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� Introduction

The past few years have witnessed an explosive growth in interest in physical and
engineering systems that could be studied using stochastic and chaotic methods�
see Berliner ��		
�� Chatterjee and Yilmaz ��		
�� and Shao and Nikias ��		���
Stochastic and chaotic refer to nature�s two paths to unpredictability� or un�
certainty� To scientists and engineers the surprise was that chaos �making a very
small change in the universe can lead to a very large change at some later time�
is unrelated to randomness� Things are unpredictable if you look at the individual
events� however� one can say a lot about averaged�out quantities� This is where
the stochastic stu� comes in� Stochastic processes are recognized to play an im�
portant role in a wide range of problems encountered in mathematics� physics and
engineering� Recent developments show that in many practical applications leading
to appropriate stochastic models a particular class of L�evy ��stable processes is in�
volved� While the attempt at mathematical understanding of these processes leads
to severe analytical di�culties� there exist very useful approximate numerical and
statistical techniques �see Janicki and Weron ��		�b��� Also non�Gaussian statisti�
cal methods in stochastic modeling are important when noises deviate from the ideal
Gaussian model� Stable distributions are among the most important non�Gaussian
models� They share de�ning characteristics with the Gaussian distribution� such as
the stability property and central limit theorems� and include in fact the Gaussian
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distributions as a special case� To help the interested reader better understand the
stable models and necessary methodologies we discuss here tutorial examples of ��
stable Ornstein�Uhlenbeck process and continuous�time random walks subject to
��stable displacement�

� Computer Generation of L�evy ��Stable Distri�

butions

The most common and convenient way to introduce L�evy ��stable random variables
is to de�ne their characteristic function

log ��t� �

���
��
���jtj�f�� i�sign�t� tan ��

�
g� i�t� � �� ��

��jtjf� � i�sign�t� �
�
log jtjg� i�t� � � ��

�
���

where � � ��� 
�� � � ���� ��� � � �� � �R�
Since �
��� is characterized by four parameters we will denote ��stable distribu�

tions by S���� �� �� and write

X � S���� �� �� �
�
�

to indicate that X has the stable distribution S���� �� ��� When � � � and � � �
the distribution is called standard stable�
The location parameter � shifts the distribution to the left or right� The scale

parameter � compresses or extends the distribution about �� Some authors use
� � �� instead of �� but it no longer has the natural interpretation of the scale
parameter� The characteristic exponent � lies in the range ��� 
� and determines
the rate at which the tails of the distribution taper o�� When � � 
� a Gaussian
distribution results� with mean � and variance 
��� When � � 
� the variance
is in�nite� When � � �� the mean of the distribution exists and is equal to ��
In general� the p�th moment of a stable random variable is �nite i� p � �� The
fourth parameter� which determines the skewness of the distribution� is designated
� and lies in the range ���� ��� When � is positive� the distribution is skewed to the
right� When it is negative� it is skewed to the left� When � � �� the distribution is
symmetrical� As � approaches 
� � loses its e�ect and the distribution approaches
the symmetrical Gaussian distribution regardless of ��
The complexity of the problem of simulation of sequences of stable random

variables results from the fact that there are no analytic expressions for the in�
verse F�� of the distribution function� The only exceptions are the Gaussian
S���� �� �� � N��� 
���� Cauchy S���� �� �� and L�evy S������ �� ��� S��������� �� dis�
tributions� for which simple methods of simulation have been found�
Even recently new ways for simulating stable random variables are sought for in

physical literature� For example� Mantegna ��		�� proposes a fast and accurate
algorithm for the symmetric case �� � �� � � �� based on Bergstrom series expan�
sion� This algorithm may be fast but there are no proofs of its accuracy� except
visual similarities of densities� Moreover� arguments used in the paper are not re�
liable since the author mixes the basic concepts of probability theory like density�
distribution and stochastic process�






We propose to use a well known in mathematical literature method of computer
generation of a symmetric ��stable random variable X � S���� �� ��� For � � ��� 
�

� generate a random variable V uniformly distributed on ���
�
� �
�
� and an inde�

pendent exponential random variable W with mean ��

� compute

X �
sin��V �

�cos�V �����
�

�
cos�V � �V �

W

��������

	 �
���

In a similar way to �
���� reparametrizing the algorithm of Chambers et al� ��	���
or using the theorem of Weron ��		�a�� we can construct a method of computer
generation of a skewed random variable X � S���� �� ��� For � � ��� 
� and � � ���� ��

� generate a random variable V uniformly distributed on ���
�
� �
�
� and an inde�

pendent exponential random variable W with mean ��

� for � �� � compute

X � S��� �
sin���V �B�����

�cos�V �����
�

�
cos�V � ��V �B�����

W

��������

� �
���

where

B��� �
arctan�� tan ��

�
�

�
�

S��� �
�
� � �� tan�


�




�������
�

� for � � � compute

X �






�
�





� �V � tan V � � log

�
�
�
W cos V
�
�
� �V

�	
	 �
���

Formula �
��� was initially presented by Janicki and Weron ��		�a�� However�
there is a misprint in the form for C��� �the denominator is � � j� � �j instead of
�� Formula �����
�� page ���� which corresponds to our B���� and a computationally
more complicated form for D��� �our S�����
We have given formulas for simulation of standard stable random variables� Us�

ing the following property� which follows from the form of the characteristic function�
we can simulate a stable random variable for all admissable values of the parameters
�� �� � and ��
If X � S���� �� �� then

Y �

���
��
�X � �� � �� ��

�X � �
�
�� log � � �� � � ��

is S���� �� ���
We regard the methods de�ned by �
���� �
��� and �
��� as good techniques of

computer generation of ��stable random variables� stochastic measures and pro�
cesses of di�erent kinds� For more details see Janicki and Weron ��		�a� and Weron
��		�a��

�



� Simulation of L�evy ��stable stochastic processes

Now we describe rather general technique of approximate computer simulation of
univariate ��stable stochastic processes fX�t� � t � ��� T �g with independent incre�
ments� which is based on a construction of a discrete time process of the form
fX�

ti
gIi��� de�ned by the formula

X�
ti
� X�

ti��
� F�ti���X

�
ti��
� � Y �

i � �����

with a givenX�
� � and where Y

�
i

�

s form a sequence of i�i�d� ��stable random variables�
In computer calculations each random variableX�

ti
de�ned by ����� is represented

by its N independent realizations� i�e� a random sample fX�
i �n�g

N
n��� So� let us �x

N � N large enough� The algorithm consists in the following�

�� simulate a random sample fX�
� �n�g

N
n�� for X

�
� �


� for i � �� 
� 			� I simulate a random sample fY �
i �n�g

N
n�� for ��stable random

variable Y �
i � S��� ���� �� ��� with appropriately chosen � �

�� for i � �� 
� 			� I� in accordance with ������ compute the random sample
X�

i �n� � X�
i���n� � F�ti���X

�
i���n�� � Y �

i �n�� n � �� 
� 			� N �

�� construct kernel density estimators fi � f I�Ni � f I�Ni �x� of the densities of
X�ti�� using for example the optimal version of the Rosenblatt�Parzen method�

Observe that we have produced N �nite time series of the form fX�
i �n�g

I
i�� for

n � �� 
� 			� N � We regard them as �good approximations of the trajectories of the
process fX�t�� t � ��� T �g�
In particular� the above described algorithm can be succesfully applied to the

construction of approximate solutions to the following linear stochastic di�erential
equation driven by an ��stable L�evy motion

X�t� � X� �
Z t

�
�a�s� � b�s�X�s��� ds�

Z t

�
c�s� dL��s� for t � ������ ���
�

with X��� � X� a given ��stable or discrete random variable�
Let us notice that this linear stochastic equation is of independent interest because�
as is easily seen� the general solution belongs to the class of ��stable processes� It
may be expressed in the following form

X�t� � ��t� ��X� �
Z t

�
��t� s� a�s� ds�

Z t

�
��t� s� c�s� dL��s��

where ��t� s� � exp
nR t

s b�u� du
o
�

This explains why outliers or heavy tails appear in the constructed approximate
solutions fX�

i �n�g
I
i��� n � �� 
� 			� N � to ���
�� which can be directly derived as a

special case of ������ It is enough to de�ne the set fti � i�� i � �� �� 			� Ig� � � T�I�
describing a �xed mesh on the interval ��� T �� and the sequence of i�i�d� random
variables �L�

��i playing the role of the random ��stable measure of the interval
�ti��� ti�� i�e� an ��stable random variable de�ned by

�L�
��i � L���ti��� ti�� � S���

���� �� ��� �����

�



and to choose X�
� � X� � S���� �� ��� computing

X�
ti
� X�

ti��
� �a�ti��� � b�ti��� X

�
ti��
� � � c�ti����L

�
��i� �����

for i � �� 
� 			� I�
An appropriate convergence result justifying the method can be found in Janicki�

Michna and Weron ��		���
In order to obtain a graphical computer presentation of the discrete time sto�

chastic process of the form ������ we propose the following approach�

�� �x a rectangle ��� T �� �c� d� that should include the trajectories of fX�t�g�


� for each n � �� 
� 			� nmax �with �xed nmax � N� draw the line segments
determined by the points �ti���X�

i���n�� and �ti�X
�
i �n�� for i � �� 
� 			� I�

constructing nmax approximate trajectories of the process X�

�� �xing values of a parameter pj � ��� ��� j � �� 
� 			� J � it is possible do derive
from each statistical sample fX�

i �n�g
N
n�� with �xed i � f�� �� 			� Ig estimators

of corresponding quantiles qi�j � F��i �pj�� where Fi � Fi�x� denotes the un�
known density distribution function of the random variable X�

ti
represented

by the statistical sample fX�
i �n�g

N
n��� In this way we obtain approximation of

the� so called� quantile lines� i�e�� the curves qj � qj�t� de�ned by the condition
PfX�t� � qj�t�g � pj �

��� Construction of an ��stable Ornstein�Uhlenbeck pro�

cess

To describe a motion of a particle in a �uid in a model with in�nite variance �see� e�g��
West and Seshadri ��	�
�� we have to consider a random strength� In the classical
Langevin equation we obtain that this strength is Gaussian and this equation has a
form

V �t� � V ���� 
Z t

�
V �s� ds� �

Z t

�
dB�s�� �����

where V is a velocity of the particle and �
R t
� V �s� ds describes the strength of a

resistance of an environment according to Stokes law and �
R t
� dB�s� is a random

strength �� and  denoting some given constants��
Generalizing the model we can consider an ��stable random strength and we

can rewrite the previous equation as follows

V �t� � V ��� � 
Z t

�
V �s� ds � �

Z t

�
dL��s�� �����

where fLg� � fL�t�g is an ��stable L�evy motion�
Applying the result of Janicki� Michna and Weron ��		�� with some obvious

modi�cations we obtain the process Vn approximating the process V� This leads to
the following formula

Vn�t� � V ��� exp��t� � �
Z t

�
exp���t� s�� dL�n�

� �s�� �����

�



Figure ���� Solution to ����� in the case of  � 
	� and � � 
	��

Figure ��
� Solution to ����� in the case of  � �	� and � � 
	��

�



where L�n�
� �t� �

P�nt�
j��

Yj
��n�
� and

Pn
j��

Yj
��n�

L
	 L�����

Fig� ��� � ��
 contain graphical results of computer simulations of solutions
to equation ����� for � � �	�� The problem was to �nd a value for  assuring
stationarity of the process fV �t� � t � �g� provided V ��� � S������ �� �� and � � 
	�
were �xed� The �gures present the results obtained for two di�erent values of  �

	�� �	�� It follows from the presented computer experiment that the proper value of
 should be chosen close to 
��� This can be read from the shape of quantile lines�
because horizontal quantile lines characterize stationary processes�

� Tests for In�nite Variance

In some physical applications� arises the question whether the stable distribution
is Gaussian or non�Gaussian� There exist simple and computationally convenient
methods that are used in practice� The handicap of all three mentioned here methods
is that they rely on visual inspection�

��� Converging Variance Test

Given a sample X�� 			�Xn from a stable distribution� for each � 
 i 
 n form a
statistics based on the �rst i observations

S�
i �

�

i� �

iX
k��

�Xk �X i�
� �����

where X i �
�
i

Pi
k��Xi� Then� plot S�

i against i� If the population distribution has
a �nite variance� S�

i should converge to a �nite value� Otherwise� S
�
i should diverge�

Distinguishing between these two cases is rather vague� especially when we have
only one trajectory �one sample��
We have checked this method on four samples of size ���� coming from S���� �� ���

for four di�erent ��s� Fig� ��� presents the results� For � � 
� the distribution is
Gaussian with mean � � � and a �nite variance �� � 
� As well known� in this
case ES�

i � �� � 
 and VarS�
i �

�
i���

	 � 

i�� � When we took smaller �� the

plot became more rugged and the values of S�
i were much larger �note the change

of scale on plots �c� and �d��� which suggested in�nite variance of the population
distribution�
It is much easier to distinguish between �nite and in�nite variance when we

have a few samples from each distribution� Fig� ��
 shows �ve trajectories for every
� � 
	�� �		�� �	�� �	�� In the latter case� the largest jumps in the trajectories di�ered
by an order of magnitude and it was di�cult to �nd two paths that would be visible
on the same scale�

��� Q�Q Plot

Q�Q plots �or probability plots� are widely used since they provide quick estimates
and a quick informal assessment about the �t of a distribution� Furthermore� when
a distribution does not �t� the plot usually tells why this is the case� for instance

�



Figure ���� Plots of the statistics S�
i against i � �� 			� ���� for S���� �� �� with �a�

� � 
	�� �b� � � �		�� �c� � � �	�� �d� � � �	��

Figure ��
� Plots of �ve trajectories of the statistics S�
i against i � �� 			� 
��� for

S���� �� �� with �a� � � 
	�� �b� � � �		�� �c� � � �	�� �d� � � �	��

�



is it because of a single outlying observation or because of a systematic departure
from the assumptions�
If we want to test whether certain data X�� 			�Xn follow the distribution function

F � we plot the data on F�probability paper� This is based on a transformation of
the distribution function F �in this case Gaussian� into a straight line by applying
F to the vertical scale� The graph of y � F �x� against x is a straight line y � x�
The theoretical basis of plotting on probability paper �see Daniel ��	��� or Em�

brechts et al� ��		��� is the fact that for F continuous the random variable F �X��
is uniform on ��� ��� Hence� for the ordered sample X��� 
 			 
 X�n� we know that

E �F �X�k��� �
k

n � �
� k � �� 			� n	

Consequently� we could plot k
n��

against F �X�k��� However� more common is to plot

X�k� against F���
k

n����
If the plot is not approximately linear� the population from which the data

seemed to be drawn was not F � In our case this means that the data probably came
from a distribution with in�nite variance� see Daniel ��	����

��� Log�Tail Test

This test examines the shape of the tails of the estimated distribution� Mandelbrot
��	��� suggested that because a non�Gaussian stable variable satis�es the relation

lim
x��

x�P �X � x� � const� ���
�

then for large x a plot of log P �X � x� against log x should yield a straight line with
slope ��� We can use the sample distribution function

Fn�x� �
�

n
 fi � xi 
 xg� �����

to estimate P �X 
 x� � �� P �X � x��
We have tested this method on samples of size ����� coming from S���� �� ��� for

four di�erent ��s� For � � 
	� the distribution is Gaussian and has exponential �not
inverse power !� tails �see Samorodnitsky and Taqqu ��		��� page ���� Therefore�
the plot is not a straight line� For smaller �� the plot is approximately a straight line
and the slope is a rough estimate of ��� An obvious disadvantage of this method is
the size of the sample needed� For small sizes �n � ����� the plot becomes rugged
and it is di�cult to �nd the slope� We discourage from using this approach for small
samples� It also gives only a poor estimate of �� Especially for � � �	�� as the tails
of the distribution become smaller� our estimate is subject to a large error� since the
plot signi�cantly deviates from a straight line� See Fig� ����

� Continuous�Time Random Walk

Continuous�Time RandomWalk �CTRW� is a stochastic process with random wait�
ing times Ti between successive jumps of random length Ri� During the recent years

	



Figure ���� Log�Tail test� plots of log�� � Fn�x�� against log x for S���� �� �� with
�a� � � 
	�� �b� � � �	�� �c� � � �	�� �d� � � �	��

it has been studied extensively and applied to turbulence� transport in disordered
or fractal media� intermittent chaotic systems and relaxation phenomena� For ref�
erences see Klafter et al� ��		��� The common feature of these applications is that
they exhibit anomalous di�usion� which is manifested through non�linear time de�
pendence of a mean square distance Rt reached by a particle up to the moment t
�with the initial condition R� � ���
For simplicity we restrict ourselves to one�dimensional walks� The �rst instanta�

neous jump of random length R� is executed after a random waiting time T�� Then
the second instantaneous jump R� �i�e� jump of random length R�� is executed after
time T�� etc� In general� the i�th jump Ri is dependent on its waiting time Ti� but
the pairs �Ri� Ti� are independent for di�erent i�s� See Fig� ���� The special case
when Ri is independent of Ti is called the decoupled memory CTRW as opposed to
the coupled one with Ri dependent on Ti� If we de�ne the random variable Nt as
the number of jumps in the time interval ��� t�

Nt � maxfk �
kX
i��

Ti 
 tg� �����

��



then it is clear that the position Rt of the particle at the time t is equal to a random
sum of Nt successive random jumps Ri� i�e�

Rt �
NtX
i��

Ri	 ���
�

Note� that ���
� holds also for a random walk when waiting time intervals Ti are
non�random and take a constant value�

Figure ���� Two sample paths of a coupled memory CTRW� plots of the distance
Rt against time with �a� � � �	
 and �b� � � �	�� There are 	

 jumps in the
trajectories on both plots� Note the scale di�erence on both axes�

Many authors were interested in �nding the asymptotic distribution of the po�
sition Rt of a particle at time t� We concentrated our research on the following
formula

lim
t��

�
Rt

�t�� ����c�
� x

�
� S���� �� ���x�� �����

which is valid for � � � � 
 and � � ETi� Ti has a density g�t� such that

limt��
g�t�

�t����
� �� and Ri satis�es P �Ri � Ti� � P �Ri � �Ti� �

�
�
� The normaliz�

ing constant in ����� is given by c� � c����� � where

c� �
� � �

"�
 � �� cos���
�
�
�

and " denotes the Euler Gamma function� This is a coupled memory CTRW� Fig�
��� presents two sample paths� with ��� jumps each� for two values of �� For � � �	

the distribution of Ti� and thus of Ri� has longer tails then for � � �	�� This results
in longer waiting times and jumps� A trajectory for � � �	
 would� in general� make
twice less jumps in the same time then a trajectory for � � �	��
In our simulations� we let Ti have a Pareto��� �� distribution� i�e� g�t� � �t�����

A random variable X having this distribution can be easily constructed using the
inverse transform method

� generate a random variable V distributed uniformly on ��� ���

� compute X � V �����

��



We have chosen three values of �� ��
� ��� and ��� in the permissible range of ��� 
��
For every � we ran 
� simulations with 
��� trajectories each� Then for every
� and every stopping time t � ���� ����� ���� we used the regression method of
Koutrouvelis ��	���� which is the most reliable among the known statistical methods
�see Weron ��		�b��� to estimate � and � �the distribution of Rt is symmetric�� The
results are summarized in Table ����

� t � �min �max MSE� � �min �max MSE�

��� ��� ���� ���� �	�� ����� ���� ���� ���� �����
��� ���� ���� ���� ���� ����� ���� �			 ���� ��
��
��� ���� ���� ���� ���� ���	� ���	 ���� �	�� �����

��� ��� ���� �	�� ���� ����� ��
� ���� ���� �����
��� ���� ���� �	�� ���� ����� ���	 ���� ���� ���	

��� ���� ���� �	�	 ��
� ����� ���� ���� ��
� �����

��
 ��� ���� ���� ���� ����	 �
�� ��
� �
�� ����	
��
 ���� ���� ��	� ���� ����
 �
�� ���� �
�� ����

��
 ���� ��	� ��
� �
�	 ���	� �
	� �
�� �
�� �����

Table ���� Parameter estimates using the regression method of � � �	
� �	�� �	� and
� describing the stable distribution of Rt at stopping times t � ���� ����� �����

The distribution of Rt is symmetric� i�e� � � �� � � �� thus we estimated only
� and �� For each parameter we give the mean� minimum� maximum and Mean
Squarred Error i�e�

MSE	 �
�

n

rX
i��

�#�i � ���� �����

of the estimates #�k and #�k obtained in 
� simulations �k � �� 			� 
���
As we have stated before� the smaller � the larger are the waiting times and

jumps� which is a consequence of longer tails of the distribution of Ti� This behavior
can be observed in Table ���� The stopping time t � ��� for � � �	� is more or
less equivalent to the stopping time t � ���� for � � �	
� This is the reason the
convergence� to the population values of � and �� for � � �	� seems to be slower
than for � � �	
� Moreover� for � � �	
 the true values are overestimated� for
� � �	� underestimated and for � � �	� the estimators give almost a perfect match�
This� in fact� con�rms what other authors have recently observed for di�erent tail
thickness �they have only estimated the parameter �� of the distribution of Ti� see
e�g� Zumofen et al� ��	�	�� As � approaches 
 from below or � from above the
convergence becomes very slow�
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