
ELSEVIER Materials Science and Engineering A?38 (1997) 18% i 9 1 

MATERIALS 
SCIENCE & 

EMtlWEERlMG 

A 

Computer simulation of 90” ferroelectric domain formation 
in two-dimensions 

Hong-Liang Hu *, Long-Qing Chen 

Abstract 

The dynamics of 90” domain formation during a ferroelectric phase transition is studied using a computer simulation model 
based on time-dependent G&burg-Landau (TDGL) equations. This model does not make a priori assumptions on the domain 
morphologies and their evolution path, and takes into account simultaneously the non-local elastic and electric dipole-dipole 
interactions, and the local interactions resulting in the domain-wall energy. A two-dimensional system is considered. The domain 
structure is described by a vector polarization field whose temporal and spatial equation is obtained by numerically solving the 
TDGL equations in Fourier space. It is shown that both the non-local elastic and electric dipole-dipole interactions are critical 
in order to explain the experimental observation which demonstrated that tail-to-head or head-to-tail arrangement of dipoles at 
twin boundaries. 0 1997 Elscvier Science S.A. 
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1. Introduction 

Ferroelectric oxide is an important family of ceramics 
which find applications in capacitors and transducers 
[l-4]. A common feature to normal ferroelectric ceram- 
ics is the formation of domain structures when a 
paraelectric phase is cooled below the ferroelectric tran- 

sition temperature. Although the crystallography and 
thermodynamics of domain structures have been stud- 
ied quite extensively [2], surprisingly, there have been 
very few theoretical studies on the kinetics of domain 
formation as well as the domain evolution under exter- 
nal fields. A fundamental understanding of the domain 
dynamics is critical for controlling the properties such 

as permittivity and piezoelectricity [4]. For example, it 
is critical to understand the evolution of domain struc- 
tures under external fields in order to control them in 
poled ferroelectric ceramics for use as piezoelectric 
transducers. 

Many important ferroelectric transitions in oxides are 
displacive, generating several orientation variants which 
are related by the symmetry elements of the parent 

paraelectric phase. For example, in a cubic-tetragonal 
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transformation, there are three possible orientation 
variants with the tetragonal ax?s along [loo]: [OlO], or 

[OOI] directions, or six if we count those along opposite 

directions as separate variants. The number of orienta- 

tion variants increases to eight if the crystalline symme- 
try of the ferroelectric phase is rhombohedral. In the 

absence of any external field, all of them have the same 

probability to folm in the parent cubic paraelectric 

phase below the ferroelectric transition temperature. 
The corresponding microstructure of the ferroelectric 

phase will contain all possible domains separated by the 

so-called domain walls. Consequently, in the tetragonal 

phase it is possible that the polarization vectors in 

adjacent domains are perpendicular (as in the case of 
90” domains) or antiparallel (180” domains) to each 

other across a domain wall. 

Experimentally it is found that 90” domains are 
predominant in most tetragonal ferroelectrics. In princi- 

ple. the polarization vectors in adjacent 90” domains 

can be head-to-tail or head-to-head (tail-to-tail). How- 
ever. the head-to-head (tail-to-tail) configuration is ex- 

perimentally shown to be unstable since it results in 

charged domain walls and consequently has higher 

electrostatic energy density at the domain boundaries 

[51. 



The physical origins and the stability of such domain 
configurations are reasonably understood. There are 
two types of infinitely long-range interactions involved 
in ferroelectrics. One is the electric dipole-dipole mter- 
actions and the other is the elastic interaction due to 
the changes in the crystal lattice induced by the dis- 
placive transformations. The infinite range nature of 
those interactions results in a dependence of both the 
elastic energy and the electrostatic energy on the mor- 
phology, shape, distribution and mutual location of 
domains. Therefore, the domain conliguration itself 
becomes an internal thermodynamic parameter with 
respect to which the total free energy should be mini- 
mized. This is very similar to the case of ferromagnets 
whose magnetostatic energy depends on the shape, size 
and mutual location of magnetic domains. A common 
feature for systems with long-range interactions is the 
fact that they form modulated domain structures [6]. 
The typical modulation wavelength is determined by 
the relative strengths of the short- and long-range inter- 
actions. Both the domain structure and the typical 
wavelength can be modified by applying fields such as 
stress, magnetic, or electric fields or by changing the 
temperature. For example, stable 180” domains arise 
due to the competition between the depolarization en- 
ergy and the domain wall energy [7]. The domain wall 
energy prefers a single-domain whereas the depolariza- 
tion energy prefers opposite alignment of dipoles. For 
the similar reason, the elastic accommodation between 
different tetragonal variants leads to the formation of 
90” domain structures. The formation of twin lamellae 
in a single-grain embedded in a polycrystalline ceramics 
can be understood similar to a coherent precipitate of 
low symmetry tetragonal phase in a cubic matrix [8- 
161. The competition between elastic energy and twin 
boundary energy results in a polytwin plate consisting 
of the lamellae of two orientation variants of the low 
symmetry phase. 

As discussed above, our current understanding is 
mainly limited to the crystallographic and thermody- 
namic aspects of domain structures, whereas essentially 
all the experimentally observed domain structures are 
nonequilibrium. They are frozen domain structures 
formed along the ferroelectric transformation and sub- 
sequent evolution path towards equilibrium. The 
nonequilibrium domain structures are much more com- 
plex and they are difficult to predict analytically. They 
depend on the initial conditions and they are time-de- 
pendent. As a matter of fact, one of the main reasons 
leading to the difficulties in the commercial production 
of uniform and consistent materials is that domain 
structures are time- and history-dependent. Therefore, 
in order to control the domain structures, it is impor- 
tant that the dynamics of domain formation and evolu- 
tion be understood. In this paper it will be 
demonstrated that the Time Dependent Ginsburg- 

Landau (TDGL) field model will provide us with a 
powerful framework to address the problem. 

In a previous paper [17], a preliminary study of the 
dynamics of 180” domain formation was reported. It is 
the purpose of the present paper to extend the study to 
the more complicated case of 90” domains. The main 
focus is to investigate the effect of non-local electric 
dipole dipole interactions on the domain structures. A 
very similar computer simulation study has been con- 
ducted recently by Nambu and Sagala [I81 employing 
TDGL equations. However, they did not take into 
account the long range electric dipole-dipole interac- 
tion, which in fact will be shown in this paper to be 
essential in predicting the formation of head-to-tail 
arrangement at the domain walls. Different from [18], 
we will numerically solve the TDGL equations directly 
in the Fourier space in which both the elastic and 
electric dipole-dipole interactions have an analytical 
form. The elastic energy calculation for both the stress- 
free and clamped boundary conditions are discussed, 
although our present simulations were performed for 
the clamped boundary condition which is believed to be 
more appropriate for modeling the domain formation 
in a grain constrained by neighboring grains in a poly- 
crystalline ceramics. One of the main advantages of the 
TDGL field model is that it does not make a priori 
assumptions on the domain morphologies and evolu- 
tion path. and can take into account simultaneously the 
long-range elastic interaction due to lattice mismatch 
[8], long range electric dipole-dipole interactions, and 
the short-range chemical interactions resulting in the 
domain-wall energy. In the present work? computer 
simulations were performed in two dimensions (2-D) 
but the model is also suitable for three-dimensional 
(3-D) simulation, which will be the subject of a future 
work. The specific model proposed in this paper corre- 
sponds to a cubic-tetragonal phase transition. 

This paper is organized as follows: in Section 2, the 
thermodynamics of domain structures is formulated; 
Section 3 discusses the elastic strain energy calculation 
for different boundary conditions; in Section 4, the 
so-called Time-Dependent Ginsburg-Landau equation 
is introduced; the results of computer simulation are 
analyzed in -Section 5; Jmallv, the conclusion is con- 
tained in Section 6. 

2. Thermodynamic description of a domain structure 

Landau theory has played an important role in un- 
derstanding the thermodynamics of ferroelectric phase 
transitions, for example, the nature or characteristics of 
a ferroelectric phase transition. For the thermodynam- 
ics of a homogeneous system, it is sufficient to consider 
a free energy density function usually presented as 
Landau free energy polynomial of order parameters, 
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which is invariant under the symmetry operation of the 
parent paraelectric phase. In a ferroelectric phase tran- 
sition, the primary order parameter is usually the polar- 
ization per unit volume. Using this model, the 
thermodynamic properties and their temperature de- 
pendence of the paraelectric phase and a single-domain 
ferroelectric phase can be predicted. For a ferroelectric 
phase containing a domain structure is, by definition, 
an inhomogeneous state in which the polarization is a 
function of position. Therefore, for modeling the evolu- 
tion of ferroelectric domains, the spatially dependent 
polarization field is a natural description of a domain 
structure. For example, for the particular example of 
cubic-tetragonal transition, a domain structure is de- 
scribed by a three-component polarization vector field 
P= (P,, P,., P,). For an inhomogeneous system, the 
local free energy density also becomes a function of 
position through the dependence on the polarization 
vector. Since we are interested in a first-order cubic-to- 
tetragonal proper ferroelectric transitions, following 
[19]: we employ a six order polynomial for the Landau 
free energy, 

+ ff,,(P$Pf + P?P;l+ PZPZ) 

+ cc,,,(P:+ P; + PZ) 

+ x,JP:(P; +PZ)+ P,4(P', + PZ) 

+PgPz+P;))+ c(*23P$P;P; (1) 

where i, j = 1, 2, 3 stand for s, ~9, Z, respectively and the 
X’S will be chosen to give the desired equilibrium value 
of P, of a single-domain state, i.e. the spontaneous 
polarization. It can be easily shown that x, = 1/2%,x, 
where ~0 is the vacuum permittivity, x is the susceptibil- 
ity of the material. If a, is negative, the parent paraelec- 
tric phase is unstable with respect to the transition to 
the ferroelectric phase, and if it is positive. the initial 
paraelectric phase is metastable. To describe a first 
order transition, ceil has to be negative. In the ferroelec- 
tric state, the vector Field takes one of the six states 
P=Pd, 0, o>, Po( - I, 0, 01, PO@, l,O), Poe4 - 1, o>, 
P,(O, O? I), P,(O, 0, - I), u/here P, is the spontaneous 
polarization at a given temperature. 

Across the boundaries between different ferroelectric 
domains, the values of the polarization field are differ- 
ent from the bulk equilibrium values and depend on the 
plane and orientation of the boundary plane. It is 
assumed that they vary continuously across the domain 
boundaries. In the Ginzburg-Landau free energy 
model, the domain wall energy is introduced through 
gradients of the polarization field. For a cubic system 

WI? 

+ %dU’.rJ. + p,..., )* + Cq,.., + f’,,J’ + U’,.., + 9s.J’) 

+ $%W'.,,,,. - P,.J* + II',>: - 9-J* + (I',,, - P,,,)") 
(3 

where Pi. j = ZPi/8~y It is clear that for a generic choice 
of G, ,, Gi2, G,,, and G& the domain wall energy is not 
isotropic. 

Cubic-tetragonal displacive phase transitions are 
structural transformations involving a change of crystal 
structures and lattice parameters. If we assume that the 
boundaries between the parent paraelectric phase and 
the product ferroelectric phase as well as the boundaries 
between the different orientation domains of the fer- 
roelectric phase are coherent, elastic strain energy will 
be generated during the phase transition in order to 
accommodate the structural changes, We assume that 
the local elastic strain generated during the phase tran- 
sition has a linear-quadratic coupling with the local 
polarization field. This coupling results in the so-called 
electrostrictive energy 

(3) 

where qij are the electrostrictive constants and jlij= l/ 
2(~,~ + 19,~) is the linear elastic strain, zlj is elastic 
displacement. The corresponding elastic energy density 
reads 

=fcm.Y + v& + IILl + C1&7.Y.& + v~,:,~l=z + vJ7.\..J 

+ 2C,,(t& + ij7;: + yI;.y) (4) 

where Ci,‘s are the second-order elastic constants. 
And finally, for an inhomogeneous system, we have 

to consider the long range electric dipole-dipole inter- 
actions. In SI units, it takes the familiar form 

FdipPi = 

3(P(ri)~(ri - r,)) (P(v,),(q - ,))) - 
lYi - rj15 (5) 

where 1 is the dielectric susceptibility of the material. 
We will see that it is this interaction which is responsi- 
ble to the head-to-tail arrangement of dipoles at the 
twin boundaries, 

In summary, the total free energy of a system with a 
domain structure is the sum of the Landau bulk free 
energy FL, the gradient energy F,? the electrostrictive 
energy Fe,, the elastic energy F,,,, and the energy due to 
the long range electric dipole-dipole interaction 
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(6) 

It should be pointed out that although the elastic 
strain energy which appears in the total free energy Eq. 
(6) as a volume integral of an elastic strain energy 
density function, minimization of the total free energy 
with respect to elastic strain immediately results in 
non-local elastic interactions between the volume ele- 
ments of a domain structure described by a nonequi- 
librium polarization field. 

3. The elastic strain energy of a domain structure 

In the model given in the previous section, both the 
polarization field and the linear elastic strain field ap- 
pear to be order parameters. However, it is commonly 
accepted that the mechanical relaxation of elastic field 
is much faster than the electric relaxation of polariza- 
tion field. Consequently, we can assume that during the 
process of ferroelectric transition, the- system in ques- 
tion reaches its mechanical equilibrium instantaneously 
at every stage. By eliminating the elastic strain field 
using the static condition of mechanical equilibrium 
the elastic strain energy of a domain structure becomes 
only a functional of the polarization field. 

It is easy to see that for a stress-free homogeneous 
system, minimization of the total free energy with re- 
spect to the elastic strain results in a simple renormal- 
ization of the constants ti,r and cl,? in front of the 
fourth order term in the Landau free energy. This 
renormalization usually produces a stronger first-order 
phase transition. 

For an inhomogeneous system, let us write the elastic 
strain field as a sum of a spatially independent homoge- 
neous strain, fi.j, and a spatially-dependent heteroge- 
neous strain field SI/~,~ The homogeneous strain 
determines the macroscopic shape deformation of the 
crystal as a whole produced by internal stress due to the 
presence of domain structures. The heterogeneous 
strain is defined in such a way that 

(7) 

If there is no external stress applied and the crystal is 
unconstrained with respect to the macroscopic defor- 
mation, the equilibrium deformation due to the forma- 
tion of a given domain structure is obtained by 
minimizing the total energy of the system with respect 
to the homogeneous strain, 

where Pz and P,P, represent the volume averages over 
a system containing domain structures, and 

(9) 

The elastic energy and electrostrictive energy due to 
the homogeneous deformation can be obtained by sub- 
stituting the equilibrium homogeneous strain (Eq. (8)) 
back to the elastic strain energy expression&, and the 
electrostrictive energy expression f,,, respectively. It is 
easy to see that they depend on the volume fractions of 
each orientation domain. On the other hand, if the 
boundary is clamped instead of stress-free, the homoge- 
neous deformation is prohibited and the corresponding 
homogeneous strain is zero. 

The equilibrium heterogeneous strain field b~,,~ sa- 
tisfies the mechanical equilibrium condition given by 
the Euler equation with respect to the elastic displace- 
ment: 

CJ ii,, = 0, (i,j= 1, 2, 3) (10) 

where 

SF 
81J = G- 

(11) 

is the Cauchy stress tensor, F is the total free energy 
functional. 

For the case of homogeneous modulus approxima- 
tion, the equilibrium Eq. (10) can be readily solved in 
the Fourier space. Details of the derivation can be 
found in [8] and [18]. The sum of elastic strain energy 
and the electrostrictive energy due to the heterogeneous 
strain relaxation is given by 

’ Fhet = - 2 
lmm~ ~~~ 

d3k ( ‘r '(k)njl(n>r,T~(k)n,n) m ‘1, i, (12) 

where n = (tz,, n2, 1f3)> 11, = k,/lkj(i-=i1-2: 3) is the umt 
vector in the reciprocal space. I,(k) are Fourier trans- 
formation of Iti( which in turn are given by 

r33 = qllpf + q,?(pf. + P.:), 

r12 = rzl = 2q,,w,,, 
r23=r32=2qj;rp, P?, 

rjl = r13 = zq,,P,p,. 

(13) 
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Table 1 
Values of effective coefficients used in the simulation 

4 I q;2 

Fig. 1. Domain evolution in the presence of both dipole-dipole and elastic interactions. (a) 2500 Time steps: (b) 5000 steps; (c) 12500 steps; (d) 
25 000 steps. 

s2jm is given by 

c, + tc,, - c,,,cn,” + I??> + i(C,, + C,&fn: 
i-&(n) = ~- 

cd%> 

Q,(n) = - 
cc,, + cdl + in:> 

C.&I(n) 
ninj, (14) 

where indices i, j, k form a cyclic sequence 

i = (Cl 1 - Cl2 - GLJlG, (15) 

is the elastic anisotropy and 

D(n) = c,, + i(C,, + c,&7:n; + i737; + n;n:> 

+ iyc, + 2c,, + c,,)n$7fn: (16) 

It can be easily shown that by converting the expression 
for the elastic strain energy and the electrostrictive 
energy Eq. (12) from Fourier space to the real space, 
the elastic interactions are non-local and highly an- 
isotropic. 
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W 

Fig. 2. Domain evolution in the presence of elastic interaction but the absence oi‘dipoie-dipole interaction. (a) 5000 Steps: (b) 10 000 steps: Cc) 
25000 steps; (d) 50000 step. 

4. The domain evolution equation (till? t)) = 0 

The three components of the polarization vec- 
tor represent three non-conserved order parame- 
ter fields since the volume fraction of each orienta- 
tion domain is not constant during the evolution of 
domain structure. The temporal relaxation of non-con- 
served fields is described by the TDGL equations [2i], 
i.e. 

(&(r, f)&(r’, t’)) = 2k,TL6,6(r - v’)6(r - t’). (181 

where k, is the Boltzman constant, T is temperature, 6, 
is the Kronecker symbol. and d(r- I”) is the Delta 
function. The bracket < . . > denotes an average over 
fluctuations of all the <,(r, f). 

5. Computer simulation results and discussion 

(17) 

where F’ is the total free energy functional after elimi- 
nating the elastic field, :;(P, t) is the Gaussian random 
fluctuation satisfying 

The temporal evolution of the polarization vector 
fields, and thus the domain structures, is obtained by 
numerically solving the TDGL equations. Since the 
elastic strain energy and the electrostrictive energy due 
to the heterogeneous strain field have a single analytical 
exp~s%o~~asfunctional of the polarization field in 
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Cd) 

Fig. 3. Domain evolution in the presence of dipole-dipole interaction but the absence of elastic interaction. (a) 2500 Steps; (b) 5000 steps: (c) 
12 500 steps; (d) 25 000 steps. 

Fourier space, the computer simulation is most conve- 
nient to be performed directly in the reciprocal space. It 
is straightforward to transform the bulk Landau free 
energy term and the gradient term to the reciprocal 
space, while there is some subtlety in transforming the 
dipole-dipole interaction term. The result is 

1 

s 

d3k lP(k).kl’ 

=G (2~)~ kZ 
=& j$iP(kP+ 

(19) 

where 

P(k) = 
s 

cl%” 
r2n)” P(v)e - ck~r 

is the Fourier transform of the polarization field P(u). 
It is easily shown that at k =O, (P(k).n)’ is un- 

defined. In this work the k = 0 point was excluded in 
the computation. For a homogeneous system, we con- 
sider the dipole-dipole interaction energy has been 
incorporated in the Landau free energy. For an inho- 
mogeneous system, at k = 0, P(k = 0) = j’d3vP(r) is the 
total polarization in the entire system. When the do- 
main size is much smaller than the system size and in 
the absence of an external electric field, it is reasonable 
to assume that the volume average of polarization field 
is zero in the multiple domain case. As a result, the 
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Fig. 4. Domain evolution in the absence of elastic and dipole-dipole interactions. (a) 5000 Steps; (b) 10 000 steps: (c) 25 000 steps; (d) 50 000 steps. 

contribution from the k = 0 point to Fdip is automati- 
cally zero. However, if the domain size is comparable to 
the system size, the k = 0 point becomes important. 
Excluding the k = 0 is equivalent to excluding the depo- 
larization field arising from the surfaces of a system of 
finite size. In the current simulation, periodic boundary 
conditions are applied and therefore there is no depo- 
larization field due to external surfaces. 

Of course, in Fourier-transforming the TDGL equa- 
tion, one has to transform 6F/6P, instead of F to the 
reciprocal space. 

In the present work, the TDGL equations in the 
reciprocal space are solved using the simple forward 
Euler technique. As a first step, computer simulations 
are performed in two dimensions. We employ a 128 x 
128 lattice with periodic boundary conditions along 
both Cartesian axes. We consider only the clamped 

boundary condition in which the homogeneous strain is 
zero. The back-Fourier transform at a given step pro- 
duces the real-space domain structures represented by 
the polarization fields. Since we work in two dimen- 
sions, the polarization vector field has two components. 
To further simplify the problem, the noise term is also 
neglected. 

In the simulation, we employ a set of the dimension- 
less variables. Since a,, L and G,, have units of C - ’ m2 
N, s- ’ mP2 C2 N-l and C-’ m4 N [22], respectively, 
it is clear that Jm and l/(la,lL) have the dimen- 
sions of distance and time, respectively. So a natural 
choice of the dimensionless reduced variables is: 



Where P,, is the spontaneous polarization at a given 
temperature. In the reduced variables, the effective 
coefficients are related to the original ones as follows: 

WI 

1.0. In reduced - 

variables, the lattice spacing in real space is chosen to 
be AX = 0.5, the time step is AZ = 0.01. The values of 
other coefficients used in our simulation are given in 
Table 1. 

It should be noted that, in our simulation the gra- 
dient energy coefficients are chosen in such a way to 
provide the isotropic domain wall energy. 

Fig. 1 shows an example of formation of a domain 
structure and its subsequent temporal evolution. The 
initial condition is a high-temperature homogeneous 
paraelectric phase, created by assigning a zero value 
at each lattice site for both components of the polar- 
ization field. In Fig. 1, the magnitude and direction 
of the local electric polarization field are represented 
by the length and the arrow direction of short-lines. 
Since the coefficient, X, in the Landau free energy 
expression is chosen to be negative, the initial 
paraelectric phase is unstable with respect to the tran- 
sition to the ferroelectric phase, and hence small ran- 
dom perturbation introduced to the initial uniform 
paraelectric state is sufficient to trigger the transition. 
It can been seen in Fig. I9 that during the initial 
stages of domain coarsening after the system is trans- 
formed to the ferroelectric state, all four (six in three 
dimensions) different kinds of orientation domains al- 
lowed by symmetry are present, Clearly, there is quite 
strong alignment of domain walls along the [l l] di- 
rections of the two-dimensional lattice. Since in this 
case, the gradient energy coefficients are chosen in 
such a way that the domain wall energy is isotropic, 
the domain wall alignment must be entirely due to 
the anisotropic and non-local elastic and electric 
dipole-dipole interactions. Indeed, as shown in Fig. 
2, the domain structure is visually isotropic if both 
the elastic and electric dipole-dipole interactions are 

removed. 
One may also notice in Fig. la that both head-to- 

head and tail-to-tail arrangements of polarization 
fields across the domain walls are present. As time 
increases, the fraction of head-to-head and tail-to-tail 
domain walls decreases (Fig. l(b-c)). Eventually, as 
shown in Fig. Id, only those domain walls with the 
head-to-tail arrangement survive. However, as shown 
in Fig. 3, by excluding the electric dipole-dipole in- 
teractions, there exist many head-to-head and tail-to- 
tail domain walls even after much longer simulation 
time than in the case described in Fig. 1. By compar- 
ing Fig. 1 and Fig. 3, it also seems to be true that 
the electric dipole-dipole interactions result in faster 
domain growth as a result of the dramatic increase in 
the energies of domain walls with head-to-head and 
tail-to-tail configurations, and thus, their faster elimi- 
nation compared with head-to-tail domain walls. Our 
calculation shows that the domain wall energy with 
either head-to-head or tail-to-tail arrangement is 
about two orders of magnitude higher than the head- 
to-tail configurations. 

It is also interesting to End that even when the 
elastic energy term is absent, the electrical dipole- 
dipole interactions produce strong alignment along 
the [l l] directions, indicating that the minimization of 
dipole-dipole interactions prefer the [l I] domain wall 
orientation in a multidomain system. 

It should be emphasized that our simulations were 
performed using periodic boundary conditions and 
under the constrained condition under which the ho- 
mogeneous strain relaxations are not allowed. Differ- 
ent boundary conditions may lead to different 
domain structures and their evolution path, Fig. 4. 

In the present work, the computer simulation is 
performed in 2D. It is desirable to extend the work 
to 3D since in this case there is one more dimension 
to relax the free energy and as a result more compli- 
cated domain structures can develop. We want to 
stress that the model developed here is suitable for 
3D simulation. Indeed, we expect to be able to report 
the results of 3D simulation based on the present 
model in the near future. 

The effect of random thermal noise is neglected in 
this work, in the belief that at low temperature ther- 
mal noise plays little role in the late stage of the 
domain evolution. However, to better understand tht 
formation of twin structures in the ferroelectric transi 
tion, it is essential to include the thermal noise term 
to simulate the nucleation process. Furthermore, in 
this paper; we considered the case in which the 
paraelectric phase is unstable with respect to the fer- 
roelectric phase transition. It will be interesting to 
study the nucleation mechanism when the parent 
phase is metastable. 
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6. Summary 14 

In conclusion, a computer simulation model for 90” 
ferroelectric domain formation and evolution is devel- 
oped, based on the TDGL equations. Long range elec- 
tric dipole-dipole interactions, long range elastic 
interactions and short range chemical interactions are 
taken into account simultaneously. Various effects of 
these interactions are discussed. It is found that to 
account for the formation of head-to-tail arrangements 
of dipoles at the domain boundaries, it is essential that 
the dipole-dipole interaction be included. 
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