| Journal of Geometry

Computer search in projective planes for the sizes of complete arcs

Alexander A. Davydov, Giorgio Faina, Stefano Marcugini and Fernanda Pambianco

Abstract

The spectrum of possible sizes k of complete k-arcs in finite projective planes $P G(2, q)$ is investigated by computer search. Backtracking algorithms that try to construct complete arcs joining the orbits of some subgroup of collineation group $P \Gamma L(3, q)$ and randomized greedy algorithms are applied. New upper bounds on the smallest size of a complete arc are given for $q=41,43,47,49,53,59,64,71 \leq q \leq 809, q \neq 529,625,729$, and $q=821$. New lower bounds on the second largest size of a complete arc are given for $q=31,41,43,47,53,125$. Also, many new sizes of complete arcs are obtained for $31 \leq q \leq 167$.

Mathematics Subject Classification (2000): 51E21, 51E22, 94B05.
Key words: Complete arc, computer search, projective planes, linear codes.

1. Introduction

Let $P G(2, q)$ be the projective plane over the Galois field $G F(q)$. A k-arc in $P G(2, q)$ is a set of k points, no three of which are collinear. A k-arc in $P G(2, q)$ is called complete if it is not contained in a $(k+1)$-arc of $P G(2, q)$. For an introduction to these geometric objects, see [8]. A complete arc in a plane $P G(2, q)$, points of which are treated as 3-dimensional q-ary columns, defines a parity check matrix of a q-ary linear code with codimension 3 , Hamming distance 4 , and covering radius 2 [9, Section 1.3]. For information on the covering radius of a code, see [2].

It can be shown that arcs and linear maximum distance separable codes (MDS codes) are equivalent objects, see [9]. Indeed, it was the coding theory problem which provided the initial motivation for our study on the spectrum of values of k for which a complete arc exists

We use the following notation in $P G(2, q): m_{2}(2, q)$ is the size of the largest complete arc, $m_{2}^{\prime}(2, q)$ is the size of the second largest complete arc, and $t_{2}(2, q)$ is the size of the smallest complete arc. The corresponding best known values are denoted by $\bar{m}_{2}^{\prime}(2, q)$ and $\bar{t}_{2}(2, q)$.

In this work a number of new values of $\bar{m}_{2}^{\prime}(2, q)$ and $\bar{t}_{2}(2, q)$ are obtained by computer search. Many new sizes k for which a complete k-arc in $P G(2, q)$ exists are also obtained. In particular, new upper bounds on the smallest size $t_{2}(2, q)$ of a complete arc are obtained
for $q=41,43,47,49,53,59,64,71 \leq q \leq 809, q \neq 529,625,729$, and $q=821$. These new upper bounds give

$$
\begin{equation*}
t_{2}(2, q)<4 \sqrt{q} \text { for } 3 \leq q \leq 809 \text { and } q=821 . \tag{1}
\end{equation*}
$$

New lower bounds on the second largest size $m_{2}^{\prime}(2, q)$ of a complete arc are obtained for $q=31,41,43,47,53,125$. These new lower bounds are as follows:

$$
\begin{gather*}
m_{2}^{\prime}(2,31) \geq 22, m_{2}^{\prime}(2,41) \geq 30, m_{2}^{\prime}(2,43) \geq 28, m_{2}^{\prime}(2,47) \geq 32, \\
m_{2}^{\prime}(2,53) \geq 42, m_{2}^{\prime}(2,125) \geq 66 . \tag{2}
\end{gather*}
$$

For previously known results concerning the values of $m_{2}(2, q), m_{2}^{\prime}(2, q)$, and $t_{2}(2, q)$, see [4], [5], [9], [14], [15], [18] and the references therein. As examples of such references we mention the works [12], [13].

In Section 2 we outline the computer search approach used. In Section 3 we give the sizes of the known complete arcs with $25 \leq q \leq 167$ and in Section 4 the minimal known sizes of the complete arcs with $3 \leq q \leq 809$ and $q=821$ are mentioned. Here, for $q \leq 128$, several new small complete k-arcs with $k=\bar{t}_{2}(2, q)$ are obtained; the new complete arcs are listed in the Appendix.

2. Approaches to computer search

Computer search for complete arcs and caps is considered in many works; see, for example, from [12] to [17]. In this paper for computer search we used two distinct approaches.
One of the ways is based on randomized greedy algorithms that are convenient for relatively large q and for obtaining examples of different sizes of complete caps. At every step an algorithm minimizes or maximizes an objective function f but some steps are executed in a random manner. The number of these steps and their ordinal numbers have been taken intuitively. Also, if the same extremum of f can be obtained in distinct ways, one way is chosen randomly.

We begin to construct a complete arc by using a starting set of points S_{0}. At every step one point is added to the set. As the value of the objective function f we consider the number of points in the projective space that lie on bisecants of the set obtained. As S_{0} we can use a subset of points of an arc obtained in previous stages of the search. A generator of random numbers is used for a random choice. To get arcs with distinct sizes, starting conditions of the generator are changed for the same set S_{0}. In this way the algorithm works in a convenient limited region of the search space to obtain examples improving the size of the arc from which the fixed points have been taken.

In [16] another approach has been used, constructing complete arcs with the constraint of being stabilized by some particular group. In this paper a similar approach has been used trying to construct complete arcs joining the orbits of some subgroup of $P \Gamma L(3, q)$. This algorithm has been implemented using MAGMA, a system for symbolic computation developed at the University of Sydney. The algorithm starts by fixing a subgroup S of $P \Gamma L(3, q)$ and calculating the set O consisting of the orbits of S that are arcs. Then it performs a backtracking process joining the orbits contained in O. Utilizing this procedure the search is more effective as backtracking considers a whole orbit of points at each step; besides, it allows us to find interesting arcs with non-trivial stabilizers.

3. On the spectrum of sizes of complete arcs in $P G(2, q)$

We repeat here Table 2.1 from [4] as the upper part of Table 1.

k	Conditions on q	Reference
$(q+3) / 2$,	$q \equiv 1$ or $3(\bmod 4)$	$[4]$
$(q+5) / 2$		$[4]$
$(q+7) / 2$	$q=4 t-1, t \neq 2^{r}$, or $q=2 p-1$,	
	p an odd prime	$[4]$
$(q+6) / 2$	$q=2^{h}, h \geq 4$	$[4]$
$(q+8) / 3$	$q=2^{2 i}, i \geq 3$	$[4]$
$q-\sqrt{q}+1$	$q=p^{2 i}>4$	$[6]$
$4(\sqrt{q}-1)$	$q=p^{2}, p$ is odd, $q \leq 1681$ or $q=2401$	

Table 1. Infinite sequences of non-oval complete k-arcs in $P G(2, q)$

The values $m_{2}(2, q)$ are achieved by ovals or hyperovals. Bounds on $t_{2}(2, q)$ and $m_{2}^{\prime}(2, q)$ are taken from [4, Tables 2.3, 2.4], [5, Table 2], and [9, Table 2.3]. The following bound comes from [4], [5], and [19]:

$$
\begin{equation*}
t_{2}(2, q)>\sqrt{2 q}+1 \tag{3}
\end{equation*}
$$

In $P G(2, q)$ if K is a complete k-arc, then

$$
\begin{align*}
& k(k-1)(q+1) / 2-(k-2)(2 k-3) \geq|P G(2, q)| \tag{4}\\
& t_{2}(2, q)>\sqrt{3 q}+1 / 2 \text { if } q=p^{i}, i=1,2,3, p \text { is prime. } \tag{5}
\end{align*}
$$

Table 2 gives sizes of the known complete arcs in $P G(2, q)$. Values of the cardinality of complete arcs come from [1], [4, Table 2.4], [5, Tables 2,6], [13], and Table 1. New sizes of arcs are obtained by computer. Note that some sizes are obtained by using both approaches at the same time, as described in Section 2; for example, for $k=34$ in $P G(2,53)$ and $k=28$ in $P G(2,47)$.

Table 2 gives new lower bounds for the second largest size $m_{2}^{\prime}(2, q)$ of a complete arc for $q=31,41,43,47,53,125$. These new lower bounds are $m_{2}^{\prime}(2,31) \geq 22, m_{2}^{\prime}(2,41) \geq 30$, $m_{2}^{\prime}(2,43) \geq 28, m_{2}^{\prime}(2,47) \geq 32, m_{2}^{\prime}(2,53) \geq 42$, and $m_{2}^{\prime}(2,125) \geq 66$.

q	$t_{2}(2, q)$	Sizes k of the known complete arcs with $t_{2}(2, q) \leq k \leq m_{2}^{\prime}(2, q)$	$m_{2}^{\prime}(2, q)$	$m_{2}(2, q)$	References
25	12	$\begin{gathered} \hline \hline 12 \leq k \leq 18=(q+11) / 2, \\ k=21 \end{gathered}$	21	26	[4], [5], [14]
27	12	$\begin{gathered} 12 \leq k \leq 19=(q+11) / 2, \\ k=22 \end{gathered}$	22	28	[4], [5], [15]
29	13	$\begin{gathered} 13 \leq k \leq 20=(q+11) / 2 \\ k=24 \end{gathered}$	24	30	[4], [15]
31	≥ 11	$14 \leq k \leq 22=(q+13) / 2$	≤ 30	32	[4], [13]
32	≥ 10	$14 \leq k \leq 24=(q+16) / 2$	≤ 26	34	[3], [4]
37	≥ 12	$15 \leq k \leq 23=(q+9) / 2$	≤ 36	38	[3], [4], [11]
41	≥ 12	$\begin{aligned} & 16 \leq k \leq 26, k=28, \\ & k=30=(q+19) / 2 \end{aligned}$	≤ 40	42	[4], [13]
43	≥ 12	$\begin{gathered} 16 \leq k \leq 25 \\ k=28=(q+13) / 2 \end{gathered}$	≤ 42	44	$\begin{gathered} {[4],[5],} \\ {[13]} \end{gathered}$
47	≥ 13	$\begin{gathered} 18 \leq k \leq 28, \\ k=32=(q+17) / 2 \end{gathered}$	≤ 46	48	$\begin{gathered} {[1],[4],} \\ {[13]} \\ \hline \end{gathered}$
49	≥ 13	$\begin{aligned} & 18 \leq k \leq 30, k=36, \\ & k=43=(q+37) / 2 \end{aligned}$	≤ 48	50	$\begin{aligned} & \hline[4],[6], \\ & {[7],[13]} \end{aligned}$
53	≥ 14	$\begin{gathered} k=18,20 \leq k \leq 30, \\ k=34,42=(q+31) / 2 \end{gathered}$	≤ 51	54	[4], [13]
59	≥ 14	$20 \leq k \leq 33=(q+7) / 2$	≤ 57	60	[3], [4], [13]
61	≥ 15	$20 \leq k \leq 34=(q+7) / 2$	≤ 59	62	[3], [4], [11]
64	≥ 13	$\begin{gathered} 22 \leq k \leq 35=(q+6) / 2 \\ k=57 \end{gathered}$	57	66	[1], [4]

Table 2. The sizes of the known complete k - arcs in $P G(2, q)$

q	$t_{2}(2, q)$	Sizes k of the known complete arcs with $t_{2}(2, q) \leq k \leq m_{2}^{\prime}(2, q)$	$m_{2}^{\prime}(2, q)$	$m_{2}(2, q)$	References
67	≥ 15	$23 \leq k \leq 37=(q+7) / 2$	≤ 65	68	[3], [4], [17]
71	≥ 16	$22 \leq k \leq 39=(q+7) / 2$	≤ 69	72	[3], [4], [11]
73	≥ 16	$24 \leq k \leq 40=(q+7) / 2$	≤ 71	74	[3], [4]
79	≥ 16	$26 \leq k \leq 43=(q+7) / 2$	≤ 77	80	[3], [4]
81	≥ 14	$\begin{gathered} 26 \leq k \leq 44=(q+7) / 2, \\ k=73 \end{gathered}$	≤ 79	82	$\begin{gathered} {[3],[4],} \\ {[6]} \end{gathered}$
83	≥ 17	$27 \leq k \leq 45=(q+7) / 2$	≤ 81	84	[3], [4]
89	≥ 17	$28 \leq k \leq 47=(q+5) / 2$	≤ 87	90	[3], [4]
97	≥ 18	$30 \leq k \leq 51=(q+5) / 2$	≤ 94	98	[3], [4]
101	≥ 18	$30 \leq k \leq 53=(q+5) / 2$	≤ 98	102	[3], [4]
103	≥ 19	$31 \leq k \leq 55=(q+7) / 2$	≤ 100	104	[3], [4]
107	≥ 19	$32 \leq k \leq 57=(q+7) / 2$	≤ 104	108	[3], [4]
109	≥ 19	$32 \leq k \leq 57=(q+5) / 2$	≤ 106	110	[3], [4]
113	≥ 19	$33 \leq k \leq 59=(q+5) / 2$	≤ 110	114	[3], [4]
121	≥ 20	$\begin{gathered} 34 \leq k \leq 64=(q+7) / 2, \\ k=111 \end{gathered}$	≤ 119	122	$\begin{gathered} {[1],[3],[4],} \\ {[6],[7]} \end{gathered}$
125	≥ 20	$35 \leq k \leq 66=(q+7) / 2$	≤ 124	126	[3], [4]
127	≥ 21	$35 \leq k \leq 66=(q+5) / 2$	≤ 124	128	[3], [4]
128	≥ 18	$36 \leq k \leq 67=(q+6) / 2$	≤ 114	130	[3], [4]
131	≥ 21	$36 \leq k \leq 69=(q+7) / 2$	≤ 128	132	[3], [4]
137	≥ 21	$37 \leq k \leq 71=(q+5) / 2$	≤ 134	138	[3], [4]
139	≥ 21	$37 \leq k \leq 73=(q+7) / 2$	≤ 135	140	[3], [4]
149	≥ 22	$39 \leq k \leq 77=(q+5) / 2$	≤ 145	150	[3], [4]
151	≥ 22	$39 \leq k \leq 79=(q+7) / 2$	≤ 147	152	[3], [4]
157	≥ 23	$40 \leq k \leq 82=(q+7) / 2$	≤ 153	158	[3], [4]
163	≥ 23	$\begin{gathered} 41 \leq k \leq 85=(q+7) / 2 \\ \text { and } k \neq 80,82,83 \end{gathered}$	≤ 160	164	[3], [4]
167	≥ 23	$\begin{gathered} 42 \leq k \leq 87=(q+7) / 2 \\ \text { and } k \neq 83,84 \end{gathered}$	≤ 164	168	[3],[4]

Table 2 (continued). The sizes of the known complete k-arcs in $P G(2, q)$
4. Small complete arcs in $P G(2, q)$

The smallest known sizes $\bar{t}_{2}(2, q)$ of complete arcs for $3 \leq q \leq 809$ and $q=821$ in planes $P G(2, q)$ are given in Table 3 where $A_{q}=\left\lfloor 4 \sqrt{q}-\bar{t}_{2}(2, q)\right\rfloor$. The values of $\bar{t}_{2}(2, q)$ for
$q \leq 167$ are taken from Table 2 and [4, Table 2.2]; see also references in Table 3. A dot after the entry indicates that $\bar{t}_{2}(2, q)=t_{2}(2, q)$. For $169 \leq q \leq 809$ we obtained $\bar{t}_{2}(2, q)$ by computer.

Since $t_{2}(2, q) \leq \bar{t}_{2}(2, q)$, Table 3 gives new upper bounds on the smallest size $t_{2}(2, q)$ of a complete arc for $q=41,43,47,49,53,59,64,71 \leq q \leq 809, q \neq 529,625,729$, and $q=821$.

THEOREM. In $P G(2, q)$,
(i) $t_{2}(2, q)<4 \sqrt{q}$ for $3 \leq q \leq 809$ and $q=821$;
(ii) $t_{2}(2, q) \leq 4 \sqrt{q}-8$ for $23 \leq q \leq 257$,
$t_{2}(2, q) \leq 4 \sqrt{q}-7$ for $19 \leq q \leq 317$,
$t_{2}(2, q) \leq 4 \sqrt{q}-6$ for $9 \leq q \leq 383$,
$t_{2}(2, q) \leq 4 \sqrt{q}-5$ for $8 \leq q \leq 443$,
$t_{2}(2, q) \leq 4 \sqrt{q}-4$ for $7 \leq q \leq 512$,
$t_{2}(2, q) \leq 4 \sqrt{q}-2$ for $3 \leq q \leq 601$.
From Table 3,

$$
4 \sqrt{q}-12<\bar{t}_{2}(2, q) \text { for } 3 \leq q \leq 809 \text { and } q=821
$$

but

$$
4 \sqrt{53}-11>\bar{t}_{2}(2,53)
$$

Hence

$$
\begin{equation*}
4 \sqrt{q}-B_{q} \leq t_{2}(2, q), \quad\left\lceil B_{q}\right\rceil \geq 12 \tag{6}
\end{equation*}
$$

q	$\bar{t}_{2}(2, q)$	$4 \sqrt{q}$	A_{q}	References	q	$\bar{t}_{2}(2, q)$	$4 \sqrt{q}$	A_{q}	References
3	4.	6.9	2	$[8]$	8	6.	11.3	5	$[8]$
4	6.	8	2	$[8]$	9	6.	12	6	$[8]$
5	6.	8.9	2	$[8]$	11	7.	13.3	6	$[8]$
7	6.	10.4	4	$[8]$	13	8.	14.4	6	$[18]$

Table 3. The minimal known sizes $\bar{t}_{2}(2, q)$ of complete arcs in planes $P G(2, q), A_{q}=\left\lfloor 4 \sqrt{q}-\bar{t}_{2}(2, q)\right\rfloor$

q	$\bar{t}_{2}(2, q)$	$4 \sqrt{q}$	A_{q}	References	q	$\bar{t}_{2}(2, q)$	$4 \sqrt{q}$	A_{q}	References
16	9	16	7	$[18]$	107	32	41.4	9	$[3]$
17	10	16.5	6	$[18]$	109	32	41.8	9	$[3]$
19	10	17.4	7	$[18]$	113	33	42.5	9	$[3]$
23	10	19.2	9	$[18]$	121	34	44	10	$[1]$
25	12	20	8	$[5],[14],[18]$	125	35	44.7	9	$[3]$
27	12	20.8	8	$[5],[15],[18]$	127	35	45.1	10	$[3]$
29	13	21.5	8	$[15],[18]$	128	36	45.3	9	$[3]$
31	14	22.3	8	$[18]$	131	36	45.8	9	$[3]$
32	14	22.6	8	$[3],[18]$	137	37	46.8	9	$[3]$
37	15	24.3	9	$[11]$	139	37	47.2	10	$[3]$
41	16	25.6	9	$[13]$	149	39	48.8	9	$[3]$
43	16	26.2	10	$[13]$	151	39	49.2	10	$[3]$
47	18	27.4	9	$[1],[13]$	157	40	50.1	10	$[3]$
49	18	28	10	$[13]$	163	41	51.1	10	$[3]$
53	18	29.1	11	$[13]$	167	42	51.7	9	$[3]$
59	20	30.7	10	$[13]$	169	43	52	9	$[3]$
61	20	31.2	11	$[11]$	173	44	52.6	8	$[3]$
64	22	32	10	$[1]$	179	44	53.5	9	$[3]$
67	23	32.7	9	$[17]$	181	45	53.8	8	$[3]$
71	22	33.7	11	$[11]$	191	46	55.3	9	$[3]$
73	24	34.2	10	$[3]$	193	47	55.6	8	$[3]$
79	26	35.6	9	$[3]$	197	47	56.1	9	$[3]$
81	26	36	10	$[3]$	199	47	56.4	9	$[3]$
83	27	36.4	9	$[3]$	211	49	58.1	9	$[3]$
89	28	37.7	9	$[3]$	223	51	59.7	8	$[3]$
97	30	39.4	9	$[3]$	227	51	60.3	9	$[3]$
101	30	40.2	10	$[3]$	229	52	60.5	8	$[3]$
103	31	40.6	9	$[3]$	233	52	61.1	9	$[3]$

Table 3 (continued) The minimal known sizes $\bar{t}_{2}(2, q)$ of complete arcs
in planes $P G(2, q), A_{q}=\left\lfloor 4 \sqrt{q}-\bar{t}_{2}(2, q)\right\rfloor$

q	$\bar{t}_{2}(2, q)$	$4 \sqrt{q}$	A_{q}	References	q	$\bar{t}_{2}(2, q)$	$4 \sqrt{q}$	A_{q}	References
239	53	61.8	8	$[3]$	379	71	77.9	6	$[3]$
241	53	62.1	9	$[3]$	383	71	78.3	7	$[3]$
243	54	62.4	8	$[3]$	389	73	78.9	5	$[3]$
251	55	63.4	8	$[3]$	397	73	79.7	6	$[3]$
256	56	64	8	$[3]$	401	74	80.1	6	$[3]$
257	56	64.1	8	$[3]$	409	75	80.9	5	$[3]$
263	57	64.9	7	$[3]$	419	76	81.9	5	$[3]$
269	57	65.6	8	$[3]$	421	77	82.1	5	$[3]$
271	58	65.8	7	$[3]$	431	77	83.04	6	$[3]$
277	59	66.6	7	$[3]$	433	78	83.2	5	$[3]$
281	59	67.1	8	$[3]$	439	78	83.8	5	$[3]$
283	60	67.3	7	$[3]$	443	79	84.2	5	$[3]$
289	60	68	8	$[3]$	449	80	84.8	4	$[3]$
293	61	68.5	7	$[3]$	457	81	85.5	4	$[3]$
307	63	70.1	7	$[3]$	461	81	85.9	4	$[3]$
311	63	70.5	7	$[3]$	463	82	86.1	4	$[3]$
313	63	70.8	7	$[3]$	467	82	86.4	4	$[3]$
317	64	71.2	7	$[3]$	479	83	87.5	4	$[3]$
331	66	72.8	6	$[3]$	487	84	88.3	4	$[3]$
337	66	73.4	7	$[3]$	491	84	88.6	4	$[3]$
343	67	74.1	7	$[3]$	499	85	89.4	4	$[3]$
347	67	74.5	7	$[3]$	503	85	89.7	4	$[3]$
349	68	74.7	6	$[3]$	509	85	90.2	5	$[3]$
353	68	75.2	7	$[3]$	512	86	90.5	4	$[3]$
359	69	75.8	6	$[3]$	521	88	91.3	3	$[3]$
361	69	76	7	$[3]$	523	88	91.5	3	$[3]$
367	70	76.6	6	$[3]$	529	88	92	4	$[3],[6],[7]$
373	71	77.3	6	$[3]$	541	89	93.04	4	$[3]$

Table 3 (continued). The minimal known sizes $\bar{t}_{2}(2, q)$ of complete arcs in planes $P G(2, q), A_{q}=\left\lfloor 4 \sqrt{q}-\bar{t}_{2}(2, q)\right\rfloor$

q	$\bar{t}_{2}(2, q)$	$4 \sqrt{q}$	A_{q}	References	q	$\bar{t}_{2}(2, q)$	$4 \sqrt{q}$	A_{q}	References
547	90	93.6	3	$[3]$	673	103	103.8	0	$[3]$
557	91	94.4	3	$[3]$	677	103	104.1	1	$[3]$
563	92	94.9	2	$[3]$	683	103	104.5	1	$[3]$
569	93	95.4	2	$[3]$	691	104	105.1	1	$[3]$
571	93	95.5	2	$[3]$	701	105	105.9	0	$[3]$
577	93	96.1	3	$[3]$	709	105	106.5	1	$[3]$
587	94	96.9	2	$[3]$	719	106	107.2	1	$[3]$
593	95	97.4	2	$[3]$	727	106	107.8	1	$[3]$
599	95	97.9	2	$[3]$	729	104	108	4	$[6]$
601	96	98.1	2	$[3]$	733	107	108.3	1	$[3]$
607	98	98.5	0	$[3]$	739	108	108.7	0	$[3]$
613	97	99.04	2	$[3]$	743	109	109.03	0	$[3]$
617	97	99.4	2	$[3]$	751	109	109.6	0	$[3]$
619	98	99.5	1	$[3]$	757	109	110.05	1	$[3]$
625	96	100	4	$[6]$	761	109	110.3	1	$[3]$
631	99	100.5	1	$[3]$	769	110	110.9	0	$[3]$
641	100	101.3	1	$[3]$	773	111	111.2	0	$[3]$
643	100	101.4	1	$[3]$	787	112	112.2	0	$[3]$
647	99	101.7	2	$[3]$	797	112	112.9	0	$[3]$
653	101	102.2	1	$[3]$	809	113	113.8	0	$[3]$
659	100	102.7	2	$[3]$	821	114	114.6	0	$[3]$
661	101	102.8	1	$[3]$					

Table 3 (continued). The minimal known sizes $\bar{t}_{2}(2, q)$ of complete arcs in planes $P G(2, q), A_{q}=\left\lfloor 4 \sqrt{q}-\bar{t}_{2}(2, q)\right\rfloor$

Appendix

For $q \leq 128$ we give a list of new (in comparison with [4] and [5]) small complete k-arcs with $k=\bar{t}_{2}(2, q)$. Similarly to [17], we represent elements of a Galois field $G F(q)$ as follows:
$\{0,1, \ldots, q-1\}$ if q is prime and we operate on these modulo q;
$\left\{0,1=\alpha^{0}, 2=\alpha^{1}, \ldots, q-1=\alpha^{q-2}\right\}$, where α is a primitive element, if $q=p^{n}$, p prime.

For calculation in $G F(q)$ when q is not a prime, a primitive polynomial and hence a primitive element with its powers are used, as in [10],[17]. Here, the primitive polynomials are $x^{5}+x^{3}+1$ for $q=32, x^{2}+x+3$ for $q=49, x^{6}+x^{4}+x^{3}+1$ for $q=64, x^{4}+x+2$ for $q=81, x^{2}+4 x+2$ for $q=121, x^{3}+3 x+2$ for $q=125$, and $x^{7}+x+1$ for $q=128$, [10]. An arc is written as a set of points.
$\bar{t}_{2}(2,41)=16:$
$(1,27,2),(1,0,0),(1,33,22),(1,33,11),(1,28,21),(1,7,2),(1,6,39),(1,7,1)$,
$(1,22,8),(1,28,31),(1,22,16),(1,9,19),(1,1,15),(1,12,1),(1,25,17),(1,9,30)$
$\bar{t}_{2}(2,43)=16:$
$(1,19,32),(1,4,13),(0,0,1),(1,33,2),(1,30,19),(1,14,0),(0,1,14),(1,22,29)$,
$(1,38,4),(1,35,13),(1,40,21),(1,36,24),(1,18,19),(1,13,31),(1,2,34),(1,24,1)$
$\bar{t}_{2}(2,47)=18$:
$(1,34,23),(1,7,46),(1,5,24),(1,34,20),(1,17,28),(1,43,41),(1,28,43)$,
$(1,14,32),(1,0,41),(1,25,17),(1,46,46),(1,13,19),(1,25,36),(0,1,44)$,
$(1,26,11),(1,31,10),(1,26,24),(1,10,29)$
$\bar{t}_{2}(2,49)=18$:
$(1,0,0),(1,15,17),(0,0,1),(1,45,24),(1,20,45),(1,44,17),(1,5,22),(1,8,34)$,
$(1,46,42),(1,29,0),(1,43,29),(1,4,32),(1,13,6),(1,40,32),(1,28,37),(1,2,14)$,
$(1,23,14),(1,17,37)$
$\bar{t}_{2}(2,53)=18$:
$(1,13,29),(1,11,13),(1,50,52),(1,50,48),(1,9,43),(1,5,11),(1,16,47),(1,0,44)$, $(1,1,36),(1,42,36),(1,5,25),(1,51,16),(1,39,32),(1,2,3),(1,13,12),(1,44,16)$, $(1,19,10),(1,4,11)$
$\bar{t}_{2}(2,59)=20$:
$(1,16,37),(1,39,18),(1,13,43),(1,37,32),(1,21,40),(1,11,13),(1,53,58)$,
$(1,57,50),(1,15,13),(1,3,38),(1,24,16),(1,56,44),(1,18,25),(1,47,18)$,
$(1,20,3),(1,34,32),(1,56,6),(1,24,41),(1,47,37),(1,30,33)$
$\bar{t}_{2}(2,73)=25:$
$(1,0,0),(0,1,0),(0,0,1),(1,2,55),(1,45,5),(1,23,57),(1,47,33),(1,5,70)$, $(1,18,26),(1,71,10),(1,72,27),(1,61,14),(1,37,30),(1,52,38),(1,69,34)$, $(1,17,29),(1,38,46),(1,28,35),(1,49,24),(1,39,18),(1,13,13),(1,62,64)$, $(1,34,22),(1,64,54),(1,48,41)$
$\bar{t}_{2}(2,79)=26:$
$(1,0,0),(0,1,0),(0,0,1),(1,2,13),(1,48,72),(1,31,66),(1,64,7),(1,18,21)$, $(1,35,17),(1,33,48),(1,45,18),(1,38,51),(1,72,54),(1,12,75),(1,22,20)$, $(1,20,38),(1,77,6),(1,54,46),(1,69,16),(1,65,68),(1,11,43),(1,9,78)$, $(1,28,60),(1,46,5),(1,63,39),(1,19,10)$
$\bar{t}_{2}(2,81)=26$:
$(1,0,0),(0,1,0),(0,0,1),(1,1,75),(1,41,25),(1,31,65),(1,51,55),(1,71,5)$, $(1,61,35),(1,21,45),(1,11,6),(1,49,28),(1,70,63),(1,39,26),(1,48,57)$, $(1,40,11),(1,18,62),(1,63,1),(1,16,14),(1,27,15),(1,17,37),(1,64,79)$, $(1,73,18),(1,24,13),(1,5,51),(1,58,69)$
$\bar{t}_{2}(2,83)=27:$
$(1,0,0),(0,1,0),(0,0,1),(1,1,46),(1,8,67),(1,61,43),(1,56,58),(1,53,44)$, $(1,35,60),(1,20,82),(1,54,69),(1,10,33),(1,41,61),(1,72,42),(1,71,47)$, $(1,9,55),(1,28,2),(1,16,36),(1,67,7),(1,76,65),(1,69,35),(1,81,54),(1,22,76)$, $(1,24,73),(1,39,66),(1,17,28),(1,13,37)$
$\bar{t}_{2}(2,89)=28:$
$(1,0,0),(0,1,0),(0,0,1),(1,2,52),(1,13,7),(1,79,49),(1,84,77),(1,31,30)$, $(1,75,25),(1,77,75),(1,82,60),(1,54,46),(1,55,69),(1,59,57),(1,57,31)$, $(1,83,45),(1,32,3),(1,70,37),(1,67,40),(1,18,36),(1,64,26),(1,20,63)$,
$(1,88,64),(1,41,11),(1,85,13),(1,23,22),(1,40,58),(1,39,18)$
$\bar{t}_{2}(2,97)=30:$
$(1,0,0),(0,1,44),(1,47,32),(1,82,8),(1,14,45),(1,19,94),(1,19,25)$,
$(1,68,86),(1,71,19),(1,39,2),(1,84,28),(1,32,30),(1,27,38),(1,86,59)$,
$(1,33,69),(1,68,4),(1,17,50),(1,1,46),(1,6,58),(1,5,39),(1,47,27)$,
$(1,14,11),(1,84,43),(1,94,11),(1,29,85),(1,92,33),(1,59,17),(1,31,30)$, $(0,1,53),(1,62,42)$
$\bar{t}_{2}(2,101)=30$:
$(1,0,0),(0,1,0),(0,0,1),(1,2,17),(1,38,10),(1,75,20),(1,4,23),(1,76,30)$, $(1,57,74),(1,9,27),(1,74,98),(1,61,40),(1,24,100),(1,73,62),(1,10,33)$, $(1,67,2),(1,13,24),(1,92,82),(1,90,19),(1,85,42),(1,91,18),(1,18,16)$, $(1,97,6),(1,12,67),(1,69,72),(1,25,65),(1,17,96),(1,3,87),(1,60,89)$, $(1,23,93)$
$\bar{t}_{2}(2,103)=31$:
$(1,0,0),(0,1,44),(1,44,49),(1,77,10),(1,13,49),(1,26,0),(0,1,88),(1,2,65)$, $(1,77,43),(1,7,1),(1,43,3),(1,43,55),(1,44,102),(1,19,31),(1,21,55)$, $(1,38,73),(1,86,29),(1,49,57),(1,90,69),(1,13,71),(1,56,74),(1,100,43)$, $(1,52,91),(1,98,29),(1,68,89),(1,48,98),(1,8,76),(1,68,18),(1,65,97)$, $(1,79,85),(1,48,50)$
$\bar{t}_{2}(2,107)=32$:
$(1,0,0),(0,1,86),(1,47,16),(1,22,87),(1,28,0),(1,13,17),(1,52,100)$, $(1,80,93),(1,13,81),(1,102,36),(1,96,29),(1,90,65),(1,90,30),(1,69,42)$, $(1,88,63),(1,79,4),(1,15,15),(1,59,10),(1,96,49),(1,36,97),(1,99,48)$, $(1,0,42),(1,61,8),(1,50,104),(1,82,72),(1,33,17),(1,89,12),(1,82,41)$, $(1,104,70),(1,21,37),(1,57,70),(1,57,47)$
$\bar{t}_{2}(2,109)=32:$
$(1,0,0),(0,1,0),(0,0,1),(1,1,55),(1,2,23),(1,47,1),(1,100,70),(1,37,60)$, $(1,95,50),(1,54,87),(1,70,102),(1,52,84),(1,25,8),(1,74,83),(1,65,62)$, $(1,46,58),(1,57,24),(1,4,86),(1,29,17),(1,36,26),(1,33,21),(1,93,89)$, $(1,99,40),(1,64,45),(1,17,44),(1,21,10),(1,49,13),(1,55,64),(1,19,95)$, $(1,86,54),(1,32,82),(1,12,65)$
$\bar{t}_{2}(2,113)=33:$
$(1,0,0),(0,1,53),(1,35,85),(1,35,102),(1,74,70),(1,0,93),(1,30,43)$, $(1,100,74),(1,60,56),(1,109,20),(1,1,47),(1,78,29),(1,58,40),(1,55,111)$, $(1,91,55),(1,13,58),(1,44,37),(1,110,96),(1,70,62),(1,6,79),(1,1,58)$, $(1,77,26),(1,14,95),(1,78,48),(1,104,91),(1,28,51),(1,55,100),(1,15,24)$, $(1,34,90),(1,100,19),(1,14,108),(1,50,105),(1,66,20)$
$\bar{t}_{2}(2,121)=34:$
$(1,0,0),(0,1,40),(1,16,42),(1,17,113),(1,15,84),(1,80,60),(1,16,48)$,
$(1,6,26),(1,58,58),(1,70,24),(1,108,104),(1,54,88),(1,79,56),(1,7,35)$,
$(1,47,31),(1,23,111),(1,95,82),(1,117,33),(1,117,51),(1,50,116)$,
$(1,22,99),(1,8,1),(1,106,91),(1,12,104),(1,25,19),(1,49,9),(1,43,119)$,
$(1,61,13),(1,26,41),(1,105,84),(1,36,26),(1,95,19),(1,101,10),(1,4,29)$
$\bar{t}_{2}(2,125)=35:$
$(1,0,0),(0,1,0),(0,0,1),(1,1,72),(1,6,24),(1,71,77),(1,96,93),(1,108,40)$, $(1,48,114),(1,28,28),(1,11,33),(1,24,88),(1,110,119),(1,21,42),(1,79,29)$,
$(1,36,81),(1,105,63),(1,38,19),(1,55,97),(1,97,32),(1,115,34),(1,15,87)$,
$(1,4,59),(1,13,39),(1,22,123),(1,59,12),(1,73,100),(1,32,111),(1,19,48)$,
$(1,64,98),(1,81,38),(1,29,37),(1,93,18),(1,10,26),(1,91,75)$
$\bar{t}_{2}(2,127)=36:$
$(1,0,0),(0,1,50),(1,11,49),(1,19,102),(1,2,19),(1,43,54),(1,106,36)$,
$(1,120,55),(1,12,14),(1,68,63),(1,28,50),(1,91,111),(1,63,6),(1,37,98)$,
$(1,21,1),(1,35,116),(1,8,40),(1,25,88),(1,20,107),(1,117,47),(1,80,15)$,
$(1,94,35),(1,112,68),(1,110,81),(1,90,38),(1,54,115),(1,0,86),(1,70,24)$,
$(1,24,25),(1,67,9),(1,14,14),(1,105,27),(1,50,11),(1,41,61),(1,92,72)$,
$(1,69,71)$
$\bar{t}_{2}(2,128)=36:$
$(1,0,0),(0,1,0),(0,0,1),(1,1,88),(1,10,9),(1,119,127),(1,115,97)$,
$(1,118,107),(1,11,117),(1,14,110),(1,31,64),(1,80,74),(1,98,34),(1,49,122)$,
$(1,40,120),(1,89,81),(1,35,55),(1,94,21),(1,77,106),(1,6,80),(1,29,56)$,
$(1,28,67),(1,126,33),(1,70,58),(1,2,5),(1,30,13),(1,68,17),(1,79,125)$,
$(1,76,78),(1,3,52),(1,18,123),(1,93,112),(1,112,25),(1,13,84),(1,120,101)$, $(1,19,60)$

Acknowledgements

The authors are grateful to P.R.J. Östergård and V.G. Potapov for useful discussions. This research was carried out with the support of the Italian MIUR (progetto "Strutture Geometriche, Combinatoria e loro Applicazioni") and GNSAGA.

References

[1] M. Cherici, Un algoritmo euristico per la costruzione di calotte in spazi proiettivi, tesi di Laurea in Matematica, Università degli Studi di Perugia, 1998-1999.
[2] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, North-Holland, Amsterdam, 1997.
[3] A.A. Davydov, S. Marcugini and F. Pambianco, Complete arcs in projective planes obtained by computer, Preprint, Università degli Studi di Perugia, 2001.
[4] G. Faina and F. Pambianco, On the spectrum of the values k for which a complete k-cap in $P G(n, q)$ exists, J. Geom. 62 (1998) 84-98.
[5] G. Faina and F. Pambianco, On some 10-arcs for deriving the minimum order for complete arcs in small projective planes, Discrete Math. 208-209 (1999) 261-271.
[6] M. Giulietti, Small complete caps in $P G(2, q)$ for q an odd square, J. Geom. 69 (2000) 110-116.
[7] M. Giulietti and E. Ughi, A small complete arc in $P G(2, q), q=p^{2}, p \equiv 3(\bmod 4)$, Discrete Math. 208-209 (1999) 311-318.
[8] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Second edition, Clarendon Press, Oxford 1998.
[9] J.W.P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory, and finite geometry: update 2001, Finite Geometries, Developments of Mathematics, Kluwer 3 (2001), 201-246.
[10] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its applications 20, AddisonWesley Publishing Company, Reading, 1983.
[11] P. Lisonek, S. Marcugini and F. Pambianco, Constructions of small complete arcs as unions of orbits, preprint.
[12] S. Marcugini, A. Milani and F. Pambianco, A computer search for complete arcs in $P G(2, q), q \leq 128$, Rapporto Tecnico n. 18/95, Università degli Studi di Perugia, 1995.
[13] S. Marcugini, A. Milani and F. Pambianco, A computer search for small and large complete arcs in $P G(2, q)$, Rapporto Tecnico n. 5/98, Università degli Studi di Perugia, 1998.
[14] S. Marcugini, A. Milani and F. Pambianco, Complete arcs in $P G(2,25)$: the spectrum of the sizes and the classification of the smallest complete arcs, submitted.
[15] S. Marcugini, A. Milani and F. Pambianco, Minimal complete arcs in $P G(2, q), q \leq 29$, J. Combin. Math. Combin. Comput. 47 (2003) 19-29.
[16] T. Penttila and I. Pinneri, Irregular hyperovals in $P G(2,64)$, J. Geom. 51 (1994) 89-100.
[17] P.R.J. Östergård, Computer search for small complete caps, J. Geom. 69 (2000) 172-179.
[18] F. Pambianco and L. Storme, Small complete caps in spaces of even characteristic, J. Combin. Theory Ser. A 75 (1996), 70-84.
[19] O. Polverino, Small minimal blocking sets and complete k-arcs in $\operatorname{PG}\left(2, p^{3}\right)$, Discrete Math. 208-209 (1999) 469-476.

Alexander A. Davydov
Institute for Information
Transmission Problems
Russian Academy of Sciences
Bolshoi Karetnyi per. 19, GSP-4
Moscow, 127994
Russia
e-mail: adav@iitp.ru

Giorgio Faina, Stefano Marcugini
Fernanda Pambianco
Dipartimento di Matematica e
Informatica
Università degli Studi di Perugia, Via Vanvitelli 1
Perugia, 06123
Italy
e-mail: faina@dipmat.unipg.it gino@dipmat.unipg.it fernanda@dipmat.unipg.it

Received 24 January 2002, revised 4 May 2002.

