
COMPUTER PROGRAMMING OF KRIEGSPIEL

ENDINGS: THE CASE OF KR VERSUS K

A. Bolognesi and P. Ciancarini
Dipartimento di Scienze dell'Informazione, University of Bologna- Italy

{abologne,cianca}@cs.unibo.it, http://www.cs.unibo.iV

Abstract Kriegspiel is a chess variant invented to make chess more similar to real warfare.

In a Kriegspiel game the players have to deal with incomplete information because

they are not informed of their opponent's moves. Each player tries to guess the

position of the opponent's pieces as the game progresses by trying moves that

can be either legal or illegal with respect to the real situation: a referee accepts

the legal moves and rejects the illegal ones. However the latter are most useful

to gain insight into the opponent's position. While in the past this game has been

popular in research centres such as the RAND Institute, currently it is played

mostly over the Internet Chess Club.

The paper describes the rationale and design of a Kriegspiel program to play

the ending for King and Rook versus King. Such a kind of ending has been

theoretically shown to be won for White, however no programs exist that play

the related positions perfectly. We introduce an evaluation function to play these

simple Kriegspiel positions, and evaluate it.

Keywords: Kriegspiel, Eastern rules, Western rules, metaposition

1. Introduction

The game of chess has been widely studied because it is a microcosm that

mirrors decision making in real-world situations. However, a basic limit of

chess as a field for studying decision making is that decisions by players have

nothing to do with uncertainty in the sense in which the term is used in game

theory, since the goal and the best strategy for each player can be computed

easily and completely.

The game of Kriegspiel is a chess variant invented around 1896 to make

chess more similar to real warfare. It involves incomplete information: both

the premises and the consequences of a decision are partially unknown, thus

it is considered a complex game because of the asymmetry in the knowledge

available to the players as the game progresses. In fact, when a player makes

an illegal move, from his failure he can infer data that cannot be inferred by

H. J. Van Den Herik et al. (eds.), Advances in Computer Games

© IFIP International Federation for Information Processing 2004

326 A. Bolognesi, P. Ciancarini

his opponent as well. Thus, in general, during a Kriegspiel game each player

knows what he knows, but he does not know what his opponent knows.

Kriegspiel is a game interesting in severa! ways. First, it is based on the same

rules as chess, but is has a completely different (and not well studied) theory.

It is a game of imperfect informati an, such as Poker. However Kriegspiel has

no stochastic element, which makes it different from Poker. To play Kriegspiel

well we have to use logic and the mathematics of probability.

At the moment there are no programs that play a reasonable Kriegspiel game.

On the Internet Chess Club (ICC) a couple of programs are available, which

are able to play Kriegspiel, however none of these programs is among the best

players (on ICC there are severa! hundreds of Kriegspiel players, and every day

they play hundreds of games).

We recall that a number of papers have studied some aspects of Kriegspiel

or Kriegspiel-like games. Below we provide some instances of related work.

Ferguson (1992, 1995) analyses the endings KBNK and KBBK, respectively.

Ciancarini, DallaLibera, and Maran (1997) describe a rule-based program to

play the KPK ending according to some principles of game theory. Sakuta

and lida (2000) describe a program to salve Kriegspiel-like problems in Shogi

(Japanese Chess). Bud et al. (2001) describe an approach to the design of a

computer player for a subgame of Kriegspiel, called Invisible Chess.

In this paper we explore some issues of the ending KR vs K in Kriegspiel.

We aim to design a program that will be a prototype component of a multi

agent system able to play Kriegspiel. We describe how we have built such a

component, and how we evaluate its behaviour, with the purpose to improve its

playing ability.

This paper has the following structure. In Section 2 we describe the basic

rules of Kriegspiel, including a study of its main variants. In Section 3 we

introduce the theory of the KR vsK ending in Kriegspiel. In Section 4 we

describe aur search algorithm. In Section 5 we describe our evaluation function:

it is specific for this ending, but in aur knowledge it is the first time an evaluation

function for playing Kriegspiel has been defined. In Section 6 we describe how

we use a transposition table to support the search across a tree of metapositions.

Finally, in Section 7 we evaluate aur approach.

2. The Rules

Perhaps the lack of standard rules has been an obstacle to the diffusion of

Kriegspiel as a research subject. In fact, there are severa! different sets of rules,

basically classified into two families as Eastem rules (widespread in UK and

Eastem US) and Westem rules (widespread in Westem US) (Pritschard, 1994;

Li, 1994). The rules given by J.D. Wilkins in Williams (1950) have been used

for years in the RAND Institute. The ICC rules are derived from the RAND

Computer Programming of Kriegspiel Endings: the Case of KR versus K 327

rules. However, ICC managers introduced some variants which make the play

over the Internet slightly more difficult.

A Kriegspiel player tries a move selected

among the set of his pseudo-legal moves, in

cluding possible pawn captures. For instance,

in the Dia gram 1: possible tries for White are

.i.b2, .i.a3, .i.d2, .i.e3, .i.f4, .tg5, .th6,

Wdl, Wd2, We2, Wf2, Wfl, d5, deS, deS.

3

2

The referee, who knows the list of legal

moves for both sides, answers ali tries with

one of the following six messages.

8

7

6

5

4

3

2

1

Diagram 1. Possible tries.

End of game If the list of legal moves is

empty the position is checkmate or

stalemate, and the referee announces

the corresponding finish.

Move accepted If the try is legal, the referee

says "White moved" (or "Yes") and gives no further information. We

denote this situation also as "Silent referee", because he gives no useful

information.

/Ilegal move The try selected by White might be illegal on the referee's board.

a b

For instance, in the position of Diagram 2 (as it is on the referee's board)

White could try J.h6.

c d e g h

The referee says "Ilie gal move" (or "No")

and White infers that either the diagonal to

h6 is obstructed by an enemy piece, or the

Bishop is pinned by a black major piece in al

or bl.

Impossible move The message "Impossible

move" is given when a player tries a

move outside his set of pseudo-legal

moves. In Diagram 2 an impossible

try could be We3.

Diagram 2. The referee 's board.

Check If a move is accepted and gives check,

the referee announces the check and its

direction (row, column, major diago

nal, minor diagonal, Knight). In the

example, the move .td2 gets the answer "Check on major diagonal".

Capture The referee announces ali captures, but he says only on which square

the capture takes place, and says nothing about the capturing or captured

piece. In the example, the move 1t f4 gets the answer "Cap ture on f4".

8

7

6

5

4

3

2

1

328 A. Bolognesi, P. Ciancarini

This list describes the basic messages from the referee. However, in ali

Kriegspiel versions there is a special treatment of positions where captures by

Pawns are possible (We continue numbering of messages).

Are there any? In the original set of rules (Eastern rules) a player could ask

before each move "Are there any? ", intending "Are there any captures

by my Pawns?". The referee answers "No" if no capture is possible,

or "Try!" if one or more captures are available. With RAND rules the

referee announces before each move ali possible pawn captures, naming

the squares where they can take place. In the set of rules which is used

on the Internet Chess Club (Western rules) the referee announces before

each move how many pawn captures are available.

Diagram 3 shows the differences among the different set of rules.

Eastern rules : The referee says: "White to move". White can choose to ask

"Are there any?"; if in the above position White asks the question, the

referee says "Try !"; White then has to try at least o ne cap ture out of three,

namely ab4, cb3, or cd3.

RAND rules : before White moves the referee says to both players "possible

pawn capture on b4". White is not obliged to capture.

Western rules, ICC : before White moves the referee says to both players

"possible one pawn capture". White is not obliged to capture.

a b c d e g h

Diagram 3. Different pawn capture

rules.

If now White moves his Pawn to c4,

Eastern rules : the referee announces:

"Black moves";

RAND rules : the referee announces: "pos

sible pawn captures on a3 and c3";

Western rules, ICC : the referee an

nounces: "possible two pawn cap

tures".

We report these differences for complete

ness, but we also note that they are not impor

tant for endings without Pawns. More impor

tant when dealing with endings is the fact in

the original form of Kriegspiel no 50-move

rule is included; instead on ICC the 50-move

rule is enforced.

As a final remark, we note that there are severa! other forms of Kriegspiel

like games, like Dark Chess, Invisible Chess, Stealth Chess, and others. They

are ali based on some form of invisibility. We plan to re port the features of this

family of games in a future paper.

Computer Programming of Kriegspiel Endings: the Case of KR versus K 329

3. KR vs K in Kriegspiel

The ending KR vs K in chess is won in at most 16 moves starting from

any position. This chess ending is quite easy to study by brute force, because

excluding symmetric positions only 28,000 positions have to be evaluated, as

shown in Clarke (1977).

The ending KR vs K in Kriegspiel is also won. However according to H.A.

Adamson who published some analysis in the magazine Chess Amateur in 1923

and 1926, it can take even 40 moves to give checkmate to Black. More recently,

this ending has been studied by Leoncini and Magari (1980) and Boyce (1981).

The studies proved that this ending is algorithmically won, i.e., White can force

mate against any defense, even the most clairvoyant; there are, instead, severa!

endings (e.g., KP vs K or KBB vs K) which are only probabilistically won, that

is Black has a chance to draw (or, equivalently, if the referee suggests Black the

right move) (cf. Ferguson 1992, 1995; Ciancarini et al. , 1997).

Below we start with developing an algorithm for KRK. Therefore we de

fine the notion metaposition. A metaposition is a position describing a set of

positions: this can be done graphically. In our case we have diagrams with

severa! black Kings, meaning that its position is uncertain. Subsequently we

can evaluate how many KRK metapositions we have to deal with. The number

of metapositions for this ending can be approximated by fixing the position of

white pieces and considering the number ofthe ways to choose n BK's positions

among the remaining positions. If we assume as a worst case for White :ct al

and Wbl , we have 52 possible positions which are not controlled by White.

The possible metapositions are then

L: (52) = 252 - 1
l:Sn :::;52 n

(1)

Diagram 4. White moves and wins

(Adamson, 1923).

For these positions, the reftections of the

BK position with respect to the diagonal al

to h8, as described in Bain (1994), do not de

crease the numerica! complexity of the prob

lem. So we are not able to study this ending

completely by brute force.

Diagram 4 shows a typical ending. This

diagram shows a metaposition: the double

black King means that White is not sure

whether the black King is on a8 or on b8.

Alas, he has to tind the best (most rapid) route

to checkmate.

330

8

7

6

5

4

3

2

a b c d e f g h

Diagram 5. White moves and wins

(Adamson 1923).

1

Diagram 6. The first phase.

1

Diagram 7. The second phase.

A. Bolognesi, P. Ciancarini

White tries 1. Wc7: (1) if the referee says

"N o" then White tries 1. Wa6 or 1. :C: c2 then

mate;

(2) ifthe referee says "Yes" then 2 . .l:!,a1 #.

In Diagram 5, White tries 1. Wc7:

(1) if the referee says "Yes" then the BK is

on a8 and ... Wa7 2 . .l:!,d6Wa8 3 . .l:!,a6#.

(2) if the referee says "No" then White

plays 1. :C: c7 and:

(2a) with a silent referee White identifies

the black King on a8 and the mate is very

simple;

(2b) if the referee says "check" then

2. Wd7:

(2b1) if "No" the BK is on d8 then

2. :c: c 1 We8 3. :c: n Wd8 4. :c: f8#;

(2b2) if "Yes" Black played 1. .. Wb8

then 2. Wd7Wa8 3. Wc6Wb8 4. Wb6Wa8

5. :C:c8#.

A general algorithm for any position, in

which White knows nothing about the BK

whereabouts, is given in Leoncini and Ma

gari (1980). The procedure includes severa!

phases.

In the first phase White has to configure

his own pieces as in Diagram 6.

The second phase consists of looking

for the BK by moves like Wd2, :C: e2, Wd3,

:C: e3, ... , Wd8, .l:!. e8:

if the referee never says "check" then the

BK is in the left-hand halfboard, otherwise

when a check occurs the BK is in the right

hand halfboard, and White's task will be eas

ier to fulfil. We assume the first hypothesis

in the metaposition shown in Dia gram 7.

Interestingly, Kriegspiel metapositions

have been compared by Magari to probabil-

ity waves as in Quantum Physics. According

to such a metaphor, the black King is not a body with a precise position, but

a wave, or a set of possibilities. The white King has to destroy such a wave

entering it and reducing the freedom of the black King.

Computer Programming of Kriegspiel Endings: the Case of KR versus K 331

Diagram 8. How white mates.

In the final position of Diagram 8 White mates with 1:t aS#.

If at any time the referee says "Illegal move", White will find the BK earlier,

and will be able to use his Rook to restrict further the space available to B1ack.

3.1 Exploiting the Referee's Answers

In any KRK ending, when White has to try a move, there are three possible

situations.

1 The referee's answer is 'si lent'. This allows us only to update our refer

ence board cleaning the squares around the WK and along the WR row

and column.

2 The WR can check the BK, in that case the player updates his reference

board and assumes that the BK possible position is on the WR row or

column.

3 A try may be illegal because the WK tries to go in a square which is under

attack or because the WR is going across an occupied square.

Assume we are in the situation shown in the leftmost position in Diagram

9. If White moves J:te3 we distinguish two cases: (1) the referee's answer is

'silent' (second position) or (2) the referee says a check has occurred (third

position). If White moves Wd5 two cases can be outlined too, with a 'silent '

answer or with an 'illegal ' answer. In the rightmost position we show the result

of obtaining the answer 'illegal ' , since the case in which we get a silent answer

is similar to the Rook's one.

332 A. Bolognesi, P Ciancarini

Diagram 9. Analysis of a referee's answers.

4. The Search Algorithm

When drawing out the search algorithm we are first led to a problem caused

by the fact that the move is described only by the referee's answer. This implies

that the evaluation of a move can be made only with respect to the referee's

answers, using some probabilistic reasoning.

Considering for example a situation where the WK is on c2, the white Rook

is on f2, and Black's positions traced in the white player's reference board are

on al, a2, a3, or e3 with a likelihood of 114 each. If the WK moves to bl

and receives an 'Illegal' answer that move will be a good move, decreasing

the uncertainty (leftmost metaposition in Diagram 10), but ifthe move receives

a 'silent' answer he will achieve a state of danger, where the WR risks to be

captured (rightmost position in Diagram 10). So White should not play such a

move.

a b c d e g h

Diagram 10. Analysis of metapositions.

Our solution consists of making a first evaluation during the generation of

the pseudo-legal moves considering both cases, either 'illegal' or 'check' and

'silent' answers, and inserting in the possible moves vector the one with the

lowest value. In other words the player assumes the worst case and makes

available to the search algorithm only one answer per move. In this manner

Computer Programming of Kriegspiel Endings: the Case of KR versus K 333

the number of moves we are handling becomes more similar to that of classic

chess.

In Kriegspiel the player is in the dark about his opponent's position so a

minmax-like search cannot be executed in this context, unless we tind how to

represent ali possible BK moves. Simply adding a new layer to the algorithm

and calculating for each White's legal move ali possible BK positions and for

each of those positions repeat the procedure in a minmax way, has an exponential

cost that forces us to choose some altematives.

The way we have chosen to represent the invisible BK on White's reference

board is to detine a metaposition which is a set of possible BK squares with

the same likelihood. Also, we detine an uncertainty index as the count of the

possible positions of a metaposition, as in Sakuta and lida (2000). In some

sense White has to play against an unspecitied number of black Kings, that can

move simultaneously. It is quite simple to detine a metamove as a move from

one metaposition to another metaposition. Playing a metamove corresponds to

playing ali the moves for each black position of the metaposition. This trick

aliows us to use an algorithm like minmax or similar, where we use a metamove

generator. We represent a metaposition as an array of possible positions.

One distinctive aspect to note is that we are changing the meaning of search

depth. It now refers only to White's branching factor, since the generation of a

metaposition from another involves the introduction of a single edge. Diagram

11 describes the state reached from a reference board where the BK is assumed

to be on g2 or g5 with a likelihood of 112 each.

Diagram 11. Representing metapositions with likelihood.

Figure 1 shows the pseudo-code describing the search algorithm.

The algorithm generates ali legal white moves and for each resulting position

it evaluates both possible referee answers using an evaluation function we wili

discuss later. So, for each possible position, it is able to distinguish between

'check' or 'iliegal' and 'silent' answers and it marks the move with the worst

case according to the value returned by the evaluation function. If it has reached

334 A. Bolognesi, P. Ciancarini

Search Algorithm (int depth) {

generate the white's legal moves r;

for each moves j E r
{

if(rook plays the move j)

j. value=Min(evaluate(j ,check),evaluate(j ,silent))

if(king plays the move j)

}

j. value=Min(evaluate(j ,illegal),evaluate(j ,silent))

}

for each moves j E r
{

}

if (depth! = 1) {

makemove(j);

}

generate the opponent's metamove;

if(! CheckHash(depth -1 ,&value))

j.value += Search(depth-1);

else

j.value += value;

unmakemove();

if (j.value > max)

max=j. value;

RecordHash(depth,max);

return max;

Figure 1. The search algorithm.

the desired search depth it simply retums the max move's value, otherwise it

plays each move and in each metaposition obtained it makes the metamove,

then it decrements the depth of search and it recursively calls itself; after that, it

retracts the move played and adds to the move's value the vote which is retumed

by the recursive call. Finally, it updates the max on that particular search depth.

A move's value is modified during the path that the algorithm is analysing. If

we did not make such updates, a move would obtain a good vote even crossing

bad states, where, as an example, we run the risk of losing the Rook. Figure 2

shows the search tree which describes a hypothetical visit. The first evaluation

is on the right of the node and the updated value of the move is on the left; the

bold type indicates the best move.

Computer Programming of Kriegspiel Endings: the Case of KR versus K 335

I:t h2
J

1---,
l::t a7 1 Wg2 1

I-52L2 4 1 - I - ~) - 5241
r ---r r- -- ,

1 : g 1 1 ~ g2 w g2 1 ~ g2 1
l ___ J t __ J

13A,313 ·l ·l·2n,Azllz61,z63·1· j 2n.Az 1

Figure 2. A depth-2 search tree.

If we did not add the static evaluation value to the recursive value, at the

first depth, moves would respectively obtain -524, 313 and 272; so the second

move (which has a bad static value) would be chosen by the search algorithm,

while the third move (which has the greatest static value) would be discarded.

5. The Evaluation Function

We will implement the evaluation knowledge using a weighted linear func

tion, as follows:

Evaluate(S) = cd1(S) + c2h(S) + ... + csfs(S) (2)

where c1, c2 , . . , c5 are constants and fi (S) , .. , j 5 (S) are functions which set

up the heuristic evaluation.

The first aspect we want to make sure of is to avoid having a position where

the WR risks to be captured. For this reason the first boolean function h (S)
evaluates the possibility that the Rook is under attack, in that case it returns

FALSE.

336

4

3

2

A. Bolognesi, P Ciancarini

Once we are certain that the Rook is safe,

we try to bring the two Kings closer. That

means to let the WK patrol the board. Thus

the second function h(S) estimates the dis

tance between the WK and ali the possible

BK positions, by considering the furthest o ne.

The way we calculate the distance is the sum

of columns and rows between the WK and

the furthest BK. In Diagram 12 we show an

example where this distance is 10.

Let us assume that it is White's turn to

Diagram 12. Computing the distance move, so the BK certainly is on one of those

WK-BK. quadrilateral regions with which the white

Rook divides the board. The aim of the white player is therefore to reduce

ali the regions' areas that contain the black Kings. Again the uncertainty about

BK's real position is a problem. The third function h (S) estimates which o ne

of the four regions holds the BK and tries to reduce its area. We detine it as

h(S) = EvalArea(S) = c · (al+ az + a3 + a4) (3)

where c E { 1, 2, 3, 4} is the value which traces the number of quadrilaterals

that possibly contain the opponent's King, and ai(i = 1, . .4) represents the

number BK's possible positions in each quadrilateral. As shown in Diagram

13, in the worst case where uncertainty is maxima!, the function's result is 180.

Diagram 13. Computing fs(S) .

The fourth function j4(S) is a boolean

function which evaluates whether the WR is

on the squares around the WK, in that case it

increases by one the move's value.

The fifth function j 5 (S) considers good

moves those that push the BK toward the

board's corner. For each positions, where

the BK might be, j 5(S) adds to the move's

value the correspondent value from the ma

trix, shown in the Figure 3.

It is useful to note that h (S) function cal

culates a positive value, but in order to eval

uate the best move we have to minimize this

value.

The same remark on the others functions leads us to the following evaluation

function:

Evaluate(S) = -420 + 840 · h(S)- h(S)- h(S) + j4(S) + j5(S)

Computer Programming of Kriegspiel Endings: the Case of KR versus K 337

1 1 o o o o 1 1

1 o o o o o o 1

o o -2 -4 -4 -2 o o
o o -4 -4 -4 -4 o o
o o -4 -4 -4 -4 o o
o o -2 -4 -4 -2 o o
1 o o o o o o 1

1 1 o o o o 1 1

Figure 3. The simple numerica! matrix used by /s(S).

where c1 = 840 is a weight that gives h (S) top priority.

We finally add, after the search algorithm, a function, which catches check

mate cases and consequently avoids playing moves to stalemate states.

6. The Transposition Table

Since during the search algorithm we would cross states of the board previ

ously analysed, it is interesting to avoid to analysing them a second time. As we

have seen the number of metapositions is extremely large and it is impossible

to maintain each of them in memory. A natural solution to the comparison be

tween the states involves creation of a signature value, typically using Zobrist

(1970) keys.

We detine a three-dimensional vector indexed on {KNIGHT, ROOK},

{WHITE, BLACK}, and on the number of squares; then we fill each element

with a random 64-bit number. To create a Zobrist key for a metaposition, we

set it to zero, then for each piece on the board we add it into the key via the

XOR operator. The pieces can be either the Kings or the Rook, and the black

King may appear severa! times.

This technique has the advantage of creating good hash keys, that are not

related to the metaposition being keyed. If a single piece is moved, we obtain a

value that is completely different. So, these keys do not collide often. Another

good peculiarity is that we can manage Zobrist keys incrementally, improving

the artificial player's performance, as described by Moreland (2002).

We use the Zobrist keys to implement a transposition table, which is a large

hash table that allows us to trace metapositions that we have met during the

search. It is impossible to create a big data structure that includes ali the

metapositions, but in the event of collisions, i.e., when two states are mapped

on the same vector's element, we use the Zobrist keys to identify the correct

o ne.

338 A. Bolognesi, P. Ciancarini

CheckHash (int depth, int *Value) {

}

hash_element *hashpt = &table[(WRB.key% MHE)+MHE];

if(hashpt-> key == WRB.key)

if(hashpt-> depth >=depth) {

value=hashpt-> value;

retum TRUE;

}
retum FALSE;

RecordHash (int depth, int max) {

}

hash_element *hashpt = &table[(WRB.key% MHE)+MHE];

hashpt-> key = WRB.key;

if(hashpt==NULL) hashpt-> value = value;

else if(hashpt-> value >value)

hashpt-> value = value;

hashpt-> depth = depth;

Figure 4. Updating the hash table. WRB means White's Reference Board and MHE is the

Max number of the Hash Elements into the table.

In the Figure 1 we used two functions whose pseudo-code is shown in Figure

4. These two functions are used to store the elements into the transposition table

and to load them from it.

The CheckHash function does the load operation. If the element previously

stored is the one we have to analyse and it has been examined with a depth

grater or equal to the required depth, then the element is loaded from the table.

The RecordHash function does the store operation. It inserts the key and the

search depth into the table. When it is not saving a new element, it inserts the

value only if this value is smaller than the previous one. That means that the

metapositions are randomly divided into clusters.

7. Tests

We have executed a first test on 26,536 initial positions, randomly selected

from the 175,168 legal positions of KRK endgame. Each initial position has

the maximum uncertainty on White's reference board, meaning that the BK has

the maximum freedom in terms of possible squares. Black's strategy always

consists in playing the move that allows him to go away from the edge of the

board.

Computer Programming of Kriegspiel Endings: the Case of KR versus K 339

malchcs

4000

3500

3000

2500

2000

1500

1000

....
g
M

Figure 5. Won games and number of moves (first test).

11
Result 11 number of games Tbis test sbows tbat 95.6% oftbe games are

won by Wbite, wbile 4.4% is lost. In particu

lar 75.9% of tbis percentage refers to a game

tbat bas been stopped for a loop, 24% is draw,

and 0.1% is a stalemate, as sbown in Table

1. Tbe average number of moves needed to

ma te

loop

draw

stalemate

25372

883

279
2

Table 1. The 26536 games' result, give mate is 36, and tbe worst game played
during the first test.

bas been 117 moves long.

Il

In tbe bistogram of Figure 5 we sbow tbe number of tbe matches won per

moves needed, witb intervals of 5.

Result

ma te

loop

draw

stalemate

number of games

18469

2

122

o

In order to bave a comparison, we exe

cuted a second test on ali initial positions us

ing tbe referee's point of view, namely we

play tbis ending using ordinary cbess rules and

our Kriegspiel evaluation function. During a

matcb, if tbe game eitber begins at or goes

across some positions previously played, tbe
Table 2. The games' result during the referee stops it and considers it won or lost,
second test.

depending on tbe result of previous games.

In tbis test 99.5% of tbe games is won, wbicb is not bad but it sbows tbat our

evaluation function is not perfect for ordinary cbess. We sbow tbe entire results

in Table 2 and in Figure 6 we sbow tbe sets of won games and tbe number of

moves needed during tbe second test.

340

matchcs

4000

3500

3000

2500

2000

1500

1000

500

~

"' ,.._

,.._
<l)

A. Bolognesi, P. Ciancarini

X

number

ofmoves

Figure 6. Won games and number of moves (second test) .

Below we show how our program deals with the position of Diagram 5. lf

we assume that the BK is on aS, the program plays efficiently (in the scores, 1

means that the referee says il/egal, C means check) : 1. d6c7 a8b7 {1} a8a7 2.

d7d6 a7b6{1} a7b7{1} a7a6{1} a7a8 3. d6a6{C} 1-0 {White mates}

Ifwe assume that the BK is on c8, the program actions are also very effective,

as it achieves the checkmate in 2 moves: 1. d6c7 {1} d7f7 c8d7 {1} c8c7 {1}
c8b7 {1} c8d8 2. f7f8{ C} 1-0 {White mates}

Let us assume that the black King is on b8. After playing <J5c7 and receiving

an 'illegal' answer, the program plays less precisely J:t f7, and then it takes 23

moves to ma te: 1. d6c7 {I} d7f7 b8c7 {1} b8b7 {I} b8a7 {I} b8c8 2. f7f8{ C}

c8d7 {1} c8c7 {1} c8b7 3. d6c7 {I} f8g8 b7c6{1} b7b6 4. d6c6{1} g8g5 b6c5{I}

b6c6{I} b6b5{I} b6b7 5. d6c7 {I} d6d7 b7c6{1} b7b6 6. d7c6{1} d7d6 b6c5{1}

b6c6{I} b6b5{I} b6b7 7. d6c6{1} g5c5 b7c6{1} b7b6 8. d6c7 {1} d6c6{1} d6d5

b6c5{1} b6c6{1} b6b5{1} b6b7 9. d5c6{I} d5d6 b7c6{1} b7b6 10. d6c6{I}

d6d5 b6c5{1} b6c6{I} b6b5{I} b6b7 11. d5d6 b7c6{1} b7b6 12. d6c6{1}

c5c7 b6c5{I} b6c6{1} b6b5 13. d6c5{I} c7c6 b5c4{1} b5c5{1} b5c6{1} b5b4

14. d6c5{1} d6d5 b4c3{1} b4c4{1} b4c5{1} b4b3 15. d5c4{1} c6d6 b3c3

16. d5c4{1} d5c5 c3d4{1} c3d3{1} c3c4{1} c3d2{1} c3c2 17. c5b4 c2c3{1}

c2d3{1} c2d2{1} c2b3{I} c2b2 18. b4c3{I} b4a3{1} d6c6 b2c3{I} b2c2{I}

b2b3{I} b2c1{I} b2b1 19. b4b3 b1b2{1} b1c2{I} blcl{I} b1a2{I} b1a1 20.

c6c4 a1b2{1} a1b1 21. c4a4 b1b2{I} b1c2{I} b1c1 22. a4d4 clb2{I} clc2{I}

c1d2{I} c1d1{I} c1b1 23. d4dl{C} 1-0 {White mates}

Computer Programming of Kriegspiel Endings: the Case of KR versus K 341

8. Future Work and Conclusions

In this pa per we ha ve described a program which plays a Kriegspiel endgame.

We started from a normal chess program and modified it to deal with the un

certainty typical for Kriegspiel playing. In order to evaluate our player, we

have played severa! thousands of games showing that the evaluation function

developed is a good basis for further refinements.

We could have implemented a rule-based player based on the procedures

reported in Leoncini and Magari (1980) and Boyce (1981). A first problem is

that these papers do not prove that their procedures are correct and complete.

So, we have no guarantee to obtain a program playing perfectly the KR vs K

ending. Moreover, any rule-based solution would have been specialized in KR

vs K only. Instead we have adapted our player rather easily to another ending,

namely KQ vs K, and now we plan to make similar experiments for other basic

endings such as KBBK, KBNK, etc.

References

Bain, M. (1994). Learning Logica[Exceptions in Chess. PhD thesis, Dept. of Statistics and

Modelling Science, University of Strathclyde, G1asgow, Scot1and.

Boyce, J. (1981). A Kriegspiel Endgame. In Klarner, D., editor, The Mathematical Gardner,

pages 28-36. Prindle, Weber & Smith.

Bud, A., Albrecht, D., Nicholson, A., and Zukerman, I. (2001). Playing "Invisible Chess" with

Information-Theoretic Advisors. In Proc. 2001 AAAI Spring Symposium on Game Theoretic

and Decision Theoretic Agents, pages 6-15, California, USA. American Association for

Artificial Intelligence.

Ciancarini, P., DallaLibera, F., and Maran, F. (1997). Decision Making under Uncertainty: A

Rational Approach to Kriegspiel. In van den Herik, J. and Uiterwijk, J., editors, Advances in

Computer Chess 8, pages 277-298. University of Limburg, Maastricht, The Netherlands.

Clarke, M. (1977). A Quantitative Study of King and Pawn against King. In Clarke, M., editor,

Proc. First Conf on Advances in Computer Chess, pages 108-118, Edinbourgh, Scotland.

Edinbourgh University Press.

Ferguson, T. (1992). Mate with Bishop and Knight in Kriegspiel. Theoretical Computer Science,

96:389--403.

Ferguson, T. (1995). Mate with two Bishops in Kriegspiel. Technical report, UCLA.

Leoncini, M. and Magari, R. (1980). Manuale di Scacchi Eterodossi. Tipografia Senese, Siena.

Li, D. (1994). Kriegspiel. Chess under Uncertainty. Premier Publishing.

Moreland, B. (2002). Computer Chess. http: 1 /www. seanet. com;-brucemo/ chess. htm.

Pritchard, D. (1994). The Encyclopedia ofChess Variants. Games & Puzzles Publications.

Sakuta, M. and lida, H. (2000). Solving Kriegspiel-like Problems: Exploiting a Transposition

Table. ICCA Journal, 23(4):218-229.

Williams, J. D. (1950). Kriegsspiel rules at RAND. (Unpublished manuscript).

Zobrist, A. L. (1970). A new hashing method with applications for game playing. Technical re

port, Department of Computer Science, University of Wisconsin, Madison, WI. Republished

(1990) in ICCA Journal, 13(2): 69-73.

