
Computer Science Accessibility for
Students with Visual Disabilities

Joan M. Francioni
Computer Science Department

Winona State University
Winona, MN 55987

jfrancioni@winona.edu

Ann C. Smith
Department of Computer Science

Saint Mary's University
Winona, MN 55987
asmith@smumn.edu

Abstract
Students with visual disabilities face unique challenges in
learning to be computer scientists. These challenges can be
overcome, however, with the use of specialized software
tools and hardware equipment, collectively called assistive
technology. In this paper, we discuss the environment we
are using for three students with visual disabilities who are
starting in our programs this year. This environment
includes a collection of commercial assistive technology
and a programming tool that we have developed in-house.

1 Introduction
Computer Science is a popular major choice for high
school students with disabilities planning on going to
college [1]. This is true for the same reasons that computer
science is a popular major choice for high school students
in general. However, there are two other significant reasons
for why we are seeing an increase in the number of students
with disabilities wanting to major in computer science. For
one, many students with disabilities use computer
technology in their day-to-day lives for communication
and/or access to information that would not otherwise be
available to them. This exposure often makes computers
less intimidating to these students than to others. The
second reason, however, is what makes majoring in
computer science actually a viable choice for many
students with disabilities today. That reason is the
American Disabilities Act of 1990 (ADA). Since the ADA
ruling, it is no longer acceptable to waive the course
requirements of students with disabilities in high school. In
particular, students with disabilities have the same
mathematics requirements as everybody else. Therefore,
any student who wishes to major in computer science, and
who has the aptitude for studying computer science, will
have the necessary high school background to start the
program.

Paper published in proceedings of 33rd SIGCSE Technical
Symposium on Computer Science Education, Northern
Kentucky, February 2002, pp. 91-95.

How, then, can we make our programs more accessible to
students with disabilities? Different aspects of college and
the computer science curriculum are more or less
challenging for particular students, depending on their
disability. For students with visual disabilities, studying
mathematics and navigating a programming environment
present two unique challenges. As part of our Computer
Science Curriculum Accessibility Project [2], we are
working with three first-year students with visual
disabilities who are majoring in computer science. In this
paper we will discuss our strategies for making our
programs accessible to these students.

2 General Assistive Technology
A number of commercial assistive technology tools are
available that enable people with visual disabilities to
access electronic and printed information. The most basic
piece of assistive technology for someone who is blind or
who has a severe visual disability is what is called a screen
reader. These tools speak the information that is on the
screen out loud. Information can either be read as
characters or as words. When reading sentences, a screen
reader uses the grammar rules of the natural language to
determine the appropriate inflection and intonation to use.
Directing the tool as to what part of a document to read, or
to start and stop reading, can always be done using the
keyboard alone. In addition to reading text, screen readers
are also designed to navigate a Windows environment and
to browse Web pages in an intelligent way.
For people with limited visibility, tools that magnify the
image on the screen are sometimes useful. Screen
magnification tools have the capability of increasing the
size of the screen image from slightly larger all the way to
large enough so that one letter takes up the entire screen.
Screen readers provide one way of accessing information
that is available on-line. But it is also useful and highly
desirable sometimes to be able to read text in Braille. For
on-line information, this can be done either by printing the
material to a Braille printer, or Braille embosser, or by
using a refreshable Braille display device. The latter is a
device that represents the current line on the screen in

Braille and that is able to change letters in real-time as the
cursor is moved to another line.
Information that is in printed form or that is non-textual
needs to be handled differently. Printed text does not pose
any real problems, however, since it is possible to scan the
text in and translate it into characters using a good OCR
(optical character recognition) program. From there it can
either be read out loud or displayed in Braille.
For images and diagrams, there are two concerns: one is
generating a tactile version of the image or diagram; the
other is conveying the "information" of the image or
diagram. Just doing the first one, doesn't always imply the
second one. In Sections 3 and 4 we discuss problems in
this area specific to Mathematics and Computer Science.
As for actually generating a digital image or diagram in a
tactile form, this can be done by using certain kinds of
Braille embossers or by using a thermal embosser. The
first is a type of impact printer and the second uses special
swell paper that reacts to heat.
Given this basic set of software and hardware, students
with visual disabilities are able to access most of the same
information that is provided for sighted students. There are
a few caveats, though. For one, although the information in
a text book can generally be scanned in and read using a
screen reader, the text of a Mathematics text book has too
many equations to make this a viable option. (Screen
readers do not recognize many mathematical symbols.) For
another, depending on how a Web page is designed, the
information content of the page may not be accessible. A
third example is that PDF files are not yet accessible with
today's technology. Things are changing for the better,
however. Recent Federal legislation [5] requires that all
government Web sites, as of June 21, 2001, be accessible.
This is helping people become more aware of how to make
a Web page accessible and it is also encouraging the
development of Web page composer software that can help
a designer generate accessible pages from the start. (See
[15] for a complete set of guidelines for making a web page
accessible.) As for accessing PDF files, to date, only one
screen reader can directly access PDF files created with
Adobe 5.0. How soon other screen readers and Braille
embossers will be able to access PDF files, and how this all
plays out with the Digital Millenium Copyright Act [3],
remains to be seen.

3 Mathematics
The study of Mathematics presents particular challenges to
people with visual disabilities. Our students have taped
copies of their textbooks. In addition to this, we are using
specialized assistive technology in three basic ways to
support our students in their Math classes: (1) to generate
tactile versions of Math equations for notes and exams; (2)
to represent mathematical functions and graphs; and (3) to
support direct communication between the teacher and
student during office hours.

Currently, there are two viable ways of representing
mathematical equations in a tactile format: one is called
Nemeth code and the other is called DotsPlus. Nemeth
code is a special Braille code, developed by Dr. Abraham
Nemeth in 1946, specifically for mathematics and other
technical subjects. Nemeth code is capable of rendering all
mathematical and technical documents in six-dot Braille.
This is accomplished by letting the same six-dot pattern
mean different things in different contexts. Also, multiple
six-dot patterns are used for many mathematical symbols.
Some blind students find Nemeth code intuitive, but others
have a hard time learning and remembering the code. The
main problem with Nemeth code at the college level,
however, is not about the students as much as it is about the
teachers. For one, most college Mathematics teachers do
not know Nemeth code and therefore cannot introduce the
appropriate codes to the students as the topics are
introduced in class. Secondly, at the present time, Nemeth
code does not translate into print with the click of a button,
as with literary Braille. Therefore, even though there are
tools to translate documents containing mathematics to
Nemeth code [9], there is no easy way for the student to
solve a problem in Nemeth code and relay that solution
back to a sighted teacher in print [11].
An alternative to Nemeth code is DotsPlus [6], which is not
really a code but rather a set of tactile fonts. When printed
by an embosser that understands DotsPlus, text and
numbers appear in standard Braille formats, while common
punctuation marks and mathematical symbols appear as
small graphical symbols. These symbols are distinguishable
out of context and, together with the number and letter
formats, include all characters represented within computer
screen fonts. As such, any computer document written in a
language based on the Roman alphabet can be converted to
DotsPlus. Therefore, it is possible to generate one
document, say using Word and MathType, and print it out
in either print form for a sighted reader or tactile form for a
non-sighted reader. At this point, although it is possible, it
is still cumbersome for the non-sighted student to generate
the mathematical equations directly.
For our project, we are using the Tiger [14] embosser from
ViewPlus Technologies, which is capable of printing out
DotsPlus documents. With this set-up, we are able to
generate notes and exams using Word and MathType that
are then converted to a Tiger font and printed on the Tiger.
Although this strategy is working fine so far, the Tiger is a
relatively new machine and we are two of only four
universities that are using this printer for students currently
taking college-level mathematics courses. Along with
Oregon State University and M.I.T., we are working to
determine the most effective way to use the printer and to
educate the students.
In addition to being able to represent mathematical
equations, students also need to be able to represent and
understand functions and graphs. We are using both the
Tiger and the Accessible Graphing Calculator (AGC) [14]

for this. The Tiger uses a standard Windows graphics-
capable printer driver. Therefore, it is capable of taking the
graphical content of a document and rendering it directly to
produce a tactile representation on the paper. AGC is a
Windows-based graphing calculator. In addition to the
standard features of a hand-held scientific graphing
calculator, it is capable of displaying graphs or other sets of
X vs. Y data both visually and audibly, as a tone graph.
For direct communication between the teacher and student,
we are experimenting with various hand-drawing tactile
tools. We have also found it to be very useful for the
students to have a tactile copy of the notes for class before
class. This, of course, requires the cooperation of the Math
instructor.

4 Computer Science
4.1 Diagrams

Since the Tiger embosser has the capability of generating
tactile diagrams, we are using a strategy similar to the one
above for generating tactile representations of diagrams in
computer science. The other problem that has to be solved,
however, has to do with being able to interpret a tactile
diagram. A sighted person sees the whole picture first and
then figures out what the parts are that make up the whole.
Conversely, a blind person must figure out the parts first
and then combine them together to construct the whole.
So, for example, in the diagram in Figure 1, a sighted
person can quickly deduce that there is a square centered
on the X-Y axis. Even if you were not thinking the X-Y
axis, it is still visually apparent that the long horizontal line
is all one line, and similarly for the long vertical line.
Conversely, a blind person feeling along the long
horizontal line starting from the left can not tell in the
beginning how long the line is. Therefore, starting from
the left of the horizontal line, there is a question of "which
way to go" as soon as you get to the left edge of the square.
__

Figure 1. Sample Tactile Diagram

To display images (rather than just line diagrams) on a
tactile device, algorithms to identify object boundaries are
used. Research in this field focuses on edge detection and
image segmentation methods that simplify an image
enough to generate an accurate and effective tactile
representation of the image [7]. Along these same lines,
our initial observations indicate that it would be better to
present line diagrams to someone who is blind in a

"layered" sequence of diagrams. Using the above example,
one layered sequence would be as shown in Figure 2.
__

Figure 2. Sample Layered Diagram

In this way, the blind student can identify the "parts" of the
diagram more easily and, hopefully, gain a better and
quicker understanding of the whole diagram.
Working with the students with visual disabilities in our
programs, we are experimenting with different schemes for
our diagrams. These include varying the size of the
diagrams, the thickness of the lines, and the sequence
ordering of different "layers" of the diagrams.

4.2 Programming

Learning to program, of course, is a major part of being a
computer science student. It is a challenging task for many
students, but for students with visual and certain learning
disabilities, this task takes on an extra level of difficulty.
For someone who already knows how to program and is
familiar with a Unix environment, Emacspeak [12]
provides an effective, eyes-free programming environment.
For learning to program, however, students need a different
kind of tool. To this end, we have developed a specialized
programming environment for Java, called JavaSpeak, to
help students with visual disabilities learn how to program.
JavaSpeak Functionality.
Basically, JavaSpeak is an integrated development
environment (IDE) with aural feedback and keyboard
navigation control that is designed to provide a user with
useful information about a program’s structure and
semantics. It parses the program and then "speaks" the
program’s structure to a user, in much the same way that
separate lines and indentation and color all help to "show"
the structure of a program to a sighted user. It is also
designed to be easily configurable, so that we can adapt it
as we learn more from working with the students who are
using it.
Version 2.0 of JavaSpeak is designed to offer students an
auditory rendering of their program at one of the following
eight levels:
1. Basic compilation unit. This level depicts the package

declaration, any import declarations, and the class and
interface declarations of the program.

2. Class composition. This level presents the instance
and class variables and methods that make up the class.

3. Method composition. The names, parameters, and
throws clauses of each method of a class are given.

4. Nesting levels. Information depicting the nesting
levels within methods is given.

5. Block composition. This level depicts the conditionals,
the number of statements, and the variable declarations
within each block, as well as the instance and class
variable declarations for the class.

6. Block details. This level combines levels 1, 3, 4, and 5
with details of the block statements added.

7. Token by token.
8. Character by character.
The intent is to help students group individual tokens of the
language together as syntactic units, as they are developing
their programs.
In addition to giving a student different "views" of a
program, JavaSpeak is also designed to incorporate
gestures of spoken English to convey semantics about the
program. By speaking the code in different ways and with
different intonations, information is given about the
organizational structure of the code as well as the logic.
For example, consider the code segment in Figure 3. Three
different aural renderings related to this code are described
in Table 1.
We use English punctuation in Table 1 as a mechanism to
depict how the code would sound. For example, in the
Block Composition column, the colon after the while
condition indicates an expectant pause, rather than, say, the
completion of a sentence. Actual sound file examples can
be found at the following web site:
http://cs.winona.edu/CSCap/javaspeak.html .
__
public class PrimeFactors {
 static boolean continue = true;
 public static void main (String [] args) {
 . . .

 while (continuePlaying) {
 while (testNumber < 0) {
 System.out.print("Enter number:");
 try {
 numString = in.readLine();
 }
 catch (Exception e) {
 System.out.println("Input Error");
 }
 testNum = Integer.parseInt(numString);
 }
 if (!isPrime(testNumber))

 . . .
__

Figure 3. Code Segment

JavaSpeak Implementation.
A simpler prototype version of JavaSpeak was introduced
at ACM's Assets 2000 conference [13]. This version
included a basic editor and was able to parse a program to
generate the speech renderings, but it did not offer all the
current levels nor operate as a full compiler. Since then, a
fully integrated programming environment has been
developed as Version 2.0. This version of JavaSpeak
makes extensive use of existing, open source code. In this
way, we were able to put together a tool that has the
appropriate functionality for students to do serious
programming.
For the front-end of the system, we use NetBeans [10].
NetBeans is a modular, standards-based IDE, written in
Java. It has support for building client- and server-side
applications in Java, with a wide range of features
including debugging. All of the pieces of functionality are
implemented in the form of modules that plug into the
NetBeans core. Therefore, we are able to choose which
features we want to include so as to keep the complexity
level appropriate to the level of the course. NetBeans is
available from Sun and is the base tool platform for their
Forte IDE.

Class Composition Nesting Levels Block Composition

Begin class declaration.
Public class prime-factors.
Class variable: static boolean, continue = true.
Method: main.
Method: is-prime.
Method: print-factors.
Method: restart.
End class declaration.

Begin while 1?
Begin while 2?
Begin try 3?
Try.
Catch.
End try 3.
End while 2.
Begin if 2?

Begin while 1. While, continue-playing:
Begin while 2. While, test-Number is-less-than 0:
Statement.
Begin try 3.
Statement.
Catch: Statement.
End try 3.
Statement.
End while 2.
Begin if 2.
If, not is-prime of test-number:

Table 1. Descriptions of Sound Renderings

The back-end of the system is a modified version of the
Kopi compiler [4]. Kopi contains a set of tools to edit and
generate Java class files, including DIS (Java
disassembler), KSM (Java assembler) and KJC (Kopi Java
compiler). KJC compiles from Java source code to
bytecode and is freely available under the terms of the
GNU Public License.
Two other pieces of the puzzle are the Java Speech API
(JSAPI) and the Java Speech Markup Language (JSML)
[8]. JSAPI defines a standard, cross-platform software
interface to speech technology. Two core speech
technologies are supported through the JSAPI: speech
recognition and speech synthesis. We are using the speech
synthesis part to produce synthetic speech from text.
The Java Speech Markup Language (JSML) is used by
applications to annotate text input for JSAPI speech
synthesizers. The JSML elements provide a speech
synthesizer with detailed information on how to say the
text. JSML includes elements that describe the structure of
a document, provide pronunciations of words and phrases,
and place markers in the text. JSML also provides prosodic
elements that control phrasing, emphasis, pitch, speaking
rate, and other important characteristics, however, we are
not currently using these elements.
To generate the speech patterns that we want, we have the
compiler generate text renderings of the program that
include JSML tags and that are based on how the code was
parsed. We then use an implementation of the JSAPI to
actually have the renderings spoken.

Current Status.
Our three students with visual disabilities are using Version
2.0 of JavaSpeak this semester. Lessons learned from this
semester's use will be presented at the SIGCSE conference
and will also be available at our web site
(http://cs.winona.edu/CSCap). Information on downloading
JavaSpeak will also be available at this site.

5 Concluding Remarks
All of the tools and techniques described in this paper are
important for supporting students with visual disabilities in
a computer science program. However, in our opinion,
they are not sufficient. The other necessary component is
the willingness of the faculty to experiment with and to be
open to new and different ways of communicating ideas.
We have been very lucky at Saint Mary’s and Winona State
to have such a supportive group of faculty for this first
group of students. We are sure things will get easier as we
learn how to better meet the needs of the students. But we
are also sure it will always take support from the instructors
to meet the students half way.

6 Acknowledgements
We wish to acknowledge Christopher Johnson, Anna
Rouben and Ross Rosemark for their excellent work on
Version 2.0 of JavaSpeak.
The Computer Science Curriculum Accessibility Project is
supported, in part, by the National Science Foundation.

References
1. Blackorby, J., Cameto, R., Lewis, A., & Hebbeler, K.,

"Study of Persons with Disabilities in Science,
Mathematics, Engineering, and Technology," SRI
International, Menlo Park, CA, 1997.

2. Computer Science Curriculum Accessibility Project,
http://cs.winona.edu/CSCap

3. Digital Millenium Copyright Act of 1998,
www.loc.gov/copyright/legislation/dmca.pdf

4. DMS Decision Management Systems GmbH, Vienna,
Austria, http://www.dms.at/kopi/

5. Federal Regulation, Section 508: www.section508.gov
6. Gardner, John A., The Science Access Project, Oregon

State University, http://dots.physics.orst.edu
7. Hernandez, Sergio and Barner, Kenneth, “Tactile

Imaging Using Watershed-based Image
Segmentation,” in proceedings of Assets 2000,
Washington D.C., November 2000.

8. Java Speech API, http://java.sun.com/products/java-
media/speech/

9. Karshmer, Arthur, MAVIS (Mathematics Accessible to
Visually Impaired Students), New Mexico State
University, http://www.nmsu.edu/~mavis

10. Net Beans Integrated Development Environment,
http://www.netbeans.org/

11. Osterhaus, Susan, Teaching Math to Visually Impaired
Students, http://www.tsbvi.edu/math/math-nemeth.htm

12. Raman, T. V., “Emacspeak – Direct Speech Access,”
in Assets ’96, April 11 - 12, 1996, Vancouver Canada,
pp. 32-36.
http://cs.cornell.edu/home/raman/emacspeak/publicatio
ns/assets-96.html

13. Smith, Ann C., Francioni, Joan M., and Matzek, Sam
D., "A Java Programming Tool for Students with
Visual Disabilities," in proceedings of Assets 2000,
Washington D.C., November 2000, available at
http://cs.winona.edu/CSCap/assets2000paper.doc

14. ViewPlus Technologies,
http://www.viewplusTech.com/

15. World Wide Web Consortium's (W3C's) Web Content
Accessibility Guidelines: www.w3.org/TR/WCAG10

