
COMPUTER PROGRAM FOR SOLVING
GROUND-WATER FLOW EQUATIONS
BY THE PRECONDITIONED CONJUGATE
GRADIENT METHOD

By Logan K. Kuiper

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 87-4091

Austin, Texas
1987

DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For more information
write to:

Project Chief
U.S. Geological Suvey
Gulf Coast RASA
N. Shore Plaza Bldg., Rm. 104
55 North Interregional Hwy.
Austin, Texas 78702

Copies of this report can
be purchased from:

U.S. Geologicl Survey
Books and Open-File Reports
Federal Center, Bldg., 41
Box 25425
Denver, Colorado 80225
Telephone (303) 236-7476

CONTENTS

Page

Ab s t r ac t 1
Introduction 1
Preconditioned conjugate gradient package 2

Description and use 2
Input instructions 10
Sample input to preconditioned conjugate gradient package 12
Module documentation for the preconditioned conjugate gradient
package 13

PCG1AL 13
Narrative 13
Flow chart 14
Program listing 14
List of variables 16

PCG1RP 17
Narrative 17
Flow chart 17
Program listing 18
List of variables 18

PCG1AP 19
Narrative 19
Flow chart 22
Program listing 23
List of variables 31

References 34

ILLUSTRATIONS

Page

Figure 1. Correspondence between the finite-difference
equations and the matrix equation for a grid
with three rows, two columns, and two layers 4

Figure 2. Structure of coefficient matrix showing nonzero
diagonals

Figure 3. Flowchart showing major elements of module PCG1AP
and related parts of the main program of the
modular model

TABLES

Page

Table 1. ITYP control of v and u iterations 21

111

COMPUTER PROGRAM FOR SOLVING GROUND-WATER FLOW EQUATIONS

BY THE PRECONDITIONED CONJUGATE GRADIENT METHOD

By Logan K. Kuiper

ABSTRACT

This report documents a numerical code for use with the U.S. Geological
Survey modular three-dimensional finite-difference ground-water flow model.
The code uses the preconditioned conjugate gradient method for the solution of
the finite difference approximating equations generated by the modular flow
model. These equations are a system of simultaneous linear equations except
when the river, drain, or evapotranspiration packages of the modular model are
being used, in which case they are a system of simultaneous nonlinear
equations. When these equations are linear, they are solved by the basic
preconditioned conjugate gradient method as available in the literature. Five
preconditioning types may be chosen: three different types of incomplete
Choleski, point Jacobi, or block Jacobi. When the approximating equations are
nonlinear, the solution method is that of Picard preconditioned conjugate
gradient with the same preconditioning choices. Either a head change or
residual error criteria may be used as an indicator of solution accuracy and
iteration termination.

The use of the computer program that performs the calculations in the
numerical code is emphasized. Detailed instructions are given for using the
computer program, including data entry formats and the method of linking the
program into the modular model. A sample data listing and listing of the
Fortran program are included.

INTRODUCTION

This report documents a numerical code for use with the U.S. Geological
Survey modular three-dimensional finite-difference ground-water flow model
(McDonald and Harbaugh, 1984). The code uses the preconditioned conjugate
gradient method for the solution of the finite difference approximating equa
tions generated by the modular flow model. These equations are a system of
simultaneous linear equations except when the river, drain, or evaporation
packages of the modular model are being used, in which case they are a system
of simultaneous nonlinear equations. When these equations are linear, they are
solved by the basic preconditioned conjugate gradient method as available in
the literature. Five preconditioning types may be chosen: three different
types of incomplete Choleski, point Jacobi, or block Jacobi. When the approxi
mating equations are nonlinear the solution method is that of Picard precondi
tioned conjugate gradient with the same preconditioning choices. Either a head
change or residual error criteria may be used as an indicator of solution
accuracy and iteration termination.

The preconditioned conjugate gradient (PCX?) method as presented is some
times faster than the strongly implicit procedure (SIP) and slice-succesive
overrelaxation (SOR) available in the modular model (Kuiper, 1981, 1987). It
is frequently faster on problems having a wide variation in the conductances
between model nodes, or on problems having a complex geometry such as pinched
out layers. The PCG method presented has the advantage of not requiring any
convergence parameters. The user has the option of using residual error as a
criteria for iteration termination. This option assures that the flow rate
into each cell is equal to the flow rate out of the same cell, to within a
small amount selected by the user.

PRECONDITIONED CONJUGATE GRADIENT PACKAGE

Description and Use

The preconditioned conjugate gradient (PCG) method to be presented here
is an iterative method for solving a system of simultaneous linear or non
linear equations.

Finite difference discretization of the ground-water flow equation gives
a set of finite difference approximating equations (McDonald and Harbaugh,
1984), the solution of which gives an approximate solution to the ground-water
flow equation. For a cell location i.j.k the finite-difference equation
(McDonald and Harbaugh, 1984, p. 30, equation 27) is:

HCOFifj>k)hif

+CR

.j.k (1)

where CV£4 jk_^ is the conductance (McDonald and Harbaugh, 1984, p. 16)
between nodes i,j,k and i,j,k-l , CV^ j k+v is the conductance between nodes
i,j,k and i,j,k+l, and corresponding definitions apply to the CC and CR terms.
The hydraulic head at node i,j,k is h^ j k, the hydraulic head at node i,j,k-l
is denoted by h^ ^ k-l» and so on. Conductance is defined (McDonald and
Harbaugh, 1984, p. 16) as that quantity associated with a particular node face
which, when multiplied by the difference between the heads of those two nodes
lying on either side, gives the flow across the node face. An equation like
(1) is written for each cell in the finite-difference grid. This grid fills
the volume within which the solution to the ground-water flow equation is to
be approximated. Equation (1) expresses the relation among the heads h at node

i,j,k and at each of the six adjacent nodes at the end of a time step. Note
that head at any node appears in the equation for that node and also in the
equation for adjoining nodes. Thus, the equations are coupled and must be
solved simultaneously. It is convenient to write equation (1) as

(2)

(McDonald and Harbaugh, 1984, p. 370, equation 80), which in matrix form
becomes

Ah = q . (3)

A is a square matrix and h and q are vectors. The components of the vector h
are the hydraulic heads hi t i t k' The components of the vector q are the
"source" terms Qi f i k of equation (2). Figure 1 shows the elements of the
matrix A and the vectors h and q. Notice that nonzero elements in A appear
only on seven diagonals (fig. 2). Because the number of nonzero elements in A
is small compared to the total number of elements, the matrix is said to be
sparse.

The coefficients in equation (2) all have the index i»j,k to show that
they belong to the equation for node i.j.k. Furthermore, the Z coefficient for
the equation at node i,j,k (Zi f j fk)i is equal to CVj^ -i f k-%» which is the same
as the S coefficient for the equation at node i,j,k-l (S-j^ tk_;L), so that
(Mcdonald and Harbaugh, 1984, p. 371)

zi.j.k= Si.j.k-l . (4)

Similiarly,

Bi.j.k = Hi-i.j.k (5)

and

Thus, the matrix A is symmetric. Because E^.: k is equal to sum of ~z i t j >k i
- B.; -; V, -D-- 4 I,, -FH- i L., -H-- u],, -Si« -; L., and HCOF-- 4],, the negative of L »j»*-. iij»«- . i^j*^ f»J» K- J-ij»«- i»ji«- °
the matrix A is positive definite.

E
,

F
,

H
,

O

O

O

S
t

O

O

O

O

O

D
2

E
2

O

H
2

O

O

O

S
2

O

O

O

O

B
3

O

E
3

F
3

H
3

O

O

O

S
3

O

O

O

O

B4

D
4

E
4

O

H
4

O

O

O

S
4

O

O

O

O

B
5

O

E
5

F5

O

O

O

O

S
5

O

O

O

O

B
6

D
6

E
6

O

O

O

O

O

S
6

Z
7

O

O

O

O

O

E
7

F7

H
7

O

O

O

O

2
8

O

O

O

O

D
B

E
8

O

H
8

O

O

O

O

Z
g

O

O

O

B

g

O

E
g

F
g

H
g

O

0

0

0

Z
10

0

0

0

B

10

D
10

E

10

0

H

10

O

O

O

O

Z
n

O

O

O

81

1
O

E
n

F1

t,

O

O

O

O

O

Z
12

O

O

O

B

12

D
12

E

12

X

hi h2 r»
3 h
4 Us "6 h
7

*a hg h
10 n
il

h1
2

=

V
qa q3 Q

4 q5 q6 q? qa q9 qi
o

«i
ii

q
12

M
o

d
ifi

e
d

 f
ro

m

M
ac

O
on

al
d

an
d

H
ar

ba
ug

h,

19
84

F
ig

ur
e

1 .
 C

o
rr

e
sp

o
n
d
e
n
ce

 b
et

w
ee

n
th

e
fin

ite
-d

iff
e
re

n
ce

 e
qu

at
io

ns
 a

nd
 t

he

m
at

rix
 e

qu
at

io
n

fo
r

a
gr

id
 o

f
th

re
e

ro
w

s,
 t

w
o

 c
ol

um
ns

,
an

d
tw

o
la

ye
rs

.

N
C
O
L
*
 N
R
O
W

N
C
O
L

N
C
O
L

N
C
O
L
 *
 N
R
O
W

F
ro

m

M
a
cO

o
n
a
ld

an

d
H

a
rb

a
u

g
h

,
19

84

Fi
gu

re
 2

.
S

tr
u

c
tu

re
 o

f
co

ef
fi

ci
en

t
m

at
ri

x
sh

ow
in

g
no

nz
er

o
di

ag
on

al
s.

Equation (3) could be written as

A(hm.m)hm = q(hm ,m) , (7)

where vector hm is vector h at time tm . The parenthesis indicate that the
elements of the matrix A and vector q may depend on the vector hm. An example
of when the elements of matrix A depend on head is the case of a water-table
aquifer. In this case, the conductance between two adjacent nodes in an
aquifer depends on the saturated thickness of the aquifer in the vicinity of
the nodes and, thus, on the head in the vicinity of the nodes. Therefore, the
conductances CR, CC, and CV, which appear in the off-center diagonals of the
matrix A are head dependent. When matrix A and vector q are hm dependent,
equation (7) is said to be nonlinear and is more difficult to solve for hm
than the linear case for which the elements of matrix A and vector q are
constants.

An alternative to solving equation (7), which is done by SIP and SOR in
the modular model, is to solve

(8)

In this case, the system is linear and easily solved, but the solutions h m ,
m=0,l,2,... may tend to be unstable. Use of equation (8) corresponds, for the
water-table aquifer situation, to using the conductance between two adjacent
nodes corresponding to the head hm~l at time tm_^, when calculating the change
in head between times tm and tm-l» or in other words when calculating hm . The
PCG package allows the use of equation (7) or (8) but because of the
instability mentioned, the use of equation (8) usually is not recommended
except, perhaps, when equation (7) is too difficult to solve. When the problem
being solved is linear, matrix A and vector q are constant, and equations (7)
and (8) are identical.

The PCG method presented here is ideal for solving a sparse symmetric
positive definite system of simultaneous linear equations. It also can be used
for solving a sparse symmetric positive definite system of simultaneous non
linear equations, such as (7), but with perhaps somewhat decreased efficiency.

An important part of the PCG method presented here is the basic PCG method
for sparse symmetric positive definite linear systems, as taken from the
literature (Van Der Vorst. 1982):

EV = , (9)

- Xy + ayPV . (10)

= rv -

Bv - __________ . and (12)

Pv+1 ~ K rv+l + BvPv (13)

is the inner product of the vectors x and y. Iteration of equations (9)
through (13) using v=l,2.... . and using r^=b-Ax^, p^=K~^r^, and some initial
choice x^ for the solution vector gives an approximate solution to the matrix
equation Ax=b. where A is a N by N symmetric positive definite matrix. The
residual error vector is r=b-Ax. Matrix K is called a preconditioning or
splitting matrix. It is chosen to be as nearly equal to A as possible but
readily invertible. The PCG package allows for five choices of the precondi
tioning matrix. The first three choices for matrix K (corresponding to
NPCOND=l,2.and 3) are three different types of incomplete Choleski factoriza
tion (Kershaw. 1978). where the first two differ only in the manner of
treating inactive nodes. The fourth choice (NPCOND=4) is point Jacobi (Hageman
and Young, 1981) for which matrix K is simply the diagonal of the matrix A.
The fifth choice (NPCOND=5) is block Jacobi for which matrix K is the diagonal
and the two off-center diagonals adjacent to the center diagonal of A.

The basic PCG method in equations (9) through (13) is part of the PCG
method presented here. The solution of equation (7), hm , is the head, h, at
time tm. The PCG method presented here finds an approximation to hm itera-
tively. Let these sucessive approximations to hm be denoted by h s m ,
s=l,2,...,sm. Let hsm m denote that iteration taken to be a satisfactory
approximate solution to hm. The first estimate for hm+^, h^ m+^, is taken to
be hsm m . To explain the way succesive iterations hs m are chosen, it is
necessary to break the index s into two indices, u and v, where index v
changes fastest. The indices u and v go from 1 to urn, and from 1 to vm(u)
respectively. The procedure for finding the approximate solution hsmm, to hm
is:

Approximately solve

A(hu>1 m ,m)hum = q(hUjl m ,m) . for u=l,2,...,um , (14)

where the succesive approximations to hum are denoted hu vm , v=l,2,...,vm(u).
Figue 3 ia a flowchart showing how the main program of the modular model and
module PCG1AP interact to do the u and v iterations of equation (14). The
flowchart shows only the major elements of module PCG1AP and only those
elements of the main program relating to its connection with module PCG1AP.
The iterations in v occur each time the module PCG1AP is called. Values of u
are a counter of the number of times the module PCG1AP is called by the main
program. The value for hUj ^ m is hu_i jVm(u-l) m * Note that equation (14) is
linear with respect to solving for hum. The iterations in v are those of the
basic PCG method as given by equations (9) through (13). The PCG method as
given by (14) for the solution of (7) would be called Picard-PCG using the
naming procedure of the mathematical literature on the solution of nonlinear
systems (Kuiper, 1987).

In the main program in figure 3, MXITER is the chosen maximum allowable
value for u, and also for MCNT, the total number of iterations used in the
search for the approximate solution to hm . The maximum allowable number for v
is vmax. ICNVG is the variable indicating whether a suitably accurate solu
tion to hm has been obtained. IFLAG is the variable that indicates whether an
exit from the u iteration loop in the main program is desired upon return to
the main program. IFLAG causes an exit at the first return when the linear
case is being solved or equation (8) is being used, or in the nonlinear case
when MCNT^MXITER.

In module PCG1AP in figure 3, note that when a sufficiently small value is
chosen for vmax> that the v loop may not be exited but v instead reaches its
maximum value vmax, corresponding to a situation in which for a given u<um,
equation (14) is not solved accurately enough to cause a v-loop exit. This
situation may be understood by considering the way that the use of equation
(14) implements the solution of a problem with a declining head in a water-
table aquifer for some given time step m. Values of u correspond to
evaluations of the conductances between nodes as determined by using heads
hu i m. For these evaluations at u of the conductances, the head decrease is
determined using iterations in v. Having obtained ^u,vm(u) m where vm(u) may
be equal to vmax, new values of the decreased conductance are determined
using the just acquired decreased heads nu,vm(u) m' Then the head decline is

MAIN

"
EVALUATE ACh, .m) AND qCh,,

U, I U,

APPROXIMATELY SOLVE

FOR h ym BY CALLING SUBROUTINE PCG1AP.

/ ICNVG=1 ? \
\OR FLAG-1? /

YES

NO

NO
J=MXITER ?

YES

TO PCG1AP RETURN
FROM

PCG1AP

Figure 3. Flowchart showing major elements of module PCG1AP and related
parts of the main program of the modular model.

(MODULE PCG1APJ

SET ICNVG=0, IFLAG 0, AND v=0

SET v=v-H

FROM h U(V m, DETERMINE h UiV+1 m USING THE EQUATIONS OF THE BASIC PCG

METHOD. CHECK h U|VH-1 TO SEE IF IT IS A SUFFICIENTLY ACCURATE

SOLUTION TO A(h U|1 m,m) hu m a qCh Ui1 m ,m), THAT IS: IF EQUATION (14) HAS

BEEN SOLVED WITH SUFFICIENT ACCURACY FOR A GIVEN u. IF IT HAS,

EXIT v LOOP.

IF THE TOTAL NUMBER OF ITERATIONS USED SO FAR, MCNT, IS EQUAL TO

THE MAXIMUM TOTAL NUMBER OF ITERATIONS ALLOWED, MXITER,

EXIT V LOOP.

I
NO V=V MAX ?

YES FOR ITYP=0
SET ICNVG=1

ITYP = 0 OR
MCNT>MXITER ?

YES

NO
1

SET IFLAG =1

IS ITYP>1 AND [iS A(h uj m ,m)h uj m -q(h ujm ,m) SUFFICIENTLY SMALL, OR IS \
rv* *v* I ' "1 \

k

h 'H-h l 'M
1 'u,v n u, 1 I

SOLUTION TO

SUFFICIENTLY SMALL], INDICATING A SUFFICIENTLY ACCURATE^

A(h m,m)hm =qCh m)? / YE

i

NO

«
t

(RETURN TO MAIN)

\ '
SET ICNVG=1

Figure 3. (Concluded)

redetermined corresponding to these new decreased values for the conductances.
The process continues in this manner. Therefore, one need not necessarily
solve for head declines accurately for a given u<um because the conductances
corresponding to this value for u are too large anyway. Two approaches are
thus allowed: for a given evaluation of the conductances corresponding to
hu i m , either solve for the head accurately enough to meet some accuracy
criteria, or just stop the iteration in v at some vmax . In many cases,
problems which are nearly linear are solved with a smaller total number of
iterations by choosing a large value for vmax resulting in the program exiting
the v loop. On the other hand, extremely nonlinear problems are solved more
readily by choosing vmax to be small.

In module PCG1AP, the choice of vmax is controlled by the users choice of
the variable ITYP. For a choice of ITYP=0, equation (8), or in the linear case
the equivalent equation (7), is solved. For choices of ITYP^.1, equation (7)
is solved by means of equation (14), corresponding to the nonlinear case,
using vmax=MXITER when ITYP=1, and vmax=ITYP-l when ITYP12.

Input Instructions

The Preconditioned Conjugate Gradient (PCG) Package reads values from the
unit specified in IUNIT(13) in the Basic (BAS) Package of the modular model.

For each simulation:

PCG1AL

1. Data: MXITER NPCOND ITYP
Format: 110 110 110

PCG1AL

2. Data: HCLOSE RESERR IWRT
Format: F10.0 F10.0 110

Read only if IWRT=2:

3. Data: NU1(I),I=1,9
Format: (914)

Explanation of Fields Used in Input Instructions

MXITER

is the maximum total number iterations allowed in an attempt to solve the
system of finite difference equations. One hundred iterations should be
sufficient for most (ITYP=0) problems.

10

NPCOND--

has the values 1 to 5 corresponding to the five preconditioning types which
may be chosen. The first three are incomplete Choleski, the fourth is point
Jacobi, and the fifth is block Jacobi. NPCOND equal 1 or 3 are common choices.
On rare occasions NPCOND equal 4 or 5 could be faster than 1 or 3. NPCOND
equal 2 is at present identical to NPCOND equal 1, but may be changed at a
later time. The advised procedure is to use either NPCOND equal 1 or 3, or use
both and compare computation times if the model is going to be run many times
and computation time is important. NPCOND equal 1 is usually a bit slower than
NPCOND equal 3, but it is also more stable. For those who do not wish to
experiment with NPCOND, the best choice is 1.

ITYP

is a flag indicating the type of problem solved:

0 - linear problems: LAYCON=0; river, drain, or evaporation packages are
not being used. Also for nonlinear problems to be solved with equa
tion (8). Such equation (8) solutions for nonlinear problems may be
inaccurate and are therefore not recommended unless a solution cannot
be obtained using ITYP^.1 or SIP. For equation (8) solutions, the
usual budget and flowchart calculations printed by the modular model
may be innacurate, and cannot be used as a measure of solution
accuracy. See page 20 for more detail.

1 - nonlinear problems with weakly nonlinear conditions.

2 - nonlinear problems with strongly nonlinear conditions. If you do not
know how nonlinear the problem is, use ITYP equal 1 and 2 and compare
results. See table 1 on page 21 for more detail.

HCLOSE

is the head change criteria for convergence. When the maximum absolute head
change for all nodes from the last iteration(s) is less than HCLOSE, iteration
is terminated.

RESERR--

is the residual error criteria for convergence. Residual error is the flow
rate into a variable head cell minus the flow rate out of the cell. When the
maximum, over all the variable head cells in the modeled region, of the
absolute values of the residual errors for each of the variable head cells is
less than RESERR, iteration is terminated.

Both HCLOSE and RESERR may be used concurrently in which case both have
nonzero values. Set HCLOSE=0 if you want to use only RESERR, and vise-versa.

11

IWRT

is a flag indicating the amount of output produced regarding the numerical
solution of the finite difference equations.

0 - no output is produced other than that normally provided by the mod
ular model program.

1 - the maximum absolute head change (ER5) from the last iteration, the
maximum absolute residual error (SRZ or SRZ1) for variable head
cells, and the total residual error for the entire model obtained by
summing the residual errors for all of the variable head cells, are
produced for each time step.

2 - includes the output produced in option 1 plus an output for watching
convergence which shows the numerical solution process at each time
step, including the head at 3 locations specified by NU1.

NU1

specifies the 3 locations:

1 J=NU1(1), I=NU1(2), K=NU1(3)

2 J=NU1(4), I=NU1(5), K=NU1(6)

3 J=NU1(7), I=NU1(8), K=NU1(9)

at which head is printed for each time step when IWRT=2. NU1 is not read when
IWRT equal to 0 or 1.

Sample Input to PCG Package

Data Explanation Input Records
item

1 MXITER.NPCOND.ITYP 50 1 1

2 HCLOSE.RESERR.IWRT .1 10 2

3 NU1 334574575

12

Module Documentation for the Preconditioned
Conjugate Gradient Package

The Preconditioned Conjugate Gradient Package (PCG1) consists of three
primary modules. They are:

Primary Modules

PCG1AL Allocates space for the PCG Package work arrays,

PCG1RP Reads control information needed by the PCG
Package.

PCG1AP Performs one or more iterations of the
preconditioned conjugate gradient method.

PCG1AL

Narrative for Module PCG1AL

Module PCG1AL allocates space in the X array for the PCG Package arrays.
The five arrays DT, E2, F2, G2, and VV hold intermediate results during the
solution process. Each of these arrays contains one element for each model
cell.

Module PCG1AL performs its functions in the following order:

1. Print a message identifying the PCG Package.

2. Read and print MXITER. NPCOND. and ITYP.

3. Allocate the required space in the X array. The X-array location
pointer (ISUM) is saved in variable ISOLD prior to allocation so that
the space required for the PCG Package can be calculated in step 4.

4. Calculate and print the space used in the X array. The space used by
the PCG Package is ISUM-ISOLD. The total allocated by all packages so
far is ISUM-1.

5. Return.

13

Flow Chart for Module PCGIAL

QENTER PCG1AL

PRINT A MESSAGE
IDENTIFYING PCG PACKAGE.

READ AND PRINT MAXIMUM ALLOWED NUMBER OF ITERATIONS
MXITER, CHOSEN PRECONDITIONING TYPE NPCOND. AND

TYPE OF PROBLEM BEING SOLVED ITYP.

ALLOCATE SPACE FOR PCG PACKAGE
ARRAYS IN THE X ARRAY.

CALCULATE AND PRINT SPACE

USED IN THE X ARRAY.

C RETURN J

Program Listing for Module PCGIAL

C
c
C
c
c
c
c
c
c
c
c
Cl-

SUBROUTINE PCGIAL (ISUM,LENX,LCXXV,LCXXS,LCDT,LCE2,LCF2,LCG2,
ILCVV,LCE22,LCD2S,LCNU1,MXITER.NPCOND,ITYP,NCOL,NROW,NLAY,IN,IOUT,
2NOD)

 VERSION 1002 19JAN1987 PCGIAL

ALLOCATE STORAGE IN THE X ARRAY FOR PCG ARRAYS

SPECIFICATIONS:

 PRINT A MESSAGE IDENTIFYING PCG PACKAGE
WRITE(IOUT,1)IN

1 FORMAT(1HO, 1 PCG1 PRECONDITIONED CONJUGATE GRADIENT SOLUTION PAG
1KAGE',', VERSION 1, 06/25/85',' INPUT READ FROM UNIT',13)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

14

C 19
C2 READ AND PRINT MXITER, NPCOND, AND ITYP 20

READ(IN,2) MXITER,NPCOND,ITYP 21
2 FORMAT(3I10) 22

WRITE(IOUT,3) MXITER,NPCOND,ITYP 23
3 FORMAT(IX,'MAXIMUM OF',14,' ITERATIONS ALLOWED FOR CLOSURE 1 / 24

1 IX,'PRECONDITIONING TYPE ',12,' PROBLEM TYPE ',12) 25
C 26
C3 ALLOCATE SPACE FOR THE PCG ARRAYS 27

ISOLD=ISUM 28
NRC=NROW*NCOL 29
NOD=NROW+NCOL 30
ISIZ=NRC*NLAY 31
LCXXV=ISUM 32
ISUM=ISUM+ISIZ*2 33
LCXXS=ISUM 34
ISUM=ISUM+ISIZ 35
LCDT=ISUM 36
ISUM=ISUM+ISIZ 37
LCE2=ISUM 38
ISUM=ISUM+ISIZ 39
LCF2=ISUM 40
ISUM=ISUM+ISIZ 41
LCG2=ISUM 42
ISUM=ISUM+ISIZ 43
LCW=ISUM 44
ISUM=ISUM+ISIZ 45
LCE22=ISUM 46
ISUM=ISUM+ISIZ 47
LCD2S=ISUM 48
ISUM=ISUM+NOD 49
LCNU1=ISUM 50
ISUM=ISUM+9 51

C 52
C4 CALCULATE AND PRINT THE SPACE USED IN THE X ARRAY 53

ISP=ISUM-ISOLD 54
WRITE(IOUT,4) ISP 55

4 FORMAT(IX,16,' ELEMENTS IN X ARRAY ARE USED BY PCG 1) 56
ISUM1=ISUM-1 57
WRITE(IOUT,5) ISUM1.LENX 58

5 FORMAT(IX,16,' ELEMENTS OF X ARRAY USED OUT OF 1 ,17) 59
IF(ISUMl.GT.LENX) WRITE(IOUT,6) 60

6 FORMAT(1X,' ***X ARRAY MUST BE DIMENSIONED LARGER*** 1) 61
C 62
C5 RETURN 63

RETURN 64
END 65

15

List of Variables for Module PCG1AL

Variable Range Definition

IOUT Global

ISIZ Module

ISOLD Package

IN Package Primary unit number from which input for this package
will be read.

Primary unit number for all printed output. IOUT=6.

Number of cells in the grid.

Before this module allocates space, ISOLD is set equal to
ISUM. After allocation, ISOLD is subtracted from ISUM to
get ISP, the amount of space in the X array allocated by
this module.

ISP Module Number of words in the X array allocated by this module.

ISUM Global Index number of the lowest element in the X array which
has not yet been allocated. When space is allocated for
an array, the size of the array is added to ISUM.

ISUM-1.

Flag indicating the type of problem being solved.

Location in the X array of the first element of array
XXV.

LCXXS Package Location in the X array of the first element of array
XXS.

Location in the X array of the first element of array DT.

Location in the X array of the first element of array E2.

Location in the X array of the first element of array F2.

Location in the X array of the first element of array G2.

Location in the X array of the first element of array W.

Location in the X array of the first element of array
NU1.

LENX Global Length of the X array in words. This should always be
equal to the dimension of array X specified in the main
program.

MXITER Package Maximum total number of iterations allowed.

ISUM1

ITYP

LCXXV

Module

Package

Package

LCDT

LCE2

LCF2

LCG2

LCW

LCNU1

Package

Package

Package

Package

Package

Package

16

NCOL Global

NLAY Global

NPCOND Module

NRC Module

NROW Global

Number of columns in the grid.

Number of layers in the grid.

Has the values 1 to 5 correspondingto the 5 precondi
tioning types.

Number of cells in a layer.

Number of rows in the grid.

PCG1RP

Narrative for Module PCG1RP

Module PCG1RP reads data for the PCG Package: the head change criteria for
convergence. HCLOSE, the residual error criteria for convergence, RESERR, and
a flag IWRT indicating the amount of output desired regarding the numerical
solution. If IWRT is chosen to be 2, then module PCG1RP also reads
NU1(1),NU1(2),...,NU1(9) . These quantities specify 3 locations at which the
head is printed by module PCG1AP for each iteration. Module PCG1RP performs
its functions in the following order:

1. Read the data.

2. Print the data read in step 1, except array NU1

3. Return.

Flow Chart for Module PCG1RP

.ENTER PCG1RP

READ HEAD CHANGE CRITERIA FOR CONVERGENCE, HCLOSE, RESIDUAL

ERROR CRITERIA FOR CONVERGENCE, RESERR, AND FLAG INDICATING

THE AMOUNT OF OUTPUT DESIRED, IWRT.

PRINT MXITER, HCLOSE, RESERR.

C RETURN J

17

Program Listing for Module PCGIRP

SUBROUTINE PCGIRP(MXITER.HCLOSE,RESERR.NUI.IN.IOUT.IWRT) 1
C 2
C VERSION 1001 25JUN1985 PCGIRP 3
C 4
w ** ** J

C READ DATA FOR PCG 6

C 8
C SPECIFICATIONS: 9

__ _______________ _ _ _ _ ___ ._____._._____ i n ___ ____ _ _______ _ _ ^u

DIMENSION NUI(9) 11

C 13
Cl READ HCLOSE. RESERR. IWRT 14

READ(IN.1) HCLOSE.RESERR.IWRT 15
1 FORMAT(2F10.0.110) 16

DO 2 1=1.9 17
2 NU1(I)=0 18

IF(IWRT.GE.2) READ(IN.3) (NUI(I).1=1.9) 19
3 FORMAT(914) 20

C 21
C2 PRINT DATA VALUES JUST READ 22

WRITE(IOUT,100) 23
100 FORMAT(1HO.///55X.'SOLUTION BY PRECONDITIONED CONGUGATE GRADIENT ' 24

1/55X.45('-')) 25
WRITE(IOUT,115) MXITER 26

115 FORMAT(1H0.47X.'MAXIMUM ITERATIONS ALLOWED FOR CLOSURE ='.I9) 27
WRITE(IOUT.125) HCLOSE 28

125 FORMAT(1H .52X.'HEAD CHANGE CRITERION FOR CLOSURE =',E15.5) 29
WRITE(IOUT.120) RESERR 30

120 FORMAT(1H ,41X.'MAXIMUM ALLOWABLE RESIDUAL ERROR FOR CLOSURE ='. 31
1E15.5) 32

1000 RETURN 33
END 34

List of Variables for Module PCGIRP

Variable Range Definition

HCLOSE Module Head change criteria for convergence.

IN Package Primary unit number from which input for this package will
be read.

IOUT Global Primary unit number for all printed output. IOUT=6.

IWRT Package Flag indicating the amount of output desired.

18

MXITER Package Maximum total number of iterations allowed.

NU1 Package An array holding the location of three nodes for which head
values are printed at each iteration, if IWRT=2.

RESERR Module Residual error criteria for convergence.

PCG1AP

Narrative for Module PCG1AP

Module PCG1AP performs one or more iterations of the preconditioned
conjugate gradient (PCG) method. To save computation time, all arrays are
declared one dimensional. The one-dimensional indexes are calculated from the
layer, row, and column indexes normally used to access the arrays in three
dimensions. Computation time is saved because calculations are not repeated
for identical indexes as would be done by internal FORTRAN addressing routines
if three-dimensional subscripts were used.

Module PCG1AP has several important steps. First there are several ini
tialization steps. These are followed by several repeatable steps which are
passed through once for each value of the iteration index v in equations (9)
through (13).

The first initialization step is setting XX, MHD, DD, BB, ZZ, XXS, and YQ
equal to KNEW, 1-IBOUND, -CR, -CC, -CV, -HCOF, and -RHS from the main program.
Another initialization step is the calculation of arrays F2 and G2. These
arrays store useful values used when calculating the vector K~^rv in equations
(9) and (12). These values are stored so that they do not have to be
recalculated for each evaluation of K~^rv, v=l,2,... . F2 and G2 are calcu
lated in the FORTRAN DO loops, "do through 51" for NUM4=NPCOND=1,2,3 and "do
through 54" for NPCOND=4,5.

The first repeatable step, in the "do through 100" DO loop, is the calcu
lation of Apv , which is put into array DT, from pv, which is in array E2. The
quantity (pv »Apv) is also calculated and placed into variable SPP. These
calculations occur in the "do through 3" DO loop.

Next, av , called variable Al in the module, is calculated using the value
just calculated for SPP=(pv,Apv) and a previously calculated value for
SRP=(rv,K~^rv). At this point in the program, equation (9) has been completed
and equations (10)-(13) still remain to be evaluated.

Now equations (10) and (11) are evaluated in the "do through 4" DO loop.
New values for x and r, xv+i and rv+l» replace old values in the arrays XX and
VV respectively. Apv from a previous step located in array DT is used, along
with pv from array E2, and av in variable Al. At this point, based on the
latest results for *v+i and residual error vector rv+i» the program may exit
the v iteration loop as shown in figure 3, and go to statement 201.

19

If no exit has occured, the program proceeds and calculates K rv+ i and
places it into array DT, which for the time being is no longer needed to hold
Apv . At the same time (rv+ i,K~ 1 rv+ i) is calculated and placed into the
variable SPR after putting the old value (rv.K~^rv) into variable SPRS. These
calculations are done in the "do through 10" and "do through 11" DO loops for
NPCOND=1,2,3 , in the "do through 63" DO loop for NPCOND=4, and in the "do
through 651" and "do through 652" DO loops for NPCOND=5.

In the next step, Bv in equation (12) is calculated as SPR/SPRS and
placed in the variable B6.

In the final repeatable step, pv+i of equation (13) is evaluated in the
"do through 5" DO loop. Array DT containing K~-'-rv+ i from a previous step is
used as is variable B6 containing Bv , and array E2 containing pv . At this
point the end of the "do through 100" DO loop occurs, so the first repeatable
step is again processed and the v iteration of equations (9) through (13)
continues.

The ITER=1 iteration of the "do through 100" DO loop, with index
ITER=1,I300, is essentially a null iteration in the program and only sets up
initial values for x, r, and p: x^, rj_, and pj_. The ITER=2 iteration corre
sponds to v=l in equations (9) through (13), ITER=3 corresponds to v=2, and so
on, so that ITER=v+l. Since v=ITER-l, the upper limit, vmax, for the index v
in equations (9) through (13) and (14) is 1300-1.

For ITYP=0, ITER=v+l has an upper limit 1300 of MXITER+1 (table 1). The
index KITER in the main program, denoted by u in equation (14), does not
iterate and has the value 1. Thus the finite difference equations are formu
lated only once per time step, and A and q in equation (7) are constant. This
situation is appropriate for the solution of linear problems (LAYCON=0, river,
drain, or evapotranspiration packages are not being used). It also gives the
solution of equation (8) for non-linear problems as discussed previously. This
latter situation will give a poor solution to the overall volumetric budget as
calculated by the module BAS10T because this module (and others) assumes
equation (7), not equation (8) is being solved. This poor budget result and
other faulty flow rate values do not indicate that the solution obtained is in
error. They arise because budget and flow rate calculations appropriate to
equation (7) are being applied to equation (8).

For ITYP=1, 1300 is set to MXITER+1. For ITYP^.2, 1300 is set to ITYP. Thus
for ITYP=2, only one iteration of equations (9) through (13) occurs and index
v has the single value 1 in equations (9) through (13) and (14). For ITYP^l,
the index u in equation (14), also denoted by KITER in the main program and in
the module PCG1AP, has values 1,2,...,urn. The upper limit for u=KITER, urn, as
set in the main program, is MXITER.

ITYP^.1 solutions are for non-linear problems and solve equation (7), so
that budget and flow quantities are calculated correctly. ITYP=1 is for non
linear problems with weakly non-linear conditions. ITYP=2 is for non-linear
problems with strongly non-linear conditions.

For each value of the time index m, iteration is terminated when equation
(7), or (8) when used, is approximately satisfied according to some indication

20

Table 1. ITYP control of v and u iterations.

ITYP use u values I300=vmax+l 'max

0

1

2

3

4

linear problems

or equation (8) .

weakly nonlinear

strongly nonlinear

strongly nonlinear

strongly nonlinear

1

1, . . . ,um

1 , . . . , um

1, . . . ,um

MXITER+1

MXITER+1

ITYP=2

ITYP=3

ITYP=4

MXITER

MXITER

ITYP-1=1

ITYP-1=2

ITYP 1~3

decreasing
nonlinearity

of solution accuracy. Two basic criteria for iteration termination are used.
Criteria one causes iteration to terminate when the change in head from one
iteration to the next is small by some measure. Criteria two causes iteration
to terminate when the residual error vector r=q-Ah becomes small. Note that
neither criteria actually uses a measure of the true error of the approximate
solution hsmm to equation (7), since the true solution hm cannot be found. The
second criteria for iteration termination, however, actually does consider the
true value of the residual error vector r=q-Ah which is available.

For criteria 1, iteration termination with ITYP^.1, termination occurs when
the maximum absolute component of the vector dh^=hu+^ l m~nu i m ^ s less than
ERR=HCLOSE. When ITYP=0, for which u=l, termination occurs when the sum of the
maximium absolute components of the vectors dh^=h^
- h- m is less than ERR=HCLOSE.

v
m an<^ vm

For criteria 2, iteration termination with ITYP2.1, termination occurs when
the maximum absolute component of the residual error vector
r=q(hu>1 m)-A(hu>1 m)hu>1 m is less than XX10=RESERR. For ITYP=0, r=q-Ah1>vm is
used.

21

F
l
o
w

Ch
ar
t

fo
r

M
o
d
u
l
e

P
C
G
1
A
P

ro

ro

RE
NT

ER
 P

C
G

IA
PJ

^ r
S

E
T

 I
C

N
V

G
=0

.
F

 N
E

W
 T

M
E

 S
T

E
P

.
S

E
T

 M
C

N
T

-0
.

S
E

T
 A

R
R

A
Y

S
 X

X
.

M
H

D
.

D
D

.
B

B
.

Z
Z

.
X

X
S

.
A

N
D

 Y
Q

.
E

Q
U

A
C

 T
O

 H
N

E
W

.
1H

B
O

U
N

D
,

-C
R

.
-C

C
.

-C
V

.
-H

C
O

F
.

A
N

D

-R
H

S
 F

R
O

M
 T

H
E

 M
A

IN

P
R

O
G

R
A

M
.

C
A

L
C

U
L

A
T

E
 A

R
R

A
Y

S

F
2

A
N

D
 G

2
.

S
E

T
 I

F
L
A

G
=

0
.

1
f

S
E

T
 I

3
0
0
=

M
X

IT
E

R
+

1

F
O

R

IT
Y

P
=

0.
1.

S

E
T

13

00
 I

T
Y

P
 F

O
R

 I
T

Y
P

i2
.

1
r

S
E

T
 I

T
E

R
=0

1
r

S
E

T

IT
E

R
=I

T
E

R
+1

A

N
D

 M
C

N
T

=
M

C
N

T
+

1
.

C
A

L
C

U
L
A

T
E

 A
1
.

X
X

,
A

N
D

 V
V

U

S
IN

G

E
Q

U
A

T
IO

N
S

 (
9

)
-

(1
1
).

 W
H

E
R

E
 I

T
E

R
=

v+
1.

F

O
R

IW

R
T

=2
,

P
R

IN
T

 O
U

T
 C

O
N

V
E

R
G

E
N

C
E

 W
A

T
C

H
IN

G
 O

U
T

P
U

T
.

V
r

/

(E
R

5+
E

R
5S

)<
 E

R
R

 ?

\

Y
E

S
V

S

R
Z

<
X

X
10

?

/

N
O

 ^

(
 M

C
N

T
^M

N
O

1

r v
M

-r
rr

r>

n
 \

'
"-

^

r
|

C
A

L
C

U
L

A
T

E

E
2

U
S

IN
G

 E
Q

U
A

T
IO

N
S

 C
12

)
-

C
13

).

|

r
i

 i

rj
°

/

\4

-1

f
F

O
R

IT

Y
P

=0

\

 -

 t

 /

S
E

T

IC
N

V
G

=
1

.
/O

R

IT
Y

\

M
C

N
T

>

N
O

^P
=0

\

Y
E

S

M
X

IT
E

R
 ?

/

4

c

f

C
A

L
C

U
L

A
T

E
 D

X
M

A
X

|

1
r

1
r

>E
T

IF
LA

G
=1

/

IT
Y

P
 >

1

A
N

D
 C

D
X

M
A

X
 <

 E
R

R

\

Y
E

S
Y

O

R
 S

R
Z

1
^X

X
1
0
)

?
/

N
O

i
Y

E
S

/

IC
N

V
G

=

\

IF
LA

(

N
O

 i

r 0
A

N
D

\

3
*
1

/

t

P
R

IN
T

M

C
N

T
.

K
S

T
P

.
K

P
E

R

|

i
r

F
O

R

IW

R
T

^I
,

P
R

IN
T

 E
R

5
A

N
D

:
S

R
Z

A

N
D

 S
U

M
R

Z
 F

O
R

IT

Y
P

=0
,

O
R

 S
R

Z
1

A
N

D
 S

U
M

R
Z

 1
F

O
R

 I
T

Y
P

 >
 0

.

*
t

C

R
E

T
U

R
N

J

1
E

T
IC

N
V

G
=1

|

Program Listing for Module PCG1AP

SUBROUTINE PCG1AP(XX,MHD,DD,BB,ZZ,XXSP,YQ,XXV,XXS,DT,E2,F2,G2,W, 1
lE22,D2S,NUl,NUM4,ITYP,KITER,ERR,XX10,ICNVG,MXITER,NCOL,NROW,NLAYf 2
2IOUT,IWRT,NODES,NOD,KSTP.KPER.MCNT.KSTPS.KPERS,IFLAG) 3

C *** 4
C ******** VERSION 1008 19 FEB 1987 PCG1AP ** 5
C ******** L. K. KUIPER ***************** 6
C *** 7

IMPLICIT REAL*8 (A-H.O-Z) 8
REAL*4 DD(NODES),BB(NODES),ZZ(NODES),XXS(NODES),YQ(NODES), 9
1ERR,XX10,XXSP(NODES) 10
2.DT(NODES),W(NODES),E2(NODES),F2(NODES),G2(NODES) 11
3.E22(NODES),D2S(NOD) 12

DIMENSION XX(NODES),MHD(NODES),NU1(9),XXV(NODES) 13
IFLAG=0 14
ICNVG=0 15
IF((KPER.NE.KPERS).OR.(KSTP.NE.KSTPS)) MCNT=0 16
KPERS=KPER 17
KSTPS=KSTP 18
NI10=NCOL 19
NJ10=NROW 20
NK10=NLAY 21
NI11=NI10+1 22
NJ11=NJ10+1 23
NK11=NK10+1 24
NIJ10=NI10*NJ10 25
N320=NLJ10*NK10 26
NW1=NU1(1)+NI10*(NU1(2)-1)+NIJ10*(NU1(3)-1) 27
NW2=NU1(4)+NI10*(NU1(5)-1)+NIJ10*(NU1(6)-1) 28
NW3=NU1(7)+NI10*(NU1(8)-1)+NIJ10*(NU1(9)-1) 29
IWR1+IWRT
IF((IWR1.LT.2).OR.(KSTP*KITER.GT.1)) GO TO 901 31
WRITE(IOUT,5007) 32
WRITE(IOUT,5072) NU1(1),NU1(4),NU1(7) 33
WRITE(IOUT,5073) NU1(2),NU1(5),NU1(8) 34
WRITE(IOUT,5074) NU1(3),NU1(6),NU1(9) 35

901 CONTINUE 36
DO 909 IJ=1,N320 37
XXV(IJ)=XX(IJ) 38
XXS(IJ)=-XXSP(IJ) 39
MHD(IJ)=1-MHD(IJ) 40
DD(IJ)=-DD(IJ) 41
BB(IJ)=-BB(IJ) 42
ZZ(IJ)=-ZZ(IJ) 43

909 YQ(IJ)=-YQ(IJ) 44
DO 91 IJB=1,N320 45
IJ=N320+1-IJB 46
IM1JK=IJ-1 47
IJM1K=IJ-NI10 48
IJKM1=IJ-NIJ10 49
DD(IJ)=DD(IM1JK) 50

23

BB(IJ)=BB(IJM1K) 51
ZZ(IJ)=ZZ(IJKM1) 52

91 CONTINUE 53
DO 92 K=1.NK10 54
DO 92 J=1.NJ10 55
DO 92 I=1.NI10 56
IJ=I+NI10*(J-D+NIJ10*(K-1) 57
IF(I.EQ.l) DD(IJ)=0 58
IF(J.EQ.l) BB(IJ)=0 59
IF(K.EQ.l) ZZ(IJ)=0 60

92 CONTINUE 61
DO 1 IJ=1,N320 62
DT(IJ)=0 63
E2(IJ)=0 64
F2(IJ)=0 65
G2(IJ)=0 66
E22(IJ)=0 67

1 W(IJ)=0 68
NN=NROW+NCOL 69
DO 2 IJ=1.NN 70

2 D2S(IJ)=0 71
DO 16 IJ=1,N320 72
E2(IJ)=XX(IJ) 73
IF(MHD(IJ).GE.l) GO TO 16 74
W(IJ)=YQ(IJ) 75

16 CONTINUE 76
IF(NUM4.GE.4) GO TO 74 77

71 CONTINUE 78
Yl=0 79
Zl=0 80
DO 51 IJ=1,N320 81
IF(.NOT.(MHD(IJ).GE.l)) GO TO 777 82
Yl=0 83
Zl=0 84
D2S(NI10+1)=0 85
DO 94 I=1.NI10 86

94 D2S(I)=D2S(I+1) 87
GO TO 51 88

777 CONTINUE 89
IM1JK=IJ-1 90
IJM1K=IJ-NI10 91
IJKM1=IJ-NIJ10 92
IDM=1 93
IBM=1 94
IZM=1 95
IF(IMUK.LT.l) IDM=0 96
IF(IJMlK.LT.l) IBM=0 97
IF(IJKMl.LT.l) IZM=0 98
IP1JK=IJ+1 99
IJP1K=IJ+NI10 100
IJKP1=IJ+NIJ10 101
IDP=1 102
IBP=1 103

24

IZP=1 104
IF(IP1JK.GT.N320) IDP=0 . 105
IF(IJP1K.GT.N320) IBP=0 106
IF(IJKP1.GT.N320) IZP=0 107
X=DD(IJ) 108
Y=BB(IJ) 109
Z=ZZ(IJ) 110
EEIJ=-(X+Y+Z+IDP*DD(IP1JK) +IBP*BB(IJP1K)+IZP*ZZ(IJKPl))+XXS(IJ) 111
IF(MHD(IMUK)*IDM.GE.l) X=0 112
IF(MHD(IJM1K)*IBM.GE 1) Y=0 113
IF(MHD(IJKMl)*IZM.GE.l) Z=0 114
Y1Z1=0 115
XP=X 116
YP=Y 117
F2X=F2(IM1JK)*IDM 118
F2Y=F2(IJM1K)*IBM 119
F2Z=F2(IJKM1)*IZM 120
IF(NUM4.EQ.l) GO TO 20 121
JP1=IJ-NI10+1 122
KP1=IJ-NIJ10+1 123
IJMMN=IJ-(NIJ10-NI10) 124
UP1=1 125
IKP1=1 126
IMMN=1 127
IF(JPl.LT.l) IJP1=0 128
IF(KPl.LT.l) IKP1=0 129
IF(IJMMN.LT.l) IMMN=0 130
WY1=0 131
WZ1=0 132
IF(F2Y.NE.O.O) WY1=Y/F2Y 133
IF(F2Z.NE.O.O) WZ1=Z/F2Z 134
XP=X-(WY1*Y1+WZ1*Z1) 135
G2(IJ)=XP 136
YP=Y-WZ1*D2S(1) 137
E22(IJ)=YP 138
Y1=-WY1*G2(JP1)*IJP1 139
Z1=-WZ1*G2(KP1)*IKP1 140
ZB=-WZ1*E22(IJMMN)*IMMN 141
D2S(NI10+1)=ZB 142
DO 93 I=1.NI10 143

93 D2S(I)=D2S(I+1) 144
F21=F2(JP1)*IJP1 145
F22=F2(KP1)*IKP1 146
F23=F2(IJMMN)*IMMN 147
Pl=0 148
P2=0 149
P3=0 150
IF(F21.NE.O.O) P1=Y1*Y1/F21 151
IF(F22.NE.O.O) P2=Z1*Z1/F22 152
IF(F23.NE.O.O) P3=ZB*ZB/F23 153
Y1Z1=P1+P2+P3 154

20 CONTINUE 155
XF=0 156

25

YF=0 157
ZF=0 158
IF(F2X.NE.O.O) XF=XP*XP/F2X 159
IF(F2Y.NE.O.O) YF=YP*YP/F2Y 160
IF(F2Z.NE.O.O) ZF=Z*Z/F2Z 161
F2dJ)=EEIJ-(XF+YF+ZF+YlZl) 162

51 CONTINUE 163
GO TO 80 164

74 CONTINUE 165
DO 54 IJ=1.N320 166
IF(MHD(IJ).GE.l) GO TO 54 167
IP1JK=IJ+1 168
IJP1K=IJ+NI10 169
IJKP1=IJ+NIJ10 170
IDP=1 171
IBP=1 172
IZP=1 173
IFUP1JK.GT.N320) IDP=0 174
IFCUP1K.GT.N320) IBP=0 175
IF(IJKP1.GT.N320) IZP=0 176
EEIJ= (-(DDdJ)+BBdJ)+ZZdJ)+IDP*DDdPUK) 177

!+IBP*BBdJPlK)+IZP*ZZdJKPl))+XXSdJ)) 178
IF(NUM4.EQ.4) GO TO 539 179
X=DD(IJ) 180
F2X=F2(IJ-1) 181
XF=0 182
IF(F2X.NE.O.O) XF=X*X/F2X 183
F2(IJ)=EEIJ-XF 184
GO TO 54 185

539 F2(IJ)=EEIJ 186
54 CONTINUE 187
80 CONTINUE 188

SPR=1.D-50 189
ICNT=-1 190
ER5S=1.D40 191
I300=MXITER+1 192
IFdTYP.GE.2) I300=ITYP 193
DO 100 ITER=1.I300 194
ICNT=ICNT+1 195
IF(ITER*KITER*KSTP*KPER.EQ.l) MCNT=0 196
IF(ITER.NE.l) MCNT=MCNT+1 197
SPP=0 198
DO 3 IJ=1.N320 199
IF(MHD(IJ).GE.l) GO TO 3 200
IP1JK=IJ+1 201
IJP1K=IJ+NI10 202
IJKP1=IJ+NIJ10 203
IDP=1 204
IBP=1 205
IZP=1 206
IF(IP1JK.GT.N320) IDP=0 207
IF(IJP1K.GT.N320) IBP=0 208
IF(IJKP1.GT.N320) IZP=0 209

26

IJM1K=IJ-NI10 210
LJKM1=IJ-NIJ10 211
DDIJ=DD(IJ) 212
DDIP1=DD(IP1JK)*IDP 213
BBIJ=BB(IJ) 214
BBIJP=BB(IJP1K)*IBP 215
ZZIJ=ZZ(IJ) 216
ZZIJK=ZZ(IJKPl)*IZP 217
E2IJ=E2(IJ) 218
DTIJ=(-(DDIJ+DDIP1+BBIJ+BBIJP+ZZIJ+ZZIJK)+XXS(IJ))*E2IJ 219
1+DDIJ*E2(IJ-1)+DDIP1*E2(IP1JK) 220
2+BBIJ*E2(IJMlK)+BBIJP*E2(IJPlK) 221
3+ZZIJ*E2(IJKMl)+ZZIJK*E2(IJKPl) 222
DT(IJ)=DTIJ 223
SPP=SPP+E2IJ*DTLJ 224

3 CONTINUE 225
A1=SPR/(SPP+1.D-50) 226
A2=A1 227
IF(ITER.GT.l) GO TO 35 228
Al=0 229
A2=l. 230

35 SRZ=0 231
SUMRZ=0 232
ER5=0 233
DO 4 K=1,NK10 234
DO 4 J=1,NJ10 235
DO 4 I=1,NI10 236
IJ=I+NI10*(J-1)+NIJ10*(K-1) 237
IF(MHD(IJ).GE.l) GO TO 4 238
DX=A1*E2(IJ) 239
IF(MHD(IJ).EQ.2) DX=0 240
X=XX(IJ)+DX 241
XX(IJ)=X 242
ADX=DABS(DX) 243
IF(ADX.LT.ERS) GO TO 111 244
IMX=I 245
JMX=J 246
KMX=K 247
XXPMX=X 248
ER5=ADX 249

111 CONTINUE 250
X=W(IJ)-A2*DT(IJ) 251
SUMRZ=SUMRZ+X 252
DSR=DABS(X) 253
IF(DSR.GT.SRZ) SRZ=DSR 254
W(IJ)=X 255

4 CONTINUE 256
IF(ITER.EQ.l) SRZ1=SRZ 257
IF(ITER.EQ.l) SUMRZ1=SUMRZ 258
IF((IWRl.GE.2).AND.(ITER.NE.l)) WRITE(IOUT.1000) MCNT.ICNT, IMX. 259

1JMX.KMX,XXPMX,ER5,SRZ,XX(NW1).XX(NW2).XX(NW3) 260
X5=.5 261
IF(ITER.LE.2) X5=1.0 262

27

IF(((ER5+ER5S)*X5).LT.ERR) GO TO 201 263
IF(SRZ.LT.XXIO) GO TO 201 264
IF(MCNT.EQ.MXITER) GO TO 202 265
ER5S=ER5 266
SPRS=SPR 267
SPR=0 268
GOTO (81,81.81,83,85),NUM4 269

81 CONTINUE 270
DO 10 IJ=1,N320 271
IF(MHD(IJ).GE.l) GO TO 10 272
IJM1K=IJ-NI10 273
IJKM1=IJ-NIJ10 274
B6=0 275
Z6=0 276
DDIJ=DD(IJ) 277
BBIJ=BB(IJ) 278
IF(NUM4.EQ.l) GO TO 21 279
DDIJ=G2(IJ) 280
BBIJ=E22(IJ) 281
JP1=IJ-NI10+1 282
KP1=IJ-NIJ10+1 283
IJMMN=IJ-(NIJ10-NI10) 284
B6=0 285
Z6=0 286
F2J=F2(IJM1K) 287
F2K=F2(IJKM1) 288
IF(F2J.NE.O.DO) B6=DT(JP1)*G2(JP1)/F2J 289
IF(F2K.NE.O.DO) Z6=(DT(KP1)*G2(KP1)+DT(IJMMN)*E22(IJMMN))/F2K 290

21 CONTINUE 291
DT(IJ) = (W(IJ)-DDIJ*DT(IJ-1)-BBIJ*(DT(IJM1K)-B6) 292
1-ZZ(IJ)*(DT(IJKM1)-Z6))/F2(IJ) 293

10 CONTINUE 294
DO 11 IJB=1,N320 295
IJ=N320+1-IJB 296
IF(MHD(IJ).GE.l) GO TO 11 297
IP1JK=IJ+1 298
IJP1K=IJ+NI10 299
IJKP1=IJ+NIJ10 300
IDP=1 301
IBP=1 302
IZP=1 303
IF(IP1JK.GT.N320) IDP=0 304
IF(IJP1K.GT.N320) IBP=0 305
IF(IJKP1.GT.N320) IZP=0 306
XAD=0 307
DDD=DD(IP1JK) 308
BBB=BB(IJP1K) 309
IF(NUMA.EQ.l) GO TO 22 310
JM1=U+NI10-1 311
KM1=IJ+NIJ10-1 312
IJPMN=IJ+(NIJ10-NI10) 313
IJM1=1 314
IKM1=1 315

28

IPMN=1 316
IF(JM1.GT.N320) UM1=0 317
IF(KM1.GT.N320) IKM1=0 318
IF(IJPMN.GT.N320) IPMN=0 319
IM1JK=IJ-1 320
UM1K=IJ-NI10 321
IDM=1 322
IBM=1 323
IF(IMUK.LT.l) IDM=0 324
IF(UMlK.LT.l) IBM=0 325
DDD=G2(IPIJK) 326
BBB=E22(IJPIK) 327
XAD1=0 328
XAD2=0 329
F2I=F2(IM1JK)*IDM 330
F2J=F2(IJM1K)*IBM 331
IF(F2I.NE.O.DO) XAD1=-(E22(JM1)*IJM1*DT(JM1)+ZZ(KM1)*IKM1* 332

1DT(KM1))*G2(IJ)/F2I 333
IF(F2J.NE.O.DO) XAD2=-ZZ(IJPMN)*IPMN*E22(IJ)*DT(IJPMN)/F2J 334
XAD=XAD1+XAD2 335

22 CONTINUE 336
DTIJ=DT(IJ)-(DDD*IDP*DT(IPIJK)+BBB*IBP*DT(IJPIK)+ZZ(IJKPl) 337

1*IZP*DT(IJKPl)+XAD)/F2(IJ) 338
DT(IJ)=DTIJ 339
SPR=SPR+DTU*W(IJ) 340

11 CONTINUE 341
GO TO 90 342

83 CONTINUE 343
DO 63 IJ=1,N320 344
IF(MHD(IJ).GE.l) GO TO 63 345
F2IJ=F2(IJ) 346
WIJ=W(IJ) 347
DTIJ=WIJ/F2IJ 348
DT(IJ)=DTIJ 349
SPR=SPR+DTIJ*WIJ 350

63 CONTINUE 351
GO TO 90 352

85 CONTINUE 353
DO 651 IJ=1,N320 354
IF(MHD(IJ).GE.l) GO TO 651 355
DT(IJ) = (W(IJ)-DD(IJ)*DT(IJ-1))/F2(IJ) 356

651 CONTINUE 357
DO 652 IJB=1,N320 358
IJ=N320+1-IJB 359
IF(MHD(IJ).GE.l) GO TO 652 360
IP1JK=IJ+1 361
DTIJ=DT(IJ)-DD(IP1JK)*DT(IP1JK)/F2(IJ) 362
DT(IJ)=DTIJ 363
SPR=SPR+DTU*WdJ) 364

652 CONTINUE 365
90 CONTINUE 366

B6=SPR/SPRS 367
IF(ITER.EQ.l) B6=0 368

29

DO 5 IJ=1,N320 369
E2IJ=DT(IJ)+B6*E2(IJ) 370
IF(MHD(IJ).GE.l) E2IJ=0 371
E2(IJ)=E2IJ 372

5 CONTINUE 373
100 CONTINUE 374

GO TO 202 375
201 IF(ITYP.EQ.O) ICNVG=1 376
202 CONTINUE 377

IF((MCNT.GE.MXITER).OR.(ITYP.EQ.O)) IFLAG=1 378
DXMAX=0 379
DO 19 IJ=1,N320 380
XXVIJ=XXV(IJ) 381
DX=DABS(XX(IJ)-XXVIJ) 382
IF(DX.GT.DXMAX) DXMAX=DX 383
IP1JK=IJ+1 384
IJP1K=IJ+NI10 385
IJKP1=IJ+NIJ10 386
DD(IJ)=DD(IP1JK) 387
BB(IJ)=BB(LJP1K) 388
ZZ(IJ)=ZZ(IJKP1) 389

19 CONTINUE 390
IF((ITYP.GE.l).AND.((DXMAX.LE.ERR).OR.(SRZI.LT.XXIO))) ICNVG=1 391
DO 919 IJ=1,N320 392
MHD(IJ)=1-MHD(IJ) 393
DD(IJ)=-DD(IJ) 394
BB(IJ)=-BB(IJ) 395
ZZ(IJ)=-ZZ(IJ) 396

919 YQ(IJ)=-YQ(IJ) 397
DO 991 IJ=1,N320 398

991 XXSP(IJ)=-XXS(IJ) 399
IF((ICNVG.EQ.O).AND.(IFLAG.NE.l)) GO TO 600 400
IF(KSTP.EQ.l) WRITE(IOUT,500) 401
S1=SRZ 402
S2=SUMRZ 403
IF(ITYP.EQ.O) GO TO 518 404
S1=SRZ1 405
S2=SUMRZ1 406

518 CONTINUE 407
WRITE(IOUT,501) MCNT.KSTP.KPER 408
IF(IWRT.GE.l) WRITE(IOUT,5075) ER5.S1.S2 409

500 FORMAT(1HO) 410
501 FORMAT(IX,15,' ITERATIONS FOR TIME STEP 1 ,14,' IN STRESS PERIOD 1 , 411

113) 412
1000 FORMAT(' ',2I3,3I4,6D18.7) 413
5007 FORMAT('0',56X,'WATCHING CONVERGENCE'//25X.'THE MAXIMUM CHANGE IN 414

1HEAD OCCURED AT COLUMN J, ROW I, LAYER K.' 415
2 /25X,'MAXIMUM RESIDU 416
3AL ERROR = THE MAXIMUM OVER ALL THE GRID ELEMENTS OF THE'/25X,»DI 417
4FFERENCE BETWEEN THE WATER FLOW RATE INTO AND OUT OF EACH GRID ELE 418
5MENT.') 419

5074 FORMAT(7X,' J I K',5X,'HEAD AT J.I.K',5X,'HEAD AT J.I.K',13X 420
1,'ERROR',3(12X,»K=',I4)) 421

30

5072 FORMAT('0'.72X.3(4X.'HEAD AT J='.I4)) 422
5073 FORMAT(46X.'CHANGE IN'.6X.'MAX RESIDUAL 1 .3(12X.'!='.14)) 423
5075 FORMAT(424

I'O'.'MAXIMUM CHANGE IN HEAD BETWEEN LAST 2 ITERATIONS ='.D11.3/ 425
2' MAXIMUM RESIDUAL ERROR (L**3/T) FOR GRID ELEMENTS NOT HAVING FIX 426
3ED HYDRAULIC HEAD ='.D11.3.' TOTAL ='.D11.3) 427

600 RETURN 428
END 429

List of Variables for Module PCG1AP

Variable Range

Al Module

B6 Module

BB Module

DD Module

DT Module

DXMAX Module

E2 Module

ER5 Module

ER5S

ERR

F2

G2

1300

ICNVG

IFLAG

Module

Module

Module

Module

Module

Global

Global

Definition

ay in equation (9) .

Bv in equation (12) .

-B in equation (2) .

-D in equation (2) .

Work space array used when calculating equations (9)
through (13).

for criteria 1 ITYP^.1 iteration termination.

Vector pv in equations (9) through (13) .

for criteria 1 ITYP=0 iteration termination. Called
maximum absolute head change when printed out.

for criteria 1 ITYP=0 iteration termination.

HCLOSE in module PCG1RP. The head change criteria for
convergence.

Storage array used when calculating K~^-rv in equations (9)
and (12).

Same as above.

Maximum value for iteration counter ITER. Equal to vmax+l
of figure 3.

This flag is set to one when iteration has met the condi
tions for iteration termination.

This flag is set to one when exit is desired from the u
iteration loop in the main program, due either to
MCNT^MXITER or ITYP=0.

31

IOUT Global Primary unit number for all printed output. IOUT=6.

ITER Module Iteration counter for v in equations (9) through (13),
ITER=v+l.

Flag indicating the type of problem being solved.

Flag indicating the amount of output desired.

Iteration counter u in equation (14). Reset at the start
of each time step.

Stress period counter.

Stored value of KPER.

Time step counter. Reset at the start of each stress
period.

Stored value of KSTP.

Iteration number counter that counts the total number of
iterations that are used as indices u and v increase in
equations (9) through (13) and (14).

An array to indicate when a node is active and if it has a
fixed head. MHD is equal to 1-IBOUND from the main
program.

Maximum total number of iterations allowed.

Number of columns in the grid.

Number of layers in the grid.

Number of cells (nodes) in the finite difference grid.

Number of rows in the grid.

An array holding the location of three nodes for which
head values are printed at each iteration, if IWRT=2.

NUM4 Module Called NPCOND in module PCG1AL. Has values of 1 to 5 for
the 5 preconditioning types.

SRZ Module Maximum absolute component of the residual error vector r
for ITYP=0 criteria 2 iteration termination. Called maxi
mum absolute residual error when printed out.

SRZ1 Module Maximum absolute component of the residual error vector r
for ITYP^.1 criteria 2 iteration termination. Called maxi
mum absolute residual error when printed out.

ITYP

IWRT

KITER

KPER

KPERS

KSTP

KSTPS

MCNT

MHD

MXITER

NCOL

NLAY

NODES

NROW

NU1

Package

Package

Global

Global

Module

Global

Module

Module

Module

Package

Global

Global

Global

Global

Package

32

SUMRZ Module Total residual error, ITYP=0.

SUMRZ1 Module Total residual error, ITYP^l.

W Module Error vector rv in equations (9) through (13).

XX10 Module Called RESERR in module PCG1RP. The residual error
criteria for convergence.

XX Module Head vector h. Vector xv in equations (9) through (13).
KNEW in the main program.

XXS Module -HCOF in equation (1).

XXV Module Stored XX array. Used to get DXMAX.

YQ Module -RHS in equation (1).

ZZ Module -Z in equation (2).

33

REFERENCES

Hageman, L. A., and Young, D. M., 1981, Applied Iterative Methods, New York,
Academic Press, 386 p.

Kershaw, D. S., 1978, The incomplete Choleski-conjugate gradient method for
the iterative solution of linear equations: Journal of Computational
Physics, v. 26, p. 43-65.

Kuiper, L. K., 1981, A comparision of the incomplete Choleski-conjugate
gradient method with the strongly implicit method as applied to the
solution of two-dimensional groundwater flow equations: Water Resources
Research, v. 17, no. 4, p. 1082.

Kuiper, L. K., 1987, A comparison of iterative methods as applied to the
solution of the nonlinear three-dimensional groundwater flow equation:
Society for Industrial and Applied Mathematics Journal on Scientific and
Statistical Computing, v. 8, no. 4, p. 521-528.

McDonald, M. G., and Harbaugh, A. W., 1984, A modular three-dimensional finite
difference ground-water flow model: U.S. Geological Survey Open-File
Report 83-875, 528 p.

Van Der Vorst, H. A., 1982, A vectorizable variant of some ICCG methods:
Society for Industrial and Applied Mathematics Journal on Scientific and
Statistical Computing, v. 3, no. 3, p. 350-356.

34

