{2}}{1-\overline{\mathrm{e}}_{\mathrm{s}}} \tag{50}\\
& p_{1}=\left(1-\frac{\mathrm{V}_{1, \mathrm{id}}^{2}}{2 \mathrm{gJc}_{\mathrm{p}} \mathrm{~T}_{0}^{\prime}}\right)^{\gamma /(\gamma-1)} \mathrm{p}_{0}^{\prime} \tag{51}\\
& p_{1}^{\prime}=p_{1}\left(\frac{T_{1}^{\prime}}{T_{1}}\right)^{\gamma /(\gamma-1)} \tag{52}\\
& \rho_{1}=\frac{\mathrm{p}_{1}}{\mathrm{RT}_{1}} \tag{53}\\
& \mathrm{~h}_{\mathrm{s}}=\frac{\mathrm{w}}{\rho_{1} \mathrm{~V}_{\mathrm{rad}, 1} \pi \mathrm{D}_{1}} \tag{54}\\
& \mathrm{~V}_{\mathrm{cr}, 1}=\sqrt{\frac{2 \gamma}{\gamma+1} \mathrm{gRT}_{1}^{\prime}} \tag{55}
\end{align*}
$$

Stator Inlet

Stator-inlet diameter D_{0} and flow angle α_{0} are either input or calculated from the stator geometry model, appendix B. Stator height h_{s} is assumed constant, and the following four equations are solved simultaneously for the stator-inlet, station 0 , conditions $\mathrm{V}_{0}, \mathrm{~T}_{0}, \mathrm{p}_{0}$, and ρ_{0} :

$$
\begin{equation*}
\mathrm{V}_{0}=\frac{\mathrm{w}}{\pi \mathrm{D}_{0} \mathrm{~h}_{\mathrm{s}} \rho_{0} \cos \alpha_{0}} \tag{56}
\end{equation*}
$$

$$
\begin{gather*}
\mathrm{T}_{0}=\mathrm{T}_{0}^{\prime}-\frac{\mathrm{V}_{0}^{2}}{2 \mathrm{gJc}_{p}} \tag{57}\\
\mathrm{p}_{0}=\mathrm{p}_{0}^{\prime}\left(\frac{\mathrm{T}_{0}}{\mathrm{~T}_{0}^{\prime}}\right)^{\gamma /(\gamma-1)} \tag{58}\\
\rho_{0}=\frac{\mathrm{p}_{0}}{\mathrm{RT}_{0}} \tag{59}
\end{gather*}
$$

Rotor Inlet

Assuming no change in total temperature or total pressure between stator exit and rotor inlet (i.e., $T_{1 a}^{\prime}=T_{1}^{\prime}$ and $p_{1 a}^{\prime}=p_{1}^{\prime}$), we can solve the following set of six equations for the variables indicated on the left sides:

$$
\begin{gather*}
\mathrm{V}_{1 \mathrm{a}}=\frac{\mathrm{V}_{\mathrm{u}, 1 \mathrm{a}}}{\sin \alpha_{1 \mathrm{a}}} \tag{60}\\
\mathrm{~T}_{1 \mathrm{a}}=\mathrm{T}_{1 \mathrm{a}}^{\prime}-\frac{\mathrm{V}_{1 \mathrm{a}}^{2}}{2 \mathrm{gJc}_{p}} \tag{61}\\
\mathrm{p}_{1 \mathrm{a}}=\mathrm{p}_{1 \mathrm{a}}^{\prime}\left(\frac{\mathrm{T}_{1 \mathrm{a}}}{\mathrm{~T}_{1 \mathrm{a}}^{\prime}}\right)^{\gamma /(\gamma-1)} \tag{62}\\
\rho_{1 \mathrm{a}}=\frac{\mathrm{p}_{1 \mathrm{a}}}{\mathrm{RT}_{1 \mathrm{a}}} \tag{63}\\
\mathrm{~V}_{\mathrm{rad}, 1 \mathrm{a}}=\mathrm{V}_{\mathrm{rad}, 1} \frac{\rho_{1} \mathrm{D}_{1}}{\rho_{1 \mathrm{a}} \mathrm{D}_{1 \mathrm{a}}} \tag{64}
\end{gather*}
$$

$$
\begin{equation*}
\alpha_{1 \mathrm{a}}=\tan ^{-1} \frac{\mathrm{~V}_{\mathrm{u}, 1 \mathrm{a}}}{\mathrm{~V}_{\mathrm{rad}, 1 \mathrm{a}}} \tag{65}
\end{equation*}
$$

At this point there is sufficient information for evaluation of disk friction loss from equation (32), and the calculation cycles back to equation (36b) until a convergence is obtained.

The rotor-inlet conditions relative to the rotor are

$$
\begin{gather*}
\mathrm{W}_{\mathrm{u}, 1 \mathrm{a}}=\mathrm{V}_{\mathrm{u}, 1 \mathrm{a}}-\mathrm{U}_{1 \mathrm{a}} \tag{66}\\
\beta_{1 \mathrm{a}}=\tan ^{-1} \frac{\mathrm{~W}_{\mathrm{u}, 1 \mathrm{a}}}{\mathrm{~V}_{\mathrm{rad}, 1 \mathrm{a}}} \tag{67}\\
\mathrm{~W}_{1 \mathrm{a}}=\frac{\mathrm{V}_{\mathrm{rad}, 1 \mathrm{a}}}{\cos \beta_{1 \mathrm{a}}} \tag{68}\\
\mathrm{~T}_{1 \mathrm{a}}^{\prime \prime}=\mathrm{T}_{1 \mathrm{a}}+\frac{\mathrm{W}_{1 \mathrm{a}}^{2}}{2 \mathrm{gJc} \mathrm{p}} \tag{69}\\
\mathrm{p}_{1 \mathrm{a}}^{\prime \prime}=\mathrm{p}_{1 \mathrm{a}}\left(\frac{\mathrm{~T}_{1 \mathrm{a}}^{\prime \prime}}{\mathrm{T}_{1 \mathrm{a}}}\right)^{\gamma /(\gamma-1)} \tag{70}\\
\mathrm{W}_{\mathrm{cr}, 1 \mathrm{a}}=\mathrm{V}_{\mathrm{cr}, 1} \sqrt{\frac{\mathrm{~T}_{1 \mathrm{a}}^{\prime \prime}}{\mathrm{T}_{1 \mathrm{a}}^{\prime}}} \tag{71}
\end{gather*}
$$

Rotor Exit

At the rotor exit, station 2 , the annulus is divided into equal-height sectors, with the sectors being related by simple radial equilibrium. The solution at the rotor exit has to satisfy two input requirements, average specific work and flow. This is done by means of two iteration loops. The outer-loop iteration is started by setting a value for the mean-sector tangential velocity $\mathrm{V}_{\mathrm{u}, 2, \mathrm{~m}}$. The inner loop is then cycled by varying
the mean-sector axial velocity $\mathrm{V}_{\mathrm{x}, 2, \mathrm{~m}}$ until continuity is satisfied. The average specific work is then checked. If necessary, $\mathrm{V}_{\mathrm{u}, 2, \mathrm{~m}}$ is adjusted and the iteration process repeated until both loops are simultaneously satisfied.

The rotor-exit hub and tip diameters are known from the calculated rotor-inlet diameter and input diameter ratios. For the k sectors, therefore, the sector mean diameters $\mathrm{D}_{2, \mathrm{i}}$ are known. Without knowledge of the rotor-exit solution, we can then calculate for all \mathbf{i}

$$
\begin{gather*}
U_{2, i}=\frac{\pi D_{2, i^{\prime}}}{C_{N}} \tag{72}\\
T_{2, i}^{\prime \prime}=T_{1 a}^{\prime \prime}+\frac{U_{2, i}^{2}-U_{1 a}^{2}}{2 g J c_{p}} \tag{73}\\
W_{c r, 2, i}=W_{c r, 1 a} \sqrt{\frac{T_{2, i}^{\prime \prime}}{T_{1 a}^{\prime \prime}}} \tag{74}\\
\mathrm{p}_{2, \mathrm{id}, \mathrm{i}}^{\prime \prime}=\mathrm{p}_{1 \mathrm{a}}^{\prime \prime}\left(\frac{\mathrm{T}_{2, \mathrm{i}}^{\prime \prime}}{\mathrm{T}_{1 \mathrm{a}}^{\prime \prime}}\right)^{\gamma /(\gamma-1)} \tag{75}
\end{gather*}
$$

The rotor loss coefficient $\overline{\mathbf{e}}_{\mathbf{r}}$ can be either input or computed from the previously presented loss model using mean-sector conditions. With the rotor-exit mean-sector tangential and axial absolute-velocity component values set by the iteration loops previously discussed, the rotor-exit calculation proceeds as follows, starting with the mean sector:

$$
\begin{gather*}
\mathrm{W}_{\mathrm{u}, 2, \mathrm{~m}}=\mathrm{V}_{\mathrm{u}, 2, \mathrm{~m}}-\mathrm{U}_{2, \mathrm{~m}} \tag{76}\\
\beta_{2, \mathrm{~m}}=\tan ^{-1} \frac{\mathrm{~W}_{\mathrm{u}, 2, \mathrm{~m}}}{\mathrm{~V}_{\mathrm{x}, 2, \mathrm{~m}}} \tag{77}\\
\mathrm{~W}_{2, \mathrm{~m}}=\frac{\mathrm{V}_{\mathrm{x}, 2, \mathrm{~m}}}{\cos \beta_{2, \mathrm{~m}}} \tag{78}
\end{gather*}
$$

$$
\begin{gather*}
\mathrm{T}_{2, \mathrm{~m}}=\mathrm{T}_{2, \mathrm{~m}}^{\prime \prime}-\frac{\mathrm{W}_{2, \mathrm{~m}}^{2}}{2 \mathrm{gJc}_{\mathrm{p}}} \tag{79}\\
\mathrm{~W}_{2, \mathrm{id}, \mathrm{~m}}^{2}=\frac{\mathrm{W}_{2, \mathrm{~m}}^{2}}{1-\overline{\mathrm{e}}_{\mathrm{r}}} \tag{80}\\
\mathrm{p}_{2, \mathrm{~m}}=\left(1-\frac{\mathrm{W}_{2, \mathrm{id}, \mathrm{~m}}^{2}}{\left.2 \mathrm{gJc}_{\mathrm{p}} \mathrm{~T}_{2, \mathrm{~m}}^{\prime \prime}\right)^{\gamma /(\gamma-1)}} \mathrm{p}_{2, \mathrm{id}, \mathrm{~m}}^{\prime \prime}\right. \tag{81}\\
\rho_{2, \mathrm{~m}}=\frac{\mathrm{p}_{2, \mathrm{~m}}}{\mathrm{RT}_{2, \mathrm{~m}}} \tag{82}
\end{gather*}
$$

For the other sectors, the rotor loss coefficient is assumed constant and equal to the mean-sector value. The angular momentum distribution $\left(\mathrm{rV}_{\mathrm{u}}\right)_{2, \mathrm{i}} /\left(\mathrm{rV}_{\mathrm{u}}\right)_{2, \mathrm{~m}}$ is specified as input. The calculation then proceeds from the mean sector into the hub and from the mean sector out to the tip; thus,

$$
\begin{equation*}
\mathrm{V}_{\mathrm{u}, 2, \mathrm{j}}=\mathrm{V}_{\mathrm{u}, 2, \mathrm{~m}} \frac{\left(\mathrm{r} \mathrm{~V}_{\mathrm{u}}\right)_{2, \mathrm{j}}}{\left(\mathrm{r} \mathrm{~V}_{\mathrm{u}}\right)_{2, \mathrm{~m}}} \frac{\mathrm{D}_{2, \mathrm{~m}}}{\mathrm{D}_{2, \mathrm{j}}} \tag{83}
\end{equation*}
$$

In the following, the subscript j refers to all values of i except $i=m$:

$$
\begin{gather*}
W_{u, 2, j}=V_{u, 2, j}-U_{2, j} \tag{84}\\
p_{2, j}=p_{2, j \pm 1}+\frac{\rho_{2, j \pm 1}}{2 g}\left(\frac{v_{u, 2, j}^{2}}{D_{2, j}}+\frac{V_{u, 2, j \pm 1}^{2}}{D_{2, j \pm 1}}\right)\left(D_{2, j}-D_{2, j \pm 1}\right) \tag{85}\\
w_{2, i d, j}^{2}=2 g J c_{p} T_{2, j}^{\prime \prime}\left[1-\left(\frac{p_{2, j}}{p_{2, i d, j}^{\prime \prime}}\right)^{(\gamma-1) / \gamma}\right] \tag{86}
\end{gather*}
$$

$$
\begin{gather*}
\mathrm{w}_{2, \mathrm{j}}=\sqrt{\mathrm{w}_{2, \mathrm{id}, \mathrm{j}}^{2}\left(1-\bar{e}_{\mathrm{r}}\right)} \tag{87}\\
\beta_{2, \mathrm{j}}=\sin ^{-1} \frac{\mathrm{w}_{\mathrm{u}, 2, \mathrm{i}}}{\mathrm{w}_{2, \mathrm{j}}} \tag{88}\\
\mathrm{~V}_{\mathrm{x}, 2, \mathrm{j}}=\mathrm{W}_{2, \mathrm{j}} \cos \beta_{2, \mathrm{j}} \tag{89}\\
\mathrm{~T}_{2, \mathrm{j}}=\mathrm{T}_{2, \mathrm{j}}^{\prime \prime}-\frac{\mathrm{W}_{2, j}^{2}}{2 \mathrm{gJc} \mathrm{p}} \tag{90}\\
\rho_{2, \mathrm{j}}=\frac{p_{2, j}}{R T_{2, j}} \tag{91}
\end{gather*}
$$

After equations (83) to (91) are evaluated for all values of \mathfrak{j}, the mass flow rate at the rotor exit is calculated as

$$
\begin{equation*}
\mathrm{w}_{\text {calc }}=\pi \frac{\mathrm{D}_{2, \mathrm{t}}-\mathrm{D}_{2, \mathrm{~h}}}{2 \mathrm{k}} \sum_{\mathrm{i}=1}^{\mathrm{k}} \rho_{2, \mathrm{i}} \mathrm{~V}_{\mathrm{x}, 2, \mathrm{i}^{\mathrm{D}}} \mathrm{D}_{2, \mathrm{i}} \tag{92}
\end{equation*}
$$

If $w_{c a l c} \neq w$, the value of $V_{x, 2, m}$ is adjusted, and the calculation is cycled back to equation (77). When $w_{\text {calc }}=w$, the energy transfer determined from equation (37) is compared with the work requirement from equation (36b) and, if necessary, the value of $\mathrm{V}_{\mathrm{u}, 2, \mathrm{~m}}$ is adjusted and the calculation cycled back to equation (76). When the flow and work requirements are simultaneously satisfied, the rotor-exit solution is established. The following parameters are then calculated:

$$
\begin{gather*}
\Delta h_{V D, i}^{\prime}=\frac{1}{g J}\left(\mathrm{U}_{1 \mathrm{a}} \mathrm{~V}_{\mathrm{u}, 1 \mathrm{a}}-\mathrm{U}_{2, \mathrm{i}} \mathrm{~V}_{\mathrm{u}, 2, \mathrm{i}}\right) \tag{93}\\
\mathrm{T}_{2, \mathrm{i}}^{\prime}=\mathrm{T}_{0}^{\prime}-\frac{\Delta \mathrm{h}_{\mathrm{VD}, \mathrm{i}}^{\prime}}{\mathrm{c}_{\mathrm{p}}} \tag{94}
\end{gather*}
$$

$$
\begin{gather*}
\mathrm{V}_{\mathrm{cr}, 2, \mathrm{i}}=\mathrm{V}_{\mathrm{cr}, 1 \mathrm{a}} \sqrt{\frac{\mathrm{~T}_{2, \mathrm{i}}^{\prime}}{\mathrm{T}_{1 \mathrm{a}}^{\prime}}} \tag{95}\\
\alpha_{2, \mathrm{i}}=\tan ^{-1} \frac{\mathrm{~V}_{\mathrm{u}, 2, \mathrm{i}}}{\mathrm{~V}_{\mathrm{x}, 2, \mathrm{i}}} \tag{96}\\
\mathrm{p}_{2, \mathrm{i}}^{\prime}=\mathrm{p}_{2, \mathrm{i}}\left(\frac{\mathrm{~T}_{2, \mathrm{i}}^{\prime}}{\mathrm{T}_{2, \mathrm{i}}}\right)^{\gamma /(\gamma-1)} \tag{97}\\
\mathrm{V}_{2, \mathrm{i}}=\frac{\mathrm{V}_{\mathrm{x}, 2, \mathrm{i}}}{\cos \alpha_{2, \mathrm{i}}} \tag{99}
\end{gather*}
$$

Performance

There are five types of losses considered in this analysis. The disk-friction and clearance losses are obtained from equations (32) and (33), respectively. The stator, rotor, and leaving losses are

$$
\begin{gather*}
L_{s}=\frac{v_{1, i d}^{2}-v_{1}^{2}}{2 g J} \tag{100}\\
L_{r, a v}=\sum_{i=1}^{k} \frac{w_{i}}{w} \frac{w_{2, i d, i}^{2}-w_{2, i}^{2}}{2 g J} \tag{101}\\
L_{e x, a v}=\sum_{i=1}^{k} \frac{w_{i}}{w} \frac{v_{2, i}^{2}}{2 g J} \tag{102}
\end{gather*}
$$

The sector ideal specific works are

$$
\begin{align*}
& \Delta h_{i d, i}=c_{p} T_{0}^{\prime}\left[1-\left(\frac{p_{2, i}^{\prime}}{p_{0}^{\prime}}\right)^{(\gamma-1) / \gamma}\right] \tag{103}\\
& \Delta h_{i d, i}=c_{p} T_{0}^{\prime}\left[1-\left(\frac{p_{2, i}}{p_{0}^{\prime}}\right)^{(\gamma-1) / \gamma}\right] \tag{104}
\end{align*}
$$

The sector efficiencies based on velocity diagram work are

$$
\begin{align*}
& \eta_{\mathrm{VD}, \mathrm{i}}^{\prime}=\frac{\Delta \mathrm{h}_{\mathrm{VD}, \mathrm{i}}^{\prime}}{\Delta \mathrm{h}_{\mathrm{id}, \mathrm{i}}^{\prime}} \tag{105}\\
& \eta_{\mathrm{VD}, \mathrm{i}}=\frac{\Delta \mathrm{h}_{\mathrm{VD}, \mathrm{i}}^{\prime}}{\Delta \mathrm{h}_{\mathrm{id}, \mathrm{i}}} \tag{106}
\end{align*}
$$

The overall velocity diagram efficiencies are

$$
\begin{align*}
& \eta_{\mathrm{VD}, \mathrm{av}}^{\prime}=\frac{\Delta \mathrm{h}_{\mathrm{VD}, \mathrm{av}}^{\prime}}{\sum_{\mathrm{i}=1}^{\mathrm{k}} \frac{\mathrm{w}_{\mathrm{i}}}{\mathrm{w}} \Delta \mathrm{~h}_{\mathrm{id}, \mathrm{i}}^{\prime}} \tag{107}\\
& \eta_{\mathrm{VD}, \mathrm{av}}=\frac{\Delta \mathrm{h}_{\mathrm{VD}, \mathrm{av}}^{\mathrm{k}}}{\sum_{\mathrm{i}=1}^{\sum_{\mathrm{w}}} \frac{\mathrm{w}_{\mathrm{i}}}{\mathrm{w}} \Delta \mathrm{~h}_{\mathrm{id}, \mathrm{i}}} \tag{108}
\end{align*}
$$

while the net overall efficiencies are

$$
\begin{equation*}
\eta_{\mathrm{shft}}^{\prime}=\eta_{\mathrm{VD}, \text { av }}^{\prime} \frac{\Delta \mathrm{h}_{\mathrm{shft}}^{\prime}}{\Delta \mathrm{h}_{\mathrm{VD}, \mathrm{av}}^{\prime}} \tag{109}
\end{equation*}
$$

$$
\begin{equation*}
\eta_{\mathrm{shft}}=\eta_{\mathrm{VD}, \text { av }} \frac{\Delta \mathrm{h}_{\mathrm{shft}}^{\prime}}{\Delta \mathrm{h}_{\mathrm{VD}, \mathrm{av}}^{\prime}} \tag{110}
\end{equation*}
$$

A design parameter that is computed by the program is specific speed

$$
\begin{equation*}
\left.N_{\mathrm{sp}}=\frac{\mathrm{N}\left(\mathrm{w} / \rho_{2}\right)^{1 / 2}}{(\mathrm{~J} \Delta \mathrm{~h}: \mathrm{id}, \mathrm{av}}\right)^{3 / 4} \tag{111}
\end{equation*}
$$

DESCRIPTION OF INPUT AND OUTPUT

This section presents a detailed description of the program input, normal output, and error messages. The input and corresponding printed output for an example problem are included for illustrative purposes.

Input

The program input consists of a title card and a data set in NAMELIST form for each case. The title, which is printed as a heading on the output listing, can be located anywhere in columns 1 to 78 on the title card. A title card, even if it is left blank, must be the first card for each case.

The data are input in data records having the NAMELIST name INPUT. The variables that comprise INPUT along with descriptions, units, and special remarks are presented in the list to follow. Either SI units or U.S. customary units may be used with this program. Values for some of the variables in the input list are internally preset by the program before reading the input. Thus, if a preset value (see input list for values) is appropriate, that particular variable does not have to be specified in the input.

IU units indicator (preset value = 2):
1 - SI units
2 - U.S. customary units
NSTAR stator geometry indicator:
0 - cambered vane with specified diameter ratio
1 - cambered vane with specified aspect ratio
2 - uncambered vane

ALPHA0 stator-inlet flow angle from radial direction, deg (input only for NSTAR = 0 or 1)

ALPHA1
CDT2

CR
CS
EBARR

EBARS

GAM
K

MU
N
POW
PTIN
R
RH2RT2
RT2R1A
RV1AAV

RV2I2M(I), $\mathrm{I}=1, \mathrm{~K}$

R0R1A
R1R1A
SIGSIN
STAR
TTIN
W
stator-exit flow angle from radial direction, deg
ratio of clearance gap to blade tip diameter at rotor exit (preset value $=0$.)
rotor loss-coefficient multiplier (preset value $=1$.)
stator loss-coefficient multiplier (preset value =1.)
rotor loss coefficient (input only if it is desired that internal loss model not be used for computing $\overline{\mathrm{e}}_{\mathrm{r}}$)
stator loss coefficient (input only if it is desired that internal loss model not be used for computing $\overline{\mathrm{e}}_{\mathrm{S}}$)
specific heat ratio
number of radial sectors at rotor exit
gas viscosity, (N) (sec) $/ \mathrm{m}^{2} ; 1 \mathrm{~b} /(\mathrm{sec})$ (ft)
rotative speed, rad/sec; rev/min
shaft power, kW ; hp
inlet total pressure, $\mathrm{N} / \mathrm{cm}^{2} ; \mathrm{lb} / \mathrm{in} .{ }^{2}$
gas constant, $\mathrm{J} /(\mathrm{kg})(\mathrm{K}) ;(\mathrm{ft})(\mathrm{lbf}) /(\mathrm{lbm})\left({ }^{\mathrm{O}} \mathrm{R}\right)$
rotor-exit-kub - to tip-radius ratio
rotor-exit-tip - to rotor-inlet-radius ratio
ratio of rotor-inlet angular momentum to average change in angular momentum (preset value $=1$.)
ratio of $i^{\text {th }}$ sector to mean-sector rotor-exit angular momentum (preset value $=1$. for all I)
stator-inlet- to rotor-inlet radius ratio (input only for NSTAR $=0$)
stator-exit- to rotor-inlet radius ratio
stator solidity based on exit spacing (preset value $=1.35$)
stator aspect ratio (input only for NSTAR =1 or 2)
inlet total temperature, $K ;{ }^{\circ} \mathbf{R}$
mass flow rate, $\mathrm{kg} / \mathrm{sec} ; \mathrm{lb} / \mathrm{sec}$

The program inputs for two sample cases are shown in table I. Both cases are for the same design requirements. The first case is with SI units and the second case is with U.S. customary units. The first card for each case is the previously described title card. After the title card is the NAMELIST data set containing all the variable values. For the second case, only those variables changing in value from the first case need be input. The output corresponding to this sample input is presented and described in the following section.

Output

The program output consists of title headings, the input variable values, and the computed results. This section presents normal output. Error message output is described in the next section.

Tables II and III present the output that corresponds to the sample input shown in table I. Table II is for the case with SI units. The top line of output is a program identification title that is automatically printed with the first case of each data package. The second line is the title card message. The next three lines indicate the units, SI in this case, used for the different variables.

The heading *INPUT* is followed by eight lines showing the input values used for this case. Identification of all the items on the output listing is self-explanatory. The zero value shown for stator aspect ratio indicates that this was not an input for this case. Values of 1.0000 are shown for the stator and rotor loss coefficients to indicate that the actual values are computed using the internal loss model.

The heading *OUTPUT* is followed by the computed results. Absolute temperatures, pressures, flow angles, velocities, and velocity ratios, along with diameter, are shown for each calculation station. At the rotor exit, these values are shown for the mean diameter of each sector as well as for the hub and the tip. Additional output for the rotor-exit sectors include flow rate, specific work, and total and static efficiencies. Also shown are the computed loss coefficients for the stator and rotor, the stator height, number of stator vanes, and number of rotor blades.

Under the heading *OVERALL PERFORMANCE* are the turbine total-to-total and total-to-static pressure ratios, diagram specific work, and both diagram and net total and static efficiencies. Also shown are the individual loss components as fractions of the turbine ideal work and the specific speed.

Table III is similar to table II except that U.S. customary units are used, as indicated by the title message as well as by the specified units themselves. Note that the values for all the dimensionless variables are the same in table III as in table II.

The program contains seven output messages indicating the nonexistence of a solution satisfying the specified input requirements. These messages are presented in this section, and their causes are discussed. In general, when one of these messages appear, the program input should be checked for errors.
(1) NO SOLUTION FOUND AFTER 100 ITERATIONS FOR CONTINUITY AT ROTOR EXIT - This message is caused by the program making 100 iterations through subroutine CONTIN without a solution being found. There is no obvious reason for this situation except possibly for input error in the specification of rotor-exit angular momentum.
(2) ROTOR EXIT CHOKES AT INAXIMUM MASS FLOW RATE = XXXX. XXXX This message is caused by the choking mass flow rate for the rotor exit being less than the design flow rate specified as program input. If the input design requirements are correct, then possible corrective action includes reducing exit angular momentum, increasing rotor-exit-tip- to rotor-inlet-radius ratio, and decreasing rotor-exit-hub- to tip-radius ratio.
(3) REQUIRED SPECIFIC WORK GREATER THAN ENERGY AVAILABLE IN GAS See item (4).
(4) SPECIFIC WORK REQUIRED IN SECTOR XX GREATER THAN ENERGY AVAILABLE IN GAS - These last two messages are caused by the turbine-exit total temperature, average value or any sector value, being less than zero. Possible corrective action includes increasing turbine inlet temperature, decreasing turbine power, or increasing mass flow rate.
(5) REQUIRED STATOR IDEAL KINETIC ENERGY GREATER THAN ENERGY A VAILABLE IN GAS - See item (6).
(6) ROTOR IDEAL RELATIVE KINETIC ENERGY REQUIRED IN SECTOR XX GREATER THAN ENERGY AVAILABLE IN GAS - These last two messages are caused by the computed ideal energy required by the stator or the rotor being greater than that available from an infinite expansion of the gas. The probable reason for this condition is an error in the computed or input loss coefficient.
(7) THE PROGRAM CAN NOT FIND A SOLUTION SIMULTANEOUSLY SATISFYING CONTINUITY, RADIAL EQ., AND THE LOSS MODEL AT THE ROTOR EXIT - This message is caused by rotor-exit relative velocity, as determined by radial equilibrium and radial distribution of loss, being less than its tangential component, as determined primarily by blade speed. Corrective action includes decreasing rotor-exit tip radius and increasing rotor-exit-hub to tip radius ratio.

PROGRAM DESCRIPTION

This computer program consists of main program RIFTUD (Radial Inflow Turbine Design), blade loss coefficient subprograms EFFIC, SIMPS1, SHUB, and SHUB2, and rotor-exit continuity subprograms CONTIN and PABC. The entire program is written in FORTRAN IV language and has been run on both an IBM 7094 and a UNIVAC 1110. Running time on the UNIVAC 1110 is about 1 second per design case for a five-sector design. In this section, the functions of the main and subprograms are described, the program variables are defined, and the program listing is presented.

Main Program RIFTUD

Main program RIFTUD performs all input and output operations as well as all of the flow analysis as presented in the section ANALYSIS METHOD.

Program variables. - The variables used in RIFTUD are defined in terms of the following symbols, which are defined in appendix A:

ALPHAA	$\alpha_{1 \mathrm{a}}$ (degrees)	BETA2()	$\beta_{2, \mathrm{i}}$ (degrees)
ALPHA0	α_{0} (degrees)	BET1A	$\beta_{1 \mathrm{a}}$ (radians)
ALPHA1	α_{1} (degrees)	BET2(1)	$\beta_{2, \mathrm{i}}$ (radians)
ALPHA2()	$\alpha_{2, \mathrm{i}}$ (degrees)	BET2M	$\beta_{2, \mathrm{~m}}$ (radians)
ALPH0	α_{0} (radians)	CDT2	$\left(\mathrm{h}_{\mathrm{c}} / \mathrm{D}_{\mathrm{t}}\right)_{2}$
ALPH1	α_{1} (radians)	CHRD	c
ALPH1A	$\alpha_{1 a}$ (radians)	CN	$\mathrm{C}_{\mathrm{N}} / \pi$
ALPH2(I)	$\alpha_{2, \mathrm{i}}$ (radians)	CP	${ }_{\text {c }}$
ALP0	α_{0} (degrees)	CPOW	C_{P}
ALP1A	previous value of $\alpha_{1 a}$	CR	C_{r}
ALSTG	φ	CS	C_{S}
ALUNC	${ }^{\oplus} \mathrm{cam}$	DELVX	increment in $\left(\mathrm{V}_{\mathrm{x}} / \mathrm{V}_{\mathrm{cr}}\right)_{2, \mathrm{~m}}$
BETA1A	$\beta_{1 \mathrm{a}}$ (degrees)		

DHIDS(1)	$\Delta h_{i d, i}$	ENT	trancated integer value of n_{r} before roundoff
DHIDSA	$\Delta h_{\text {id, }}$ av		
		ER	\bar{e}_{r}
DHIDT(1)	$\Delta h_{i d, ~}^{\prime}$		
DHIDTA	$\Delta \mathrm{h}$!	ES	e_{S}
		ES1	previous value of \bar{e}_{s}
DHSHFT	$\Delta h_{\text {shft }}^{\prime}$		
DHVD($)$	$\Delta h^{\prime}{ }^{\prime}$, ${ }^{\text {i }}$	ETAS	$\eta_{\text {shft }}$
		ETASV	$\eta_{\mathrm{VD}, \mathrm{av}}$
DHVDAV	$\Delta \mathrm{h}$ VD, av	ETASVD(1)	η VD i
DOR	180/ π		VD, 1
DVUA VC	$\left(\mathrm{DV} \mathrm{u}_{2, \mathrm{av}, \mathrm{calc}}\right.$	ETAT	$\eta_{\text {shft }}^{\prime}$
DVUTOT	$\mathrm{w}\left(\mathrm{DV}_{\mathrm{u}}\right)_{2, \mathrm{av}, \mathrm{calc}}$	ETATV	$\eta{ }^{\prime} \mathrm{VD}, \mathrm{av}$
DVU2AV	$\left(\mathrm{DV}_{\mathrm{u}}\right)_{2, \text { av, required }}$	ETATVD($)$ EX	$\eta_{\mathrm{VD}, \mathrm{i}}^{\dagger}$
D0	D_{0}	F2(I)	$\mathrm{w}_{2, \mathrm{i}}$
D1	D_{1}	G	g
D1A	$\mathrm{D}_{1 \mathrm{a}}$	GAM	γ
D2(1)	$\mathrm{D}_{2, \mathrm{i}}$	HR	h_{r}
D2M	$\mathrm{D}_{2, \mathrm{~m}}$	HS	$\mathrm{h}_{\text {S }}$
EBARR	$\overline{\mathrm{e}}_{\mathrm{r}}$ input value	I	dummy index, usually referring to sector number
EBARS	$\overline{\mathrm{e}}_{\mathrm{s}}$ input value	ID	sector number increment
EL	$\mathrm{h}_{\mathrm{r}, 2} / \mathrm{k}$	II	sector number index for previous sector
EN	${ }^{n} \mathrm{r}$	IND	solution indicator for
ENS	n_{s}		rotor-exit continuity calculation
ENST	truncated integer value of n_{s} before roundoff	IST	iteration counter for stator calculation

ISTT	iteration counter for	PS0	p_{0}
	stator calculation	PS1	p_{1}
ITER	iteration counter for rotor-exit calculation	PS1A	$\mathrm{p}_{1 \mathrm{a}}$
IU	units indicator - see section Input	PS2()	$\mathrm{p}_{2, \mathrm{i}}$
J	J	PTIN	p_{0}^{\prime}
K	number of sectors	PTR1A	$\mathrm{p}_{1 \mathrm{a}}^{\prime \prime}$
KK	K + 2	PTR2(1)	$\mathrm{p}_{2, \mathrm{i}}^{\prime \prime}$
KP1	K + 1	PTR2ID(${ }^{\text {(}}$	$\mathrm{p}_{2}^{\prime \prime} \mathrm{id}, \mathrm{i}$
K1	indicator for print control	PT0	$\mathrm{p}_{0}^{\prime \prime}$
LC	L_{c}	PT1	p_{1}^{\prime}
LCDH	$\mathrm{L}_{\mathrm{c}} / \Delta \mathrm{h}_{\mathrm{VD}}^{\prime}, \mathrm{av}$	PT1A	$\mathrm{p}_{1 \mathrm{a}}^{1}$
LCDHIS	$\mathrm{L}_{\mathrm{c}} / \Delta \mathrm{h}_{\mathrm{id}, \mathrm{av}}$	PT2(1)	$\mathrm{p}_{2, \mathrm{i}}^{\prime}$
LLDHIS	$L_{\text {ex, av }} / \Delta h_{\text {id, av }}$	Q	(w/ $)_{2}$, av
LRDHIS	$L_{\text {r, av }} / \Delta h_{i d, ~ a v}$	R	R
LSDHIS	$\mathrm{L}_{\mathrm{s}} / \Delta \mathrm{h}_{\mathrm{id} \text {, av }}$	RHOT0	ρ_{0}^{\prime}
LW	$L_{\text {df }}$	RHOX	previous value of ρ_{0}
LWDHIS	$L_{\text {df }} / \Delta h_{\text {id, av }}$	RHO0	ρ_{0}
LWX	previous value of $L_{\text {df }}$	RHO1	ρ_{1}
M	mean sector index	RHO1A	$\rho_{1 \mathrm{a}}$
MU	μ	RHO2(1)	$\rho_{2, \mathrm{i}}$
N	N stator geometry	RH2RT2	$\left(r_{h} / r_{t}\right)_{2}$
NSTAR	stator geometry indicator - see section Input	RLOSS	$\mathrm{L}_{\mathrm{r}, \mathrm{av}}$
PI	π	RSTG	r_{cm}
POW	P	RT2 R1A	$\mathrm{r}_{2, \mathrm{t}} / \mathrm{r}_{1 \mathrm{a}}$

RV1AA V	$\left(r V_{u}\right)_{1 a} / \Delta\left(r V_{u}\right)_{a v}$	TTR2(1)	$\mathrm{T}_{2}^{\prime \prime}$, i
RV2IM(${ }^{\text {(}}$	$\left(r v_{u}\right)_{2, i} /\left(r V_{u}\right)_{2, \mathrm{~m}}$	TT0 TT1	T_{0}^{\prime} T
RV2I2M(1)	$\left(r V_{u}\right)_{2, i} /\left(r V_{u}\right)_{2, m}$	TT1A	$\mathrm{T}_{1 \mathrm{a}}^{\prime}$
R0R1A	$\mathrm{r}_{0} / \mathrm{r}_{1 \mathrm{a}}$	TT2(1)	$\mathrm{T}_{2, \mathrm{i}}^{1}$
R1R1A	$\mathrm{r}_{1} / \mathrm{r}_{1 \mathrm{a}}$	TT2AV	T_{2}^{\prime}, av
SIGRV	$\sum_{i=1}^{k}\left[\left(\mathrm{rV}_{\mathrm{u}}\right)_{2, \mathrm{i}} /\left(\mathrm{rV}_{\mathrm{u}}\right)_{2, \mathrm{~m}}\right] / \mathrm{k}$	U1A U1ASQ	$\begin{gathered} \mathrm{U}_{1 \mathrm{a}} \\ \mathrm{U}_{1 \mathrm{a}}^{2} \end{gathered}$
SIGS	$(\mathrm{c} / \mathrm{s})_{S}$	U2(1)	$\mathrm{U}_{2, \mathrm{i}}$
SIGSIN	input value of (c/s) ${ }_{s}$	VCR1	$\mathrm{V}_{\mathrm{cr}, 1}$
SS	s	VCR1A	$\mathrm{V}_{\mathrm{cr}, 1 \mathrm{a}}$
SSPD	$\mathrm{N}_{\text {Sp }}$	VCR2(1)	$\mathrm{V}_{\mathrm{cr}, 2, \mathrm{i}}$
STAR	$(\mathrm{h} / \mathrm{c})_{\mathrm{S}}$	VOVCRA	$\left(\mathrm{V} / \mathrm{V}_{\mathrm{cr}}\right)_{1 \mathrm{a}}$
TGJCP	2 gJc p	VOVCR0	$\left(\mathrm{V} / \mathrm{V}_{\mathrm{cr}}\right)_{0}$
TITLE($)$	input/output array for title card message	VOVCRI	$\left(\mathrm{V} / \mathrm{V}_{\mathrm{cr}}\right)_{1}$
TSPR	$\mathrm{p}_{0}^{\prime} / \mathrm{p}_{2, \mathrm{i}}$	VOVCR2(${ }^{\text {(}}$	$\left(\mathrm{V} / \mathrm{V}_{\mathrm{cr}}\right)_{2, \mathrm{i}}$
TS0	T_{0}		
TS1	T_{1}	VR0	$\mathrm{V}_{\text {rad, }} 0$
TS1A	T_{1}	VR1	$\mathrm{V}_{\text {rad, } 1}$
	1 a	VR1A	$\mathrm{V}_{\text {rad, 1a }}$
TS2(1)	$\mathrm{T}_{2, \mathrm{i}}$		
TTIN	T_{0}	VUOU1A	$\left(\mathrm{V}_{\mathrm{u}} / \mathrm{U}\right)_{1 \mathrm{a}}$
TTPR	$\mathrm{p}_{0}^{\prime} / \mathrm{p}_{2, \mathrm{i}}^{\prime}$	VU0	$\mathrm{V}_{\mathrm{u}, 0}$
TTR1A	$\mathrm{T}_{1 \mathrm{a}}^{\prime \prime}$	VU1	$\mathrm{V}_{\mathrm{u}, 1}$

VU1A	$\mathrm{V}_{\mathrm{u}, 1 \mathrm{a}}$	WCR2 (${ }^{\text {(}}$	$\mathrm{W}_{\text {cr, } 2, \mathrm{i}}$
VU2O	previous value of $\mathrm{V}_{\mathrm{u}, 2, \mathrm{~m}}$	WGIV	input value of w
VU2 (I)	$\mathrm{V}_{\mathrm{u}, 2, \mathrm{i}}$	WOWCRA	$\left(\mathrm{w} / \mathrm{w}_{\mathrm{cr}}\right)_{1 \mathrm{a}}$
VXVCR	$\left(\mathrm{V}_{\mathrm{x}} / \mathrm{V}_{\mathrm{cr}}\right)_{2, \mathrm{~m}}$	WOWCRM	$\left(\mathrm{w} / \mathrm{w}_{\mathrm{cr}}\right)_{2, \mathrm{~m}}$
VXVCRP	previous value of $\left(\mathrm{V}_{\mathrm{x}} / \mathrm{V}_{\mathrm{cr}}\right)_{2, m}$	WOWCR2 (I)	$\left(\mathrm{w} / \mathrm{w}_{\mathrm{cr}}\right)_{2, \mathrm{i}}$
VX2 (I)	$\mathrm{V}_{\mathrm{x}, 2, \mathrm{i}}$	WU1A	$\mathrm{W}_{\mathrm{u}, 1 \mathrm{a}}$
V0	V_{0}	WU2 (I)	$\mathrm{W}_{\mathrm{u}, 2, \mathrm{i}}$
V1	V_{1}	W1A	$\mathrm{W}_{1 \mathrm{a}}$
V1A	$\mathrm{V}_{1 \mathrm{a}}$	W2 (I)	$\mathrm{W}_{2, \mathrm{i}}$
V1IDSQ	$\mathrm{V}_{1, \mathrm{id}}^{2}$	W2IDSQ(1)	$\mathrm{w}_{2, \mathrm{id}, \mathrm{i}}^{2}$
V2 (1)	$\mathrm{V}_{2, \mathrm{i}}$	W2TOT	$\mathrm{w}_{\text {calc }}$
V2LOSS	$L_{\text {ex, av }}$	Z1	$\left(\mathrm{T} / \mathrm{T}^{\prime}\right)_{1, \mathrm{id}}$
W	w	Z2	$\left(\mathrm{T} / \mathrm{T}^{\prime \prime}\right) 2$, id, m
WCALC	$\mathrm{w}_{\text {calc }}$	Z3	$\left(\mathrm{T} / \mathrm{T}^{\prime \prime}\right)_{2, \mathrm{id}, \mathrm{i}}$
WCR1A	$\mathrm{W}_{\text {cr, 1a }}$		2,ia,

Program listing. - The FORTRAN listing for main program RIFTUD is as follows:

```
REAL J,N,MU,LCDH,LW,LWX,LC,LCDHIS,LWDHIS,LLDHIS,LSDHIS,LRDHIS
DIMENSION DZ(17),U2(17),TIR2(17),WCR2(17),PTR2ID(17),VU2(17),
1WU2(17),DHVD(17),\T2(17), VCR2(17),BET2(17),W2(17),TS2(17),PS2(17),
2W2IOSO(17),RHO2(17),F2(17),RV2IM(17),VX2(17),ALPH2(17),V2(17),
3PTZ(17),PTR2(17),VOVCR2(17),WOWCF2(17),DHIDT(17),DHIDS117),
4ETATVD(17), ETASVD(17), ALPHAZ(17),BETAZ(17)
    DIMENSION RVZI2M(17), TITLE(13)
    COMMON/EFF/GAM, VOVCR1,W,PI,STAR,MU,D1,ALPH1,NSTAR,ALPHO,ALUNC,SIGS
1,DO,HS,CS,WOWCRM,D1A,D2M,HR,BET2M,EN,RH2RT2,CR
    NAMELIST/INPUT/R,GAM,ALPHAO,ALPHAI,N,TTIN,PTIN,W,POW,RVIAAV,RIRIA,
IROR1A,RT2R1A,RH2RT2,COT2,MU,RV2I2M,K,IU,EBARS,EBARR,STAR,NSTAR
2,CS,CR,SIGSIN
    EBARS=1.0
    EBARR=1.0
    CS=1.0
    CR=1.0
    SIGSIN= 1.35
    ES=0.0
    RV1AAV=1.0
    CDT2=0.0
    DO 1 I=1,17
```

```
        1 RV2I2H(I)=1.0
        IU=2
        ITER=0
        PI=3.14159
        DOR=57.2958
        ROR1A=0.0
        ALPHAD=999.99
        WRITE(6,100)
    10O FORMATIIHI,39X,54HRADIAL INFLOW TURBINE VELOCITY DIAGFAM DESIGN AN
        IALYSISI
        2 READ (5,101) TITLE
    101 FORMAT(1346)
        IF(ITER.GT.O) WRITE(6.1011)
    1011 FORMAT(1H1)
        WRITE{6,102) TITLE
    102 FORMAT(1H ,13A6)
        READ (5,INPUT)
        IF INSTAR.EO.C) STAR=D.O
        IST=0
        VXVCRP=0.0
        DELVX=0.01
        ALPHO=ALPHAO/DOR
        ALPHI=ALPHA1/DOR
        IF(NSTAR.NE.2) ALSTG=(ALPHO*ALPH1)/2.
        EN=PI/30.*(110.-ALPHA1)*TAN(ALPH1)
        ENT=AINT(EN)
        IF(EN-ENT.LT..5) EN=ENT
        IF(EN-ENT.GE..5) EN=ENT*1.
        VUOU1A=1.-2./EN
        WGIV=W
        KP1=k+1
        WRITE (6.103)
    103 FORMATI3GHOTHIS OUTPUT IS IN THE FOLLOWING UNITS.I
        1 129HDTEMPERATURE PRESSURE GAS CONST ROT SPEED MASS
        2FLOW POWER VISCOSITY VELOCITY SPFC WORK DIAMETER
        3 ANGLE)
            GO TO (3,4),IU
        3 CPOW=1000.
            J=1.
            G=1.
            CN=2.
            PTO=PTIN*10000.
            WRITE (6,104)
    104 FORMAT/ 3XGHKELVINGX7HN/SO CM4X8HJLS/KG-K5X7HRAD/SEC5X6HKG/SECBX2HK
        1W6X1OHN-SEC/SO MSX5HM/SEC6XGHJLS/GM8X2HCM8X7HDEGREES)
            GO TO 5
        4 CPOW=55C.
            J=777.649
            G=32.174
            CN=60./PI
            PTO=PTIN*144.
            WRITE (6,105)
    105 FORMAT/12H DEG RANKINE 2X8HLB/SO IN 4X8HBTU/LB-R5XTHREV/MIN5XGHLB/SE
        1C8X2HHP 7XOHLB/FT-SEC4X6HFT/SEC6XGHBTU/LB8X2HIN8X7HDEGREES)
    5 DHSHFT=CPOH/J*POW/W
        EX=GAM/(GAM-1.)
        CP=EX*R/J
        TGJCP=2.*G*J*CP
C
C WRITE INPUT VALUES
```

WRITE (6,106)TTIN,ALPHAO,EBARS,R,PTIN,ALPHAI,EBARR,GAM,N,STAR, IRVIMAV,MU,W,K,POW,RORIA
106 FORMAT $8 H O * I N P U T * / 13 H$ INLET TEMP $=$,F10.4.7X,18HSTATOR IN ANGLE $=$. 1F6. $2,6 \mathrm{X}, 19 \mathrm{HSTATOR} \mathrm{KE} \mathrm{LOS} \mathrm{COEF=,F6.4,5X,14HGAS} \mathrm{CONSTANT} \mathrm{=F8.4/13H} \mathrm{I}$ 2NLET PRESS=,F10.4,7X,18HSTATOR EX ANGLE $=, F 6,2,6 X, 19 H R O T O R ~ K E ~ L O S ~$ $3 S$ COEF=,F6.4,5X,14HSPEC HT RATIO=,F6.4/13H ROTAT SPEED=,F10.3.7X,1 48 HSTATOR ASPECT RAT $=, F 6.4$,
4 6X,19HROTOR IN/DEL RVU $=, F 6.4,5 X, 14$ HVISCOSIT $5 Y$ =,E10.4/13H MASS FLOW =,F10.4,7X,11HDIAM RATIOS,19X,19HROTOR 6 EX RAD SECTS=, I2/13H SHAFT PONER=,F10.3,8X,17HSTAT IN/ROT IN =,F 76.4.6X,19HROT EX SECT/MN RVU二) K $1=\mathrm{K}$
IF(K.GT.10) K1=10
WRITE (6,107) (RV2I2M(I),I=1,K1)
107 FORMAT(IH+,78X,F4.2.9F5.2)
WRITE (6.108) RIRIA
108 FORMATI3IX,17HSTAT EX/ROT IN =,F6.4)
IF(K.GT.10) WRITE (6,109) (RV2I2M(I),I=11,K)
109 FORMAT(1H+,77X,5F5.2)
WRITE (6,110)RT2R1A,RH2RT2,CDT2
110 FORMATI3IX,17HROT EX TP/ROT IN=,F6.4/31X,17HROT EX HUB/TIP =F6.4, 16X,19HCL HT/ROT EX TIP D=,F6.4) LCDH=COT2*2./(1.-RH2RT2)
L $W=3.0$
6 DHVDAV = (DHSHFT+LW)/(1.-LCEH) ISTT=?
T12AV=TTIN-DHVDAV/CP
IFITT2AV.LT.O.OI GO 10203
UIASO=G*J/VUOUIA*DHVDAV*RVIAAV
UIA = SORTAUIASOI
VUla =Ula*VUOUIA
DIA=CN*U1A/N
STATION 1 - STATOR EXIT
DI=R1R1A*D1A
VUI =VUIA/R1RIA
VI=VUI/SIN(ALPHI)
VRI=VU1/TAN(ALPH1)
TTI=TTIN
TS1 = TT1-V1*V1/TGJCP
25 ES1=ES
ES=EBARS
IF(EBARS.EO.1.D.AND.IST.EC.O) ES =. 05
IF(EBARS.EQ.1.O.AND.IST.GT.O) CALL EFFIC (ES,ER,I)
IST=IST+1
ISTT=ISTT+1
7 VIIDSO=V1*V1/(1.-ES)
Z1=1.-VIIDSO/TGJCP/TT1
IFIZI.LE.D.O) GO TO 204
PS1二PTO* $21 * * E X$
PT1=PS1* TTT1/TSII**EX
RHO1 $=$ PSI/R/TSI
HS=W/RHO1/VR1/PI/DI
VCRI=SORT(2.*GAM/(GAM+1.)*G*R*TT1)
VOVCR1=V1/VCR1
STATION O - STATOR INLET

```
    IFINSTAR.GT.O) GO TO 71
    DO=D1A*ROR1A
    CHRD=SQRT(DO**2*D1**2-SORT((DO**2*D1**2)**2-(DO**2-D1**2)**2)
    1COS(ALSTG)**2)1/2.
    STAR=HS/CHRD
    ALUNC=ALPH1-ALPHD-A COS(1UD**2*D1**2-4.*CHRD**2)/2./DO/D1)
    70 CONTINUE
    IFIIST.EO.I) SIGS=SIGSIN
    SS=CHRD/SIGS
    ENS= PI#DI/SS
    ENST=AINT(ENSI
    IF(ENS-ENST.LT..5) ENS=ENST
    IF(ENS-ENST.GE..5) ENS=ENST+1.
    SS= PI*DI/ENS
    SIGS=CHRD/SS
    IF(EBARS.NE.1.01 GO TO 26
    IF(ISTT.EQ.1) GO TO 25
    IF(ABSIES-ESI)/ES.GT..OOOL) GO TO 25
    26 TTO=TTIN
    RHOTG=PTO/R/TTO
    RHOD=RHOTO
    9 VO=W/PI/DO/HS/COS(ALPHOI/RHOO
    TSO=TTO-VO**2/TGJCP
    PSO=PTO*(TSO/TTO)**EX
    RHOX=RHOO
    RHOO=PSO/R/TSO
    IF(ABS(RHOX-RHOO)/RHOO.GT..JOOI) GO TO 9
    VUO=VO*SIN(ALPHO)
    VRO=VO*COS(ALPHO)
    VOVCRO=VO/VCR1
    STAIION IA - ROTOR INLET
    ALPH1A=RLPH1
    8 VRIA=VUIA/TAN(ALPHIA)
    VIA=VUIA/SIN(ALPHIA)
    TTIA=TTI
    TSIA=TT1A-V1A*VIA/TGJCP
    PS1A=PT1*(TS1A/TT1)**EX
    RHO1A=PS1A/R/TSIA
    VR1A=VR1*RHO1/RHO1A*R1R1A
    ALP1A=ALPHIA
    ALPHIA=ATAN (VUIA/VRIA)
    IF(ABS(ALPHIA-ALPIA).GT..OI/DOR) GO TO 8
    LWX=LW
    LW=.0061/G/J*RH01A*U1A**3*O1A**2/W/(RHO1A*U1A*D1A/MU)**. 2
    IF(ABS(LW-LWX)/LW.GT..OOO1) GO T0 6
    PT1A=PT1
    WUIA=VUIA-UIA
    BET1A=ATAN(WUIM/VRIA)
    W1A=VRIA/COS(BETIA)
    TTRIA=TS1A+WIA**2/TGJCP
    PIR1A=PSIA*ITTRIA/TSIAI**EX
    VCR1A=VCR1
    WCRIA=VCRIA*SORT(TTRIA/TTIA)
    VOVCRA=VIA/VCRIA
    WOWCRA=WIA/WCR1A
C
C STATION 2 - ROTOR EXIT
```

```
    M=(k+3)/2
    kk=k+2
    DZ(KK)=D1A*RT2R1A
    D2(1)=D2(KK)*RH2RT2
    HR=1D2(KK)-D2(1))/2.
    EL=HR/FLOAT(K)
    SIGRV=0.0
    DO 12 I=1,KK
    IF(I.EQ.1.OR.I.EO.KK) GO TO 11
    D2(I)=D2(1)+(2.*FLOAT(I)-3.)*EL
    RV2IM(I)=RV2I2M(I-1)
    SIGRV=SIGRV+RV2IM(I)/FLOAT(K)
11 U2(I)=D2(I)*N/CN
    TTR2(I)=TTR1A+(U2(I)**2-U1ASO)/TGJCP
    WCRZ(I)=WCRIA*SORT(TTRZ(I)/TTRIA)
12 PTR2ID(I)=PTR1A*(TTR2(I)/TTR1A)**EX
    RV2IM(1)=RV2IM(2)-(RV2IM(3)-RV2IM(2))/2.
    RV2IM(KK)=RV2IM(K+1)-(RV2IM(K)-RV2IM(K+1))/2.
    OVUZAV=D1A*VU1A*(1.-1./RV1AAV)
    VU2(M)= DVUZAV/D2(M)*RV2IM(M)/SIGRV
    ITER=1
13 WU2(M)=VU2(M)-U2(M)
    DHVO(M)=(U1A*VU1A-UZ(M)*VU2(H))/G/J
    TT2(M)=TTO-DHVD(M)/CP
    IF(TTZ(M).LT.D.O) GO TO 2U5
    VCR2(M)=VCR1A*SORT(TTZ(M)/TT1A)
    IF(ITER.EO.1) VXVCR=0.5
    IND=1
14 VX2(M)=VXVCR*VCR2(M)
    BETZ(M)=ATAN(WUZ(M)/VXZ(M)
    W2(M)=VX2(M)/COS(BET2(M))
    TS2(M)=TTR2(M)-W2(M)**2/TGJCP
    D2M=D2(M)
    BET2M=BET2(M)
    WOWCRM= W2(M)/WCR2(M)
    ER=EBARR
    IF(EBARR.EO.1.0) CALL EFFIC (ES,ER,2)
15W2IDSO(M)=W2(M)**2/(1.-ER)
    22=1.-W2IOSO(M)/TGJCP/TTRZ(M)
    IF(Z2.LE.O.O) GO TO 206
    PS2(M)=PTR2ID(M)*Z2**EX
    RHO2(M)=PS2(M)/R/TS2(M)
    F2(M)=P1*D2(M)*EL*RH02(M)*VX2(M)
    IF(ITER.EO.1) WCALC=F2(M)*FLOAT(K)
    IF(ITER.EO.1) GO TO 51
67 I=M
    ID=-1
16 1I=I
    I=I+ID
    VU2(I)=VU2(M)*RV2IM(I)*D2(M)/D2(I)
    wU2(I)=VU2(I)-UZ(I)
    PS2(I)=PS2(II)+RHO2(II)/G*(VU2(II)**2/D2(II)+VU2(I)**2/D2(I))/2.*(
    1D2(1)-02(II))
    W2IOSO(I)=TGJCP*TTR2(I)*(1.-(PS2(I)/PTR2ID(I)|**(I./EX))
    Z3二1.-W2IDSO(I)/TGJCP/TTRZ(I)
    IF(Z3.LE.O.O) GOTO 207
    W2(I)=SORT(W2IDSO(I)*(1.-ER))
    IF(WZ(I).LE.ABS(WUZ(I)|)GO T0 68
    BETZ(II=A SIN(WUZ(I)/WZII))
    vx2(I)=W2(I)*COS(BET2(I))
```

```
    TS2(I)=TTR2(I)-W2(I)**2/TGJCP
    RH02(I)=PS2(I)/R/TS2(I)
    IFII.EO.1) GO TO 17
    IF(I.EQ.KK) GO TO 18
    F2(I)=PI*D2(I)*EL*RHO2(I)*VX2(I)
    GO 10 16
17 1=M
    ID=1
    G0 10 16
18 W2TOT=0.0
    DO 19 I=2,KP1
    19W210T=W210T+F2(I)
    HCALC=W2TOT
    IFIK.GT.1) GO T0 51
    69 IFIDVUZAV.EO. D.OIGO TO 21
    DVUTOT=0.0
    00 20 1=2,KP1
    20 OVUTOT=DVUTOT*F2(I)*D2(I)*VU2(I)
    DVUAVC=DVUTOT/W
    IF(ABS(DVUAVC-DVUZAV)/DVUZAV.LE..ODO1) GOTO 21
    vUzo=vU2(M)
    VUZ(M)=VU2O*DVUZAV/DVUAVC
    G0 TO 13
    21 v2LOSS=0.0
    DHIDTA=0.0
    DHIDSA=0.0
    0=0.0
    RLOSS=0.0
    DO 23 I=1,KK
    DHVD(I)=(U1A*VU1A-U2(I)*VUZ(I))/G/J
    TT2(I)=TTO-OHVO(I)/CP
    IF(TTZ(I).LT.O.O) GO TO 2G8
    VCRZ(I)=VCR1A*SORT(TT2(II/TTIA)
    ALPH2(I)=ATAN(VUZ(I)/VXZ(I))
    V2(I)=VX2(I)/COS(ALPH2(I))
    PI2(I)=PS2(I)*(TT2(I)/ TSZ(I))**EX
    PTR2(I)=PS2(I)*(TTR2(I)/ TS2(I))**EX
    VOVCR2(I)=V2(I)/VCRZ(I)
    WOWCRZ(I)=WZ(I)/WCR2(I)
C
C
C
    DHIDT(I)=CP*TTO*(1.-(PT2(I)/PTO)**(1./EX))
    DHIDS(I)=CP*TTO*(1.-(PSZ(I)/PTO)**(1./EX))
    IF(I.EQ.1.OR.I.EO.KK) GO 10 22
    V2LOSS=V2LOSS+F2(I)/W*V2(I)**2/2./G/J
    RLOSS=RLOSS*F2(I)/W*(W2IDSO(I)-W2(I)**2)/2./G/J
    O=0+F2(I)/RHOZ(I)
    DHIDTA=DHIDTA +F2(I)/W*DHIDT(I)
    DHIDSA=DHIDSA+F2(I)/W*DHIDSPI&
    22 ETATVD(I)=DHVD(I)/DHIDT(I)
    23 ETASVD(I)=DHVD(I)/DHIDS(I)
C
C
C
OVERALL PERFORMANCE
ETATV=DHVDAV/DHIDTA
ETASV=DHVDAV/DHIDSA
ETAT=DHSHFT/DHIDTA
ETAS=DHSHFT/DHIDSA
SSPD=N*SQRT(O)/(J*DHIOTA)**. 75
```

```
        LC=LCDH*DHVDAV
        LCDHIS=LC/DHIDSA
        LWDHIS=LW/DHIDSA
        LLDHIS=V2LOSS/OHIDSA
        LSOHIS=IVIIDSO-VI*V1)/2./G/J/DHIDSA
        LRDHIS=RLOSS/DHICSA
        GO TO (30,32),IU
    3J P10=PTO/10000.
    PSO=PSO/10000.
    PT1=PT1/10000.
    PS1=PS1/10000.
    PT1A=PT1A/100U0.
    PS1A=PS1A/IOU00.
    PTRIA=PTRIA/10000.
    DO=DC*10C.
    01=01*100.
    D1A=D1A*100.
    HS=HS*100.
    DO 31 I=1,KK
    D2(I)=D2(I)*100.
    PT2(I)=PT2(I)/10000.
    PS2(1)=PS2(1)/10000.
    PTR2(I)=PTR2(I)/10000.
    S1 DHVO(I)=DHVD(I)/1000.
    OHVDAV=DHVDAV/1000.
    GO TO 36
32 PTO=PTO/144.
    PSO=PSO/144.
    PI1=PT1/144.
    PS1=PS1/144.
    PT1A=PT1A/144.
    PS1A=PS1A/144.
    PTR1A=PTR1A/144.
    OO=DO*12.
    D1=01*12.
    D1A=D1A*12.
    HS=HS*12.
    DO 33 I=1,KK
    D2(I)=D2(1)*12.
    P12(I)=PT2(1)/144.
    PS2(I)=PS2(I)/144.
33 PYRZ(I)=PYRZ(I)/144.
```

36 WRITE (6.1111)

```
36 WRITE (6.1111)
111 FORMAT(9H *OUTPUT*/ 26X, 2(3HABS,6X), 17X,3(3HARS,5X),9X,4HREL ,4(5X
    1,3HREL)/17X,4HDIA-, 2(4X,5HTOTAL),4X,216HSTATIC, 3X),4HFLOW, 3X,5HVEL
    20-,4X,4HCRIT, 3X,5HBLADE, 2(4X,5HTOTALI, 4X,4HFLOW, 3X,5HVELO-, 4X,4HCR
    3IT/16X,5HMETER,2(5X,4HTEMP, 4X,5HPRESS), 3X,5HANGLE,4X,4HCITY,9H VE
    4L RAT,7H SPEED,5X,4HTEMP,4X,5HPRESS,8H ANGLE,4X,13HCITY VEL RA
    5T1
        ALPO=ALPHO*DOR
        ALPHAA=ALPHIA*DOR
        BETAIA=BET1A*DOR
        DO 34 1=1,KK
        ALPHAZ(I)=ALPH2(I)*DOR
    34 BETA2\1)=BET2(I)*DOR
    WRITE (6,112)DO,TTO,PTO,TSO,PSO,ALP D,VO,VOVCRO
```

```
    112 FORMAT(13H STATOR INLET,2(F9.3,F9.2),F9.3,F7.2,F9.2,F7.3)
    WRITE(6,1121) ES,HS,ENS
1121 FORMATI11H LOSS COEF=,F6.4,67X,1IHSTATOR HGT=,F7.4,17H,NUMBER OF V
    1ANES=,F5.1)
        HRITE (6,113)D1,TT1,PT1,TS1,PSI,ALPHA1,V1,VOVCR1
    113 FORMAT(13H STATOR EXIT, 2(F9.3,F9.2),F9.3,F7.2,F9.2,F7.3)
        WRITE (G,114)DIA,TTIA,PTIA,TSIA,PSIA,ALPHAA,VIA,VOVCRA,UIA,TTRIA,
        IPTRIA,BETAIA,WIA,WOWCRA
    114 FORMATII3HOROTOR INLET,2(F9.3,F9.2IF9.3,F7.2,F9.2,F7.3,2F9.2,
    1F9.3,F8.2,F9.2,F7.3)
        WRITEI6,1141) ER
1141 FORMATII1H LOSS COEF=,F6.4)
    HRITE (6,115)(D2(I),TTZ(I),PTZ(I),TS2(I),PS2(I),ALPHAZ(I),V2(I),
    IVOVCRZ(I),U2(I),TTR2(I),PTR2(I),BETA2(I),W2(I),WOWCR2(I),I=1,KK)
115 FORMAT(13H ROTOR EXIT ,2&F9.3,F9.2IF9.3,F7.2,F9.2,F7.3,2F9.2,
    1F9.3,F8.2,F9.2,F7.3/113X2(F9.3,F9.2)F9.3,F7.2,F9.2,F7.3,2F9.2,
    2F9.3,F8.2.F9.2,F7.3)!
        F2(1)=0.0
        F2(KK)=0.0
        WRITE(6.1161)
1161 FORMAT(1H)
    WRITE(6,116) EN
116 FORMAT/26X,4HMASS, 5X,4HDIAG/17X,4HDIA-, 5X,4HFLOW,5X,4HSPEC, 4X,5HTO
    ITAL, 3X, 6HSTATIC/16X,5HMETER, 5X,4HRATE, 5X,4HWORK, 2(4X,5HEFFIC), 3X,
    223HNUMBER OF ROTOR BLADES=,F5.1)
        WRITE (6,117)(DZ(I),F2(I),DHVD(I),ETATVD(I),ETASVD(I),I=1,KK)
117 FORMAT(13X,F9.3,F9.4,F9.3,2F8.3)
        TTPR=PTO/PTZ(M)
        TSPR=PTO/PSZ(M)
        WRITE (6,118)TTPR,LSDHIS,ISPR,LRDHIS,DHVDAV,LHDHIS,ETATV,LCDHIS,
        IETASV,LLDHIS,ETAT,ETAS,SSPD
118 FORMAT I22HO*OVERALL PERFORMANCE*/48X,2OHLOSS/IDEAL T-S DEL H/6X, 24
    1HTOT-TOT PRESSURE RATIO =,F8.4,13X,1OHSTATOR =,F6.4/6X,24HTOT-ST
    2AT PRESSURE RATIO=,F8.4,13X,1OHROTOR =,F6.4/6X,24HDIAG AVG SPEC
    3IFIC WORK =,FB.4,13X,IOHWINDAGE =,F6.4/6X,24HDIAG TOTAL EFFICIENC
    4Y =,FB.4,13X,10HCLEARANCE=,F6.4/6X,24HDIAG STATIC EFFICIENCY =,FB
    5.4,13X,1OHEXIT KE =,F6.4/6X,24HNET TOTAL EFFICIENCY =,F8.4/6X,
    624HNET STATIC EFFICIENCY =,F8.4,8X,15HSPECIFIC SPEED=,F7.3)
        GO TO 2
    51 IF(IND.GE.6.AND.ABSIHGIV-WCALCI/WGIV.LE..OOOI\ GO TO 65
        CALL CONTINIVXVCR,WCALC,IND,I,HGIV,.O5)
        IF(INO-10)14,61,61
    61 IFIITER-1162,62,63
    62 VXVCR=.9
        IF(K.EO.1) GO 10 63
        IND=1
        ITER=ITER+1
        GO 10 14
    63 IF(INO-10)201,201,202
    65 IFIITER-1)66,66,69
    66 ITER=ITER+1
        IND=1
        60 10 67
    68 IF(VXVCR.GE.VXVCRP) GO T0 72
        VXVCR=VXVCRP-DELVX
        DELVX=DELVX/IO.
        IFIDELVX.LE..ODOO1) GO TO 209
    72 VXVCR=VXVCR+DELVX
    VXVCRP=VXVCR
```

```
    71 CHRD=HS/STAR
        IF(NSTAR.EQ.2) GO 10 76
        RSTG=(CHRD*COS(ALSTG)+SORT(CHRO**2*(COS(ALSTG)**2-1.)+01**2))/2.
        OO=(SORT(CHRD**2/2.+2**RSTG**2-D 1**2/4.))*2.
        ALUNC=ALPH1-ALPHO-A COS((OD**2*O1**2-4.*CHRD**2)/2./DC/01)
        GO TO 70
    76 ALPHJ=ATANISIN(ALPHI)/(CHRD/DI*2.+COS(ALPH1))%
        ALSTG=(ALPHO+ALPH1)/2.
        DO=2.*SORT(CHRD**2+D1**2/4.*CHRD*D1*COS(ALPH1))
        GO 10 70
201 WRITE(6,120)WCALC
120 FORMATI48HO ROTOR EXIT CHOKES AT MAXIMUM MASS FLOH RATE = FG.4)
    GO TO 2
202 WRITE(6,121)
121 FORMATIG9HO NO SOLUTION FOUND AFTER 1OD ITERATIONS FOR CONTINUITY
    IAT ROTOR EXITI
        GO TO 2
203 WRITE(6.122)
122 FORMATIGOHOREQUIRED SPECIFIC WORK GREATER THAN ENERGY AVAILABLE IN
    l GASJ
        60 10 2
204 WRITE(6,123)
123 FORMATI74HOREOUIRED STATOR IDEAL KINETIC ENERGY GREATER THAN ENERG
    IY AVAILABLE IN GAS)
    GO TO 2
205 WRITE(6.124) M
124 FORMATI 33HOSPECIFIC WORK REOUIRED IN SECTOR,I3,37H GREATER THAN EN
    IERGY AVAILABLE IN GAS)
        GOTO2
206 WRITE(6,125) M
125 FORMATIS5HOROTOR IDEAL RELATIVE KINETIC ENERGY REOUIRED IN SECTOR,
    1I3,37H GREATER THAN ENERGY AVAILABLE IN GAS)
        60 102
207 WRITEIG.125) I
    GO TO 2
208 WRITE(6,124) I
        GOTO 2
209 WRITE (6,128)
128 FORMATC123HOTHE PROGRAM CAN NOT FIND A SOLUTION SIMULTANEOUSLY SAT
    IISFYING CONTINUITY, RADIAL EQ., AND THE LOSS MODEL AT THE ROTOR EX
    211)
        60 10 2
999 STOP
    END
```

Blade-Row Loss Coefficient Subprograms

The stator and rotor loss-coefficient calculations, as described in the section LOSS MODEL, are performed by subroutine EFFIC. Function subprograms SIMPS1, SHUB, and SHUB2 are used for the numerical integration required to determine the rotor hub wall area (eq. (C17)). SIMPS1 uses a modification of Simpson's rule wherein more intervals are placed in those regions requiring greater accuracy. SHUB and SHUB2 are the functions being integrated.

Program variables. - Variables transfer between main program RIFTUD and subroutine EFFIC by means of both the EFFIC(ES, ER, J) arguments and labeled common
block /EFF/. The arguments ES and ER are the stator and rotor loss coefficients, respectively, and J is the blade-row indicator ($J=1$ for stator and $J=2$ for rotor). The common block variables, which were defined in the RIFTUD variable list, are ALPH0, ALPH1, ALUNC, BET2M, CS, CR, D0, D1, D1A, D2M, EN, GAM, HR, HS, MU, NSTAR, PI, RH2RT2, SIGS, STAR, VOVCR1, W, and WOWCRM. The remaining variables in subroutine EFFIC are defined as follows:
$\mathrm{A}(\mathrm{X}) \quad$ arithmetic statement function for Q where argument

$$
\mathrm{X}=\left(\mathrm{V} / \mathrm{V}_{\mathrm{cr}}\right)_{1} \text { or }\left(\mathrm{W} / \mathrm{W}_{\mathrm{cr}}\right)_{2, \mathrm{~m}}
$$

AA	a
AR	Q $_{r}$
AS	Q $_{S}$
A2	$\mathrm{a} / 2$

A3A2R	$\left(\mathrm{A}_{3 \mathrm{D}} / \mathrm{A}_{2 \mathrm{D}}\right)_{\mathrm{r}}$
A3A2S	$\left(\mathrm{A}_{3 \mathrm{D}} / \mathrm{A}_{2 \mathrm{D}}\right)_{\mathrm{S}}$

BB b
BWSR $\quad \mathrm{A}_{\mathrm{b}, \mathrm{r}}$

CHRDR $\quad c_{r}$
$\mathrm{D}(\mathrm{Y}) \quad$ arithmetic statement function for denominator of equation (10) or (11) where argument $Y=Q_{S}$ or Q_{r}

E(Y) arithmetic statement function for E where argument $Y=Q_{S}$ or Q_{r}
ELOCS $\quad(l /)_{S}$
ELOSR $\quad(l / s) r$
ELOSS $\quad(l / \mathrm{s})_{\mathrm{S}}$
EWSR $\quad A_{w, t, r}+A_{w, h, r}$
$H(Y) \quad$ arithmetic statement function for H where argument $Y=Q_{S}$ or Q_{r}
K error parameter for integration of function SHUB
K2 error parameter for integration of function SHUB2

REFR $\quad\left(\theta_{\text {tot }} / l \operatorname{Re}^{-0.2}\right)_{\text {ref, } r}$
REFS $\quad\left(\theta_{\text {tot }} / l \operatorname{Re}^{-0.2}\right)_{\text {ref, } s}$
RER $\quad \operatorname{Re}_{\mathbf{r}}$
RES $\quad \operatorname{Re}_{S}$
SRH $\quad \mathrm{n}_{\mathrm{r}} \mathrm{A}_{\mathrm{w}, \mathrm{h}, \mathrm{r}}$
SRH1 part of SRH from first integral in equation (C17)
SRH2 part of SRH from second integral in equation (C17)
$\operatorname{SRS} \quad \mathrm{n}_{\mathrm{r}} \mathrm{A}_{\mathrm{w}, \mathrm{t}, \mathrm{r}}$
$\operatorname{TOSR} \quad(\mathrm{t} / \mathrm{s})_{\mathrm{r}}$
TOSS $\quad(t / s)_{S}$
$\mathrm{YC} \quad \mathrm{r}_{1 \mathrm{a}}$
Y2

$$
r_{1 a}-b \sqrt{3 / 2}
$$

Variables transfer among EFFIC, SIMPS1, SHUB, and SHUB2 by means of the function arguments and the labelled common block/SH/. The function arguments are SIMPS1(X1, X2, FUNC, KSIG), SHUB(X), and SHUB2(Y) where

X1 lower limit of integration
X2 upper limit of integration
FUNC function being integrated, SHUB or SHUB2 in this case
KSIG error parameter, increases if integration is inaccurate
$\mathrm{X} \quad$ variable of integ ration
Y variable of integration
The common block variables, which were defined in the EFFIC variable list, are AA, BB , and YC. These also are the only variables, aside from the arguments, used in SHUB and SHUB2.

A further description of SIMPS1 and definition of its internal variables can be obtained from reference 6. The function described is called SIMPS2, but it becomes exactly SIMPS1 upon deletion of the parameter J from the function arguments.

Program listing. - The FORTRAN listings for subroutine EFFIC and functions SIMPS1, SHUB, and SHUB2 are as follows:

```
    SUBROUTINE EFFIC (ES,ER,J)
    REAL MU
    COMMON/EFF/GAM,VOVCR1,W,PI,STAR,MU,D1,ALPH1,NSTAR,ALPHO,ALUNC,SIGS
    1,DO,HS,CS,HOWCRM,DIA,D2M,HR,BET2M,EN,RH2RT2,CR
    COMMON/SH/AA,BB,YC
    A(X)=(GAM-1.)/(GAM+1.)*X*X
    DPY!=1./1.68+Y/2.88+Y*Y/4.4+Y*Y*Y/6.24
    H(Y)= (1./1. 2* 3.*Y/1.6 +5.*Y*Y/2.*7.*Y**3/2.4+9.*Y**4/2.8)/0(Y)
    E(Y)=2.*(1./1.92+Y/3.2+Y*Y/4.8+Y**3/6.72)/D(Y)
    GO TO (1,2),J
1 AS= A(vovCR1)
    REFS=.03734
    RES=W/PI/STAR/MU/DI/COS(ALPH1)
    ELOCS=1.
    IF(NSTAR.NE.2.OR.ALUNC.NE.D.O) ELOCS=ALUNC/2./SIN(ALUNC/2.)
    ELOSS= ELOCS*SIGS
    A3A2S=1.*(DO**2-D1**2)/4./SIGS/HS/D1/ELOCS
    TOSS=.05*SIGS*STAR
    ES=CS*E(AS)*REFS/RES**. 2*ELOSS*A3A2S/(COS(ALPH1)-CS*H(AS)*REFS/RES
1**.2*ELOSS-TOSS)
    GO TO 3
2 AR=A(WOWCRM)
    REFR=.11595
    CHRDR=0.5*SORT((D1A-D2M-HR*HS)**2*(DIA-D2M)**2)
    RER=W/PI*CHRDR/HR/MU/D2M/COS(EET2M)
    ELOSR=EN*CHRDR/2./SORT12.1/D2M
    BHSR=PI/8.*((D1A-D2M-HR*2.*HS)*(D1A-D2M+HR)-(D1A-D2M-HR)**2)
    SRS=PI/2.*(D1A-D2M-HR)*((PI/2.-1.)*D1A+D2M+HR)
    EXTERNAL SHUB,SHUBZ
    K=0
    K2=0
    AA= (D1A-D2M-HR+2.*HSI/2.
    BB=(D1A-D2M+HR)/2.
    YC=D1A/2.
    A2=AA/2.
    Y2=YC-B8/2.*SORT(3.)
    SRHI=2.*PI*SIMPS1(0.0,A2,SHUB,K)
    IF(K.GT.0) WRITE(6,1D) K
IO FORMAT(3H K=,IZ)
    SRH2=2.*PI*SIMPSI(Y2,YC,SHUB2,K2)
    IF(K2.GT.O) WRITE(6,11) K2
11 FORMAT(4H K2=,12)
    SRH=SRH1 + SRH2
    EWSR=(SRS + SRH)/EN
    A3AZR=1.+EWSR/BWSR
    TOSR= 0.04/PI*EN*(1.-RH2RT2)/(1.*RH2RT2)
    ER=CR*E(AR)*REFR/RER**-2*ELOSR*A 3A2R/(COS(BET2M)-CR*H(AR)*REFR/RER
    1**.2*ELOSR-TOSRI
3 RETURN
    END
```

```
    FUNCTION SIMPSI (XI,X2,FUNC,KSIG)
C.....THIS ROUTINE INTEGRATES FUNC(X) FROM XI TO XZ USING A MULTIPLE
C.....INTERVAL SIMPSON#S RULE TECHNIQUE.
    LOGICAL SPILL
    DOUBLE PRECISION ANS,Q
    DIMENSION V(200),H(200),A(200),B(200),C(200),P(200),E(200)
    DATA TWO,THREE,FOUR,THIRTY/Z.0,3.0,4.0,30.0/
    DATA T,NMAX,NSIG/3.0E-5,200,1/
C.....INITIALIZE FIRST ELEMENTS OF ARRAYS.
    v(l)= xl
    H(1)= (X2 - V(1))/Tw0
    A(1)= FUNC ( V )
    B(1)= FUNC (V(1)+H(1) )
    C(1)= FUNC (X2)
    P(1)=H(1)#(A(1) - FOUR*B(1) - C(1))
    E(1)=P(1)
    ANS= P(1)
    V=1
    FRAC=T
    SPILL=.FALSE.
1 TEST=ABS (FRAC#ANS)
    K=N
    DO 3 I=l,K
C.....TEST MAGNITUDE OF 4TH ORDER ERROR IN THIS INTERVAL.
    IF (ABS(E(I)).LE.TEST) GO TO 3
    IF (N.LT.NMAX) GO TO 2
C.....GO TO FINISH IF STORAGE IS FILLED UP.
    SPILL=.TRUE.
    KSIG=KSIG*NSIG
    GO TO 4
C.....SUBDIVIDE INTERVAL AGAIN TO REDUCE 4TH ORDER ERROR.
2 V=N+1
    V(N)=V(I)+H(I)
    H(N)=H(I)/TWO
    A(N)=B(I)
    B(N)=FUNC(V(N)+H(N))
    C(N)=C(I)
    P(N)=H(N)*(A(N)+FOUR*B(N)+C(N))
    H(I)=H(N)
    B(I)=FUNC(V(I)*H(I))
    C(I)=A(N)
    Q=P(I)
    P(I)=H(I)*(A(I) +FOUR*B(I)+C(I))
    Q=P(I)+P(N)-Q
    ANS =ANS +Q
    E(I)=0
    E(N)=0
3 CONTINUE
C.....tEST ALL INTERVALS AGAIN IF ANY WERE SUBDIVIDED THE LAST TIME.
    IF (N.GT.K) GO TO I
4. }2=0.
    DO 5 I=I,N
5. Q=Q+E(I)
C.....TIGHTEN ERROR LIMIT IF TOTAL ACCUMULATED ERROR TOO LARGE.
    IF (ABS(Q/T).LE.ABS(ANS).OR.SPILL) GO TO O
    FRAC=FRAC/TWO
    GO TO l
C.....FINISH OFF CALCULATION.
6 SIMPSI=(ANS +Q/THIRTY)/THREE
    RETURN
C.....THIS ENTRY USED TO GET AT INTERNAL VARIABLES.
    ENTRY SIMPXI (TT,NN,QQ)
    T=TT
    NN=N
    QQ=0
    RETURN
    END
```

```
FUNCTION SHUBZ(Y)
COMMON/SH/AA,BB,YC
SHUB2=Y*SORT(1.*AA**2/BB**2*(Y-YC)**2/(BB**2-(Y-YC)**2)'
RETURN
ENO
```

Rotor- Exit Continuity Subprograms

Subroutines CONTIN and PABC provide the means for obtaining the rotor-exit continuity solution; that is, they yield the value of $\left(V_{x} / V_{c r}\right)_{2, m}$ that satisfies the input mass flow rate. CONTIN provides an estimate for the value of an independent variable X that satisfies a given value of the dependent variable Y by means of curve fitting. The curve is a parabola whose coefficients are calculated by PABC, which is called by CONTIN. The estimation continues until a solution is obtained within the desired tolerance. Subroutines CONTIN and FABC are described in detail in reference 7 .

Program variables. - Variables transfer between main program RIFTUD and subroutine CONTIN by means of the CONTIN (XEST, YCALC, IND, JZ, YGIV, XDEL) arguments. Transfer of variables between CONTIN and PABC is by means of the $\operatorname{PABC}(\mathrm{X}, \mathrm{Y}, \mathrm{A}, \mathrm{B}, \mathrm{C})$ arguments. These agruments are defined as follows:

XEST on call: value of X used to calculate YCALC on return: value of X to be used to calculate next value of YCALC

YCALC value of Y corresponding to XEST during call
IND on call: controls sequence of calculation in CONTIN on return: indicates when a choked solution is found or when no solution can be found
determines whether subsonic or supersonic solution will be obtained:
1 - subsonic solution
2 - supersonic solution

YGIV value of Y desired for solution
XDEL maximum permissable change in XEST between iterations
X independent variable
Y dependent variable
$A \quad$ coefficient A in $y=A x^{2}+B x+C$
B
coefficient B in $y=A x^{2}+B x+C$
$\mathrm{C} \quad$ coefficient C in $\mathrm{y}=\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}$
The internal variables for CONTIN are defined in reference 7.
Program listing. - The FORTRAN listings for subroutines CONTIN and PABC are as follows:

SUBROUTINE CONTINIXEST,YCALC,IND,JZ, YGIV,XDELS
c
c--contin calculates an estimate of the relative flow velocity
c--FOR USE IN THE VELOCITY GRADIENT EOUATION
c
DIMENSION X(3),Y(3)
NCALL = NCALL+1
IF IIND.NE.1.AND.NCALL.GT. 100) GO TO 160
GO TO $110,30,40,50,60,110,1501$, IND
c--first call

10 NCALL $=1$
XORIG $=$ XEST
IF (YCALC.GT.YGIV.AND.JZ.EQ.1) GO TO 20
IND $=2$
Y(1) $=$ YCALC
$X(1)=0$.
XEST $=$ XEST+XDEL
RETURN
20 IND $=3$
y(3) = YCALC
$x(3)=0$.
XEST = XEST-XDEL
RETURN
C--SECOND CALL
30 IND $=4$
Y(2) $=$ YCALC
X(2) = XEST-XORIG
XEST $=$ XEST+XDEL
RETURN
40 IND $=5$
Y(2) $=$ YCALC
X(2) $=$ XEST-XORIG
XEST = XEST-XDEL
RETURN
C--THIRD OR LATER CALL - FIND SUBSONIC OR SUPERSONIC SOLUTION 50 Y(3) $=$ YCALC

X(3) $=$ XEST-XORIG
601070

```
        60 Y(1) = YCALC
    XI1)= XEST-XORIG
    70 IF (YGIV.LT.AMIN1(Y(1),Y(2),Y(3))) GOTO (120,130),JZ
    8O IND = 6
    CALL PABC(X,Y,APA,BPB,CPC)
    DISCR = BPB**2-4.*APA*(CPC-YGIV:
    IF (DISCR.LT.O.) GO TO 140
    IF (ABS(400.*APA*(CPC-YGIV)).LE.BPB**2) GO TO 90
    XEST = -BPB-SIGN(SORT(DISCRI,APA)
    IF IJZ.EQ.I.AND.APA.GT.O..AND.Y(3).GT.Y(1)) XEST = -BPB4
    ISORTIDISCRI
    IF (JZ.EQ.Z.AND.APA.LT.O.) XEST = -BPB-SORTIDISCR)
    XEST = XEST/Z./APA
    GO TO 100
    90 IF IJZ.EQ.Z.AND.BPB.GT.D.1 GO TO 130
    ACB2 = APA/BPB*(CPC-YGIV)/BPB
    IF (ABS(ACB2).LE.1.E-B) ACB2=0.
    XEST = -(CPC-YGIV)/BPB*(1.+ACB2+2.*ACB2**2)
    100 IF (XEST.GT.X(3)) GO TO 130
    IF (XEST.LT.X(1)) GO TO 120
    XEST = XEST+XORIG
    RETURN
C--FOURTH OR LATER CALL - NOT CHOKED
    110 IF(XEST-XORIG.GT.X(3)) GO TO 130
    IFIXEST-XORIG.LT.X(1)) GO TO 120
    Y(2) = YCALC
        X(2) = XEST-XORIG
    G0 TO 70
C--THIRD OR LATER CALL - SOLUTION EXISTS,
C--BUT RIGHT OR LEFT SHIFT REOUIRED
    120 INO = 5
C--LEFT SHIFT
    XEST = X(1)-XDEL +XORIG
    XOSHFT = XEST-XORIG
    XORIG = XEST
    Y(3) = Y(2)
    X(3) = X(2)-XOSHFT
    Y(2) = Y(1)
    X(2) = X(1)-XOSHFT
    RETURN
    130 IND = 4
C--RIGHT SHIFT
    XEST = X(3)+XDEL+XORIG
    XOSHFT = XEST-XORIG
    XORIG = XEST
    Y(1) = Y(2)
    X(1) = X(2)-XOSHFT
    Y(2) = Y(3)
    X(2) = X(3)-XOSHFT
    RETURN
C--THIRD OR LATER CALL - APPEARS TO BE CHOKED
    140 XEST = -BPB/2./APA
        IND = 7
        IF (XEST.LTOX(1)) GO TO 120
        IF(XEST.GT.X(3)) GO TO 130
        XEST = XEST+XORIG
        RETURN
C--FOURTH OR LATER CALL - PPOBABLY CHOKED
    150 IF (YCALC.GE.YGIVI GO 10 110
            IND = 1J
            RETURN
```

```
C--NO SOLUTION FOUND IN 1OO ITERATIONS
    165 IND = 11
                RETURN
                    END
```

```
    SUBROUTINE PABC(X,Y,A,B,C)
C--pabC CALCULATES COEFFICIENTS A,B,C OF THE PARABOLA
C--Y=A*X** 2*B*X&C, PASSING THROUGH THE GIVEN X,Y POINTS
C
    DIMENSION X(3),Y(3)
    C1 = X(3)-X(1)
    c2=(Y(2)-Y(1))/(XX(2)-X(1))
    A = (C1*C2-Y(3)+Y(1))/C1/(X(2)-X(3))
    B = C2-(X(1)+X(2))*A
    C= Y(1)-X(1)*B-X(1)**2*A
    RETURN
    END
```

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, October 23, 1975, 505-04.

APPENDIX A

SYMBOLS

A area, $\mathrm{m}^{2} ; \mathrm{ft}^{2}$
C_{P} dimensional constant, $1000 \mathrm{~W} / \mathrm{kW} ; 550$ (ft) (lb)/(sec) (hp)

L loss, J/kg; Btu/lb semiaxis of ellipse in x -direction, m ; ft semiaxis of ellipse in y-direction, m; ft
loss coefficient multiplier
circumference of ellipse, m; ft
chord, m; ft
specific heat at constant pressure, $\mathrm{J} /(\mathrm{kg})(\mathrm{K}) ; \mathrm{Btu} /(\mathrm{lb})\left({ }^{\mathrm{O}} \mathrm{R}\right)$
diameter, m ; ft
energy factor
blade-row loss coefficient
dimensional constant, $1 ; 32.17$ (lbm) (ft)/(lbf) (sec^{2})
form factor
blade or clearance height, m ; ft
specific enthalpy difference, $\mathrm{J} / \mathrm{kg} ; \mathrm{Btu} / \mathrm{lb}$
dimensional constant, 1; 778 (ft) (lb)/Btu
number of sectors
surface length (leading edge to trailing edge), $\mathrm{m} ; \mathrm{ft}$
rotative speed, $\mathrm{rad} / \mathrm{sec}$; rev/min
specific speed, dimensionless; $\left(\mathrm{ft}^{3 / 4}\right)\left(\mathrm{lbm}^{3 / 4}\right) /(\mathrm{min})\left(\mathrm{sec}^{1 / 2}\right)\left(\mathrm{lbf}^{3 / 4}\right)$
number of blades
shaft power, kW ; hp
absolute pressure, $\mathrm{N} / \mathrm{m}^{2} ; \mathrm{lb} / \mathrm{ft}^{2}$
parameter defined by equation (12) or (13)

Re Reynolds number
radius, m ; ft
blade speed, $\mathrm{m} / \mathrm{sec} ; \mathrm{ft} / \mathrm{sec}$
x coordinate, m ; ft
y coordinate, m; ft
specific heat ratio
efficiency
sector angle, deg
camber angle, deg
momentum thickness, m ; ft
density, $\mathrm{kg} / \mathrm{m}^{3} ; \mathrm{lb} / \mathrm{ft}^{3}$
angle defined in figure 3, deg
energy thickness, m; ft
gas constant, $\mathrm{J} /(\mathrm{kg})(\mathrm{K}) ;(\mathrm{ft})(\mathrm{lbf}) /(\mathrm{lbm})\left({ }^{\circ} \mathrm{R}\right)$
blade spacing at blade-row exit, m ; ft absolute temperature, $\mathrm{K} ;{ }^{\mathrm{O}}{ }_{\mathrm{R}}$
trailing-edge thickness, m; ft
absolute velocity, $\mathrm{m} / \mathrm{sec}$; $\mathrm{ft} / \mathrm{sec}$
relative velocity, $\mathrm{m} / \mathrm{sec} ; \mathrm{ft} / \mathrm{sec}$
mass flow rate, $\mathrm{kg} / \mathrm{sec} ; \mathrm{lb} / \mathrm{sec}$
fluid absolute angle measured from radial direction at stations 0,1 , and 1a and from axial direction at station 2, deg
fluid relative angle measured from radial direction at stations 0,1 , and 1 a and from axial direction at station 2, deg
displacement thickness, m; ft
viscosity, (N) (sec) $/ \mathrm{m}^{2} ; 1 \mathrm{~b} /(\mathrm{ft})(\mathrm{sec})$
flow angle from throughflow direction, deg
stator vane stagger angle from radial direction, deg

Subscripts:

av	average
b	blade surface
c	clearance
calc	calculated
cm	chord mean
cr	critical condition
df	disk friction
ex	exit
h	hub
i	sector number
id	ideal
j	sector number other than mean sector
m	mean sector
r	rotor
rad	radial direction
ref	reference
s	stator
shft	shaft
sr	surface of revolution
t	tip
tot	total
u	tangential direction
VD	velocity diagram
w	wall
x	axial direction

rotor exit
2D two dimensional
3D three dimensional
Superscripts:
absolute total value
" relative total value

STATOR GEOMETRY MODEL

The purpose of the stator vane geometry model is to interrelate the stator inlet and exit radii, inlet and exit flow angles, chord, and surface length to chord ratio in a consistent manner. The basic geometry model is shown in figure 3. There are three specific cases considered herein: (1) an uncambered vane with known chord length, (2) a cambered vane with known chord length and inlet flow angle, and (3) a cambered vane with known inlet radius and flow angle. In all cases, the exit radius and flow angle are known.

Uncambered Vane

For this case, the vane surface length is assumed equal to the chord; that is, $(l / c)_{S}=1$. The remaining unknowns are inlet flow angle and inlet radius. From the geometry of figure $3(\mathrm{a})$,

$$
\begin{equation*}
\tan \varphi_{0}=\frac{r_{1} \sin \varphi_{1}}{c+r_{1} \cos \varphi_{1}} \tag{B1}
\end{equation*}
$$

Since the vane is uncambered, $\alpha_{0}=\varphi_{0}$ and $\alpha_{1}=\varphi_{1}$. Therefore, equation (B1) becomes

$$
\begin{equation*}
\tan \alpha_{0}=\frac{\sin \alpha_{1}}{\frac{c}{r_{1}}+\cos \alpha_{1}} \tag{B2}
\end{equation*}
$$

The inlet radius is found by using the law of cosines; that is,

$$
\begin{equation*}
\mathrm{r}_{0}^{2}=\mathrm{c}^{2}+\mathrm{r}_{1}^{2}-2 \mathrm{cr} \mathrm{r}_{1} \cos \left(180-\alpha_{v}\right) \tag{B3}
\end{equation*}
$$

Since $\cos \alpha_{1}=-\cos \left(180-\alpha_{1}\right)$, we get

$$
\begin{equation*}
r_{0}=\sqrt{c^{2}+r_{1}^{2}+2 c r_{1} \cos \alpha_{1}} \tag{B4}
\end{equation*}
$$

Cambered Vane

It is assumed that the surface length is a circular arc, as shown in figure 3 (b). The arc length to chord ratio can be related to the sector angle Θ. Arc length is

$$
\begin{equation*}
l=\frac{\pi r \oplus}{180} \tag{B5}
\end{equation*}
$$

Chord is

$$
\begin{equation*}
\mathrm{c}=2 \mathrm{r} \sin \frac{\Theta}{2} \tag{B6}
\end{equation*}
$$

Dividing equation (B5) by equation (B6) then yields

$$
\begin{equation*}
\frac{l}{c}=\frac{\pi \Theta}{360 \sin \frac{\Theta}{2}} \tag{B7}
\end{equation*}
$$

The sector angle Θ can be related to the camber angle ${ }^{\Theta}$ cam. Remembering that a tangent is perpendicular to the radius at the point of tangency, referring to figure 3 (b), we can write

$$
\begin{equation*}
\left(180-\Theta_{\mathrm{cam}}\right)+\Theta=180 \tag{B8}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\Theta=\Theta \mathrm{cam} \tag{B9}
\end{equation*}
$$

and equation (B7) becomes

$$
\begin{equation*}
\left(\frac{l}{\mathrm{c}}\right)_{\mathrm{S}}=\frac{\pi{ }^{\Theta} \mathrm{cam}}{360 \sin \frac{\Theta_{\mathrm{cam}}^{2}}{2}} \tag{B10}
\end{equation*}
$$

Referring to figure 3(a), the camber angle can be expressed as

$$
\begin{equation*}
\Theta_{\text {cam }}=180-\alpha_{0}-\left(180-\alpha_{1}\right)-\Psi=\alpha_{1}-\alpha_{0}-\Psi \tag{B11}
\end{equation*}
$$

From the law of cosines,

$$
\begin{equation*}
\cos \Psi=\frac{r_{0}^{2}+r_{1}^{2}-c^{2}}{2 r_{0} r_{1}} \tag{B12}
\end{equation*}
$$

Substituting equation (B12) into equation (B11) yields

$$
\begin{equation*}
\Theta_{\mathrm{cam}}=\alpha_{1}-\alpha_{0}-\cos ^{-1}\left(\frac{\mathrm{r}_{0}^{2}+\mathrm{r}_{1}^{2}-\mathrm{c}^{2}}{2 \mathrm{r}_{0} \mathrm{r}_{1}}\right) \tag{B13}
\end{equation*}
$$

Equations (B13) and (B10) are used to determine surface length to chord ratio once the inlet radius and chord are known.

To determine inlet radius or chord for the two cambered vane cases being considered, it is assumed that the stagger angle at the chord midpoint is equal to average flow angle; that is,

$$
\begin{equation*}
\varphi_{\mathrm{cm}}=\frac{\alpha_{0}+\alpha_{1}}{2} \tag{B14}
\end{equation*}
$$

Referring again to figure 3 (a), the law of cosines yields

$$
\begin{equation*}
\mathrm{r}_{1}^{2}=\mathrm{r}_{\mathrm{cm}}^{2}+\left(\frac{\mathrm{c}}{2}\right)^{2}-2 \mathrm{r}_{\mathrm{cm}}\left(\frac{\mathrm{c}}{2}\right) \cos \varphi_{\mathrm{cm}} \tag{B15}
\end{equation*}
$$

and, since $\cos \varphi_{\mathrm{cm}}=-\cos \left(180-\varphi_{\mathrm{cm}}\right)$, also

$$
\begin{equation*}
\mathrm{r}_{0}^{2}=\mathrm{r}_{\mathrm{cm}}^{2}+\left(\frac{\mathrm{c}}{2}\right)^{2}+2 \mathrm{r}_{\mathrm{cm}}\left(\frac{\mathrm{c}}{2}\right) \cos \varphi_{\mathrm{cm}} \tag{B16}
\end{equation*}
$$

Adding equations (B15) and (B16) gives

$$
\begin{equation*}
\mathrm{r}_{0}^{2}+\mathrm{r}_{1}^{2}=2 \mathrm{r}_{\mathrm{cm}}^{2}+2\left(\frac{\mathrm{c}}{2}\right)^{2} \tag{B17}
\end{equation*}
$$

Known chord. - In this case, we are trying to find the inlet radius. With the chord known, equation (B15) is solved for $r_{c m}$ using the quadratic formula

$$
\begin{equation*}
\mathrm{r}_{\mathrm{cm}}=\frac{1}{2}\left[\mathrm{c} \cos \varphi_{\mathrm{cm}}+\sqrt{\left(\mathrm{c} \cos \varphi_{\mathrm{cm}}\right)^{2}+\left(4 \mathrm{r}_{1}^{2}-\mathrm{c}^{2}\right)}\right] \tag{B18}
\end{equation*}
$$

With $r_{c m}$ evaluated thusly, equation (B17) yields the inlet radius

$$
\begin{equation*}
\mathrm{r}_{0}=\sqrt{2 \mathrm{r}_{\mathrm{cm}}^{2}+\frac{\mathrm{c}^{2}}{2}-\mathrm{r}_{1}^{2}} \tag{B19}
\end{equation*}
$$

Known inlet radius. - In this case, we are trying to find the chord. Subtracting equation (B15) from equation (B16) and solving for $r_{c m}$ result in

$$
\begin{equation*}
\mathrm{r}_{\mathrm{cm}}=\frac{\mathrm{r}_{0}^{2}-\mathrm{r}_{1}^{2}}{2 \mathrm{c} \cos \varphi_{\mathrm{cm}}} \tag{B20}
\end{equation*}
$$

Substituting equation (B20) into equation (B17) yields

$$
\begin{equation*}
c^{4}-2 c^{2}\left(r_{0}^{2}+r_{1}^{2}\right)+\left(\frac{r_{0}^{2}-r_{1}^{2}}{\cos \varphi_{c m}}\right)^{2}=0 \tag{B21}
\end{equation*}
$$

Using the quadratic formula and taking the positive root finally give

$$
\begin{equation*}
c=\sqrt{\mathrm{r}_{0}^{2}+\mathrm{r}_{1}^{2}-\sqrt{\left(\mathrm{r}_{0}^{2}+\mathrm{r}_{1}^{2}\right)^{2}-\left(\frac{\mathrm{r}_{0}^{2}-\mathrm{r}_{1}^{2}}{\cos \varphi_{\mathrm{m}}}\right)^{2}}} \tag{B22}
\end{equation*}
$$

ROTOR GEOMETRY MODEL

The purpose of the rotor geometry model is to provide a consistent basis for evaluating mean surface length, chord length, blade-surface and end-wall surface areas, and number of blades. Shown in figure 4 is the rotor geometry with dimensions expressed in terms of various radii and the stator blade height. The model is based on the meridional-plane projection of the rotor. The tip contour is assumed to be circular and the hub contour is assumed to be elliptical, each being a 90° arc. It is further assumed that the rotor consists of full blades only.

Surface and Chord Lengths

The mean surface length and mean chord are the elliptical arc and straight line, respectively, joining the midpoints (see fig. 4) of the rotor leading and trailing edges. The general formula for the circumference of $a n$ ellipse with semiaxes a and b is

$$
\begin{equation*}
\mathrm{C}_{\mathrm{e}} \approx 2 \pi \sqrt{\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{2}} \tag{C1}
\end{equation*}
$$

Therefore, the mean surface length of the rotor is

$$
\begin{equation*}
l_{\mathrm{r}}=\frac{\pi}{2} \sqrt{\frac{1}{2}\left[\left(\mathrm{r}_{1 \mathrm{a}}-\mathrm{r}_{2, \mathrm{t}}+\frac{\mathrm{h}_{\mathrm{s}}}{2}\right)^{2}+\left(\mathrm{r}_{1 \mathrm{a}}-\mathrm{r}_{2, \mathrm{~m}}\right)^{2}\right]} \tag{C2}
\end{equation*}
$$

From the Pythagorean theorem, the chord length is

$$
\begin{equation*}
c_{r}=\sqrt{\left(r_{1 a}-r_{2, t}+\frac{h_{s}}{2}\right)^{2}+\left(r_{1 a}-r_{2, m}\right)^{2}} \tag{C3}
\end{equation*}
$$

Wall Areas

The blade surface area is the area between the elliptical hub and the circular tip. The general formula for the area within an ellipse is

$$
\begin{equation*}
\mathrm{A}=\pi \mathrm{ab} \tag{C4}
\end{equation*}
$$

Therefore, the blade surface area for one passage (i.e., two sides) is

$$
\begin{equation*}
A_{b, r}=\frac{\pi}{2}\left[\left(r_{1 a}-r_{2, t}+h_{s}\right)\left(r_{1 a}-r_{2, h}\right)-\left(r_{1 a}-r_{2, t}\right)^{2}\right] \tag{C5}
\end{equation*}
$$

The tip and hub wall areas are determined as the surfaces of revolution of the tip and hub curves around the turbine axis. The general formula for the surface of revolution of a curve $y=f(x)$ between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\begin{equation*}
A_{S r}=2 \pi \int_{x_{1}}^{x_{2}} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=2 \pi \int_{y_{1}}^{y_{2}} y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \tag{C6}
\end{equation*}
$$

With the turbine axis taken as $y=0$, the centers of the tip and hub curves are at $x=0$ and $y=r_{1 a}$. Therefore, the equation of the circular tip is

$$
\begin{equation*}
x^{2}+\left(y-r_{1 a}\right)^{2}=\left(r_{1 a}-r_{2, t}\right)^{2} \tag{C7}
\end{equation*}
$$

while that of the elliptical hub is

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{\left(y-r_{1 a}\right)^{2}}{b^{2-}}=1 \tag{C8}
\end{equation*}
$$

where the semiaxes a and b are

$$
\begin{equation*}
a=r_{1 a}-r_{2, t}+h_{s} \tag{C9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{b}=\mathrm{r}_{1 \mathrm{a}}-\mathrm{r}_{2, \mathrm{~h}} \tag{C10}
\end{equation*}
$$

For the circular tip, differentiation of equation (C7) yields

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{x}{y-r_{1 a}} \tag{C11}
\end{equation*}
$$

Substitution of equations (C11) and (C7) into equation (C6) results in

$$
\begin{equation*}
A_{s r, t}=2 \pi\left(r_{1 a}-r_{2, t}\right) \int_{0}^{r_{1 a^{-r} 2, t}}\left[\frac{r_{1 a}}{\sqrt{\left(r_{1 a}-r_{2, t}\right)^{2}-x^{2}}}-1\right] d x \tag{C12}
\end{equation*}
$$

Integrating equation (C12) and dividing by the number of rotor passages then gives the tip wall area for one passage

$$
\begin{equation*}
A_{w, t, r}=\frac{2 \pi}{n_{r}}\left(r_{1 a}-r_{2, t}\left[\left(\frac{\pi}{2}-1\right) r_{1 a}+r_{2, t}\right]\right. \tag{C13}
\end{equation*}
$$

For the elliptical hub, the area of the surface of revolution cannot be analytically expressed because equation (C6) cannot be integrated analytically. Further, neither form of equation (C6) can be integrated numerically over its entire range because of an infinite slope at one limit. However, if we break the curve into two pieces, we can write

$$
\begin{equation*}
A_{s r, h}=2 \pi \int_{0}^{a / 2} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x+2 \pi \int_{r_{1 a}-b \frac{\sqrt{3}}{2}}^{r_{1 a}} y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \tag{C14}
\end{equation*}
$$

From equation (C8), the two derivatives can be determined as

$$
\begin{equation*}
\frac{d y}{d x}=\frac{b x}{a \sqrt{a^{2}-x^{2}}} \tag{C15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d x}{d y}=-\frac{a\left(y-r_{1 a}\right)}{b \sqrt{b^{2}-\left(y-r_{1 a}\right)^{2}}} \tag{C16}
\end{equation*}
$$

Substituting equations (C8), (C15), and (C16) into equation (C14) and dividing by the number of rotor passages then give the following hub wall area for one passage:

$$
A_{w, h, r}=\frac{2 \pi}{n_{r}}\left\{\int_{0}^{\rho a / 2}\left(r_{1 a}-\frac{b}{a} \sqrt{a^{2}-x^{2}}\right) \sqrt{1+\frac{b^{2} x^{2}}{a^{2}\left(a^{2}-x^{2}\right)}} d x\right]\left(\int_{r_{1 a}-b \frac{\sqrt{3}}{2}}^{r_{1 a}} \sqrt{1+\frac{a^{2}\left(y-r_{1 a}\right)^{2}}{b^{2}\left[b^{2}-\left(y-r_{1 a}\right)^{2}\right]}} d y\right\}
$$

Equation (C17) can be integrated numerically. In the program, each of the integrals is evaluated by Simpson's rule.

Blade Number

From the approach of reference 8 along with the additional assumption that $V_{u, 1 a}=U_{1 a}$, a number of blades can be computed as

$$
\begin{equation*}
\mathrm{n}_{\mathrm{r}}=2 \pi \tan \alpha_{1 \mathrm{a}} \tag{C18}
\end{equation*}
$$

This number of blades is based on not permitting the velocity to fall below zero anywhere within the rotor channel; the limiting condition, therefore, is zero velocity on the pressure surface at the rotor inlet. Equation (C18) yields a rather large number of blades, especially at the higher flow angles. Studies such as the one reported in reference 5 have shown that the number of blades can be reduced significantly from these high values without significant degradation in performance. Therefore, a reduction factor is used in equation (C18). Also, the small difference between $\alpha_{1 a}$ and α_{1} is neglected. With these changes, the number of rotor blades is computed herein as

$$
\begin{equation*}
\mathrm{n}_{\mathrm{r}}=\frac{\pi}{30}\left(110-\alpha_{1}\right) \tan \alpha_{1} \tag{C19}
\end{equation*}
$$

REFERENCES

1. Rohlik, Harold E.: Analytical Determination of Radial Inflow Turbine Design Geometry for Maximum Efficiency. NASA TN D-4384, 1968.
2. Prust, Herman W., Jr.: Boundary-Layer Losses. Ch. 7 of Turbine Design and Application, Vol. 2, Arthur J. Glassman, ed., NASA SP-290, 1973, pp. 93-124.
3. Kofskey, Milton G. ; and Holeski, Donald E.: Cold Performance Evaluation of a 6.02-Inch Radial Inflow Turbine Designed for a 10-Kilowatt Shaft Output Brayton Cycle Space Power Generation System. NASA TN D-2987, 1966.
4. Roelke, Richard J.: Miscellaneous Losses. Ch. 8 of Turbine Design and Application, Vol. 2, Arthur J. Glassman, ed., NASA SP-290, 1973, pp. 125-148.
5. Rohlik, Harold E.: Radial Inflow Turbines. Ch. 10 of Turbine Design and Application, Vol. 3, Arthur J. Glassman, ed., NASA SP-290, 1975, pp. 31-58.
6. Zuk, John; and Smith, Patricia J.: Quasi-One-Dimensional Compressible Flow Across Face Seals and Narrow Slots. NASA TN D-6787, 1972.
7. Katsanis, Theodore; and McNally, William D.: FORTRAN Program for Calculating Velocities and Streamlines on the Hub-Shroud Mid-Channel Flow Surface of an Axial- or Mixed-Flow Turbomachine. II - Programmer's Manual. NASA TN D-7344, 1974.
8. Jamieson, A. W. H.: The Radial Turbine. Ch. 9 of Gas Turbine Principles and Practice. Sir Harold Roxbee Cox, ed., D. Van Nostrand Co., Inc., 1955, pp. 9-1 to 9-34.

TABLE I. - INPUT FORM WITH SAMPLE DATA

TABLE II. - OUTPUT FOR SAMPLE CASE USING SI UNITS
radial inflow turbine velocity diagram design analysis
HHIS IS A SAMPLE CASE USING SI UNITS
this outpui is in the following units.

-his is the same case using U.S. customary units

Figure 1. - Schematic cross section of radial-inflow turbine.

Figure 2. - Velocity diagram.

(a) Chord.

Figure 3. - Stator geometry model.

Figure 4. - Rotor geometry model.

[^0]: * For sale by the National Technical Information Service, Springfield. Virgınia 22161

