MASTER

IICRL. 85942 Rev. I PREPRINT

$$
000 F-820104-1(R, 1)
$$

COMPUTER REPRESENTATION OF MOLECULAR SURFACES

Neison L. Max
Computer Graphics Group
Lawrence Livermore National Laboratory

International Symposium on Systems Science
Honolulu, Hawaii
January 6-8, 198 ?

July 6, 1981

COMPUTER REPRESENTATION OF MOLECULAR SURFACES

Nelson L. Max
Computer Graphics Group
Lawrence Livermore National Laboratory

Abstract

This review article surveys recent work on computer representation of molecular surfaces. Several different algorithms are discussed for procicing vector or raster drawings of space-filling models formed as the union of soheres. Other smoother surfaces are also considered.

I. INTROUJCTION

Computer drowings have lung been a useful loul in the understanding of the three dimensional structure of molecules. The simplest avic earilest were line drawings (see Levinthal [lJ), with a line segment representing each bund. To utiderstand the interaction of an enzzne with a substrate or inhibitor, or a arug or normone with a receptor site, the lacation of the molecular surface is more important than the lucation of hie oonds. This paper will review various aigoritms for representing these surfaces, eblier as unions of spheres or as otner smoothed surfaces.

c. UNLONS OF SPHERES

The most familiar molecular mooeis art the L.PK space-filling mode is i2j, invented Dy Pauling and Corey and improved oy koltun. Here eacn atum is represented by a sphere of raoius equal to the aton's Van der haals radius, arro a molecule is represented as the union of its intersecting spheres. Since the preferred contact alstance Detween two non-bonoea atoms is the sum of their Van oer hialis radii, the contact detween two molecules is well represented by the cantact between the ir space-filling models. The awoels consist of plastic truncateo-sphere parts, which can be fitted togetner with rutatable joints to form the union-of-spheres surfaces. Chemists are tamilar with the CPK color scheme, where each type of atom has its own color code.

In a computer picture, the spneres can be relidered as line arawings, or as shaded raster orawings. For line drawings, the circles khere spheres intersect each other must be exp ${ }^{1}$ icitly taken into account. These circles will project into the picture as elliptical arcs. Smith ands Gung [3] have expanded on an algorithan of wame [15j for line drawngs of space-fililing models.

Figure 1. A space filling out line arawing of 5-miet hyl-5-ethyl-5,6-a inyaro-2(1 H$)$-pyrivure, produced by SPACEFIL algorithon of Smitn ana Guna. Reprinteo with pennission fronl [s_{j}, Journal of Chemical Infonnation and Computer Science, Copyright (1978) American Chemical soctety.

Each circle is appruxinateo by a polygon, ano the hidden surface calculation compares eacn polygon eage with each sphere. Figures 1 and 2 were produced by this system.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livemore Hational Laboratory uncer contract No. H-7405-ENG-48.

Figure is. Six transparenl base pairs cif jNiN, witn ah opoyue ethlolbill lul silppec betheen the center tru.

 seghents precolifuted dnd siureu bll a wiglal visc, su bade a movie sequence coulu de vieweu la real l lite viueo.

s. GIftr Simuit Slikfales

 of àmolecular sultace. The volume near ine
 not accessioie to ambiber atum ar milecule, whose surtace has a curvature ut its own, ario calinot tit into the corfier. Langrioge, rerrin, kinta, ana Connolly 144 」 stury miteractions oetheetl niulecules by displaying the surtace of the volume arounc or insive each mulecule wnicri coulu ve uc. cupied dy a oisjoint probe sucli as a bater mul. ecule. As aescribed in Connoliy L / j, this surface is bounced dy pieces of the spheres for each atom, pieces of toroial fillets tangent to tho spheres near their intersectiori, and pieces uf the prode spiere where it is tangent to three atom spheres. Dots are scattereu across this surface, with approximately constant uerisity pel unit area. Once the dots are precomputed, such a surface can be rotateo, translated, ano ciljpeis in real time, while being refreshed on a color, vector CRT with perspective and deptic cuting. figures 16 ard 17 were taken froll thins uisplay.

Figurt lo. Ine surface ut a Eigruxia n!ubechis,

flyure $1 i$. jectlon of ble surtales ald shlua figures for tryjsbll inmbitor inserteu mou trypsin, cilpjec betwetell live plaftes jarailel w the viewny screth.

Lonnoli,'s suffale's ate whthitocss, dit-

 a prograin LC mider mitmaty ditfertalable analytic surtaces which represcal contulals if electrun utisity, A spherically bylaitebr ic

Figure 7. A picture of the heme group in nemog lobin, taken trom the color montor of tile AELSIて.

The strategy for raster plotures of unions of spheres depenus on the raster harumare avaliatk. Host raster terminals contallin a fralle unfter when fas a memory lucdicula for the color at each pixel. H color video screen is continusily retreshed truin tals tialle buffer, while a conipleter can sliultaneousiy aod to the picture. Wany such teminnais also contain a local microprocessor whicn can write polygons into the nemory and fili then with color.

Orie 5 mple way to ordw a molecule on suen a system is to sort the spneres in oruer of the ueptn ot their centers, and theri paint them back to tront into the frame buffer as filled circles. Of courst, the spheres wili look as if they rever interseci, uut the illage wili give a ysug lued of the overäl shäle of the rolecule.

There are several wajs to lioprive such an inalage. one tarcuelient was writter by pete harris to detucnstrale the AEL sic, a fraine buffer tenailida havipy a routine in its micruprocessur wimen can orah a circle giveti lis center, racius, allo color. It r is the farsius lin pixels of the projected sphere, curicentric cirices are urawn of rátius $r, r-1, r-2, \ldots, i, j$, with the outer one varkest anc the miner orie lightest. The spheres appear shaded, as it illulifinaceo dy a light source dehing the viewer, If acoltion, if 2 is the depth ir pixeis of the sphere, these circles carn be thought to lie in the ueptn planes $2, z-1, z-2, \ldots z-r$, respectively, foming a cone in space. The circles for all spliteres are sorted in 2 , ano entered into the frame oufter a plane at a time, tron back to frunt. Thers it twa spheres intersect, their arc of intersection will appear in tre picture. However, sirce cones are used insted of spheres, this arc will lie on a liypertola histead of an ellipse, and it the centers of the spherts lie in aifferti* 2 planes,
the hyperoola may teminate abruptly at the profile circle of the closer sphere. Figure 7 was mace dy this algorithm. The methoo coulo de improved by using spheres insteac of cones, wat then the resulting concentric circ les woula not be evenly spaced in radius, eno special attention would be needea to make sure there were no pixels missed between them.

Parr made sone of the earliest color union-of-spheres mavies (16」 orawing tile concentric circles on a crum plotter (1 gure 8), ana coniputing beforetianu the visible arcs of each circle. A oitferent color pen was used for each atom. After all atons for a sequerice were ardwn in all colors, they were repositioneo thy tne orull under a movie camera. A negative was usec for the movie, giving complementarily colorec spheres against a black background (f lyure yj. Parr has since adoed siat int shading to this concentric circle algoritnm (tigure io) which now runs with a fiamie bufter.
knowitan [7] has a second wirnvement to the trame bufter alguritim. Each sphere is represented by two uiscs; a shauec visc in one plane

Figure 8. Four atoms in a dimolecular reaction, as arawn on a pen plotter.

Figure 9. The negative of figure 7 , as in the movie [16j.

figure 10. The structure of TTF-TLNu, an organc netal at roon temperature.

Figure 11. a structure formeo as the union of namy shail spheres, as orowri uy the alyurithal of Knowlton i 7 j .
and a sitigntiy larger vialx oisc ill ammer piane somewhat to tile rear, All discs for all spheres are sorted in ueptn, and then remutreu bacix de front. If a sphere is far in tront of anchlier
group of spheres, its black aisc wil outlint it against the spheres to its rear. However, if two splieres intersect in space, their shdoed aiscs will occlude each other's outline uiscs, anc their interiors will werge. Assullit, as in the previous method, that the discs have conceritric circles of increasing urigntiess, did tlie painting rule retrains truil paluching darker shade over a ifignter (a slighe smpliricatuoll uf Knowlton's method). Thas ruie aydin yives a picture equivalent to ane fonmed from calies instead of spheres. The madaes are particularly effective for shapes fonmeo by the unturi ct iarye numbers of simall spheres, as in rigure \mid. .

Figure ic. backerial fiadubuxh, trun leachirg

 of Purter . is.
dictaer slamafl ivoi tur cosiet insyes is lat

 by one witu she ofpin butter he eab raster

 litw spllert is cluser, the deplit atio iuh values are bota upualeo.
 outfer algoritimi. Here, the apta diu colur liltomation are only accunulatec tor a scan whe at a thite. Spheres which mitersect lite current scan line have a hurizontal row of shadeo pixels ren-
dered into the line buffer, using the depth comparison as before. When all the spheres have been considered, the color infomation for the scan iine can be sent to a simple frame buffer, or recorded onto film. For efficiency, the spheres should be preprocessed to determine which scan lines they intersect, and organized for efficient retrieval when they becone relevant. Porter $[8 j$ has written such a line bufter system which is currently being used at the National Institute of Health. He uses incremental methuos across a horizontai row of pixels to compute the aepth of a sphere, avoioing time consuming computations of square roots. Figure lí was producec by this algoritim.

Knowlton and Cherry [9] have developed a hidden surface algorithm for chemical mouels, based on subuivision. Each sphere's image is aivigeu into a list of regions bounded uy arcs of circles and by vertical line segments. To keep all arcs circular, the elliptical intersection arcs are approximated by circular arcs which pass tirough three points on the ellipse. when a sphere intersects or is hidaen by another sphere, the regions in iss list are removed, modifiea, or subdivideo to take this interaction into account, as in figure 13. when all possiole interactions have processed, the regions remaming in the list of a sphere can be colored in. Max [ilij has aoded shading ano highlights to the images as the regions are rendereo offline on a color film recoroer. The regions have vertical siots, so they aie rendereo using vertical raster segments. The shading intensity function is offinea as a paraboloiu of revolution, taking its maximum value at the center of the sphere, and its minimum value on the sphere's profile circle. The intensity along vertical raster seyments is then a quadratic polynomial, and can De evaluated efficiently using forwand oifferences, with two adaitions per pixei, using a color look-up table to moolfy the values generateo by tris polynomial, any sliading function wnich is constant on concentric circles can be achieved.

Recentiy, Max [2] has modified the quaorat ic shading algorithm to produce side lignting.

figure 14. Half of the 160 suburits 1 it the protem coat of the tomatu dusnj stunt yirus. The large spheres are whole protelfis, ariu the smalier spheres represellu liulvidial alfine acias. shauows are last by a figh scurte dove thie virus.

Ellipticai mighlights dete renceres at the appropriate position for specuiar retlechiol. As in the PlijTO program mentlonec aluve, tie surlecte regions facing away frun the light sourle are oarkenea. In audition, the hicuefi surtace digorithn lidy be repeated f rum the polit of wen of the lignt source, and the visibit frabime the nighlight and sphere areas used to miluply the shading, giving aiftuse casi stiaucks, as lit figure 14. Transparency nas also veen implemented as in figure is, by using multiple exposures througn masks representing the ujaque and semi-transparent surtaces. Tie friceaure tor the special effects optical printer is uescriweu in Blunuen ano lrax [lij.

Figure 13b, Suboivision caused by intersecting atom.

Figure 13c. Further subdivision caused by occluding atom.

Figure 2. The same tholecule as in figure 1, with great circles rotated around the x and y axts co give curved cruss natching. Reprinted with permission from [3j, jorunal of inemiral Infonnation ano Computer Science, Copyright (1978) American Chemical Society.

Figure 3. Six pase pairs of DNA, witn hatening on furtions of spheres tacing away trom light, as orawri dy PluTO.

Motherveli nas written a pruyram callea PluTO [i8j, wricn, it addition to drawing the spinert out tines and intersection arcs, can adu hatching to the parts of each sphere which face away ruchin the light source, as iri figure 3 . However, spheres do not cast shacows on other spueres.

Frankion [4] has a more effic lent linear time algorithin for suppressing the hidoen arcs, but at. present it is limited to non-intersecting spheres. Herbison-Evans 15,6 J has alyoritims which work for eilipsoios, anc can proauce drawings (figure 6) as weil as vectur drawings (figures 4 ana 5). The shaoing is founo for each raster element, or pixel, by computing the formal vector at the appropriate point on the sphere, and relating it to the light source oirection.

 the algorithri of herbison-Evars _3.

Figure \because. Fubr pusitions ut a odmer, composeo of intelisecting blipsolus wibl the liluber arls relloveo dy tit afgorilime of heroisuri-tvais ij;

Figure 6. A raster orawing of the varker, shavec by the algorithiu of herbison-E゙vans $\lfloor 0\rfloor$.

Gaussian eiectron censity is centered at each sphere, alla the surface is tile contour wnere the sum of these densities takes un a specific value. fur eacti pixel, the nearest point un the surtace is found dy hewton iteration, ane men the surtace nomal is computea oy taking the gracient of the andistic uensicj funtiono The nonial vector is usea to colupute the snaong interisity, ald the colur is assigheu achorutiig to the searest atom. Figure la was thade in this waj.

'IGure ib. a base pair uf whid, represtentea as a fibel wlibuar surtdaes tur the electrubutisily.

 !her \cdot ntirul wellsilieb, as recurstrucled i roln
 irtisll; $=$ curilumied la bllee perperidicular
 ..'itite ilit Interfulated oelibity lakes ull a spe . 1 i. - alue. blice fulputeg, ine veciurs in wie

 esp, inch represents ille saile shrtate as in ulifl's raster mages. darty ily, ligs appituc subi: suridues tu nulecuiar mieractions as m igure is. If tric utibit, alü contioler values are - hosern tu ajprualiade the vari wer báals coritact si'tace, twu sula surtaces cali ie mantpulated do lesile togelifer. if misteau, life coritults are
 suiting rulds 1 fi ble llulecule represelif sjaces wilicir coulu de occupieu by alotier, as repteseritew in zeru racius stica iurm. barry ras tourc the latier tomad edsier 20 uncerstand alwo märpulate.

All of these surface renuernigs can now be pertumito raploly efouyli to produce movits, either in real time, or dy frame by frallie recuruing. several representative muvies will de showfi at the meeting.

Figurt i\%. bevcire je and phenglelannte j3 int whote liguytue 7r, loycther with lie atums in the

Liscla lifur
Thiss cocuftit was preparte as all accublit ot motk spunsurtu u, an agelic; ut the lintea Stales Guvernment. Nellier lae Linteu States bovermilitit sur the Jraveisity of Laliurima nor anij uf the if enfloyees, miake any warranty, express ur inipilea, 01 assumes aly teyal ilidilily ur respunsiollicy for the ducuracy, completeness, or usefumess of ary infomatioli, apparalls, frusuci, vi proctss cisclosec, or iepresents badt its ust wulatat intrage privately confeo riynts. heleteme iferein tu afy specitic comilemidi praqucts, process, ut service by truat hame, boodualia,
 cuhblitule of thipiy ils etmursentient,
recolmenciation, or favoring us the unites states buvernueril or the litiversily u Laliturnla. ffe Weks dus upingoris of iuthurs expressea nerein dio het lectsoarils state or retitit hioje ot lite Luitec jtates Guverment unereot, and shall at ie usec rur duvertising or proiduct eidursemerit.

ne fenemicts

iij Levirithal, C., Mriolechiar finuel ouiluiliy by Lomputer," jcientific Aierican, vol. clis, ho. o (unge lyodit, F. 4C.
[2, Latalogue of CPk Precision mulecular looels, Ealing Lurp., ci Pleasalt bt., S. Matick, Mass. Ui7bu (98i)l
[3] Smith and Guno, "Gomputer-bemerated Spact Fillirig nolecular modeis," Journal of Ciemical Infomation and cumputer Science, Vol. 18 (19/8), pp, ©U/-2T0.
[4] Franklin, "An Exact Hidden Sphere Algorithm that Operates in Linear Time, " Computer Graphics and Image Processing, Vol. 15, No. 4 (1981) pp. 364-3/9.
[5] Herbison-Evans, "Mudes 2: A Numeric Utility Displaying Ellipsoid Solios, Version z," Computer Graphics, Vol. 12, Mo. 3 (1978), p. 356 .
[6] Herbison-Evans, "Rapid Raster Ellipsoid Shading," Computer Graphics, Vol. 13, No. 4 (1980), p. 355.
[7] Knowlton, "Computer-Aided Definition, Manipulation, and Depiction of Oojects Composea of Spheres," Computer Graphics, Vol. 15, No. 1 (198), p. 48.
[8] Porter, "Spherical Shading," Computer Graphics, Vol. 12, No. 3 (i978), p. 282.
[9] Knowlton and Cherry, "ATOMS - A Three-U Opaque Nolecule Systein - for Color Pictures of Space-Filling or Ball-ano-Stick Moot 15 ," Computer and Chemistry, Vol. I (ig77), p. 61.
[10」 Max, "ATOMLLL - ATOMS witn Shaoing anc Highlights," Computer Graphics, Vol. IK, No. 3 (1978), p. 348.
[11] Max and Blunden, "Optical Printing in Computer Animation, " Computer Graphics, Vol. 14, Nu. 3 (1980), p. 171.
[12] Max, "High Resolution Color Raster Computer Animation of Spacing filling Molecular Models," Proceedings of National Computer Graphics Association Meeting, Baltimore, MD (1981).
[13] Staudhammer, "On Display of Space Filling Atomic Models in Real Time, "Computer Graphics, Yol. 12, No. 3 (1978), p. 167.
[14] Langriage, R., Ferrin, T., Kunt2, 1., ana Conolly, M., "Real Tume color Graphics in Studies of molecular Interdactions," Science, Vol 211, Mo. 4483 (1981), p. 661.
[15] Wame, P. K., "Space-Filling Molecular Models Constructed by a Computer," Computers and Biomeaical Research, Vol. 10 (T977).
[16] Parr, C., "Reaction Dynamics," a lomm movie available from Parr at Univ. of Texas at Dallas, P.O. Box 688, Richarosen, Tx 75080.
[17] Connolly, M, "Molecular Surface Calculation," in preparation.
[18] Motherwell, S., "PLUTO - A Program for Plotting Molecular ano Crystal Structures." University Chemical Laboratory, Lensf ield Road, Combridge, England CB2lew.
[19] Barry, C. D., Busshard, H. E., Ellis, R. A., and Marshal, G. K., "Evolving Macromolecular mocelling System," minn Computers in Life Science Research, Siler and Linaberg, editors, Plerium publisning Corporation, New York (1975).
[20] Miller, Abdel-Heguia, kossman, anu Anderson, "A computer Graphics System for the building of macromolecuiar incdels into Electron Density Maps," Journal of Applied Crystal lography, Vul. 14, No. 2 (1981) pp. 94-10\%.

