COMPUTER PROGRAM FOR SOLVING GROUND-WATER FLOW EQUATIONS BY THE PRECONDITIONED CONJUGATE GRADIENT METHOD

By Logan K. Kuiper

U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 87-4091

> Austin, Texas 1987

DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director

For more information write to:

Project Chief U.S. Geological Suvey Gulf Coast RASA N. Shore Plaza Bldg., Rm. 104 55 North Interregional Hwy. Austin, Texas 78702 Copies of this report can be purchased from:

U.S. Geologic1 Survey Books and Open-File Reports Federal Center, Bldg., 41 Box 25425 Denver, Colorado 80225 Telephone (303) 236-7476

CONTENTS

Abstract 1
Introduction 1
Preconditioned conjugate gradient package 2
Description and use 2
Input instructions 10
Sample input to preconditioned conjugate gradient package 12
Module documentation for the preconditioned conjugate gradient
package 13
PCG1AL 13
Narrative 13
Flow chart 14
Program listing 14
List of variables 16
PCG1RP 17
Narrative 17
Flow chart 17
Program 1isting 18
List of variables 18
PCG1AP 19
Narrative 19
Flow chart 22
Program 1isting 23
List of variables 31
References 34

ILLUSTRATIONS

Page

Figure 1	Correspondence between the finite-difference equations and the matrix equation for a grid	
	with three rows, two columns, and two layers	4
Figure 2	Structure of coefficient matrix showing nonzero diagonals	4
Figure 3.	Flowchart showing major elements of module PCG1AP and related parts of the main program of the modular model	8

TABLES

Page

	Table 1.	1. ITYP control of v and u iterations		21
--	----------	---------------------------------------	--	----

COMPUTER PROGRAM FOR SOLVING GROUND-WATER FLOW EQUATIONS

BY THE PRECONDITIONED CONJUGATE GRADIENT METHOD

By Logan K. Kuiper

ABSTRACT

This report documents a numerical code for use with the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model. The code uses the preconditioned conjugate gradient method for the solution of the finite difference approximating equations generated by the modular flow model. These equations are a system of simultaneous linear equations except when the river, drain, or evapotranspiration packages of the modular model are being used, in which case they are a system of simultaneous nonlinear equations. When these equations are linear, they are solved by the basic preconditioned conjugate gradient method as available in the literature. Five preconditioning types may be chosen: three different types of incomplete Choleski, point Jacobi, or block Jacobi. When the approximating equations are nonlinear, the solution method is that of Picard preconditioned conjugate gradient with the same preconditioning choices. Either a head change or residual error criteria may be used as an indicator of solution accuracy and iteration termination.

The use of the computer program that performs the calculations in the numerical code is emphasized. Detailed instructions are given for using the computer program, including data entry formats and the method of linking the program into the modular model. A sample data listing and listing of the Fortran program are included.

INTRODUCTION

This report documents a numerical code for use with the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model (McDonald and Harbaugh, 1984). The code uses the preconditioned conjugate gradient method for the solution of the finite difference approximating equations generated by the modular flow model. These equations are a system of simultaneous linear equations except when the river, drain, or evaporation packages of the modular model are being used, in which case they are a system of simultaneous nonlinear equations. When these equations are linear, they are solved by the basic preconditioned conjugate gradient method as available in the literature. Five preconditioning types may be chosen: three different types of incomplete Choleski, point Jacobi, or block Jacobi. When the approximating equations are nonlinear the solution method is that of Picard preconditioned conjugate gradient with the same preconditioning choices. Either a head change or residual error criteria may be used as an indicator of solution accuracy and iteration termination.

The preconditioned conjugate gradient (PCG) method as presented is sometimes faster than the strongly implicit procedure (SIP) and slice-succesive overrelaxation (SOR) available in the modular model (Kuiper, 1981, 1987). It is frequently faster on problems having a wide variation in the conductances between model nodes, or on problems having a complex geometry such as pinched out layers. The PCG method presented has the advantage of not requiring any convergence parameters. The user has the option of using residual error as a criteria for iteration termination. This option assures that the flow rate into each cell is equal to the flow rate out of the same cell, to within a small amount selected by the user.

PRECONDITIONED CONJUGATE GRADIENT PACKAGE

Description and Use

The preconditioned conjugate gradient (PCG) method to be presented here is an iterative method for solving a system of simultaneous linear or nonlinear equations.

Finite difference discretization of the ground-water flow equation gives a set of finite difference approximating equations (McDonald and Harbaugh, 1984), the solution of which gives an approximate solution to the ground-water flow equation. For a cell location i,j,k the finite-difference equation (McDonald and Harbaugh, 1984, p. 30, equation 27) is:

$$CV_{i,j,k-\chi^{h}i,j,k-1} + CC_{i-\chi,j,k^{h}i-1,j,k} + CR_{i,j-\chi,k^{h}i,j-1,k}$$

+
$$(-CV_{i,j,k}-\frac{1}{2} - CC_{i-\frac{1}{2},j,k} - CR_{i,j-\frac{1}{2},k}$$

$$-CR_{i,j+k,k} - CC_{i+k,j,k} - CV_{i,j,k+k} + HCOF_{i,j,k}h_{i,j,k}$$

 $+CR_{i,j+2,k}h_{i,j+1,k} + CC_{i+2,j,k}h_{i+1,j,k}$

+
$$CV_{i,j,k+\lambda}h_{i,j,k+1} = RHS_{i,j,k}$$
 (1)

where $CV_{i,j,k-1}$ is the conductance (McDonald and Harbaugh, 1984, p. 16) between nodes i,j,k and i,j,k-1, $CV_{i,j,k+1}$ is the conductance between nodes i,j,k and i,j,k+1, and corresponding definitions apply to the CC and CR terms. The hydraulic head at node i,j,k is $h_{i,j,k}$, the hydraulic head at node i,j,k-1 is denoted by $h_{i,j,k-1}$, and so on. Conductance is defined (McDonald and Harbaugh, 1984, p. 16) as that quantity associated with a particular node face which, when multiplied by the difference between the heads of those two nodes lying on either side, gives the flow across the node face. An equation like (1) is written for each cell in the finite-difference grid. This grid fills the volume within which the solution to the ground-water flow equation is to be approximated. Equation (1) expresses the relation among the heads h at node i,j,k and at each of the six adjacent nodes at the end of a time step. Note that head at any node appears in the equation for that node and also in the equation for adjoining nodes. Thus, the equations are coupled and must be solved simultaneously. It is convenient to write equation (1) as

$$Z_{i,j,k}h_{i,j,k-1} + B_{i,j,k}h_{i-1,j,k} + D_{i,j,k}h_{i,j-1,k} + E_{i,j,k}h_{i,j,k}$$

$$+ F_{i,j,k}h_{i,j+1,k} + H_{i,j,k}h_{i+1,j,k} + S_{i,j,k}h_{i,j,k+1} = Q_{i,j,k}$$
(2)

(McDonald and Harbaugh, 1984, p. 370, equation 80), which in matrix form becomes

$$Ah = q . (3)$$

A is a square matrix and h and q are vectors. The components of the vector h are the hydraulic heads $h_{i,j,k}$. The components of the vector q are the "source" terms $Q_{i,j,k}$ of equation (2). Figure 1 shows the elements of the matrix A and the vectors h and q. Notice that nonzero elements in A appear only on seven diagonals (fig. 2). Because the number of nonzero elements in A is small compared to the total number of elements, the matrix is said to be sparse.

The coefficients in equation (2) all have the index i,j,k to show that they belong to the equation for node i,j,k. Furthermore, the Z coefficient for the equation at node i,j,k $(Z_{i,j,k})$, is equal to $CV_{i,j,k-2}$, which is the same as the S coefficient for the equation at node i,j,k-1 $(S_{i,j,k-1})$, so that (Mcdonald and Harbaugh, 1984, p. 371)

$$Z_{i,j,k} = S_{i,j,k-1}$$
 (4)

Similiarly,

$$B_{i,j,k} = H_{i-1,j,k}$$
(5)

and

$$D_{i,j,k} = F_{i,j-1,k}$$
 (6)

Thus, the matrix A is symmetric. Because $E_{i,j,k}$ is equal to sum of $-Z_{i,j,k}$, $-B_{i,j,k}$, $-D_{i,j,k}$, $-F_{i,j,k}$, $-H_{i,j,k}$, $-S_{i,j,k}$, and $HCOF_{i,j,k}$, the negative of the matrix A is positive definite.

	L	-											
σ	÷	d 2	ð	4	a ₅	9 ₆	٩ı	d ₈	d ₉	q ₁₀	a 11	912	Modified from MacDonald and Harbaugh, 1984
	┝					11						1	qugh
£	Ē	h2	h ₃	h4	h5	h ₆	h ₇	8 ₄	å	h10	ĥ	р ₁₂	1 Harb
						×							ang
	0	0	0	0	0	s	0	0	0	H10	Ţ	⊒ E	onald
	0	0	0	0	S5	0	0	0	ъ	0	Ē	D12	MacD
	0	0	0	S4	0	0	o	щ	° L	E ₁₀	0	B ₁₂	from
	0	0	ŝ	0	0	0	H7	0		010	B11	0	dified
	0	s2	0	0	0	0	F,	в Ш	0	B ₁₀	0	0	Mo
•	s,	0	0	0	0	0	E,	08	в ₉	0	0	0	
	0	0	0	Ŧ	°,	е 9	0	0	0	0	0	Z12	
	0	0	ч	0	E,	De	0	0	0	0	Z11	0	
	0	ч,	ъ.	ц Т	0	B6	0	0	0	Z ₁₀	0	0	
	ŗ	0	ш	0	B 5	0	0	0	Z9	0	0	0	
	ŗ	E 2	0	a,	0	0	0	Z ₈	0	0	0	0	
	_ سُ	°	ß	0	0	0	Ζ7	0	0	0	0	۰,	

.

Figure 1.--Correspondence between the finite-difference equations and the matrix equation for a grid of three rows, two columns, and two layers.

Figure 2.---Structure of coefficient matrix showing nonzero diagonals.

Equation (3) could be written as

$$A(h^{m},m)h^{m} = q(h^{m},m) , \qquad (7)$$

where vector h^m is vector h at time t_m . The parenthesis indicate that the elements of the matrix A and vector q may depend on the vector h^m . An example of when the elements of matrix A depend on head is the case of a water-table aquifer. In this case, the conductance between two adjacent nodes in an aquifer depends on the saturated thickness of the aquifer in the vicinity of the nodes and, thus, on the head in the vicinity of the nodes. Therefore, the conductances CR, CC, and CV, which appear in the off-center diagonals of the matrix A are head dependent. When matrix A and vector q are h^m dependent, equation (7) is said to be nonlinear and is more difficult to solve for h^m than the linear case for which the elements of matrix A and vector q are constants.

An alternative to solving equation (7), which is done by SIP and SOR in the modular model, is to solve

$$A(h^{m-1}, m-1)h^{m} = q(h^{m-1}, m-1) .$$
(8)

In this case, the system is linear and easily solved, but the solutions h^m , m=0,1,2,... may tend to be unstable. Use of equation (8) corresponds, for the water-table aquifer situation, to using the conductance between two adjacent nodes corresponding to the head h^{m-1} at time t_{m-1} , when calculating the change in head between times t_m and t_{m-1} , or in other words when calculating h^m . The PCG package allows the use of equation (7) or (8) but because of the instability mentioned, the use of equation (8) usually is not recommended except, perhaps, when equation (7) is too difficult to solve. When the problem being solved is linear, matrix A and vector q are constant, and equations (7) and (8) are identical.

The PCG method presented here is ideal for solving a sparse symmetric positive definite system of simultaneous linear equations. It also can be used for solving a sparse symmetric positive definite system of simultaneous nonlinear equations, such as (7), but with perhaps somewhat decreased efficiency. An important part of the PCG method presented here is the basic PCG method for sparse symmetric positive definite linear systems, as taken from the literature (Van Der Vorst, 1982):

$$\mathbf{a}_{\mathbf{v}} = \frac{(\mathbf{r}^{\mathbf{v}}, \mathbf{K}^{-1} \mathbf{r}^{\mathbf{v}})}{(\mathbf{p}_{\mathbf{v}}, \mathbf{A} \mathbf{p}_{\mathbf{v}})}, \qquad (9)$$

$$\mathbf{x}_{\mathbf{v}+1} = \mathbf{x}_{\mathbf{v}} + \mathbf{a}_{\mathbf{v}}\mathbf{p}_{\mathbf{v}} \quad . \tag{10}$$

$$\mathbf{r}_{\mathbf{v}+1} = \mathbf{r}_{\mathbf{v}} - \mathbf{a}_{\mathbf{v}} \mathbf{A} \mathbf{p}_{\mathbf{v}} , \qquad (11)$$

$$B_{v} = \frac{(r^{v+1}, K^{-1}r^{v+1})}{(r_{v}, K^{-1}r_{v})}, \text{ and}$$
(12)

$$p_{v+1} = K^{-1}r_{v+1} + B_v p_v , \qquad (13)$$

where

$$(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{y}_{i}$$

is the inner product of the vectors x and y. Iteration of equations (9) through (13) using v=1,2,..., and using $r_1=b-Ax_1$, $p_1=K^{-1}r_1$, and some initial choice x_1 for the solution vector gives an approximate solution to the matrix equation Ax=b, where A is a N by N symmetric positive definite matrix. The residual error vector is r=b-Ax. Matrix K is called a preconditioning or splitting matrix. It is chosen to be as nearly equal to A as possible but readily invertible. The PCG package allows for five choices of the preconditioning matrix. The first three choices for matrix K (corresponding to NPCOND=1,2,and 3) are three different types of incomplete Choleski factorization (Kershaw, 1978), where the first two differ only in the manner of treating inactive nodes. The fourth choice (NPCOND=4) is point Jacobi (Hageman and Young, 1981) for which matrix K is simply the diagonal of the matrix A. The fifth choice (NPCOND=5) is block Jacobi for which matrix K is the diagonal and the two off-center diagonals adjacent to the center diagonal of A.

The basic PCG method in equations (9) through (13) is part of the PCG method presented here. The solution of equation (7), h^m , is the head, h, at time t_m . The PCG method presented here finds an approximation to h^m iteratively. Let these successive approximations to h^m be denoted by h_s^m , s=1,2,...,sm. Let h_{sm}^m denote that iteration taken to be a satisfactory approximate solution to h^m . The first estimate for h^{m+1} , h_1^{m+1} , is taken to be h_{sm}^m . To explain the way successive iterations h_s^m are chosen, it is necessary to break the index s into two indices, u and v, where index v changes fastest. The indices u and v go from 1 to um, and from 1 to vm(u) respectively. The procedure for finding the approximate solution h_{sm}^m , to h^m is:

Approximately solve

 $A(h_{u,1}^{m},m)h_{u}^{m} = q(h_{u,1}^{m},m)$, for u=1,2,...,um, (14)

where the succesive approximations to h_u^m are denoted $h_{u,v}^m$, v=1,2,...,vm(u). Figue 3 is a flowchart showing how the main program of the modular model and module PCG1AP interact to do the u and v iterations of equation (14). The flowchart shows only the major elements of module PCG1AP and only those elements of the main program relating to its connection with module PCG1AP. The iterations in v occur each time the module PCG1AP is called. Values of u are a counter of the number of times the module PCG1AP is called by the main program. The value for $h_{u,1}^m$ is $h_{u-1,vm(u-1)}^m$. Note that equation (14) is linear with respect to solving for h_u^m . The iterations in v are those of the basic PCG method as given by equations (9) through (13). The PCG method as given by (14) for the solution of (7) would be called Picard-PCG using the naming procedure of the mathematical literature on the solution of nonlinear systems (Kuiper, 1987).

In the main program in figure 3, MXITER is the chosen maximum allowable value for u, and also for MCNT, the total number of iterations used in the search for the approximate solution to h^m . The maximum allowable number for v is v_{max} . ICNVG is the variable indicating whether a suitably accurate solution to h^m has been obtained. IFLAG is the variable that indicates whether an exit from the u iteration loop in the main program is desired upon return to the main program. IFLAG causes an exit at the first return when the linear case is being solved or equation (8) is being used, or in the nonlinear case when MCNT_MXITER.

In module PCG1AP in figure 3, note that when a sufficiently small value is chosen for v_{max} , that the v loop may not be exited but v instead reaches its maximum value v_{max} , corresponding to a situation in which for a given u(um, equation (14) is not solved accurately enough to cause a v-loop exit. This situation may be understood by considering the way that the use of equation (14) implements the solution of a problem with a declining head in a watertable aquifer for some given time step m. Values of u correspond to evaluations of the conductances between nodes as determined by using heads $h_{u,1}^{m}$. For these evaluations at u of the conductances, the head decrease is determined using iterations in v. Having obtained $h_{u,vm(u)}^{m}$ where vm(u) may be equal to v_{max} , new values of the decreased conductance are determined using the just acquired decreased heads $h_{u,vm(u)}^{m}$. Then the head decline is

Figure 3.--(Concluded)

redetermined corresponding to these new decreased values for the conductances. The process continues in this manner. Therefore, one need not necessarily solve for head declines accurately for a given u(um because the conductances corresponding to this value for u are too large anyway. Two approaches are thus allowed: for a given evaluation of the conductances corresponding to $h_{u,1}^{m}$, either solve for the head accurately enough to meet some accuracy criteria, or just stop the iteration in v at some v_{max} . In many cases, problems which are nearly linear are solved with a smaller total number of iterations by choosing a large value for v_{max} resulting in the program exiting the v loop. On the other hand, extremely nonlinear problems are solved more readily by choosing v_{max} to be small.

In module PCG1AP, the choice of v_{max} is controlled by the users choice of the variable ITYP. For a choice of ITYP=0, equation (8), or in the linear case the equivalent equation (7), is solved. For choices of ITYP>1, equation (7) is solved by means of equation (14), corresponding to the nonlinear case, using v_{max} =MXITER when ITYP=1, and v_{max} =ITYP-1 when ITYP>2.

Input Instructions

The Preconditioned Conjugate Gradient (POG) Package reads values from the unit specified in IUNIT(13) in the Basic (BAS) Package of the modular model.

For each simulation:

PCG1AL

1.	Data:	MXITER	NPCOND	ITYP
	Format:	I10	I10	I10

PCG1AL

2.	Data:	HCLOSE	RESERR	IWRT
	Format:	F10.0	F10.0	I10

Read only if IWRT=2:

3. Data: NU1(I), I=1,9 Format: (914)

Explanation of Fields Used in Input Instructions

MXITER---

is the maximum total number iterations allowed in an attempt to solve the system of finite difference equations. One hundred iterations should be sufficient for most (ITYP=0) problems.

NPCOND--

has the values 1 to 5 corresponding to the five preconditioning types which may be chosen. The first three are incomplete Choleski, the fourth is point Jacobi, and the fifth is block Jacobi. NPCOND equal 1 or 3 are common choices. On rare occasions NPCOND equal 4 or 5 could be faster than 1 or 3. NPCOND equal 2 is at present identical to NPCOND equal 1, but may be changed at a later time. The advised procedure is to use either NPCOND equal 1 or 3, or use both and compare computation times if the model is going to be run many times and computation time is important. NPCOND equal 1 is usually a bit slower than NPCOND equal 3, but it is also more stable. For those who do not wish to experiment with NPCOND, the best choice is 1.

ITYP---

is a flag indicating the type of problem solved:

- 0 linear problems: LAYCON=0; river, drain, or evaporation packages are not being used. Also for nonlinear problems to be solved with equation (8). Such equation (8) solutions for nonlinear problems may be inaccurate and are therefore not recommended unless a solution cannot be obtained using ITYP≥1 or SIP. For equation (8) solutions, the usual budget and flowchart calculations printed by the modular model may be innacurate, and cannot be used as a measure of solution accuracy. See page 20 For more detail.
- 1 nonlinear problems with weakly nonlinear conditions.
- 2 nonlinear problems with strongly nonlinear conditions. If you do not know how nonlinear the problem is, use ITYP equal 1 and 2 and compare results. See table 1 on page 21 for more detail.

HCLOSE--

is the head change criteria for convergence. When the maximum absolute head change for all nodes from the last iteration(s) is less than HCLOSE, iteration is terminated.

RESERR--

is the residual error criteria for convergence. Residual error is the flow rate into a variable head cell minus the flow rate out of the cell. When the maximum, over all the variable head cells in the modeled region, of the absolute values of the residual errors for each of the variable head cells is less than RESERR, iteration is terminated.

Both HCLOSE and RESERR may be used concurrently in which case both have nonzero values. Set HCLOSE=0 if you want to use only RESERR, and vise-versa.

IWRT--

is a flag indicating the amount of output produced regarding the numerical solution of the finite difference equations.

- 0 no output is produced other than that normally provided by the modular model program.
- 1 the maximum absolute head change (ER5) from the last iteration, the maximum absolute residual error (SRZ or SRZ1) for variable head cells, and the total residual error for the entire model obtained by summing the residual errors for all of the variable head cells, are produced for each time step.
- 2 includes the output produced in option 1 plus an output for watching convergence which shows the numerical solution process at each time step, including the head at 3 locations specified by NU1.

NU1---

specifies the 3 locations:

1 --- J=NU1(1), I=NU1(2), K=NU1(3) 2 --- J=NU1(4), I=NU1(5), K=NU1(6)

3 --- J=NU1(7), I=NU1(8), K=NU1(9)

at which head is printed for each time step when IWRT=2. NU1 is not read when IWRT equal to 0 or 1.

Sample Input to PCG Package

Data item	Explanation	Inp	ut R	lecor	ds					
1	MXITER, NPCOND, ITYP		50)		1		1	L	
2	HCLOSE, RESERR, IWRT		•1			10		2	2	
3	NU1	3	3	4	5	7	4	5	7	5

Module Documentation for the Preconditioned Conjugate Gradient Package

The Preconditioned Conjugate Gradient Package (PCG1) consists of three primary modules. They are:

Primary Modules

- PCG1AL Allocates space for the PCG Package work arrays.
- PCG1RP Reads control information needed by the PCG Package.
- PCG1AP Performs one or more iterations of the preconditioned conjugate gradient method.

PCG1AL

Narrative for Module PCG1AL

Module PCG1AL allocates space in the X array for the PCG Package arrays. The five arrays DT, E2, F2, G2, and VV hold intermediate results during the solution process. Each of these arrays contains one element for each model cell.

Module PCG1AL performs its functions in the following order:

- 1. Print a message identifying the PCG Package.
- 2. Read and print MXITER, NPCOND, and ITYP.
- 3. Allocate the required space in the X array. The X-array location pointer (ISUM) is saved in variable ISOLD prior to allocation so that the space required for the PCG Package can be calculated in step 4.
- 4. Calculate and print the space used in the X array. The space used by the PCG Package is ISUM-ISOLD. The total allocated by all packages so far is ISUM-1.
- 5. Return.

Program Listing for Module PCG1AL

SUBROUTINE PCG1AL(ISUM,LENX,LCXXV,LCXXS,LCDT,LCE2,LCF2,LCG2, 1 1LCVV, LCE22, LCD2S, LCNU1, MXITER, NPCOND, ITYP, NCOL, NROW, NLAY, IN, IOUT, 2 2NOD) 3 С 4 C----VERSION 1002 19JAN1987 PCG1AL 5 С 6 С 7 С ALLOCATE STORAGE IN THE X ARRAY FOR PCG ARRAYS 8 С 9 С 10 С SPECIFICATIONS: 11 С 12 С 13 С 14 C1----PRINT A MESSAGE IDENTIFYING PCG PACKAGE 15 WRITE(IOUT,1)IN 16 1 FORMAT(1H0, 'PCG1 -- PRECONDITIONED CONJUGATE GRADIENT SOLUTION PAC 17 1KAGE', ', VERSION 1, 06/25/85', ' INPUT READ FROM UNIT', I3) 18

C	19
C2READ AND PRINT MXITER, NPCOND, AND ITYP	20
READ(IN,2) MXITER, NPCOND, ITYP	21
2 FORMAT(3110)	22
WRITE(IOUT,3) MXITER,NPCOND,ITYP	23
3 FORMAT(1X, MAXIMUM OF', I4, ' ITERATIONS ALLOWED FOR CLOSURE'/	24
1 1X, 'PRECONDITIONING TYPE ', 12, ' PROBLEM TYPE ', 12)	25
	26
C	
C3ALLOCATE SPACE FOR THE PCG ARRAYS	27
ISOLD=ISUM	28
NRC=NROW*NCOL	29
NOD=NROW+NCOL	30
	31
ISIZ=NRC*NLAY	
LCXXV=ISUM	32
ISUM=ISUM+ISIZ*2	33
LCXXS=ISUM	34
ISUM=ISUM+ISIZ	35
LCDT=ISUM	36
ISUM=ISUM+ISIZ	37
LCE2=ISUM	38
ISUM=ISUM+ISIZ	39
LCF2=ISUM	40
ISUM=ISUM+ISIZ	41
LCG2=ISUM	42
ISUM=ISUM+ISIZ	43
LCVV=ISUM	44
ISUM=ISUM+ISIZ	45
LCE22=ISUM	46
ISUM=ISUM+ISIZ	47
LCD2S=ISUM	48
	49
ISUM=ISUM+NOD	
LCNU1=ISUM	50
ISUM=ISUM+9	51
C	52
C4CALCULATE AND PRINT THE SPACE USED IN THE X ARRAY	53
ISP=ISUM-ISOLD	54
WRITE(IOUT,4) ISP	55
4 FORMAT(1X,16,' ELEMENTS IN X ARRAY ARE USED BY PCG')	56
ISUM1=ISUM-1	57
WRITE(IOUT,5) ISUM1,LENX	58
5 FORMAT(1X,16,' ELEMENTS OF X ARRAY USED OUT OF',17)	59
IF(ISUM1.GT.LENX) WRITE(IOUT,6)	60
6 FORMAT(1X,' ***X ARRAY MUST BE DIMENSIONED LARGER***')	61
C	62
C5RETURN	63
RETURN	64
END	65

List of Variables for Module PCG1AL

Variable	Range	Definition
IN	Package	Primary unit number from which input for this package will be read.
IOUT	Global	Primary unit number for all printed output. IOUT=6.
ISIZ	Module	Number of cells in the grid.
ISOLD	Package	Before this module allocates space, ISOLD is set equal to ISUM. After allocation, ISOLD is subtracted from ISUM to get ISP, the amount of space in the X array allocated by this module.
ISP	Module	Number of words in the X array allocated by this module.
ISUM	Global	Index number of the lowest element in the X array which has not yet been allocated. When space is allocated for an array, the size of the array is added to ISUM.
ISUM1	Module	ISUM-1.
ITYP	Package	Flag indicating the type of problem being solved.
LCXXV	Package	Location in the X array of the first element of array XXV.
LCXXS	Package	Location in the X array of the first element of array XXS.
LCDT	Package	Location in the X array of the first element of array DT.
LCE2	Package	Location in the X array of the first element of array E2.
LCF2	Package	Location in the X array of the first element of array F2.
LCG2	Package	Location in the X array of the first element of array G2.
LCVV	Package	Location in the X array of the first element of array VV.
LCNU1	Package	Location in the X array of the first element of array NU1.
LENX	Global	Length of the X array in words. This should always be equal to the dimension of array X specified in the main program.
MXITER	Package	Maximum total number of iterations allowed.

NCOL	Global	Number of columns in the grid.
NLAY	Global	Number of layers in the grid.
NPCOND	Module	Has the values 1 to 5 correspondingto the 5 precondi- tioning types.
NRC	Module	Number of cells in a layer.
NROW	Global	Number of rows in the grid.

PCG1RP

Narrative for Module PCG1RP

Module PCG1RP reads data for the PCG Package: the head change criteria for convergence, HCLOSE, the residual error criteria for convergence, RESERR, and a flag IWRT indicating the amount of output desired regarding the numerical solution. If IWRT is chosen to be 2, then module PCG1RP also reads NU1(1),NU1(2),...,NU1(9). These quantities specify 3 locations at which the head is printed by module PCG1AP for each iteration. Module PCG1RP performs its functions in the following order:

- 1. Read the data.
- 2. Print the data read in step 1, except array NU1.
- 3. Return.

Flow Chart for Module PCG1RP

Program Listing for Module PCG1RP

	SUBROUTINE PCG1RP(MXITER, HCLOSE, RESERR, NU1, IN, IOUT, IWRT)	1
C		2
	VERSION 1001 25JUN1985 PCG1RP	3
с с	*******	4
c	READ DATA FOR PCG	6
č	********	7
c		. 8
C	SPECIFICATIONS:	9
С		10
	DIMENSION NU1(9)	11
C		12
C		13
C1	READ HCLOSE, RESERR, IWRT	14
	READ(IN,1) HCLOSE, RESERR, IWRT	15
1	FORMAT(2F10.0, I10)	16
-	DO 2 I=1,9	17
2	2 NU1(I)=0	18
_	IF(IWRT.GE.2) READ(IN,3) (NU1(I), I=1,9)	19
	FORMAT(914)	20
C		21
C2	PRINT DATA VALUES JUST READ	22
	WRITE(IOUT, 100)	23
100	FORMAT(1H0,///55X,'SOLUTION BY PRECONDITIONED CONGUGATE GRADIENT '	24
	1/55x,45('-'))	25
	WRITE(IOUT,115) MXITER	26
115	FORMAT(1H0,47X, 'MAXIMUM ITERATIONS ALLOWED FOR CLOSURE =',19)	27
	WRITE(IOUT,125) HCLOSE	28
125	FORMAT(1H,52X, 'HEAD CHANGE CRITERION FOR CLOSURE =',E15.5)	29
	WRITE(IOUT,120) RESERR	30
	FORMAT(1H,41X,'MAXIMUM ALLOWABLE RESIDUAL ERROR FOR CLOSURE =',	31
	1E15.5)	32
1000	RETURN	33
	END	34

List of Variables for Module PCG1RP

Variable	Range	Definition
HCLOSE	Module	Head change criteria for convergence.
IN	Package	Primary unit number from which input for this package will be read.
IOUT	Global	Primary unit number for all printed output. IOUT=6.
IWRT	Package	Flag indicating the amount of output desired.

MXITER Package Maximum total number of iterations allowed.

NU1 Package An array holding the location of three nodes for which head values are printed at each iteration, if IWRT=2.

RESERR Module Residual error criteria for convergence.

PCG1AP

Narrative for Module PCG1AP

Module PCG1AP performs one or more iterations of the preconditioned conjugate gradient (PCG) method. To save computation time, all arrays are declared one dimensional. The one-dimensional indexes are calculated from the layer, row, and column indexes normally used to access the arrays in three dimensions. Computation time is saved because calculations are not repeated for identical indexes as would be done by internal FORTRAN addressing routines if three-dimensional subscripts were used.

Module PCG1AP has several important steps. First there are several initialization steps. These are followed by several repeatable steps which are passed through once for each value of the iteration index v in equations (9) through (13).

The first initialization step is setting XX, MHD, DD, BB, ZZ, XXS, and YQ equal to HNEW, 1-IBOUND, -CR, -CC, -CV, -HCOF, and -RHS from the main program. Another initialization step is the calculation of arrays F2 and G2. These arrays store useful values used when calculating the vector $K^{-1}r_v$ in equations (9) and (12). These values are stored so that they do not have to be recalculated for each evaluation of $K^{-1}r_v$, v=1,2,.... F2 and G2 are calculated in the FORTRAN DO loops, "do through 51" for NUM4=NPCOND=1,2,3 and "do through 54" for NPCOND=4,5.

The first repeatable step, in the "do through 100" DO loop, is the calculation of Ap_v , which is put into array DT, from p_v , which is in array E2. The quantity (p_v, Ap_v) is also calculated and placed into variable SPP. These calculations occur in the "do through 3" DO loop.

Next, a_v , called variable A1 in the module, is calculated using the value just calculated for SPP= (p_v, Ap_v) and a previously calculated value for SRP= $(r_v, K^{-1}r_v)$. At this point in the program, equation (9) has been completed and equations (10)-(13) still remain to be evaluated.

Now equations (10) and (11) are evaluated in the "do through 4" DO loop. New values for x and r, x_{v+1} and r_{v+1} , replace old values in the arrays XX and VV respectively. Ap_v from a previous step located in array DT is used, along with p_v from array E2, and a_v in variable A1. At this point, based on the latest results for x_{v+1} and residual error vector r_{v+1} , the program may exit the v iteration loop as shown in figure 3, and go to statement 201. If no exit has occured, the program proceeds and calculates $K^{-1}r_{v+1}$ and places it into array DT, which for the time being is no longer needed to hold Ap_v. At the same time $(r_{v+1}, K^{-1}r_{v+1})$ is calculated and placed into the variable SPR after putting the old value $(r_{v}, K^{-1}r_{v})$ into variable SPRS. These calculations are done in the "do through 10" and "do through 11" DO loops for NPCOND=1,2,3 , in the "do through 63" DO loop for NPCOND=4, and in the "do through 651" and "do through 652" DO loops for NPCOND=5.

In the next step, B_v in equation (12) is calculated as SPR/SPRS and placed in the variable B6.

In the final repeatable step, p_{v+1} of equation (13) is evaluated in the "do through 5" DO loop. Array DT containing $K^{-1}r_{v+1}$ from a previous step is used as is variable B6 containing B_v , and array E2 containing p_v . At this point the end of the "do through 100" DO loop occurs, so the first repeatable step is again processed and the v iteration of equations (9) through (13) continues.

The ITER=1 iteration of the "do through 100" DO loop, with index ITER=1,I300, is essentially a null iteration in the program and only sets up initial values for x, r, and p: x_1 , r_1 , and p_1 . The ITER=2 iteration corresponds to v=1 in equations (9) through (13), ITER=3 corresponds to v=2, and so on, so that ITER=v+1. Since v=ITER-1, the upper limit, v_{max} , for the index v in equations (9) through (13) and (14) is I300-1.

For ITYP=0, ITER=v+1 has an upper limit I300 of MXITER+1 (table 1). The index KITER in the main program, denoted by u in equation (14), does not iterate and has the value 1. Thus the finite difference equations are formulated only once per time step, and A and q in equation (7) are constant. This situation is appropriate for the solution of linear problems (LAYCON=0, river, drain, or evapotranspiration packages are not being used). It also gives the solution of equation (8) for non-linear problems as discussed previously. This latter situation will give a poor solution to the overall volumetric budget as calculated by the module BAS10T because this module (and others) assumes equation (7), not equation (8) is being solved. This poor budget result and other faulty flow rate values do not indicate that the solution obtained is in error. They arise because budget and flow rate calculations appropriate to equation (7) are being applied to equation (8).

For ITYP=1, I300 is set to MXITER+1. For ITYP ≥ 2 , I300 is set to ITYP. Thus for ITYP=2, only one iteration of equations (9) through (13) occurs and index v has the single value 1 in equations (9) through (13) and (14). For ITYP ≥ 1 , the index u in equation (14), also denoted by KITER in the main program and in the module PCG1AP, has values 1,2,...,um. The upper limit for u=KITER, um, as set in the main program, is MXITER.

ITYP≥1 solutions are for non-linear problems and solve equation (7), so that budget and flow quantities are calculated correctly. ITYP=1 is for nonlinear problems with weakly non-linear conditions. ITYP=2 is for non-linear problems with strongly non-linear conditions.

For each value of the time index m, iteration is terminated when equation (7), or (8) when used, is approximately satisfied according to some indication

ITYP	use	u values	1300=v _{max} +1	v _{max}
0	linear problems	1	MXITER+1	MXITER
	or equation (8).			
1	weakly nonlinear	1,,um	MXITER+1	MXITER
2	strongly nonlinear	1,,um	ITYP=2	ITYP-1=1
3	strongly nonlinear	1,,um	ITYP=3	ITYP-1=2
4	strongly nonlinear	1,,um	ITYP=4	ITYP-1=3
•		•••••		
•	•••••	•••••	• • • • • •	• • • • • • • • •
	decreasing nonlinearity			

Table 1.--ITYP control of v and u iterations.

of solution accuracy. Two basic criteria for iteration termination are used. Criteria one causes iteration to terminate when the change in head from one iteration to the next is small by some measure. Criteria two causes iteration to terminate when the residual error vector r=q-Ah becomes small. Note that neither criteria actually uses a measure of the true error of the approximate solution $h_{\rm Sm}{}^{\rm m}$ to equation (7), since the true solution $h^{\rm m}$ cannot be found. The second criteria for iteration termination, however, actually does consider the true value of the residual error vector r=q-Ah which is available.

For criteria 1, iteration termination with $ITYP\geq1$, termination occurs when the maximum absolute component of the vector $dh_1=h_{u+1,1}{}^m-h_{u,1}{}^m$ is less than ERR=HCLOSE. When ITYP=0, for which u=1, termination occurs when the sum of the maximium absolute components of the vectors $dh_1=h_{1,v+1}{}^m-h_{1,v}{}^m$ and $dh_2=h_{1,v}{}^m$ - $h_{1,v-1}{}^m$ is less than ERR=HCLOSE.

For criteria 2, iteration termination with ITYP>1, termination occurs when the maximum absolute component of the residual error vector $r=q(h_{u,1}^{m})-A(h_{u,1}^{m})h_{u,1}^{m}$ is less than XX10=RESERR. For ITYP=0, r=q-Ah_{1,v}^m is used.

	SUBROUTINE PCG1AP(XX,MHD,DD,BB,ZZ,XXSP,YQ,XXV,XXS,DT,E2,F2,G2,VV,	1
	1E22, D2S, NU1, NUM4, ITYP, KITER, ERR, XX10, ICNVG, MXITER, NCOL, NROW, NLAY,	2
	2IOUT, IWRT, NODES, NOD, KSTP, KPER, MCNT, KSTPS, KPERS, IFLAG)	3
С	*****	4
C	****** VERSION 1008 19 FEB 1987 PCG1AP **	5
C	******* L. K. KUIPER **************	6
Ċ	*****	7
U	IMPLICIT REAL*8 (A-H,O-Z)	. 8
	REAL*4 DD(NODES), BB(NODES), ZZ(NODES), XXS(NODES), YQ(NODES),	9
	1ERR, XX10, XXSP(NODES)	10
	2, DT (NODES), VV (NODES), E2 (NODES), F2 (NODES), G2 (NODES)	10
	3,E22(NODES), VV(NODES), E2(NODES), F2(NODES), G2(NODES) 3,E22(NODES), D2S(NOD)	12
	DIMENSION XX(NODES), MHD(NODES), NU1(9), XXV(NODES)	
		13
	IFLAG=0	14
	ICNVG=0	15
	IF((KPER.NE.KPERS).OR.(KSTP.NE.KSTPS)) MCNT=0	16
	KPERS=KPER	17
	KSTPS=KSTP	18
	NI10=NCOL	19
	NJ10=NROW	20
	NK10=NLAY	21
	NI11=NI10+1	22
	NJ11=NJ10+1	23
	NK11=NK10+1	24
	NIJ10=NI10*NJ10	25
	N320=NIJ10*NK10	26
	NW1 = NU1(1) + NI10 * (NU1(2) - 1) + NIJ10 * (NU1(3) - 1)	27
	NW2=NU1(4)+NI10*(NU1(5)-1)+NIJ10*(NU1(6)-1)	28
	NW3=NU1(7)+NI10*(NU1(8)-1)+NIJ10*(NU1(9)-1)	29
	IWR1+IWRT	
	IF((IWR1.LT.2).OR.(KSTP*KITER.GT.1)) GO TO 901	31
	WRITE(IOUT,5007)	32
	WRITE(IOUT,5072) NU1(1),NU1(4),NU1(7)	33
	WRITE(IOUT,5073) NU1(2),NU1(5),NU1(8)	34
	WRITE(IOUT,5074) NU1(3),NU1(6),NU1(9)	35
9 01	CONTINUE	36
	DO 909 IJ=1,N320	37
	XXV(IJ)=XX(IJ)	38
	XXS(IJ) = -XXSP(IJ)	39
	MHD(IJ)=1-MHD(IJ)	40
	DD(IJ) = -DD(IJ)	41
	BB(IJ) = -BB(IJ)	42
	ZZ(IJ) = -ZZ(IJ)	43
909	YQ(IJ) = -YQ(IJ)	44
	DO 91 IJB=1,N320	45
	IJ=N320+1-IJB	46
	IM1JK=IJ-1	47
	IJM1K=IJ-NI10	48
	IJKM1=IJ-NIJ10	49
	DD(IJ)=DD(IM1JK)	50

	BB(IJ)=BB(IJM1K)	51
	ZZ(IJ)=ZZ(IJKM1)	52
91	CONTINUE	53
	DO 92 K=1,NK10	54
	DO 92 J=1,NJ10	55
	DO 92 I=1,NI10	56
	IJ=I+NI10*(J-1)+NIJ10*(K-1)	57
	IF(I.EQ.1) DD(IJ)=0	58
	IF(J.EQ.1) BB(IJ)=0	59
	IF(K.EQ.1) $ZZ(IJ)=0$	60
92	CONTINUE	61
	DO 1 $IJ=1,N320$	62
	DT(IJ)=0	63
	E2(IJ)=0	64
	F2(IJ)=0 G2(IJ)=0	65 66
	E22(IJ)=0	67
1	VV(IJ)=0	68
T	NN=NROW+NCOL	69
	DO 2 IJ=1,NN	70
2	D2S(IJ)=0	70
2	DO 16 IJ=1,N320	72
	E2(IJ)=XX(IJ)	73
	IF(MHD(IJ).GE.1) GO TO 16	74
	VV(IJ)=YQ(IJ)	75
16	CONTINUE	76
	IF(NUM4.GE.4) GO TO 74	77
71	CONTINUE	78
	¥1=0	79
	Z1=0	80
	DO 51 IJ=1,N320	81
	IF(.NOT.(MHD(IJ).GE.1)) GO TO 777	82
	Y1=0	83
	Z1=0	84
	D2S(NI10+1)=0	85
	DO 94 I=1,NI10	86
94	D2S(I)=D2S(I+1)	87
	GO TO 51	88
777	CONTINUE	89
	IM1JK=IJ-1	90 91
	IJM1K=IJ-NI10 IJKM1=IJ-NIJ10	92
	IDM=1	93
	IBM=1	94
	IZM=1	95
	IF(IM1JK.LT.1) IDM=0	96
	IF(IJM1K.LT.1) IBM=0	97
	IF(IJKM1.LT.1) IZM=0	98
	IP1JK=IJ+1	99
	IJP1K=IJ+NI10	100
	IJKP1=IJ+NIJ10	101
	IDP=1	102
	IBP=1	103

IZP=1	104
IF(IP1JK.GT.N320) IDP=0	105
IF(IJP1K.GT.N320) IBP=0	106
IF(IJKP1.GT.N320) IZP=0	107
X=DD(IJ)	108
Y=BB(IJ)	109
Z=ZZ(IJ)	110
EEIJ=-(X+Y+Z+IDP*DD(IP1JK)+IBP*BB(IJP1K)+IZP*ZZ(IJKP1))+XXS(IJ)	111
IF (MHD (IM1JK) *IDM.GE.1) X=0	112
IF(MHD(IJM1K)*IBM.GE 1) X=0 IF(MHD(IJM1K)*IBM.GE 1) Y=0	112
IF(MHD(IJKM1)*IZM.GE.1) I=0 IF(MHD(IJKM1)*IZM.GE.1) Z=0	113
• • •	114
Y1Z1=0 VD-V	
XP=X	116
YP=Y	117
F2X=F2(IM1JK)*IDM	118
F2Y=F2(IJM1K)*IBM	119
F2Z=F2(IJKM1)*IZM	120
IF(NUM4.EQ.1) GO TO 20	121
JP1=IJ-NI10+1	122
KP1=IJ-NIJ10+1	123
IJMMN=IJ-(NIJ10-NI10)	124
IJP1=1	125
IKP1=1	126
IMMN=1	127
IF(JP1.LT.1) IJP1=0	128
IF(KP1.LT.1) IKP1=0	129
IF(IJMMN.LT.1) IMMN=0	130
WY1=0	131
WZ1=0	132
IF(F2Y.NE.0.0) WY1=Y/F2Y	133
IF(F2Z.NE.0.0) WZ1=Z/F2Z	134
XP=X-(WY1*Y1+WZ1*Z1)	135
G2(IJ) = XP	136
YP=Y-WZ1*D2S(1)	137
E22(IJ) = YP	138
Y1 = -WY1 + G2(JP1) + IJP1	139
Z1=-WZ1*G2(KP1)*IKP1	140
ZB=-WZ1*E22(IJMMN)*IMMN	141
D2S(NI10+1)=ZB	142
DO 93 I=1,NI10	143
D2S(I) = D2S(I+1)	144
F21=F2(JP1)*IJP1	145
F22=F2(KP1)*IKP1	146
$F23=F2(IJMMN) \star IMMN$	147
P1=0	148
P2=0	149
P3=0	150
IF(F21.NE.0.0) P1=Y1*Y1/F21	151
IF(F22.NE.0.0) P2=Z1*Z1/F22	152
IF(F23.NE.0.0) P3=ZB*ZB/F23	153
Y1Z1=P1+P2+P3	154
CONTINUE	155
XF=0	156
	200

	YF=0	157
	ZF=0	158
	IF(F2X.NE.0.0) XF=XP*XP/F2X	159
	IF(F2Y.NE.O.O) YF=YP*YP/F2Y	160
	IF(F2Z.NE.0.0) ZF=Z*Z/F2Z	161
	F2(IJ) = EEIJ - (XF + YF + ZF + Y1Z1)	162
51	CONTINUE	163
	GO TO 80	164
74	CONTINUE	165
	DO 54 IJ=1,N320	166
	IF(MHD(IJ).GE.1) GO TO 54	167
	IP1JK=IJ+1	168
	IJP1K=IJ+NI10	169
	IJKP1=IJ+NIJ10	170
	IDP=1	170
	IBP=1	172
	IZP=1	172
	IF(IP1JK.GT.N320) IDP=0	173
	IF(IIIIK.GI.N320) IBP=0	174
	IF(IJKP1.GT.N320) $IZP=0$	175
	EEIJ = (-(DD(IJ)+BB(IJ)+ZZ(IJ)+IDP*DD(IP1JK))	170
	1+IBP*BB(IJP1K)+IZP*ZZ(IJKP1))+XXS(IJ))	178
	I + IDI + ND (101 IK) + 121 + 22 (10K I I) + XXS (10) / IS (10)	178
	X=DD(IJ)	180
	F2X=F2(IJ-1)	180
	XF=0	181
	IF(F2X.NE.0.0) XF=X*X/F2X	182
	F2(IJ)=EEIJ-XF	185
	GO TO 54	184
539	F2(IJ)=EEIJ	185
539 54	CONTINUE	180
	CONTINUE	187
80		189
	SPR=1.D-50	
	ICNT=-1	190
	ER5 S=1.D40	191 192
	I300=MXITER+1	192
	IF(ITYP.GE.2) I300=ITYP	
	DO 100 ITER=1,I300	194
	ICNT=ICNT+1	195
	IF(ITER*KITER*KSTP*KPER.EQ.1) MCNT=0	196
	IF(ITER.NE.1) MCNT=MCNT+1	197
	SPP=0	198
	DO 3 $IJ=1,N320$	199
	IF(MHD(IJ).GE.1) GO TO 3	200
	IP1JK=IJ+1	201
	IJP1K=IJ+NI10	202
	IJKP1=IJ+NIJ10	203
	IDP=1	204
	IBP=1	205
	IZP=1	206
	IF(IP1JK.GT.N320) IDP=0	207
	IF(IJP1K.GT.N320) IBP=0	208
	IF(IJKP1.GT.N320) IZP=0	209

	IJM1K=IJ-NI10	210
	IJKM1=IJ-NIJ10	211
	DDIJ=DD(IJ)	212
	DDIP1=DD(IP1JK)*IDP	213
	BBIJ=BB(IJ)	214
	BBIJP=BB(IJP1K) * IBP	215
	ZZIJ=ZZ(IJ)	215
	ZZIJK=ZZ(IJKP1)*IZP	210
	E2IJ = E2(IJ)	217
	DTIJ=(-(DDIJ+DDIP1+BBIJ+BBIJP+ZZIJ+ZZIJK)+XXS(IJ))*E2IJ	210
	1+DDIJ*E2(IJ-1)+DDIP1*E2(IP1JK)	219
	2+BBIJ *E2(IJM1K) +BBIJP*E2(IJP1K)	220
	3+ZZIJ*E2(IJKM1)+ZZIJK*E2(IJKP1)	221
	DT(IJ) = DTIJ	
	SPP=SPP+E2IJ*DTIJ	223
2		224
3	CONTINUE	225
	A1=SPR/(SPP+1.D-50)	226
		227
	IF(ITER.GT.1) GO TO 35	228
	A1=0	229
0.5	A2=1.	230
35	SRZ=0	231
	SUMRZ=0	232
	ER5=0	233
	DO 4 K=1,NK10	234
	DO 4 J=1,NJ10 DO 4 I=1,NI10	235
		236
	IJ=I+NI10*(J-1)+NIJ10*(K-1)	237
	IF(MHD(IJ).GE.1) GO TO 4	238
	DX=A1*E2(IJ)	239
	IF(MHD(IJ).EQ.2) DX=0	240
	X=XX(IJ)+DX	241
	XX(IJ)=X	242
	ADX=DABS(DX)	243
	IF(ADX.LT.ER5) GO TO 111	244
	IMX=I	245
	JMX=J	246
	KMX=K	247
	XXPMX=X	248
	ER5=ADX	249
111	CONTINUE	250
	X=VV(IJ)-A2*DT(IJ)	251
	SUMRZ=SUMRZ+X	252
	DSR=DABS(X)	25 3
	IF(DSR.GT.SRZ) SRZ=DSR	254
	VV(IJ)=X	255
4	CONTINUE	256
	IF(ITER.EQ.1) SRZ1=SRZ	257
	IF (ITER. EQ.1) SUMRZI=SUMRZ IF ((IUR1 (F.2) AND (ITER NE 1)) UPITE (TOUT 1000) MONT LOUT INV	258
	IF((IWR1.GE.2).AND.(ITER.NE.1)) WRITE(IOUT,1000) MCNT, ICNT, IMX,	259
	1JMX,KMX,XXPMX,ER5,SRZ,XX(NW1),XX(NW2),XX(NW3) X5=.5	260
	IF(ITER.LE.2) X5=1.0	261
		262

```
IF(((ER5+ER5S)*X5).LT.ERR) GO TO 201
                                                                                  263
      IF(SRZ.LT.XX10) GO TO 201
                                                                                  264
      IF(MCNT.EQ.MXITER) GO TO 202
                                                                                  265
      ER5S=ER5
                                                                                  266
      SPRS=SPR
                                                                                  267
      SPR=0
                                                                                  268
      GO TO (81,81,81,83,85),NUM4
                                                                                  269
81
      CONTINUE
                                                                                  270
                                                                                  271
      DO 10 IJ=1,N320
      IF(MHD(IJ).GE.1) GO TO 10
                                                                                  272
      IJM1K=IJ-NI10
                                                                                  273
      IJKM1=IJ-NIJ10
                                                                                  274
      B6=0
                                                                                  275
      Z6=0
                                                                                  276
                                                                                  277
      DDIJ=DD(IJ)
      BBIJ=BB(IJ)
                                                                                  278
      IF(NUM4.EQ.1) GO TO 21
                                                                                  279
      DDIJ=G2(IJ)
                                                                                  280
                                                                                  281
      BBIJ=E22(IJ)
      JP1=IJ-NI10+1
                                                                                  282
      KP1=IJ-NIJ10+1
                                                                                  283
                                                                                  284
      IJMMN=IJ-(NIJ10-NI10)
                                                                                  285
      B6=0
      Z6=0
                                                                                  286
      F2J=F2(IJM1K)
                                                                                  287
      F2K=F2(IJKM1)
                                                                                  288
                                                                                  289
      IF(F2J.NE.O.DO) B6=DT(JP1)*G2(JP1)/F2J
      IF(F2K.NE.O.DO) Z6=(DT(KP1)*G2(KP1)+DT(IJMMN)*E22(IJMMN))/F2K
                                                                                  290
                                                                                  291
21
      CONTINUE
                                                                                  292
      DT(IJ) = (VV(IJ) - DDIJ * DT(IJ-1) - BBIJ * (DT(IJM1K) - B6))
     1-ZZ(IJ)*(DT(IJKM1)-Z6))/F2(IJ)
                                                                                  293
10
      CONTINUE
                                                                                  294
                                                                                  295
      DO 11 IJB=1.N320
                                                                                  296
      IJ=N320+1-IJB
                                                                                  297
      IF(MHD(IJ).GE.1) GO TO 11
                                                                                  298
      IP1JK=IJ+1
      IJP1K=IJ+NI10
                                                                                  299
      IJKP1=IJ+NIJ10
                                                                                  300
                                                                                  301
      IDP=1
                                                                                  302
      IBP=1
                                                                                  303
      IZP=1
                                                                                  304
      IF(IP1JK.GT.N320) IDP=0
                                                                                  305
      IF(IJP1K.GT.N320) IBP=0
                                                                                  306
      IF(IJKP1.GT.N320) IZP=0
                                                                                  307
      XAD=0
                                                                                  308
      DDD=DD(IP1JK)
                                                                                  309
      BBB=BB(IJP1K)
      IF(NUM4.EQ.1) GO TO 22
                                                                                  310
                                                                                  311
      JM1=IJ+NI10-1
                                                                                  312
      KM1 = IJ + NIJ10 - 1
                                                                                  313
      IJPMN=IJ+(NIJ10-NI10)
                                                                                  314
      IJM1=1
      IKM1=1
                                                                                  315
```

	IPMN=1	316
	IF(JM1.GT.N320) IJM1=0	317
	IF(KM1.GT.N320) IKM1=0	318
	IF(IJPMN.GT.N320) IPMN=0	319
	IM1JK=IJ-1	320
	IJM1K=IJ-NI10	321
	IDM=1	322
	IBM=1	323
	IF(IM1JK.LT.1) IDM=0	324
	IF(IJM1K.LT.1) IBM=0	325
	DDD=G2(IP1JK)	326
	BBB=E22(IJP1K)	327
	XAD1=0	328
	XAD2=0	329
	F2I=F2(IM1JK)*IDM	330
	F2J=F2(IJM1K) * IBM	331
	IF(F2I.NE.O.DO) XAD1=-(E22(JM1)*IJM1*DT(JM1)+ZZ(KM1)*IKM1*	332
	1DT(KM1))*G2(IJ)/F2I	333
	IF(F2J.NE.0.D0) XAD2=-ZZ(IJPMN)*IPMN*E22(IJ)*DT(IJPMN)/F2J	334
	XAD=XAD1+XAD2	335
2 2	CONTINUE	336
	DTIJ=DT(IJ)-(DDD*IDP*DT(IP1JK)+BBB*IBP*DT(IJP1K)+ZZ(IJKP1)	337
	1*IZP*DT(IJKP1)+XAD)/F2(IJ)	338
	DT(IJ)=DTIJ	339
	SPR=SPR+DTIJ*VV(IJ)	340
11	CONTINUE	341
	GO TO 90	342
83	CONTINUE	343
	DO 63 IJ=1,N320	344
	IF(MHD(IJ).GE.1) GO TO 63	345
	F2IJ=F2(IJ)	346
	VVIJ=VV(IJ)	347
	DTIJ=VVIJ/F2IJ	348
	DT(IJ)=DTIJ	349
	SPR=SPR+DTIJ*VVIJ	350
63	CONTINUE	351
	GO TO 90	352
85	CONTINUE	353
	DO 651 IJ=1,N320	354
	IF(MHD(IJ).GE.1) GO TO 651	355
	DT(IJ) = (VV(IJ) - DD(IJ) * DT(IJ-1)) / F2(IJ)	356
651	CONTINUE	357
	DO 652 IJB=1,N320	358
	IJ=N320+1-IJB	359
	IF(MHD(IJ).GE.1) GO TO 652	360
	IP1JK=IJ+1	361
	DTIJ=DT(IJ)-DD(IP1JK)*DT(IP1JK)/F2(IJ)	362
	DT(IJ)=DTIJ	363
	SPR=SPR+DTIJ*VV(IJ)	364
652	CONTINUE	365
90	CONTINUE	366
	B6=SPR/SPRS	367
	IF(ITER.EO.1) B6=0	368

	DO 5 IJ=1,N320	369
	E2IJ=DT(IJ)+B6*E2(IJ)	
		370
	IF(MHD(IJ).GE.1) E2IJ=0	371
	E2(IJ)=E2IJ	372
5	CONTINUE	373
100	CONTINUE	374
	GO TO 202	375
201	IF(ITYP.EQ.0) ICNVG=1	376
202	CONTINUE	370
202		
	IF((MCNT.GE.MXITER).OR.(ITYP.EQ.0)) IFLAG=1	378
	DXMAX=0	379
	DO 19 IJ=1,N320	380
	XXVIJ=XXV(IJ)	381
	DX=DABS(XX(IJ)-XXVIJ)	382
	IF(DX.GT.DXMAX) DXMAX=DX	383
	IP1JK=IJ+1	384
	IJP1K=IJ+NI10	385
	IJKP1=IJ+NIJ10	386
	DD(IJ)=DD(IP1JK)	387
	BB(IJ)=BB(IJP1K)	388
	ZZ(IJ) = ZZ(IJKP1)	389
19	CONTINUE	390
19	IF((ITYP.GE.1).AND.((DXMAX.LE.ERR).OR.(SRZ1.LT.XX10))) ICNVG=1	391
	DO 919 IJ=1,N320	392
	MHD(IJ)=1-MHD(IJ)	393
	DD(IJ) = -DD(IJ)	394
	BB(IJ) = -BB(IJ)	395
	ZZ(IJ) = -ZZ(IJ)	396
919	YQ(IJ) = -YQ(IJ)	397
	DO 991 IJ=1,N320	398
001	XXSP(IJ) = -XXS(IJ)	399
991		
	IF((ICNVG.EQ.0).AND.(IFLAG.NE.1)) GO TO 600	400
	IF(KSTP.EQ.1) WRITE(IOUT,500)	401
	S1=SRZ	402
	S2=SUMRZ	403
	IF(ITYP.EQ.0) GO TO 518	404
	S1=SRZ1	405
	S2=SUMRZ1	406
518	CONTINUE	407
510		408
	WRITE(IOUT, 501) MCNT, KSTP, KPER	
	IF(IWRT.GE.1) WRITE(IOUT,5075) ER5,S1,S2	409
	FORMAT(1HO)	410
501	FORMAT(1X,15,' ITERATIONS FOR TIME STEP',14,' IN STRESS PERIOD',	411
	113)	412
1000	FORMAT(' ',213,314,6D18.7)	413
	FORMAT('0', 56X, 'WATCHING CONVERGENCE'//25X, 'THE MAXIMUM CHANGE IN	414
	1HEAD OCCURED AT COLUMN J, ROW I, LAYER K.'	415
	2 /25x, 'MAXIMUM RESIDU	416
	3AL ERROR = THE MAXIMUM OVER ALL THE GRID ELEMENTS OF THE /25X, 'DI	417
	4FFERENCE BETWEEN THE WATER FLOW RATE INTO AND OUT OF EACH GRID ELE	418
	5ment.')	419
5074	FORMAT(7X,' J I K',5X,'HEAD AT J,I,K',5X,'HEAD AT J,I,K',13X	420
	1, 'ERROR', 3(12X, 'K=', I4))	421

5072	FORMAT('0',72X,3(4X,'HEAD AT J=',I4))	422
5073	FORMAT(46X,'CHANGE IN',6X,'MAX RESIDUAL',3(12X,'I=',I4))	423
5075	FORMAT (424
	1'0', MAXIMUM CHANGE IN HEAD BETWEEN LAST 2 ITERATIONS =',D11.3/	425
	2' MAXIMUM RESIDUAL ERROR (L**3/T) FOR GRID ELEMENTS NOT HAVING FIX	426
	3ED HYDRAULIC HEAD =',D11.3,' TOTAL =',D11.3)	427
600	RETURN	428
	END	429

List of Variables for Module PCG1AP

Variable	Range	Definition
A1	Module	a _v in equation (9).
В6	Module	B _v in equation (12).
BB	Module	-B in equation (2).
DD	Module	-D in equation (2).
DT	Module	Work space array used when calculating equations (9) through (13).
DXMAX	Module	dh_1 for criteria 1 ITYP>1 iteration termination.
E2	Module	Vector p_v in equations (9) through (13).
ER5	Module	dh ₁ for criteria 1 ITYP=0 iteration termination. Called maximum absolute head change when printed out.
ER5S	Module	dh ₂ for criteria 1 ITYP=0 iteration termination.
ERR	Module	HCLOSE in module PCG1RP. The head change criteria for convergence.
F2	Module	Storage array used when calculating $K^{-1}r_v$ in equations (9) and (12).
G2	Module	Same as above.
1300	Module	Maximum value for iteration counter ITER. Equal to v_{max} +1 of figure 3.
ICNVG	Global	This flag is set to one when iteration has met the condi- tions for iteration termination.
IFLAG	Global	This flag is set to one when exit is desired from the u iteration loop in the main program, due either to MCNT>MXITER or ITYP=0.

- IOUT Global Primary unit number for all printed output. IOUT=6.
- ITER Module Iteration counter for v in equations (9) through (13), ITER=v+1.
- ITYP Package Flag indicating the type of problem being solved.
- IWRT Package Flag indicating the amount of output desired.
- KITER Global Iteration counter u in equation (14). Reset at the start of each time step.
- KPER Global Stress period counter.
- KPERS Module Stored value of KPER.
- KSTP Global Time step counter. Reset at the start of each stress period.
- KSTPS Module Stored value of KSTP.
- MCNT Module Iteration number counter that counts the total number of iterations that are used as indices u and v increase in equations (9) through (13) and (14).
- MHD Module An array to indicate when a node is active and if it has a fixed head. MHD is equal to 1-IBOUND from the main program.
- MXITER Package Maximum total number of iterations allowed.
- NCOL Global Number of columns in the grid.
- NLAY Global Number of layers in the grid.
- NODES Global Number of cells (nodes) in the finite difference grid.
- NROW Global Number of rows in the grid.
- NU1 Package An array holding the location of three nodes for which head values are printed at each iteration, if IWRT=2.
- NUM4 Module Called NPCOND in module PCG1AL. Has values of 1 to 5 for the 5 preconditioning types.
- SRZ Module Maximum absolute component of the residual error vector r for ITYP=0 criteria 2 iteration termination. Called maximum absolute residual error when printed out.

SRZ1 Module Maximum absolute component of the residual error vector r for ITYP≥1 criteria 2 iteration termination. Called maximum absolute residual error when printed out.

SUMRZ	Module	Total residual error, ITYP=0.
SUMRZ1	Module	Total residual error, ITYP≽1.
vv	Module	Error vector r_v in equations (9) through (13).
XX1 0	Module	Called RESERR in module PCG1RP. The residual error criteria for convergence.
XX	Module	Head vector h. Vector x_v in equations (9) through (13). HNEW in the main program.
XXS	Module	-HCOF in equation (1).
xxv	Module	Stored XX array. Used to get DXMAX.
YQ	Module	-RHS in equation (1).
ZZ	Module	-Z in equation (2).

REFERENCES

- Hageman, L. A., and Young, D. M., 1981, Applied Iterative Methods, New York, Academic Press, 386 p.
- Kershaw, D. S., 1978, The incomplete Choleski-conjugate gradient method for the iterative solution of linear equations: Journal of Computational Physics, v. 26, p. 43-65.
- Kuiper, L. K., 1981, A comparision of the incomplete Choleski-conjugate gradient method with the strongly implicit method as applied to the solution of two-dimensional groundwater flow equations: Water Resources Research, v. 17, no. 4, p. 1082.
- Kuiper, L. K., 1987, A comparison of iterative methods as applied to the solution of the nonlinear three-dimensional groundwater flow equation: Society for Industrial and Applied Mathematics Journal on Scientific and Statistical Computing, v. 8, no. 4, p. 521-528.
- McDonald, M. G., and Harbaugh, A. W., 1984, A modular three-dimensional finite difference ground-water flow model: U.S. Geological Survey Open-File Report 83-875, 528 p.
- Van Der Vorst, H. A., 1982, A vectorizable variant of some ICCG methods: Society for Industrial and Applied Mathematics Journal on Scientific and Statistical Computing, v. 3, no. 3, p. 350-356.