COMPUTER PROGRAM FOR SOLVING GROUND-WATER FLOW EQUATIONS BY THE PRECONDITIONED CONJUGATE GRADIENT METHOD

By Logan K. Kuiper

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 87-4091

DEPARTMENT OF THE INTERIOR
DONALD PAUL HODEL, Secretary
U.S. GEOLOGICAL SURVEY
Da11as L. Peck, Director

For more information
write to:
Project Chief
U.S. Geological Suvey
Gulf Coast RASA
N. Shore Plaza Bldg., Rm. 104
55 North Interregional Hwy.
Austin, Texas 78702

Copies of this report can be purchased from:
U.S. Geologicl Survey Books and Open-File Reports Federal Center, B1dg., 41 Box 25425
Denver, Colorado 80225
Telephone (303) 236-7476

CONTENTS

Page
Abstract 1
Introduction 1
Preconditioned conjugate gradient package- 2
Description and use 2
Input instructions 10
Sample input to preconditioned conjugate gradient package 12
Module documentation for the preconditioned conjugate gradient package 13
PCG1AL 13
Narrative 13
Flow chart 14
Program listing 14
List of variables 16
PCG1RP 17
Narrative 17
Flow chart 17
Program listing 18
List of variables 18
PCG1AP 19
Narrative 19
Flow chart 22
Program 1isting 23
List of variables 31
References 34
ILLUSTRATIONS
Page
Figure 1. Correspondence between the finite-difference equations and the matrix equation for a grid with three rows, two columns, and two layers 4
Figure 2. Structure of coefficient matrix showing nonzero diagonals 4
Figure 3. Flow chart showing major elements of module PCG1AP and related parts of the main program of the modular model 8
TABLES
Table 1. ITYP control of v and u iterations 21

COMPUTER PROGRAM FOR SOLVING GROUND-WATER FLOW EQUATIONS

BY THE PRECONDITIONED CONJUGATE GRADIENT METHOD

By Logan K. Kuiper

Abstract

This report documents a numerical code for use with the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model. The code uses the preconditioned conjugate gradient method for the solution of the finite difference approximating equations generated by the modular flow model. These equations are a system of simultaneous linear equations except when the river, drain, or evapotranspiration packages of the modular model are being used, in which case they are a system of simultaneous nonlinear equations. When these equations are linear, they are solved by the basic preconditioned conjugate gradient method as available in the literature. Five preconditioning types may be chosen: three different types of incomplete Choleski, point Jacobi, or block Jacobi. When the approximating equations are nonlinear, the solution method is that of Picard preconditioned conjugate gradient with the same preconditioning choices. Either a head change or residual error criteria may be used as an indicator of solution accuracy and iteration termination.

The use of the computer program that performs the calculations in the numerical code is emphasized. Detailed instructions are given for using the computer program, including data entry formats and the method of linking the program into the modular model. A sample data listing and listing of the Fortran program are included.

INTRODUCTION

This report documents a numerical code for use with the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model (McDonald and Harbaugh, 1984). The code uses the preconditioned conjugate gradient method for the solution of the finite difference approximating equations generated by the modular flow model. These equations are a system of simultaneous linear equations except when the river, drain, or evaporation packages of the modular model are being used, in which case they are a system of simultaneous nonlinear equations. When these equations are linear, they are solved by the basic preconditioned conjugate gradient method as available in the literature. Five preconditioning types may be chosen: three different types of incomplete Choleski, point Jacobi, or block Jacobi. When the approximating equations are nonlinear the solution method is that of Picard preconditioned conjugate gradient with the same preconditioning choices. Either a head change or residual error criteria may be used as an indicator of solution accuracy and iteration termination.

The preconditioned conjugate gradient (PCG) method as presented is sometimes faster than the strongly implicit procedure (SIP) and slice-succesive overrelaxation (SOR) available in the modular model (Kuiper, 1981, 1987). It is frequently faster on problems having a wide variation in the conductances between model nodes, or on problems having a complex geometry such as pinched out layers. The PCG method presented has the advantage of not requiring any convergence parameters. The user has the option of using residual error as a criteria for iteration termination. This option assures that the flow rate into each cell is equal to the flow rate out of the same cell, to within a small amount selected by the user.

PRECONDITIONED CONJUGATE GRADIENT PACKAGE

Description and Use

The preconditioned conjugate gradient (PCG) method to be presented here is an iterative method for solving a system of simultaneous linear or nonlinear equations.

Finite difference discretization of the ground-water flow equation gives a set of finite difference approximating equations (McDonald and Harbaugh, 1984), the solution of which gives an approximate solution to the ground-water flow equation. For a cell location i,j,k the finite-difference equation (McDonald and Harbaugh, 1984, p. 30, equation 27) is:

$$
\begin{align*}
& C V_{i, j, k-1 / 2} h_{i, j, k-1}+C C_{i-1 / 2, j, k} h_{i-1, j}, k+C R_{i, j-1 / 2, k} h_{i, j-1, k} \\
& +\left(-C V_{i, j, k-1 / 2}-C C_{i-1 / 2, j, k}-C R_{i, j-1 / 2, k}\right. \\
& \left.-C R_{i, j+1 / 2, k}-C C_{i+1 / 2, j, k}-C V_{i, j, k+1 / 2}+H C O F_{i, j}, k\right) h_{i, j, k} \\
& +C R_{i, j+1 / 2, k} h_{i, j+1, k}+C C_{i+1 / 2, j, k} h_{i+1, j, k} \\
& +C V_{i, j, k+1 / 2} h_{i, j, k+1}=R H S_{i, j, k} \tag{1}
\end{align*}
$$

where $\mathrm{CV}_{\mathrm{i}, \mathrm{j}, \mathrm{k}-1 / 2}$ is the conductance (McDonald and Harbaugh, 1984, p. 16) between nodes i, j, k and $i, j, k-1, \mathrm{CV}_{i, j, k+1 / 2}$ is the conductance between nodes i, j, k and $i, j, k+1$, and corresponding definitions apply to the CC and CR terms. The hydraulic head at node i, j, k is $h_{i, j, k}$, the hydraulic head at node $i, j, k-1$ is denoted by $h_{i, j, k-1}$, and so on. Conductance is defined (McDonald and Harbaugh, 1984, p. 16) as that quantity associated with a particular node face which, when multiplied by the difference between the heads of those two nodes lying on either side, gives the flow across the node face. An equation like (1) is written for each cell in the finite-difference grid. This grid fills the volume within which the solution to the ground-water flow equation is to be approximated. Equation (1) expresses the relation among the heads h at node
i,j,k and at each of the six adjacent nodes at the end of a time step. Note that head at any node appears in the equation for that node and also in the equation for adjoining nodes. Thus, the equations are coupled and must be solved simultaneously. It is convenient to write equation (1) as

$$
\begin{align*}
& z_{i, j, k} h_{i, j, k-1}+B_{i, j, k} h_{i-1, j, k}+D_{i, j, k} h_{i, j-1, k}+E_{i, j, k} h_{i, j, k} \\
& +F_{i, j, k} h_{i, j+1, k}+H_{i, j, k} h_{i+1, j, k}+s_{i, j, k} h_{i, j, k+1}=Q_{i, j, k} \tag{2}
\end{align*}
$$

(McDonald and Harbaugh, 1984, p. 370, equation 80), which in matrix form becomes

$$
\begin{equation*}
\mathrm{Ah}=\mathrm{q} . \tag{3}
\end{equation*}
$$

A is a square matrix and h and q are vectors. The components of the vector h are the hydraulic heads $h_{i, j, k}$. The components of the vector q are the "source" terms $Q_{i, j, k}$ of equation (2). Figure 1 shows the elements of the matrix A and the vectors h and q. Notice that nonzero elements in A appear only on seven diagonals (fig. 2). Because the number of nonzero elements in A is small compared to the tatal number of elements, the matrix is said to be sparse.

The coefficients in equation (2) all have the index $i_{s} j, k$ to show that they belong to the equation for node i, j, k. Furthermore, the Z coefficient for the equation at node $i, j, k\left(z_{i, j, k}\right)$, is equal to $\mathrm{CV}_{i, j, k-1 / 2}$, which is the same as the S coefficient for the equation at node $i, j, k-1\left(S_{i, j, k-1}\right)$, so that (Mcdonald and Harbaugh, 1984, p. 371)

$$
\begin{equation*}
z_{i, j, k}=s_{i, j, k-1} \tag{4}
\end{equation*}
$$

Similiarly,

$$
\begin{equation*}
B_{i, j, k}=H_{i-1, j, k} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{i, j, k}=F_{i, j-1, k} \tag{6}
\end{equation*}
$$

Thus, the matrix A is symmetric. Because $E_{i, j, k}$ is equal to sum of $-Z_{i, j, k}$, $-B_{i, j, k},-D_{i, j, k},-F_{i, j, k},-H_{i, j, k},-S_{i, j, k}$, and $\mathrm{HCOF}_{i, j, k}$, the negative of the matrix A is positive definite.

Equation (3) could be written as

$$
\begin{equation*}
A\left(h^{m}, m\right) h^{m}=q\left(h^{m}, m\right) \tag{7}
\end{equation*}
$$

where vector h^{m} is vector h at time t_{m}. The parenthesis indicate that the elements of the matrix A and vector q may depend on the vector h^{m}. An example of when the elements of matrix A depend on head is the case of a water-table aquifer. In this case, the conductance between two adjacent nodes in an aquifer depends on the saturated thickness of the aquifer in the vicinity of the nodes and, thus, on the head in the vicinity of the nodes. Therefore, the conductances $C R, C C$, and $C V$, which appear in the off-center diagonals of the matrix A are head dependent. When matrix A and vector q are h^{m} dependent, equation (7) is said to be nonlinear and is more difficult to solve for h^{m} than the linear case for which the elements of matrix A and vector q are constants.

An alternative to solving equation (7), which is done by SIP and SOR in the modular model, is to solve

$$
\begin{equation*}
A\left(h^{\mathrm{m}-1}, \mathrm{~m}-1\right) h^{\mathrm{m}}=\mathrm{q}\left(\mathrm{~h}^{\mathrm{m}-1}, \mathrm{~m}-1\right) \tag{8}
\end{equation*}
$$

In this case, the system is linear and easily solved, but the solutions h^{m}, $m=0,1,2, \ldots$ may tend to be unstable. Use of equation (8) corresponds, for the water-table aquifer situation, to using the conductance between two adjacent nodes corresponding to the head h^{m-1} at time t_{m-1}, when calculating the change in head between times t_{m} and t_{m-1}, or in other words when calculating h^{m}. The PCG package allows the use of equation (7) or (8) but because of the instability mentioned, the use of equation (8) usually is not recommended except, perhaps, when equation (7) is too difficult to solve. When the problem being solved is linear, matrix A and vector q are constant, and equations (7) and (8) are identical.

The PCG method presented here is ideal for solving a sparse symmetric positive definite system of simultaneous linear equations. It also can be used for solving a sparse symmetric positive definite system of simultaneous nonlinear equations, such as (7), but with perhaps somewhat decreased efficiency.

An important part of the PCG method presented here is the basic PCG method for sparse symmetric positive definite linear systems, as taken from the literature (Van Der Vorst, 1982):

$$
\begin{equation*}
a_{v}=\frac{\left(r^{v}, K^{-1} r^{v}\right)}{\left(p_{v}, A p_{v}\right)} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
x_{v+1}=x_{v}+a_{v} p_{v} . \tag{10}
\end{equation*}
$$

$$
r_{v+1}=r_{v}-a_{v} A p_{v} .
$$

$$
\begin{equation*}
B_{v}=\frac{\left(r^{v+1}, K^{-1} r^{v}+1\right.}{\left(r_{v}, K^{-1} r_{v}\right)}, \text { and } \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{p}_{\mathrm{v}+1}=\mathrm{K}^{-1} \mathrm{r}_{\mathrm{v}+1}+\mathrm{B}_{\mathrm{v}} \mathrm{P}_{\mathrm{v}} \tag{13}
\end{equation*}
$$

where

$$
(x, y)=\sum_{i=1}^{N} x_{i} y_{i}
$$

is the inner product of the vectors x and y. Iteration of equations (9) through (13) using $v=1,2, \ldots$, and using $r_{1}=b-A x_{1}, p_{1}=K^{-1} r_{1}$, and some initial choice x_{1} for the solution vector gives an approximate solution to the matrix equation $A x=b$, where A is a N by N symmetric positive definite matrix. The residual error vector is $r=b-A x$. Matrix K is called a preconditioning or splitting matrix. It is chosen to be as nearly equal to A as possible but readily invertible. The PCG package allows for five choices of the preconditioning matrix. The first three choices for matrix K (corresponding to NPCOND=1,2, and 3) are three different types of incomplete Choleski factorization (Kershaw, 1978), where the first two differ only in the manner of treating inactive nodes. The fourth choice (NPCOND=4) is point Jacobi (Hageman and Young, 1981) for which matrix K is simply the diagonal of the matrix A. The fifth choice ($\mathrm{NPCOND}=5$) is block Jacobi for which matrix K is the diagonal and the two off-center diagonals adjacent to the center diagonal of A.

The basic PCG method in equations (9) through (13) is part of the PCG method presented here. The solution of equation (7), h^{m}, is the head, h, at time t_{m}. The PCG method presented here finds an approximation to h^{m} iteratively. Let these sucessive approximations to h^{m} be denoted by $h_{s}{ }^{m}$, $s=1,2, \ldots, s m$. Let $h_{s m} m$ denote that iteration taken to be a satisfactory approximate solution to h^{m}. The first estimate for $h^{m+1}, h_{1} m+1$, is taken to be $h_{s m}{ }^{m}$. To explain the way succesive iterations $h_{s}{ }^{m}$ are chosen, it is necessary to break the index s into two indices, u and v, where index v changes fastest. The indices u and v go from 1 to $u m$, and from 1 to vm(u) respectively. The procedure for finding the approximate solution $\mathrm{h}_{\mathrm{sm}}{ }^{m}$, to h^{m} is:

Approximately solve

$$
\begin{equation*}
A\left(h_{u, 1} m, m\right) h_{u}{ }^{m}=q\left(h_{u, 1} m, m\right) \text {, for } u=1,2, \ldots, u m \tag{14}
\end{equation*}
$$

where the succesive approximations to $h_{u}{ }^{m}$ are denoted $h_{u, v}{ }^{m}, v=1,2, \ldots, v m(u)$. Figue 3 ia a flow chart showing how the main program of the modular model and module PCG1AP interact to do the u and v iterations of equation (14). The flow chart shows only the major elements of module PCG1AP and only those elements of the main program relating to its connection with module PCG1AP. The iterations in v occur each time the module PCG1AP is called. Values of u are a counter of the number of times the module PCG1AP is called by the main program. The value for $h_{u, 1}{ }^{m}$ is $h_{u-1, v m(u-1)}{ }^{m}$. Note that equation (14) is linear with respect to solving for h_{u}. The iterations in v are those of the basic PCG method as given by equations (9) through (13). The PCG method as given by (14) for the solution of (7) would be called Picard-PCG using the naming procedure of the mathematical literature on the solution of nonlinear systems (Kuiper, 1987).

In the main program in figure 3, MXITER is the chosen maximum allowable value for u, and also for MCNT, the total number of iterations used in the search for the approximate solution to h^{m}. The maximum allowable number for v is $v_{\text {max }}$. ICNVG is the variable indicating whether a suitably accurate solution to h^{m} has been obtained. IFLAG is the variable that indicates whether an exit from the u iteration loop in the main program is desired upon return to the main program. IFLAG causes an exit at the first return when the linear case is being solved or equation (8) is being used, or in the nonlinear case when MCNT 2 MXITER.

In module PCG1AP in figure 3, note that when a sufficiently small value is chosen for $v_{\text {max }}$, that the v loop may not be exited but v instead reaches its maximum value $v_{\text {max }}$, corresponding to a situation in which for a given $u<u m$, equation (14) is not solved accurately enough to cause a v-loop exit. This situation may be understood by considering the way that the use of equation (14) implements the solution of a problem with a declining head in a watertable aquifer for some given time step m. Values of u correspond to evaluations of the conductances between nodes as determined by using heads $h_{u, 1}$. For these evaluations at u of the conductances, the head decrease is determined using iterations in v. Having obtained $h_{u, v m(u)}{ }^{m}$ where $v m(u)$ may be equal to $v_{\text {max }}$, new values of the decreased conductance are determined using the just acquired decreased heads $h_{u, v m(u)}{ }^{m}$. Then the head decline is

Figure 3.--Flow chart showing major elements of module PCG1AP and related parts of the main program of the modular model.

Figure 3.--(Concluded)
redetermined corresponding to these new decreased values for the conductances. The process continues in this manner. Therefore, one need not necessarily solve for head declines accurately for a given u<um because the conductances corresponding to this value for u are too large anyway. Two approaches are thus allowed: for a given evaluation of the conductances corresponding to $h_{u, 1}$ m, either solve for the head accurately enough to meet some accuracy criteria, or just stop the iteration in v at some $v_{\text {max }}$. In many cases, problems which are nearly linear are solved with a smaller total number of iterations by choosing a large value for $v_{\text {max }}$ resulting in the program exiting the v loop. On the other hand, extremely nonlinear problems are solved more readily by choosing $\mathrm{v}_{\max }$ to be small.

In module PCG1AP, the choice of $\mathrm{v}_{\text {max }}$ is controlled by the users choice of the variable ITYP. For a choice of ITYP=0, equation (8), or in the linear case the equivalent equation (7), is solved. For choices of ITYP 21 , equation (7) is solved by means of equation (14), corresponding to the nonlinear case, using $v_{\text {max }}=M X I T E R$ when ITYP $=1$, and $v_{\text {max }}=I T Y P-1$ when ITYP ≥ 2.

Input Instructions

The Preconditioned Conjugate Gradient (PCG) Package reads values from the unit specified in IUNIT(13) in the Basic (BAS) Package of the modular model.

For each simulation:

PCG1AL

1. Data: MXITER NPCOND ITYP

Format: I10 I10 I10

PCG1AL
2. Data: HCLOSE RESERR IWRT

Format: F10.0 F10.0 I10
Read only if IWRT=2:
3. Data: NU1(I), I=1,9

Format: (9I4)

> Explanation of Fields Used in Input Instructions

MXITER--

is the maximum total number iterations allowed in an attempt to solve the system of finite difference equations. One hundred iterations should be sufficient for most (ITYP=0) problems.
has the values 1 to 5 corresponding to the five preconditioning types which may be chosen. The first three are incomplete Choleski, the fourth is point Jacobi, and the fifth is block Jacobi. NPCOND equal 1 or 3 are common choices. On rare occasions NPCOND equal 4 or 5 could be faster than 1 or 3. NPCOND equal 2 is at present identical to NPCOND equal 1 , but may be changed at a later time. The advised procedure is to use either NPCOND equal 1 or 3 , or use both and compare computation times if the model is going to be run many times and computation time is important. NPCOND equal 1 is usually a bit slower than NPCOND equal 3, but it is also more stable. For those who do not wish to experiment with NPCOND, the best choice is 1 .

ITYP-

is a flag indicating the type of problem solved:

0 - 1inear problems: LAYCON=0; river, drain, or evaporation packages are not being used. Also for nonlinear problems to be solved with equation (8). Such equation (8) solutions for nonlinear problems may be inaccurate and are therefore not recommended unless a solution cannot be obtained using ITYPZ1 or SIP. For equation (8) solutions, the usual budget and flowchart calculations printed by the modular model may be innacurate, and cannot be used as a measure of solution accuracy. See page 20 for more detail.

1 - nonlinear problems with weakly nonlinear conditions.
2 - nonlinear problems with strongly nonlinear conditions. If you do not know how nonlinear the problem is, use ITYP equal 1 and 2 and compare results. See table 1 on page 21 for more detail.

HCLOSE-

is the head change criteria for convergence. When the maximum absolute head change for all nodes from the last iteration(s) is less than HCLOSE, iteration is terminated.

Abstract

RESERR-- is the residual error criteria for convergence. Residual error is the flow rate into a variable head cell minus the flow rate out of the cell. When the maximum, over all the variable head cells in the modeled region, of the absolute values of the residual errors for each of the variable head cells is less than RESERR, iteration is terminated.

Both HCLOSE and RESERR may be used concurrently in which case both have nonzero values. Set HCLOSE=0 if you want to use only RESERR, and vise-versa.

IWRT-
is a flag indicating the amount of output produced regarding the numerical solution of the finite difference equations.

0 - no output is produced other than that normally provided by the modular model program.

1 - the maximum absolute head change (ER5) from the last iteration, the maximum absolute residual error (SRZ or SRZ1) for variable head cells, and the total residual error for the entire model obtained by summing the residual errors for all of the variable head cells, are produced for each time step.

2 - includes the output produced in option 1 plus an output for watching convergence which shows the numerical solution process at each time step, including the head at 3 locations specified by NU1.

NU1--
specifies the 3 1ocations:

$$
\begin{aligned}
& 1-\mathrm{J}=\mathrm{NU} 1 \text { (1), } \mathrm{I}=\mathrm{NU} 1 \text { (2), } \mathrm{K}=\mathrm{NU} 1 \text { (3) } \\
& 2-\mathrm{J}=\mathrm{NU} 1(4), \mathrm{I}=\mathrm{NU} 1(5), \mathrm{K}=\mathrm{NU} 1 \text { (6) } \\
& 3-\mathrm{J}=\mathrm{NU} 1(7), \mathrm{I}=\mathrm{NU} 1(8), \mathrm{K}=\mathrm{NU} 1 \text { (9) }
\end{aligned}
$$

at which head is printed for each time step when IWRT=2. NU1 is not read when IWRT equal to 0 or 1 .

Sample Input to PCG Package

$\left.\begin{array}{llclllll}\begin{array}{l}\text { Data } \\ \text { item }\end{array} & \text { Explanation } & \text { Input Records } & & & & \\ 1 & \text { MXITER, NPCOND, ITYP } & & 50 & 1 & & 1 \\ 2 & \text { HCLOSE, RESERR, IWRT } & & .1 & & 10 & & 2\end{array}\right]$

Module Documentation for the Preconditioned Conjugate Gradient Package

The Preconditioned Conjugate Gradient Package (PCG1) consists of three primary modules. They are:

Primary Modules

PCG1AL Allocates space for the PCG Package work arrays.

PCG1RP Reads control information needed by the PCG Package.

PCG1AP Performs one or more iterations of the preconditioned conjugate gradient method.

PCG1AL

Narrative for Module PCG1AL

Module PCG1AL allocates space in the X array for the PCG Package arrays. The five arrays DT, E2, F2, G2, and VV hold intermediate results during the solution process. Each of these arrays contains one element for each model cell.

Module PCG1AL performs its functions in the following order:

1. Print a message identifying the PCG Package.
2. Read and print MXITER, NPCOND, and ITYP.
3. Allocate the required space in the X array. The X-array location pointer (ISUM) is saved in variable ISOLD prior to allocation so that the space required for the PCG Package can be calculated in step 4.
4. Calculate and print the space used in the X array. The space used by the PCG Package is ISUM-ISOLD. The total allocated by all packages so far is ISUM-1.
5. Return.

Flow Chart for Module PCG1AL

Program Listing for Module PCG1AL
SUBROUTINE PCG1AL (ISUM,LENX,LCXXV,LCXXS,LCDT,LCE2,LCF2,LCG2, 1
1LCVV, LCE22, LCD2S, LCNU1, MXITER, NPCOND, ITYP, NCOL, NROW, NLAY, IN, IOUT, 2
2NOD) 3
C 4
C----VERSION 1002 19JAN1 987 PCG1AL 5
C 6
C 7
C ALLOCATE STORAGE IN THE X ARRAY FOR PCG ARRAYS 8
C \quad *** 9
C 10
SPECIFICATIONS: C 11
C 12
C 13
C 14
C1-_--PRINT A MESSAGE IDENTIFYING PCG PACKAGE 15
WRITE (IOUT,1) IN 16
1 FORMAT(1HO,'PCG1 -- PRECONDITIONED CONJUGATE GRADIENT SOLUTION PAC 17
1KAGE',', VERSION 1, 06/25/85'.' INPUT READ FROM UNIT',I3) 18
C 19
 20
READ (IN, 2) MXITER, NPCOND, ITYP 21
2 FORMAT(3I10) 22
WRITE(IOUT,3) MXITER,NPCOND, ITYP 23
3 FORMAT(1X,'MAXIMUM OF',I4,' ITERATIONS ALLOWED FOR CLOSURE'/ 24
1 1X,'PRECONDITIONING TYPE ',I2,' PROBLEM TYPE ',I2) 25
C 26
C3-_--ALLOCATE SPACE FOR THE PCG ARRAYS 27
ISOLD=ISUM 28
NRC=NROW*NCOL 29
NOD=NROW+NCOL 30
ISIZ $=$ NRC $*$ NLAY 31
LCXXV=ISUM 32
ISUM=ISUM+ISIZ*2 33
LCXXS $=$ ISUM 34
ISUM=ISUM+ISIZ 35
LCDT=ISUM 36
ISUM=ISUM+ISIZ 37
LCE2=ISUM 38
ISUM=ISUM+ISIZ 39
LCF2 $=$ ISUM 40
ISUM=ISUM+ISIZ 41
LCG2=ISUM 42
ISUM=ISUM+ISIZ 43
LCVV=ISUM 44
ISUM=ISUM+ISIZ 45
LCE22=ISUM 46
ISUM=ISUM+ISIZ 47
LCD2S=ISUM 48
ISUM $=$ ISUM + NOD 49
LCNU1=ISUM 50
ISUM $=$ ISUM +9 51
C 52
C4-_-_CALCULATE AND PRINT THE SPACE USED IN THE X ARRAY 53
ISP=ISUM-ISOLD 54
WRITE (IOUT,4) ISP 55
4 FORMAT(1X,I6,' ELEMENTS IN X ARRAY ARE USED BY PCG') 56
ISUM1 $=$ ISUM-1 57
WRITE(IOUT,5) ISUM1,LENX 58
5 FORMAT(1X,I6,' ELEMENTS OF X ARRAY USED OUT OF',I7) 59
IF(ISUM1.GT.LENX) WRITE(IOUT,6) 60
6 FORMAT(1X,' ***X ARRAY MUST BE DIMENSIONED LARGER***') 61
C 62
C5-_-_-RETURN 63
RETURN 64
END 65

List of Variables for Module PCG1AL

Variable	Range	Definition
IN	Package	Primary unit number from which input for this package will be read.
IOUT	Global	Primary unit number for all printed output. IOUT=6.
ISIZ	Module	Number of cells in the grid.
ISOLD	Package	Before this module allocates space, ISOLD is set equal to ISUM. After allocation, ISOLD is subtracted from ISUM to get ISP, the amount of space in the X array allocated by this module.
ISP	Module	Number of words in the X array allocated by this module.
ISUM	Global	Index number of the lowest element in the X array which has not yet been allocated. When space is allocated for an array, the size of the array is added to ISUM.
ISUM1	Module	ISUM-1.
ITYP	Package	Flag indicating the type of problem being solved.
LCXXV	Package	Location in the X array of the first element of array XXV.
LCxxs	Package	Location in the X array of the first element of array XXS.
LCDT	Package	Location in the X array of the first element of array DT.
LCE2	Package	Location in the X array of the first element of array E2.
LCF2	Package	Location in the X array of the first element of array F 2.
LCG2	Package	Location in the X array of the first element of array G2.
LCVV	Package	Location in the X array of the first element of array VV.
LCNU1	Package	Location in the X array of the first element of array NU1.
LENX	G1obal	Length of the X array in words. This should always be equal to the dimension of array X specified in the main program.
MXITER	Package	Maximum total number of iterations allowed.

NCOL	Global	Number of columns in the grid.
NLAY	Global	Number of layers in the grid.
NPCOND	Module	Has the values 1 to 5 correspondingto the 5 precondi- tioning types.
NRC	Module	Number of cells in a layer.
NROW	Global	Number of rows in the grid.

PCG1RP

Narrative for Module PCG1RP

Module PCG1RP reads data for the PCG Package: the head change criteria for convergence, HCLOSE, the residual error criteria for convergence, RESERR, and a flag IWRT indicating the amount of output desired regarding the numerical solution. If IWRT is chosen to be 2, then module PCG1RP also reads NU1 (1), NU1 (2), ..., NU1 (9). These quantities specify 3 locations at which the head is printed by module PCG1AP for each iteration. Module PCG1RP performs its functions in the following order:

1. Read the data.
2. Print the data read in step 1, except array NU1.
3. Return.

Flow Chart for Module PCG1RP

Program Listing for Module PCG1RP

SUBROUTINE PCG1RP(MXITER,HCLOSE,RESERR,NU1,IN,IOUT,IWRT) 1
C 2
C-----VERSION 1001 25JUN1985 PCG1RP 3
C 4
C 5
READ DATA FOR PCG 6
 7
C 8
C SPECIFICATIONS: 9
C 10
DIMENSION NU1 (9) 11
c 12
C 13
C1-_-_- READ HCLOSE, RESERR, IWRT 14
READ (IN, 1) HCLOSE, RESERR, IWRT 15
1 FORMAT(2F10.0.I10) 16
DO $2 I=1,9$ 17
2 NU 1 (I) $=0$ 18
IF(IWRT.GE.2) READ (IN,3) (NU1 (I), I=1,9) 19
3 FORMAT(9I4) 20
C 21
C2--~- PRINT DATA VALUES JUST READ 22
WRITE (IOUT,100) 23
100 FORMAT (1HO,///55X,'SOLUTION BY PRECONDITIONED CONGUGATE GRADIENT ' 24
1/55X, 45 (' $\mathbf{' l}^{\prime}$)) 25
WRITE(IOUT,115) MXITER 26
115 FORMAT (1HO,47X,'MAXIMUM ITERATIONS ALLOWED FOR CLOSURE =',I9) 27
WRITE(IOUT,125) HCLOSE 28
125 FORMAT(1H .52X,'HEAD CHANGE CRITERION FOR CLOSURE $=$ ',E15.5) 29
WRITE(IOUT, 120) RESERR 30
120 FORMAT (1H , 41X,'MAXIMUM ALLOWABLE RESIDUAL ERROR FOR CLOSURE =' 31
1E15.5) 32
1000 RETURN 33
END 34

List of Variables for Module PCG1RP
Variable Range Definition

HCLOSE Module Head change criteria for convergence.

IN Package Primary unit number from which input for this package will be read.

IOUT Global Primary unit number for all printed output. IOUT=6.

IWRT Package Flag indicating the amount of output desired.

MXITER Package Maximum total number of iterations allowed.
NU1 Package An array holding the location of three nodes for which head values are printed at each iteration, if IWRT=2.

RESERR Module Residual error criteria for convergence.

PCG1AP

Narrative for Module PCG1AP

Module PCG1AP performs one or more iterations of the preconditioned conjugate gradient (PCG) method. To save computation time, all arrays are declared one dimensional. The one-dimensional indexes are calculated from the layer, row, and column indexes normally used to access the arrays in three dimensions. Computation time is saved because calculations are not repeated for identical indexes as would be done by internal FORTRAN addressing routines if three-dimensional subscripts were used.

Module PCG1AP has several important steps. First there are several initialization steps. These are followed by several repeatable steps which are passed through once for each value of the iteration index v in equations (9) through (13).

The first initialization step is setting $X X, M H D, D D, B B, Z Z, X X S$, and $Y Q$ equal to HNEW, 1-IBOUND, -CR, -CC, -CV, -HCOF, and -RHS from the main program. Another initialization step is the calculation of arrays $F 2$ and G2. These arrays store useful values used when calculating the vector $\mathrm{K}^{-1} \mathrm{r}_{\mathrm{v}}$ in equations (9) and (12). These values are stored so that they do not have to be recalculated for each evaluation of $\mathrm{K}^{-1} \mathrm{r}_{\mathrm{v}}, \mathrm{v}=1,2, \ldots . \mathrm{F}^{2}$ and G 2 are calculated in the FORTRAN DO loops, "do through 51" for NUM4=NPCOND=1,2,3 and "do through 54" for NPCOND=4,5.

The first repeatable step, in the "do through 100" DO loop, is the calculation of $A p_{v}$, which is put into array $D T$, from p_{v}, which is in array E2. The quantity ($p_{v}, A p_{v}$) is also calculated and placed into variable SPP. These calculations occur in the "do through 3" DO loop.

Next, a_{v}, called variable A1 in the module, is calculated using the value just calculated for $\operatorname{SPP}=\left(p_{v}, A p_{v}\right)$ and a previously calculated value for $\operatorname{SRP}=\left(r_{\mathrm{v}}, \mathrm{K}^{-1} r_{\mathrm{v}}\right)$. At this point in the program, equation (9) has been completed and equations (10)-(13) still remain to be evaluated.

Now equations (10) and (11) are evaluated in the "do through 4" DO loop. New values for x and r, x_{v+1} and r_{v+1}, replace old values in the arrays $X X$ and VV respectively. Ap V_{v} from a previous step located in array DT is used, along with p_{v} from array E2, and a_{v} in variable A1. At this point, based on the latest results for x_{v+1} and residual error vector r_{v+1}, the program may exit the v iteration loop as shown in figure 3, and go to statement 201.

If no exit has occured, the program proceeds and calculates $K^{-1} r_{v+1}$ and places it into array $D T$, which for the time being is no longer needed to hold Ap v_{v}. At the same time ($r_{v+1}, K^{-1} r_{v+1}$) is calculated and placed into the variable SPR after putting the old value ($r_{\mathrm{v}}, \mathrm{K}^{-1} r_{\mathrm{v}}$) into variable SPRS. These calculations are done in the "do through 10 " and "do through 11" DO loops for NPCOND=1,2,3 , in the "do through 63" DO loop for NPCOND=4, and in the "do through 651" and "do through 652" DO loops for NPCOND=5.

In the next step, B_{v} in equation (12) is calculated as SPR/SPRS and placed in the variable B6.

In the final repeatable step, p_{v+1} of equation (13) is evaluated in the "do through 5" DO loop. Array DT containing $K^{-1} r_{v+1}$ from a previous step is used as is variable $B 6$ containing B_{v}, and array E2 containing p_{v}. At this point the end of the "do through 100" DO loop occurs, so the first repeatable step is again processed and the v iteration of equations (9) through (13) continues.

The ITER=1 iteration of the "do through 100" DO loop, with index ITER=1,I300, is essentially a null iteration in the program and only sets up initial values for x, r, and $p: x_{1}, r_{1}$, and p_{1}. The ITER=2 iteration corresponds to $\mathrm{v}=1$ in equations (9) through (13), ITER=3 corresponds to $\mathrm{v}=2$, and so on, so that ITER=v+1. Since $v=I T E R-1$, the upper limit, $v_{\text {max }}$, for the index v in equations (9) through (13) and (14) is I300-1.

For ITYP=0, ITER=v+1 has an upper 1imit 1300 of MXITER+1 (table 1). The index KITER in the main program, denoted by u in equation (14), does not iterate and has the value 1. Thus the finite difference equations are formulated only once per time step, and A and q in equation (7) are constant. This situation is appropriate for the solution of linear problems (LAYCON=0, river, drain, or evapotranspiration packages are not being used). It also gives the solution of equation (8) for non-linear problems as discussed previously. This latter situation will give a poor solution to the overall volumetric budget as calculated by the module BASIOT because this module (and others) assumes equation (7), not equation (8) is being solved. This poor budget result and other faulty flow rate values do not indicate that the solution obtained is in error. They arise because budget and flow rate calculations appropriate to equation (7) are being applied to equation (8).

For ITYP=1, I300 is set to MXITER+1. For ITYPZ2, I300 is set to ITYP. Thus for ITYP=2, only one iteration of equations (9) through (13) occurs and index v has the single value 1 in equations (9) through (13) and (14). For ITYP 21 , the index u in equation (14), also denoted by KITER in the main program and in the module PCG1AP, has values $1,2, \ldots$, um. The upper limit for $u=K I T E R, u m$, as set in the main program, is MXITER.

ITYPZ1 solutions are for non-1inear problems and solve equation (7), so that budget and flow quantities are calculated correctly. ITYP=1 is for nonlinear problems with weakly non-1inear conditions. ITYP=2 is for non-1inear problems with strongly non-linear conditions.

For each value of the time index m, iteration is terminated when equation (7), or (8) when used, is approximately satisfied according to some indication

Table 1.--ITYP control of v and u iterations.

ITYP	use	u values	$\underline{I} 300=v_{\text {max }}+1$	$v_{\text {max }}$
0	linear problems	1	MXITER+1	MXITER
	or equation (8).			
1	weakly nonlinear	1,um	MXITER+1	MXITER
2	strongly nonlinear	1, ..., um	ITYP $=2$	ITYP-1=1
3	strongly nonlinear	1,um	ITYP=3	ITYP-1=2
4	strongly nonlinear	1,....um	ITYP $=4$	ITYP-1=3
-	-........
-	-.....	-........
	decreasing nonlinearity			

of solution accuracy. Two basic criteria for iteration termination are used. Criteria one causes iteration to terminate when the change in head from one iteration to the next is small by some measure. Criteria two causes iteration to terminate when the residual error vector $r=q$-Ah becomes small. Note that neither criteria actually uses a measure of the true error of the approximate solution $\mathrm{h}_{\mathrm{sm}}{ }^{m}$ to equation (7), since the true solution h^{m} cannot be found. The second criteria for iteration termination, however, actually does consider the true value of the residual error vector $r=q-A h$ which is available.

For criteria 1, iteration termination with ITYP 21 , termination occurs when the maximum absolute component of the vector $d h_{1}=h_{u+1,1^{m}}{ }^{m} h_{u, 1}$ m is less than $E R R=H C L O S E$. When ITYP $=0$, for which $u=1$, termination occurs when the sum of the maximium absolute components of the vectors $\mathrm{dh}_{1}=\mathrm{h}_{1, v+1}{ }^{m}-\mathrm{h}_{1, v^{m}}$ and $\mathrm{dh}_{2}=\mathrm{h}_{1, \mathrm{v}^{m}}$ - $\mathrm{h}_{1, \mathrm{v}-1}{ }^{\mathrm{m}}$ is less than ERR=HCLOSE.

For criteria 2, iteration termination with ITYP ≥ 1, termination occurs when the maximum absolute component of the residual error vector $r=q\left(h_{u, 1}{ }^{m}\right)-A\left(h_{u, 1}\right)^{m} h_{u, 1} m$ is less than XX10=RESERR. For ITYP=0, $r=q-A h_{1, v}{ }^{m}$ is used.

SUBROUTINE PCG1AP (XX,MHD, DD, BB, ZZ, XXSP, YQ, XXV, XXS, DT, E2, F2, G2, VV, 1
1E22, D2S, NU1, NUM4, ITYP, KITER, ERR, XX10, ICNVG, MXITER, NCOL, NROW, NLAY, 2
2IOUT, IWRT, NODES, NOD, KSTP, KPER, MCNT, KSTPS, KPERS, IFLAG) 3
C 4
 5
C 6
C ** 7
IMPLICIT REAL*8 (A-H, O-Z) 8
REAL*4 DD(NODES), BB(NODES), ZZ(NODES), XXS(NODES), YQ(NODES), 9
1ERR, XX10, XXSP(NODES) 10
2, DT (NODES), VV (NODES), E2 (NODES), F2 (NODES), G2 (NODES) 11
3, E22 (NODES), D2S (NOD) 12
DIMENSION XX (NODES), MHD (NODES), NU1 (9), XXV (NODES) 13
IFLAG=0 14
ICNVG=0 15
IF ((KPER.NE.KPERS).OR. (KSTP.NE.KSTPS)) MCNT=0 16
KPERS=KPER 17
KSTPS=KSTP 18
NI10 $=$ NCOL 19
NJ10=NROW 20
NK10 $=$ NLAY 21
NI11 $=$ NI10 +1 22
NJ11=NJ10+1 23
NK11 $=$ NK10 +1 24
NIJ10 $=$ NI1 $0 * N J 10$ 25
N320=NIJ10*NK10 26
NW1 $=$ NU1 (1) + NI10* (NU1 (2) -1) +NIJ10* (NU1 (3) -1) 27
NW2 $=$ NU1 (4) +NI10* (NU1 (5) -1) +NIJ10* (NU1 (6) -1) 28
NW3 $=$ NU1 (7) + NI10* (NU1 (8) -1$)+$ NIJ10* (NU1 (9) -1) 29
IWR1+IWRT
IF ((IWR1.LT.2).OR. (KSTP*KITER.GT.1)) GO TO 901 31
WRITE (IOUT,5007) 32
WRITE(IOUT, 507 2) NU1 (1), NU1 (4), NU1 (7) 33
WRITE (IOUT,5073) NU1 (2), NU1 (5), NU1 (8) 34
WRITE (IOUT,5074) NU1 (3), NU1 (6), NU1 (9) 35
901 CONTINUE 36
DO 909 IJ=1,N320 37
$X X V(I J)=X X(I J)$ 38
$X X S(I J)=-X X S P(I J)$ 39
$\operatorname{MHD}(I J)=1-\mathrm{MHD}(I J)$ 40
$D D(I J)=-D D(I J)$ 41
$B B(I J)=-B B(I J)$ 42
$Z Z(I J)=-2 Z(I J)$ 43
$909 \mathrm{YQ}(I J)=-Y Q(I J)$ 44
DO 91 IJB=1,N320 45
$I J=N 320+1-I J B$ 46
IM1JK=IJ-1 47
IJM1K=IJ-NI10 48
IJKM1 $=I J-N I J 10$ 49
$\mathrm{DD}(\mathrm{IJ})=\mathrm{DD}$ (IM1JK) 50
$\mathrm{BB}(\mathrm{IJ})=\mathrm{BB}(\mathrm{IJM1K})$ 51
$Z Z(I J)=Z Z(I J K M 1)$ 52
91 CONTINUE 53
DO $92 \mathrm{~K}=1$, NK10 54
DO $92 \mathrm{~J}=1, \mathrm{NJ} 10$ 55
DO $92 \mathrm{I}=1, \mathrm{NI} 10$ 56
IJ=I+NI10*(J-1) +NIJ10*(K-1) 57
$I F(I . E Q .1) \quad D D(I J)=0$ 58
$I F(J . E Q .1) \quad B B(I J)=0$ 59
IF (K.EQ.1) $\mathrm{ZZ}(\mathrm{IJ})=0$ 60
92 CONTINUE 61
DO 1 IJ=1,N320 62
DT $(I J)=0$ 63
$E 2(I J)=0$ 64
$\mathrm{F} 2(\mathrm{IJ})=0$ 65
G2 $(I J)=0$ 66
$\mathrm{E} 22(\mathrm{IJ})=0$ 67
1 VV $(I J)=0$ 68
$\mathrm{NN}=\mathrm{NROW}+\mathrm{NCOL}$ 69
DO 2 IJ=1.NN 70
$2 \mathrm{D} 2 \mathrm{~S}(\mathrm{IJ})=0$ 71
DO $16 \mathrm{IJ}=1, \mathrm{~N} 320$ 72
E2(IJ) $=X X(I J)$ 73
IF (MHD(IJ).GE.1) GO TO 16 74
$V V(I J)=Y Q(I J)$ 75
16 CONTINUE 76
IF (NUM4.GE.4) GO TO 74 77
71 CONTINUE 78
$\mathrm{Y} 1=0$ 79
Z1 $=0$ 80
DO 51 IJ=1,N320 81
IF(.NOT. (MHD (IJ).GE.1)) GO TO 777 82
Y1=0 83
Z1=0 84
D2S $(N I 10+1)=0$ 85
DO $94 \mathrm{I}=1, \mathrm{NI} 10$ 86
$94 \quad \mathrm{D} 2 \mathrm{~S}(\mathrm{I})=\mathrm{D} 2 \mathrm{~S}(\mathrm{I}+1)$ 87
GO TO 51 88
777 CONTINUE 89
IM1 JK=IJ-1 90
IJM1K=IJ-NI10 91
IJKM1=IJ-NIJ10 92
IDM=1 93
IBM $=1$ 94
IZM=1 95
IF (IM1JK.LT.1) IDM=0 96
IF (IJM1K.LT.1) IBM=0 97
IF (IJKM1.LT.1) IZM=0 98
IP1JK=IJ +1 99
IJP1K=IJ +NI 10 100
IJKP1=IJ+NIJ10 101
IDP $=1$ 102
IBP=1 103
IZP=1 104
IF(IP1JK.GT.N320) IDP=0 105
IF (IJP1K.GT.N320) IBP=0 106
IF (IJKP1.GT.N320) IZP=0 107
$X=D D(I J)$ 108
$\mathrm{Y}=\mathrm{BB}(\mathrm{IJ})$ 109
Z=ZZ(IJ) 110
$E E I J=-(X+Y+Z+I D P * D D(I P 1 J K)+I B P * B B(I J P 1 K)+I Z P * Z Z(I J K P 1))+X X S(I J)$ 111
IF (MHD (IM1JK) *IDM. GE.1) $X=0$ 112
IF (MHD (IJM1K)*IBM.GE 1) $Y=0$ 113
IF (MHD (IJKM1) *IZM. GE.1) $\quad \mathrm{Z}=0$ 114
Y1Z1=0 115
$X P=X$ 116
$Y P=Y$ 117
F2X=F2(IM1JK)*IDM 118
F2Y=F2 (IJM1K) *IBM 119
F2Z=F2 (IJKM1) *IZM 120
IF (NUM4.EQ.1) GO TO 20 121
JP1=IJ-NI10 +1 122
KP1=IJ-NIJ $10+1$ 123
IJMMN =IJ $-($ NIJ $10-N I 10)$ 124
IJP1=1 125
IKP1=1 126
IMMN=1 127
IF(JP1.LT.1) IJP1=0 128
IF (KP1.LT.1) IKP1=0 129
IF (IJMMN.LT.1) IMMN=0 130
WY1=0 131
WZ1=0 132
IF (F2Y.NE.0.0) WY1=Y/F2Y 133
IF (F2Z.NE.0.0) WZ1=Z/F2Z 134
$\mathrm{XP}=\mathrm{X}-(\mathrm{WY1*Y1+WZ1*Z1)}$ 135
G2 (IJ) $=\mathrm{XP}$ 136
$Y P=Y-W Z 1 * D 2 S(1)$ 137
E22 (IJ) $=\mathrm{YP}$ 138
Y1 $=-W Y 1 * G 2(J P 1) * I J P 1$ 139
$\mathrm{Z} 1=-\mathrm{WZ} 1 * \mathrm{G} 2(\mathrm{KP} 1) * I K P 1$ 140
$Z B=-W Z 1 * E 22(I J M M N) * I M M N$ 141
D2S $($ NI $10+1)=$ ZB 142
DO $93 \mathrm{I}=1$,NI10 143
93 $\mathrm{D} 2 \mathrm{~S}(\mathrm{I})=\mathrm{D} 2 \mathrm{~S}(\mathrm{I}+1)$ 144
F21=F2(JP1)*IJP1 145
F22 $=\mathrm{F} 2$ (KP1) *IKP1 146
F23 $=$ F2 (IJMMN) *IMMN 147
P1=0 148
$\mathrm{P} 2=0$ 149
P3 $=0$ 150
IF(F21.NE.0.0) P1=Y1*Y1/F21 151
IF (F22.NE.0.0) $\mathrm{P} 2=\mathrm{Z} 1 * \mathrm{Z} 1 / \mathrm{F} 22$ 152
IF (F23.NE.0.0) $\quad \mathrm{P} 3=\mathrm{ZB} * \mathrm{ZB} / \mathrm{F} 23$ 153
$\mathrm{Y} 1 \mathrm{Z} 1=\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3$ 154
20 CONTINUE 155
$X F=0$ 156
$\mathrm{YF}=0$ 157
ZF=0 158
IF (F2X.NE.0.0) $\mathrm{XF}=\mathrm{XP} * \mathrm{XP} / \mathrm{F} 2 \mathrm{X}$ 159
IF (F2Y.NE.0.0) YF=YP*YP/F2Y 160
IF (F2Z.NE.0.0) $\mathrm{ZF}=\mathrm{Z} * \mathrm{Z} / \mathrm{F} 2 \mathrm{Z}$ 161
$\mathrm{F} 2(\mathrm{IJ})=\mathrm{EEIJ}-(\mathrm{XF}+\mathrm{YF}+\mathrm{ZF}+\mathrm{Y} 1 \mathrm{Z} 1)$ 162
CONTINUE 163
GO TO 80 164
74 CONTINUE 165
DO 54 IJ=1,N320 166
IF (MHD (IJ).GE.1) GO TO 54 167
IP1JK=IJ+1 168
IJP1K=IJ+NI10 169
IJKP1=IJ+NIJ10 170
IDP=1 171
IBP $=1$ 172
IZ $P=1$ 173
IF(IP1JK.GT.N320) IDP=0 174
IF (IJP1K.GT.N320) IBP=0 175
IF(IJKP1.GT.N320) IZP=0 176
$E E I J=(-(D D(I J)+B B(I J)+Z Z(I J)+I D P * D D(I P 1 J K)$ 177
$1+I B P * B B(I J P 1 K)+I Z P * Z Z(I J K P 1))+X X S(I J))$ 178
IF (NUM4.EQ.4) GO TO 539 179
$\mathrm{X}=\mathrm{DD}$ (IJ) 180
$\mathrm{F} 2 \mathrm{X}=\mathrm{F} 2(\mathrm{IJ}-1)$ 181
$\mathrm{XF}=0$ 182
IF (F2X.NE.0.0) $\mathrm{XF}=\mathrm{X} * \mathrm{X} / \mathrm{F} 2 \mathrm{X}$ 183
E2 (IJ) =EEIJ-XF 184
GO TO 54 185
539 E2(IJ)=EEIJ 186
54 CONTINUE 187
80 CONTINUE 188
SPR=1.D-50 189
ICNT=-1 190
ER5S $=1$. D40 191
I300=MXITER +1 192
IF (ITYP.GE.2) I300=ITYP 193
DO 100 ITER=1,I300 194
ICNT=ICNT+1 195
IF (ITER*KITER*KSTP*KPER.EQ.1) MCNT=0 196
IF (ITER.NE.1) MCNT=MCNT+1 197
SPP=0 198
DO $3 \mathrm{IJ}=1, \mathrm{~N} 320$ 199
IF (MHD (IJ).GE.1) GO TO 3 200
IP1JK=IJ +1 201
IJP1K=IJ+NI10 202
IJKP1=IJ+NIJ10 203
IDP=1 204
IBP=1 205
$I Z P=1$ 206
IF(IP1JK.GT.N320) IDP=0 207
IF (IJP1K.GT.N320) IBP=0 208
IF (IJKP1.GT.N320) IZP=0 209
IJM1K=IJ-NI10 210
IJKM1=IJ-NIJ10 211
DDIJ=DD (IJ) 212
DDIP1=DD (IP1JK) *IDP 213
$\mathrm{BBIJ}=\mathrm{BB}$ (IJ) 214
$B B I J P=B B(I J P 1 K) * I B P$ 215
ZZIJ=ZZ (IJ) 216
ZZIJK=ZZ (IJKP1) *IZP 217
E2IJ=E2 (IJ) 218
$D T I J=(-(D D I J+D D I P 1+B B I J+B B I J P+Z Z I J+Z Z I J K)+X X S(I J)) * E 2 I J$ 219
$1+D D I J * E 2(I J-1)+D D I P 1 * E 2$ (IP1JK) 220
$2+B B I J * E 2$ (IJM1K) + BBIJP*E2 (IJP1K) 221
$3+Z Z I J * E 2$ (IJKM1) + ZZIJK*E2 (IJKP1) 222
DT (IJ) =DTIJ 223
$S P P=S P P+E 2 I J * D T I J$ 224
3 CONTINUE 225
$\mathrm{A} 1=\mathrm{SPR} /(\mathrm{SPP}+1 . \mathrm{D}-50)$ 226
A2 $=\mathrm{A} 1$ 227
IF (ITER.GT.1) GO TO 35 228
A1=0 229
$\mathrm{A} 2=1$. 230
35 SRZ=0 231
SUMRZ=0 232
ER5=0 233
DO $4 \mathrm{~K}=1$, NK10 234
DO $4 \mathrm{~J}=1, \mathrm{NJ} 10$ 235
DO $4 \mathrm{I}=1$, NI10 236
$\mathrm{IJ}=\mathrm{I}+\mathrm{NI} 10 *(\mathrm{~J}-1)+\mathrm{NIJ} 10 *(\mathrm{~K}-1)$ 237
IF (MHD (IJ) . GE.1) GO TO 4 238
$\mathrm{DX}=\mathrm{A} 1 * E 2$ (IJ) 239
$I F(M H D(I J) . E Q .2) \quad D X=0$ 240
$X=X X(I J)+D X$ 241
$X X(I J)=X$ 242
$A D X=D A B S$ ($D X$) 243
IF (ADX.LT.ER5) GO TO 111 244
IMX=I 245
JMX=J 246
KMX=K 247
XXPMX=X 248
ER5=ADX 249
111 CONTINUE 250
$X=V V(I J)-A 2 * D T(I J)$ 251
SUMRZ $=$ SUMRZ $+X$ 252
DSR=DABS (X) 253
IF (DSR.GT.SRZ) SRZ=DSR 254
$\mathrm{VV}(\mathrm{IJ})=\mathrm{X}$ 255
4 CONTINUE 256
IF (ITER.EQ.1) SRZ1=SRZ 257
IF (ITER. EQ.1) SUMRZ1=SUMRZ 258
IF ((IWR1.GE.2).AND. (ITER.NE.1)) WRITE (IOUT,1000) MCNT, ICNT, IMX, 259
1JMX, KMX, XXPMX, ER5, SRZ, XX (NW1) , XX (NW2) , XX (NW3) 260
$\mathrm{X} 5=.5$ 261
IF (ITER.LE.2) X5=1.0 262
IF (((ER5+ER5S)*X5).LT.ERR) GO TO 201 263
IF (SRZ.LT.XX10) GO TO 201 264
IF (MCNT.EQ.MXITER) GO TO 202 265
ER5S=ER5 266
SPRS=SPR 267
SPR=0 268
GO TO $(81,81,81,83,85)$, NUM4 269
81 CONTINUE 270
DO $10 \mathrm{IJ}=1, \mathrm{~N} 320$ 271
IF (MHD (IJ).GE.1) GO TO 10 272
IJM1K=IJ-NI10 273
IJKM1 = IJ-NIJ10 274
$B 6=0$ 275
Z6 $=0$ 276
DDIJ=DD (IJ) 277
$B B I J=B B(I J)$ 278
IF (NUM4.EQ.1) GO TO 21 279
DDIJ=G2 (IJ) 280
$\mathrm{BBIJ}=\mathrm{E} 22(\mathrm{IJ})$ 281
$\mathrm{JP1}=\mathrm{IJ}-\mathrm{NI} 10+1$ 282
$\mathrm{KP} 1=\mathrm{IJ}-\mathrm{NIJ} 10+1$ 283
IJMMN =IJ- (NIJ10-NI10) 284
$B 6=0$ 285
Z6=0 286
F2J=F2 (IJM1K) 287
$\mathrm{F} 2 \mathrm{~K}=\mathrm{F} 2$ (IJKM1) 288
IF (F2J.NE.0.D0) B6=DT(JP1)*G2 (JP1)/E2J 289
IF (F2K.NE.0.DO) Z6=(DT (KP1) *G2 (KP1) +DT(IJMMN) *E22 (IJMMN)) /F2K 290
21 CONTINUE 291
$D T(I J)=(V V(I J)-D D I J * D T(I J-1)-B B I J *(D T(I J M 1 K)-B 6)$ 292
1-ZZ(IJ)*(DT(IJKM1)-Z6))/E2(IJ) 293
10 CONTINUE 294
DO 11 IJB=1,N320 295
$I J=N 320+1-I J B$ 296
IF (MHD (IJ).GE.1) GO TO 11 297
IPIJK=IJ +1 298
IJPIK=IJ+NI10 299
IJKP1=IJ $+N I J 10$ 300
IDP $=1$ 301
IBP $=1$ 302
IZ $\mathrm{P}=1$ 303
IF(IP1JK.GT.N320) IDP=0 304
IF (IJP1K.GT.N320) IBP=0 305
IF (IJKP1.GT.N320) IZP=0 306
$\mathrm{XAD}=0$ 307
DDD $=\mathrm{DD}$ (IP1JK) 308
$B B B=B B$ (IJP1K) 309
IF (NUM4.EQ.1) GO TO 22 310
JM1 $=\mathrm{IJ}+\mathrm{NI} 10-1$ 311
$K M 1=I J+N I J 10-1$ 312
$I J P M N=I J+(N J J 10-N I 10)$ 313
IJM1=1 314
IKM1 $=1$ 315
IPMN=1 316
IF(JM1.GT.N320) IJM1=0 317
IF (KM1.GT.N320) IKM1=0 318
IF (IJPMN.GT. N320) IPMN=0 319
IM1 JK=IJ-1 320
IJM1K=IJ-NI10 321
IDM=1 322
IBM=1 323
IF (IM1JK.LT.1) IDM=0 324
IF (IJM1K.LT.1) IBM=0 325
DDD=G2 (IP1JK) 326
$\mathrm{BBB}=\mathrm{E} 22$ (IJP1K) 327
$X A D 1=0$ 328
$X A D 2=0$ 329
F2I=F2 (IM1JK) *IDM 330
F2J=F2 (IJM1K) *IBM 331
IF (F2I.NE.O.DO) XAD1=-(E22 (JM1) *IJM1*DT (JM1) +ZZ (KM1) *IKM1* 332
1DT (KM1)) *G2 (IJ) /F2I 333
IF (F2J.NE.O.DO) XAD2=-ZZ (IJPMN)*IPMN*E22 (IJ) *DT(IJPMN)/F2J 334
$\mathrm{XAD}=\mathrm{XAD} 1+\mathrm{XAD} 2$ 335
22 CONTINUE 336
$D T I J=D T(I J)-(D D D * I D P * D T(I P 1 J K)+B B B * I B P * D T(I J P 1 K)+Z Z(I J K P 1)$ 337
1*IZP*DT (IJKP1) +XAD) /F2 (IJ) 338
DT (IJ) = DTIJ 339
SPR=SPR+DTIJ*VV (IJ) 340
11 CONTINUE 341
GO TO 90 342
83 CONTINUE 343
DO 63 IJ=1, N320 344
IF (MHD (IJ).GE.1) GO TO 63 345
F2IJ=F2 (IJ) 346
VVIJ $=V V$ (IJ) 347
DTIJ $=V V I J / F 2 I J$ 348
DT (IJ) $=$ DTIJ 349
SPR=SPR+DTIJ*VVIJ 350
63 CONTINUE 351
GO TO 90 352
85 CONTINUE 353
DO 651 IJ=1, N320 354
IF (MHD (IJ).GE.1) GO TO 651 355
$D T(I J)=(V V(I J)-D D(I J) * D T(I J-1)) / F 2(I J)$ 356
651 CONTINUE 357
DO $652 \mathrm{IJB}=1, \mathrm{~N} 320$ 358
$I J=N 320+1-I J B$ 359
IF (MHD (IJ).GE.1) GO TO 652 360
IP1JK=IJ +1 361
DTIJ $=D T(I J)-D D(I P 1 J K) * D T(I P 1 J K) / F 2(I J)$ 362
DT (IJ) =DTIJ 363
SPR=SPR+DTIJ*VV (IJ) 364
652 CONTINUE 365
90 CONTINUE 366
B6=SPR/SPRS 367
IF (ITER. EQ.1) B6=0 368
DO 5 IJ=1,N320 369
$E 2 I J=D T(I J)+B 6 * E 2(I J)$ 370
IF (MHD (IJ).GE.1) E2IJ=0 371
$E 2(I J)=E 2 I J$ 372
5 CONTINUE 373
100 CONTINUE 374
GO TO 202 375
201 IF (ITYP.EQ.0) ICNVG=1 376
202 CONTINUE 377
IF((MCNT.GE.MXITER).OR.(ITYP.EQ.0)) IFLAG=1 378
DXMAX=0 379
DO $19 \mathrm{IJ}=1, \mathrm{~N} 320$ 380
XXVIJ=XXV (IJ) 381
$D X=D A B S(X X(I J)-X X V I J)$ 382
IF (DX.GT.DXMAX) DXMAX=DX 383
IP1JK=IJ +1 384
IJP1K=IJ + NI10 385
IJKP1 $=\mathrm{IJ}+\mathrm{NIJ} 10$ 386
$D D(I J)=D D(I P 1 J K)$ 387
$\mathrm{BB}(\mathrm{IJ})=\mathrm{BB}(\mathrm{IJP1K})$ 388
$Z Z(I J)=Z Z(I J K P 1)$ 389
19 CONTINUE 390
IF ((ITYP.GE.1).AND. ((DXMAX.LE.ERR).OR. (SRZ1.LT.XX10))) ICNVG=1 391
DO $919 \mathrm{IJ}=1, \mathrm{~N} 320$ 392
$\operatorname{MHD}(I J)=1-\mathrm{MHD}(I J)$ 393
$D D(I J)=-D D(I J)$ 394
$\mathrm{BB}(I J)=-\mathrm{BB}(I J)$ 395
$Z Z(I J)=-Z Z(I J)$ 396
$919 Y Q(I J)=-Y Q(I J)$ 397
DO $991 \mathrm{IJ}=1, \mathrm{~N} 320$ 398
991 XXSP(IJ) $=-\mathrm{XXS}(I J)$ 399
IF ((ICNVG.EQ.0).AND. (IFLAG.NE.1)) GO TO 600 400
IF (KSTP.EQ.1) WRITE(IOUT.500) 401
S1=SRZ 402
S2=SUMRZ 403
IF (ITYP.EQ.0) GO TO 518 404
S1=SRZ1 405
S2=SUMRZ1 406
518 CONTINUE 407
WRITE (IOUT, 501) MCNT, KSTP, KPER 408
IF(IWRT.GE.1) WRITE(IOUT,5075) ER5,S1,S2 409
500 FORMAT (1HO) 410
501 FORMAT(1X,I5,' ITERATIONS FOR TIME STEP',I4,' IN STRESS PERIOD', 411
1I3) 412
1000 FORMAT(' ',2I3,3I4,6D18.7) 413
5007 FORMAT('0',56X,'WATCHING CONVERGENCE'//25X,'THE MAXIMUM CHANGE IN 414
1HEAD OCCURED AT COLUMN J. ROW I, LAYER K.' 415
2 /25X,'MAXIMUM RESIDU 416
3AL ERROR = THE MAXIMUM OVER ALL THE GRID ELEMENTS OF THE'/25X,'DI 417
4FFERENCE BEIWEEN THE WATER FLOW RATE INTO AND OUT OF EACH GRID ELE 418
5MENT.') 419
5074 FORMAT(7X,' J I K',5X, 'HEAD AT J, I, K', 5X, 'HEAD AT J, I, K', 13X 420
1, 'ERROR', $3\left(12 \mathrm{X},{ }^{\prime} \mathrm{K}=\mathrm{I}, \mathrm{I} 4\right)$) 421
5072 FORMAT (' $\mathrm{O}^{\prime}, 72 \mathrm{X}, 3\left(4 \mathrm{X},{ }^{\prime} \mathrm{HEAD}\right.$ AT J=', I4)) 422
5073 FORMAT(46X,'CHANGE IN',6X,'MAX RESIDUAL',3(12X,'I=',I4)) 423
5075 FORMAT (424
1'0'.'MAXIMUM CHANGE IN HEAD BETWEEN LAST 2 ITERATIONS =',D11.3/
425
2' MAXIMUM RESIDUAL ERROR (L**3/T) FOR GRID ELEMENTS NOT HAVING FIX 426
3ED HYDRAULIC HEAD $=$ '.D11.3.' TOTAL $=1, D 11.3$) 427
600 RETURN 428
END 429

List of Variables for Module PCG1AP
Variable Range Definition

A1	Module	a_{v} in equation (9).
B6	Module	B_{v} in equation (12).
BB	Module	-B in equation (2).
DD	Module	-D in equation (2).
DT	Module	Work space array used when calculating equations (9) through (13).
DXMAX	Module	dh_{1} for criteria 1 ITYP 21 iteration termination.
E2	Module	Vector p_{v} in equations (9) through (13).
ER5	Module	dh1 for criteria 1 ITYP=0 iteration termination. Called maximum absolute head change when printed out.
ER5S	Module	dh_{2} for criteria 1 ITYP=0 iteration termination.
ERR	Module	HCLOSE in module PCG1RP. The head change criteria for convergence.
F2	Module	Storage array used when calculating $K^{-1} r_{v}$ in equations (9) and (12).
G2	Module	Same as above.
1300	Module	Maximum value for iteration counter ITER. Equal to $v_{\text {max }}{ }^{+1}$ of figure 3.
ICNVG	Global	This flag is set to one when iteration has met the conditions for iteration termination.
IFLAG	Global	This flag is set to one when exit is desired from the u iteration loop in the main program, due either to MCNT \angle MXITER or $I T Y P=0$.

IOUT	Global	Primary unit number for all printed output. IOUT=6.
ITER	Module	Iteration counter for v in equations (9) through (13), ITER=v+1.
ITYP	Package	Flag indicating the type of problem being solved.
IWRT	Package	Flag indicating the amount of output desired.
KITER	Global	Iteration counter u in equation (14). Reset at the start of each time step.
KPER	Global	Stress period counter.
KPERS	Module	Stored value of KPER.
KSTP	Global	Time step counter. Reset at the start of each stress period.
KSTPS	Module	Stored value of KSTP.
MCNT	Module	Iteration number counter that counts the total number of iterations that are used as indices u and v increase in equations (9) through (13) and (14).
MHD	Module	An array to indicate when a node is active and if it has a fixed head. MHD is equal to 1 -IBOUND from the main program.
MXITER	Package	Maximum total number of iterations allowed.
NCOL	Global	Number of columns in the grid.
NLAY	Global	Number of layers in the grid.
NODES	Global	Number of cells (nodes) in the finite difference grid.
NROW	G1obal	Number of rows in the grid.
NU1	Package	An array holding the location of three nodes for which head values are printed at each iteration, if IWRT=2.
NUM4	Module	Called NPCOND in module PCG1AL. Has values of 1 to 5 for the 5 preconditioning types.
SRZ	Module	Maximum absolute component of the residual error vector r for ITYP=0 criteria 2 iteration termination. Called maximum absolute residual error when printed out.
SRZ1	Module	Maximum absolute component of the residual error vector r for ITYP 21 criteria 2 iteration termination. Called maximum absolute residual error when printed out.

SUMRZ	Module	Total residual error, ITYP=0.
SUMRZ1	Module	Total residual error, ITYP 21.
VV	Module	Error vector r_{v} in equations (9) through (13).
XX10	Module	Called RESERR in module PCG1RP. The residual error criteria for convergence.
XX	Module	Head vector h. Vector x_{v} in equations (9) through (13). HNEW in the main program.
XXS	Module	- HCOF in equation (1).
XXV	Module	Stored XX array. Used to get DXMAX.
YQ	Module	-RHS in equation (1).
Z2	Module	-Z in equation (2).

REFERENCES

Hageman, L. A., and Young, D. M., 1981, Applied Iterative Methods, New York, Academic Press, 386 p.

Kershaw, D. S., 1978, The incomplete Choleski-conjugate gradient method for the iterative solution of linear equations: Journal of Computational Physics, v. 26, p. 43-65.

Kuiper, L. K., 1981, A comparision of the incomplete Choleski-conjugate gradient method with the strongly implicit method as applied to the solution of two-dimensional groundwater flow equations: Water Resources Research, v. 17, no. 4, p. 1082.

Kuiper, L. K., 1987, A comparison of iterative methods as applied to the solution of the nonlinear three-dimensional groundwater flow equation: Society for Industrial and Applied Mathematics Journal on Scientific and Statistical Computing, v. 8, no. 4, p. 521-528.

McDonald, M. G., and Harbaugh, A. W., 1984, A modular three-dimensional finite difference ground-water flow model: U.S. Geological Survey Open-File Report 83-875, 528 p.

Van Der Vorst, H. A., 1982, A vectorizable variant of some ICCG methods: Society for Industrial and Applied Mathematics Journal on Scientific and Statistical Computing, v. 3, no. 3, p. 350-356.

