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ABSTRACT

A dynamic mathematical model has been constructed for the 
computer simulation of sedimentation in free meandering streams,
The system is defined in terms of form and process, and component 
mathematical models (with mainly deterministic, but also
probabilistic, characteristics) are formulated for the prediction 
of the following aspects of the system for a given physical 
situation and a single time increment: (l) The characteristics
of the plan form of free meanders; (2) The movement of meanders ir 
plan, and definition of cross sections across the meander in which 
erosion and deposition are considered in detail; (3) The hydraulic 
properties of the channel and the erosional and depositional 
activity within the channel as defined in specific cross sections; 
(^) Whether neck or chute cut off will occur; (5) A relative 
measure of the discharge during seasonal high water periods, which 
is used in (3) and (^); (5) Aggradation, The limitations,
qualifications and validity of the component mathematical models
are discussed during their development, as is the input required.

The overall model has been translated into a FORTRAN IV
computer program and a set of experiments with selected input
parameters has been performed. The results and their implications 
are fully documented and compared qualitatively with recent and
ancient fluviatile sedimentation .

The shape cf simulated pointbar sediments, as controlled
by channel migration over floodplains of variable sediment type, 
agrees broadly with the natural situation. Sheet deposits cannot
be simulated because large-scale meander-belt movements are not
accounted .for; this also inhibits generation of thick sequences
of alluvial sediments. When channel migration is combined with
a constant aggradation rate the model predicts a general slope 
(relative to the land surface) of facies boundai'ies and scoured
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basal surfaces upward in the direction of channel movement. If 
aggradation sufficiently increases the thickness of fine grained
overbank material, there is a channel stabilisation effect.

Epsilon cross-stratification, which represents the shape oj 
a pointbar surface before falling-stage deposition (lateral and 
vertical), may be picked out in the simulated sediments. The 
epsilon unit thickness is that measured from bankfull stage down
to the lowest channel position existing prior to deposition,.

The model records the characteristic fining upwards of
grain sizes in the pointbar, and the systematic distribution of 
sedimentary structures, Channel migration combined with seasonal 
scouring and filling across the channel produces a characteristic
relief in the basal scoured surfaces and the grain size and
sedimentary structure boundaries. A related lensing and inter-
fingex’ing of grain size and sedimentary structure facies may also I
present. The model also records large-scale lateral changes in 
grain size and sedimentary structure associated iirith changes in
the shape of developing meanders. .

It is shown that a complete sequence of pointbar sediments
capped by overbank sediments would rarely be preserved in the
moving-phase situation. Such preservation only becomes likely
when an aggrading section lies out of range of an eroding channel
for a considerably longer time span than it takes a meander to
move one half-wavelength downvalley. Deep channel-scours have a
higher preservation potential than contemporary shallower ones.

Where appropriate field data exist the model can be used ii
the more accurate recognition of ancient fluviatile sediments.
Inferences may be made about the erosion-deposition processes
operating in the ancient channel system, and the geometry and
hydraulics of the system can be alluded to, A representative
application of the model to the quantitative interpretation of an 

ancient pointbar deposit is illustrated. There is reasonable



agreement between the natural and the simulated deposits, and 
a broad quantitative picture of the palaeoenvironment of
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A B S T R A C T
A dynamic mathematical model has been constructed for the 

computer simulation of sedimentation in free meandering streams.
The system is defined in terms of form and process, and component 
mathematical models (with mainly deterministic, but also
probabilistic, characteristics) are formulated for the prediction 
of the following aspects of the system for a given physical 
situation and a single time increment: (l) The characteristics
of the plan form of free meanders; (2) The movement of meanders in 
plan, and definition of cross sections across the meander in which 
erosion and deposition are considered in detail; (3) The hydraulic 
properties of the channel and the erosional and depositional 
activity within the channel as defined in specific cross sections; 
(4) Whether neck or chute cut off will occur; (5) A relative 
measure of the discharge during seasonal high water periods, which 
is used in (3) and (4); (5) Aggradation. The limitations,
qualifications and validity of the component mathematical models
are discussed during their development, as is the input required.

The overall model has been translated into a FORTRAN IV
computer program and a set of experiments with selected input 
parameters has been performed. The results and their implications 
are fully documented and compared qualitatively with recent and
ancient fluviatile sedimentation.

The shape of simulated pointbar sediments, as controlled 
by channel migration over floodplains of variable sediment type, 
agrees broadly with the natural situation. Sheet deposits cannot 
be simulated because large-scale meander-belt movements are not
accounted for; this also inhibits generation of thick sequences
of alluvial sediments. When channel migration is combined with 
a constant aggradation rate the model predicts a general slope 
(relative to the land surface) of facies boundaries and scoured



basal surfaces upward in the direction of channel movement. If
aggradation sufficiently increases the thickness of fine grained
overbank material, there is a channel stabilisation effect. $

Epsilon cross-stratification, which represents the shape of 
a pointbar surface before falling-stage deposition (lateral and 
vertical), may be picked out in the simulated sediments. The |
epsilon unit thickness is that measured from bankfull stage down | 
to the lowest channel position existing prior to deposition,

The model records the characteristic fining upwards of £
grain sizes in the pointbar, and the systematic distribution of
sedimentary structures. Channel migration combined with seasonal 5
scouring and filling across the channel produces a characteristic £
relief in the basal scoured surfaces and the grain size and
sedimentary structure boundaries. A related lensing and inter- - 
fingering of grain size and sedimentary structure facies may also be] 
present. The model also records large-scale lateral changes in | 
grain size and sedimentary structure associated with changes in
the shape of developing meanders.

It is shown that a complete sequence of pointbar sediments j 
capped by overbank sediments would rarely be preserved in the X
moving-phase situation. Such preservation only becomes likely J
when an aggrading section lies out of range of an eroding channel
for a considerably longer time span than it takes a meander to s
move one half-wavelength downvalley. Deep channel-scours have a 
higher preservation potential than contemporary shallower ones, S

Where appropriate•field data exist the model can be used in
the more accurate recognition of ancient fluviatile sediments.
Inferences may be made about the erosion-deposition processes 3
operating in the ancient channel system, and the geometry and 1
hydraulics of the system can be alluded to. A representative i
application of the model to the quantitative interpretation of an

ancient pointbar deposit is illustrated There is reasonable
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agreement between the natural and the simulated deposits, and 
a broad quantitative picture of the palaeoenvironment of
sedimentation is obtained
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INTRODUCTION



1
INTRODUCTION

It is well known that meandering streams flowing between 
erodible banks sweep across their floodplains as their loops
migrate downvalley and across the mean downvalley direction.
Such migration involves erosion of the outer, steeply sloping
bank of the inflected channel and concomitant accumulation of
layers of sediment on the inner gently sloping bank. Such 
deposition lateral to the local current direction is sensibly 
termed lateral deposition. Lateral deposition is also important 
in tidal flats and estuaries, and is found to occur in comparat
ively straight channels with sinuous talwegs as well as those
sinuous enough to be arbitrarily termed meandering. In all
these cases the channel, or talweg, swings from one side to the

jother of the mean direction of fluid motion primarily because, 
at the high Reynolds numbers involved, the flow is unstable to
centrifugal accelerations and is unable to assume a rectilinear 
path (Allen, 1970a).

It is known that lateral sedimentation leads, in both
fluvial and tidal situations, to a sequence of deposits marked 
by systematic vertical changes of grain size and sedimentary
structure. This knowledge has been obtained from studies of
ancient strata as well as modern sediments. As regards fluvia-
tile deposits, vertical patterning of grain size and sedimentary 
structure has an important place in the familiar concept of the
fining upwards sedimentary cycle, where the lower, coarse memberi
of the cycle is known or thought to have accumulated through
processes of lateral deposition. The finer members of such 
cycles are thought to have accumulated dominantly by processes 
of overbank deposition.
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As well as channel movements by erosion and lateral

deposition in sinuous conduits, large-scale movements of a
substantially discontinuous nature may occur in the form of* 
cut-off (the abandonment of all or part of a meander loop) or 
avulsion (the abandonment and relocation of a section of the 
meander belt). When all these channel movements are combined 
with a gradual continuing net deposition within the floodplain, 
a complicated spatial distribution of lateral deposits, with a 
certain amount of overbank and channel fill deposits, will 
result within the preserved thickness of alluvium.

Although fining-upwards cyclothems have been widely
recognised, our knowledge of them is still rather broad and 
unsupported by the detailed and comparative studies necessary 
for theii' full and correct interpretation. Several models of
fluviatile sedimentation have been published and have formed a
useful starting point in the recognition and interpretation of 
fining-upwards cycles (Allen, 1963c, 1964, 1965a, 1970a,b, 1971?
Beerbower, 1964; Moody-Stuart, 1966; Potter, 1967; Potter and 
Blakely, 1967; Visher, 1965a,b). Most of these models are 
graphic and qualitative, and more than one of them embodies 
concepts that are physically suspect or oversimplified. Further 
more, they tend to be heavily biased towards study of single 
lateral deposits instead of including channel and overbank 
deposits within a three dimensional body of alluvium. Allen’s 
(1970a,b, 1971) model of lateral deposition is the first 
quantitative approach to the interpretation of fining-upwards 
coarse members and, although static in nature, employs principles
that may be extended for use in simple dynamic mathematical
models•

The purpose of this study is to develop a dynamic mathe

matical model for computer simulation of the nature of erosion
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and deposition in free meandering streams. It is anticipated 3
that such a study will enable more accurate recognition and j
quantitative interpretation of fining-upwards cycles than has §
hitherto been possible, as well as giving further insight into *■I
the processes involved in the natural system. The only previous J 
attempt to simulate fluviatile sediments was by Potter and 
Blakely (1967)• This study made extensive use of Markov

$

processes to generate stratigraphic successions, and the starting | 
point was essentially the transition matrix. Unfortunately it is 
of little use in the physical interpretation of ancient sediments, | 
as it doesn’t examine the processes at work. |

The free meandering system under consideration is an open i 
(in that it is being continually affected by external factors) i
system that is tending towards a steady state, or dynamic I?
equilibrium (Leopold et al, 1964). The system must be arbitrar- J 
ily defined by specifying its boundaries, its components and the 4s 
structure of the inter-relationships among the components, A 
hierarchy of systems can be seen to exist here, with lesser 4
systems nested within the overall framework of the free meandering 5 
river system, which is itself nested in the overall river system, | 
and so on. Because the natural system consists of an assemblage | 
of parts that are inter-related in a complex manner, it must be 
simplified conceptually before it can be represented by a model. 
Dynamic simulation is the operation of the model system in such 
a way that the behaviour of the real system is reproduced to

•asome degree as the model moves through time. 1
S

The most powerful and flexible way of representing a |
ssystem is with mathematical models, however one danger in their

use is that a formal appearance may lend an unwarranted credibility^
■ 1

Basically development of the simulation model has necessitated the •;



construction of component mathematical models, with mainly deter
ministic, but also probabilistic, characteristics, for the sequen
tial prediction of various aspects of the system for a given 
physical situation and a single time increment. These arej-
1) The characteristics of the plan form of the meander within 

which erosion and lateral sedimentation are taking place.
2) The definition of sections across the meander in which erosion 

and deposition will be considered in detail, given modes and
rates of meander movement in plan.

3) The hydraulic properties of the channel and the erosional and 
depositional activity within the channel in the bend, as 
defined in specific cross sections.

4) Whether neck or chute cut-off will occur.
5) A relative measure of the discharge during the seasonal high 

water periods, which is used in 3) and 4).
6) Long term depositional trends due to time persistent changes 

in the independent system variables, i.e. aggradation.
The system has been defined in detail in terms of form and

process as the individual component mathematical models were 
developed, and their limitations, qualifications and validity are
discussed, as is the input required. It will be seen that the
simulation model emphasises lateral sedimentation. This is partly
because of the lack of data sufficient to make up models for the 
complicated overbank erosional and depositional processes, and 
partly because of the greater importance of channel sedimentation
compared with other modes of sedimentation and erosion within the
system. Unfortunately most of the deterministic relations are 
empirical, and these are generally less versatile than theoretical 
ones. As the mechanisms of the processes must be well defined
before they can be reduced to sets of algebraic equations and logic
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statements, the development of mathematical models leads to deep 
insight into the system, and it is interesting to look at the 
modes of sedimentation expected on the basis of the analysis,

A computer program of the mathematical model has been
composed so that the model’s behaviour can be reproduced with
speed and ease with the progression of time. The programming
language FORTRAN IV has proved sufficiently versatile for
representation of the mathematical model and output from the
program can easily be displayed in the form of graphs, tables and 
cross sections, using the line-printer and digital graph-plotter
peripherals.

A fully comprehensive set of experiments with the program
is not possible by virtue of the number of input variables
involved, however examination of the expected behaviour of the
system helped in designing a representative set of experiments.
In supplying input variables, many are dependent system variables
which must be mutually compatible in accordance with the natural 
system. The ideal situation wrould, of course, be to supply
information only on the independent variables and be able to 
simulate the expected sedimentation and erosion patterns; such
is not possible at present, .

The set of experiments with selected input parameters has 
been fully documented. By matching the abundance of output with 
real-world observations the model can be evaluated and its ability 
to provide a useful analogue to the real system can be judged, in
the light of approximating assumptions made in the mathematical 
model and the computer program. Difficulties exist in obtaining 
the comparative data from the real system; even when available, 
data may be sparse or unsuitable in form. Comparative studies 
are therefore, by necessity, only qualitative at present and
concentrate on the broader implications of the model. The
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preservation potential of point bar and overbank sediments is 
discussed in the light of the model and a representative applicat 
ion of the model to the quantitative interpretation of an ancient 
point-bar deposit is performed.

In conclusion, the overall validity of the computer
simulation model and its usefulness in the understanding and
prediction of sedimentation aspects in meandering streams is
discussed and suggestions are put forward for future development.



PART TWO

DEVELOPMENT OP MATHEMATICAL MODEL

I

t
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1• INTRODUCTION: ENERGY DISTRIBUTION IN RIVER SYSTEMS
The river network as a whole is an open system tending 

towards a steady state (dynamic equilibrium) and within which 
several hydraulically related factors are mutually interacting 
and adjusting - specifically velocity, depth, width, hydraulic
resistance and slope. These dependent variables adjust to the
constraints applied by the independent variables of the system, 
that is, the quantity and character of runoff and sediment, valley 
slope and geological nature of the drainage basin.

The observed relationship between the dependent and the
independent variables has been described using empirical
equations of mean tendency, which are assumed to represent the 
channel form in dynamic equilibrium (e.g. Leopold and Maddock, 
1953)» A more desirable theoretical solution may be obtained by 
considering also the energy distribution in the system.

From its headwaters to its mouth a natural river channel
essentially represents a system in which potential energy provided
by quantities of water at given elevations is converted to
kinetic energy of the flowing water and dissipated in friction 
created at the boundaries (Leopold et al, 196^)• In analysing
the behaviour of the channel system, primary interest lies not
in the total energy in the system, but rather in the way in which
energy is distributed throughout the system. This emphasis 
upon the distribution of energy within the system is in general 
analogous to a consideration of the entropy of thermodynamic 
systems (Leopold and Langbein, 1962; Scheidegger, 1970). From 
one point of view entropy may be said to be a measure of the
energy in a system available for external work. The greater the
entropy the less energy is available for external work. The
natural process represented by the flow of water from the head-
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waters to the mouth of a river channel is an irreversible process

in which energy is transformed with an increase in entropy.
Analogy with the thermodynamics of systems in a steady 

state led Leopold and Langbein (1962) to consider the way in which 
energy might be distributed and dissipated in the river system.
They postulated the tendency toward minimum total rate of work
in the system which is the same as uniform distribution, and
minimum variance, of power expenditure per unit length. As
discharge increases downstream this would tend to make the
longitudinal profile concave upwards. They further postulated a
tendency toward uniform distribution of power expenditure per
unit bed area throughout the system, which tends to straighten
the profile. The observed channel form is a 'quasi-equilibrium’
state which, while fulfilling the usual hydraulic laws, represents 
the most probable state between these two opposing tendencies.
These tendencies are promoted by erosion, deposition, variation
in bed form, and related internal adjustments to energy utilisation 
(Langbein and Leopold, 1964). Langbein (1964) further showed 
that the adjustment in the hydraulic variables necessary to
fulfil the energy and hydraulic requirements entails minimum
variance among the components of stream power such that no single
variable absorbs a disproportionate share of the required
variation.

Theoretical solutions to the hydraulic geometry of fluvial 
systems, based on the above postulates, therefore represent the
most probable behaviour of natural rivers satisfying the basic
hydraulic equations. They are a measure of central tendency, 
therefore mutual adjustments of all the variables in every river
system will not be expected to be the same, because of local/
physical constraints. The theoretical solutions agree well with
the empirical mean measures of hydraulic geometry The relevant
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application of these concepts to river meanders can be seen in
the next and subsequent sections.
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2. PLANIMETRIC GEOMETRY OF MEANDERS

2, 1, Theory of Minimum Variance
Many authors have attempted to explain the processes

involved in meander formation, None of these approaches,
summarised by Leopold and Wolman (i960), Allen (1968, 1971)» and 
Yang (1971b), can be used to calculate the characteristics of 
meander geometry adequately. Although various phenomena, 
particularly helicoidal flow, are known to be important in shaping 
meanders, there are many diverse effects involved. Although
each of the individual effects is deterministic in itself their
interactions are too numerous to treat in a deterministic way.
These may, however be treated stochastically.

The striking similarity among meandering channels of
various 3izes in different settings is a result of certain geo
metric proportions apparently common to all. Based on a large 
number of flume and river data, Leopold and Volman (i960) found 
a consistent correlation between meander length, 1, channel width,
w, and mean radius of curvature, r , that is’ m

10.9W1*01 = 4.7r °’98
m (2.1)

All terms used to describe meander geometry are defined in fig. 
2.1, Assuming the exponents in the above equation to be unity
they arrived at the relation

i’;-

2.3.r /w nr (2.2)
These approximate mean relationships were considered to

a great extent to be independent of bed and bank materials, and
it was concluded that a general mechanical principle was responsible
for the observed meander geometry, Bagnold (i960) found the
value of r /\-f to be that at which flow resistance is a minimum nr
within the channel, suggesting that some principle related to



concave bank 
convex bank

w ----
»m ----

A —-
W -----
M -----

Channel Width
Mean Radius of Curvature
Wavelength
Ampl itude
Meander Width 
Length along channel in 
one wavelength

Fig. 2.1 Meander Geometry Definition.
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energy conservation operates in the meander mechanism

In 19^6 the previously developed theories of minimum
variance were introduced to river meanders where ’meanders are
the result of erosion-deposition processes tending toward the
most stable form in which the variability of certain essential 
properties is minimised’ (Leopold and Langbein, 1966; Langbein 
and Leopold, 1966), This minimisation involves the adjustment 
of the planimetric geometry and the hydraulic factors of depth,
velocity and local slope.

In the context of the entire river system a meandering
segment, often but not always concentrated in the downstream
rather than the upstream portions of the system, tends to provide
a greater concavity by lengthening the downstream portion of the
profile. Total work in the system is minimised therefore because
by increasing the concavity of the profile, the product of
discharge and slope becomes more uniform along a, stream that
increases in flow downstream.

In the local context of a given segment of channel the
average slope of the channel is fixed by the relation of that
segment to the whole profile. Any change in the channel must
maintain that average slope. Between any two points on the
valley floor, however, a variety of paths are possible, any of
which would maintain the same slope and thus the same length.
This path is defined by a random walk model as follows.

A river has a finite probability, p, to deviate by an 
angle, A/, from its previous direction in progressing an 
elemental distance, ZSs, along its path. The probability 

distribution as a function of deviation angle is assumed normal. 
This has since been confirmed by Thakur and Scheidegger (1968). 
The actual meander path corresponds to the most probable river
path proceeding between two points A and B, if the direction of
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Fig. 2.2 Definition diagram for sine - generated curve.



12
flow at point A and the length of the path between A and B is 
fixed, and the probability of a change in direction is given by 
the probability distribution above. This formulation of the 
problem is identical to that of a class of random walk problems 
for which solutions have been derived (Von Schelling, 1951, 1964),

The exact solution is an elliptical integral but a
sufficiently accurate approximation states that the most probable 
geometry for a river is one in which the angular direction of the
channel at any point with respect to the mean downvalley direction
is a sine function of the distance measured along the channel,
The resulting curve minimises the sum of squares of the changes
in direction in each unit length.

The equation of the ’sine-generated’ curve is

0 =s cu sin (™ , (^»3)M
where 0 is the deviation angle from the mean downvalley direction, 
0? is the maximum value of 0,s is the distance along the path,

and M is the total path distance. The equation yields a meander
shape typically present in regularly meandering rivers and flumes
and has the characteristic that the ratio of meander length to 
mean radius of curvature is about 4.7• A definition diagram, 
fig. 2.2, shows the terms used in equation (2.3) and in the 
discussion of its development.

Furthermore, field observations have shown that depth, 
velocity and slope (the components of stream power) are adjusted 
so as to decrease the variance of shear and the friction factor’
compared to that of an otherwise comparable straight reach of the
same river. This is manifested in the more uniform water surface
slope at high stage in a meander, which signifies a more uniform 
expenditure of energy for each unit distance along the channel, 
after a slight correction for differences in velocity head (see 

fig. 5.4).
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Since theory and observation indicate that meanders

achieve the minimum variance postulated, it follows that for
channels in which alternating pools and riffles occur, meandering
is the most probable form of channel geometry and thus is more
stable geometry than a nonmeandering reach. This has been 
independently demonstrated by Yang (l971a,b,c). Also using the 
thermodynamic analogy, he shows that the development of meanders, 
along with pools and riffles, fulfills the requirements of a
natural stream evolving towards an equilibrium condition ; that 
is, minimum rate of potential energy expenditure per unit mass 
of water along its course. It should be noted that minimum
variance adjustment describes the net river behaviour, not the
processes. ,

Geometric characteristics of *sine-generated’ curve
Various geometric characteristics of the ’sine-generated* 

curve have been defined by Langbein and Leopold (1966).
Inspection of equation (2.3) indicates that at a relative distance 
s/M equal to and 1, 0 has a value of zero, or the channel is 
locally directed in the mean downvalley direction. At distance 
s/M equal to -J- and -j- the value of 0 has its largest value O).
This is indicated in fig. 2.3a,b which shows the curve of 
equation (2.3) for 00-110° and also a plot of 0 as a function of 

relative distance along the channel path. Furthermore, the
distance betxveen b and f is twice the distance between c and e
measured along the mean downvalley direction as well as along the 
channel path. The tangent to the sine function at any point is
A 0/ As which is the reciprocal of the local mean radius of 
curvature of the meander. The sine curve is nearly straight as
it crosses the zero axis in fig. 2.3b, therefore the radius of
curvature is nearly constant in a meander bend over two portions
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Fig. 2.3 Sine-generated curve (a) and a plot of its direction angle 
as a function of distance along the channel path(b). 
(after Langbein and Leopold,1966).
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covering fully a third of the length of each loop*

The angle tu is a unique function of sinuosity, sn, and 
an approximate algebraic expression is

= 2.2J or sn « 4.84/(4.84- to 2). (2.4)

Average bend radius is related to wavelength and sinuosity. 
Defined as before, as the average over the 1/6 of channel length 
for which 0 is nearly linearly related to channel distance, bend
radius is

Since 0 ranges from
As M-sn.l

+ 0»5ooto -0,5coover
after substituting

this near
for co, we

linear range,
get

1_
13

Differentiating rra

(an/) .
(/”sn~l)
with respect to sn gives

(2.5)

dr_m
dsn

1_
13’ sn

At a turning point of the

^(sn-1^ -h„3/2(sn-l)-3/2.
z J

function dr /dsn ~ 0, therefore nr ’

A 0-^60 .

rm

m

sn 1 sn •
sn»l •" 2 sn-1V J » J

3/2
»

which reduces to

(2sn~3)(4sn+3) - 0 . (2.6)
The turning points are therefore at sn=1.5 and -3/4. The latter 
has no physical meaning, however, by inspection also of fig. 2.4 
it can be seen that r has a minimum value at the turning point 
sn~1.5« The significance of this fact will become apparent later.

Other relations can also be derived that are important 
in the development of the model. By inspection of fig. 2.2, the 
following may be written,



Fig. 2.4 Plot of sinuosity(sn) against dimensionless 
radius of curvature parameter.
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X =
■ ■-0

and

Z =

lim
n—> co

lim
n-~> oo

Z\s.cos0 (2.7a)

r-1

n
/\s.sin0 . (2.7b)

r=l

This means that if a particular length of curve is divided into n
equal parts, then as n tends to infinity, the projected length of 
the curve along the axis of abscissas, X, or the ordinate axis, Z, 
is given by the sums of the product of arc length,As, and a 

cosine or sine function of the direction angle for each interval.
In terms of integral calculus

X - / cos0ds and Z = / sin0ds (2.8)
o o

To integrate these functions, ds must be expressed- in terms of 0. 
Rearranging equation (2.3), we get

-1 (g) 
(«) •

'4
M .s = _ sin

Differentiating with respect to 0,

h « — ~——

Finally, substituting for M, the integrals may be written as,

and

(2.9a)

(2.9b)

X

-3

It is now easy to find expressions for meander amplitude,
A, and the width of the meander neck, GAP, measured to channel 
centre lines. The last parameter is of course physically meaning-^ 
less if co is less than TT/2, The expressions are

■ fe£



A sn, 1 
TV ™

CO 16.

(2.10)

and

GAP = 1)1 sn 
TV '

s±n0d0

V2
cos0d0 
6O2-02 ' (2.11)J

No analytical solutions are possible for these integrals and so
approximate solutions are obtained numerically by Simpson’s rule 
(see appendix 1 and program specifications).

An expression for sn(hencew) in terms of amplitude and 
wavelength was obtained from equation (2.10) by evaluating the 
integral numerically over a range of sn(l.l to 4.5) and performing 
a polynomial regression analysis with sn as the dependent variable 
and the ratio A/l as the independent variable. The resulting best 
fit equation is

2 3
sn =.- 0.96 + 0.34 + 1.67 -0.43 . (2.12)
Full details of the analysis can be seen in appendix 2. As will b
seen from fig. 2,5 and the analysis of variance table in appendix 2 
the relation is almost linear, except for a small part of the curve
at small values of sn.

It can be seen from the above expressions that by specify
ing any two of sinuosity, amplitude and wavelength, all of the
other geometric parameters discussed can be derived. This is an
important point in the analysis because, given only two geometric
characteristics, much of the planimetric geometry can be defined «•
a definition which also implicitly specifies mutual internal .
adjustment of the dependent hydraulic variables to the independent 
system variables, according to the minimum variance theory 
previously outlined. A discussion of the dependence of wavelength,
amplitude and sinuosity on the independent variables will follow

later for the purposes of input to the model



Fig.2.5 Plot of polynomial regression between sinuosity(sn) and ratio of 
amplitude over wavelength (A/l).
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2.3 Validity of the sine-generated cui've
Scheidegger (196?> 1970) points out that the derivation

of the sine generated curve is not in conformity with the commonly

1
1

accepted principles of statistical mechanics. Usually the expected
value of an observable is taken as its average over all the j
configurations of the ensemble in question, whereas in Langbein

ft;
and Leopold's theory the characteristic pattern is taken as that
pattern of the observable which occurs in the most probable
configuration of the ensemble.

The curves are in general too regular to describe a whole $ 
system of river meanders, and the reason is sought in the fact

3
that the most frequent are not the expected random walks. More
recent studies have used models to generate constrained random 4■walks whose expected paths cannot be distinguished statistically

' Xfrom the paths of natural meandering streams (Surkan and Van Kan,
x J1969* Thakur and Scheidegger, 1970? Ghosh and Scheidegger,

1971). -J
£

Although these studies may be more statistically 
rigourous and more authentic than Langbein and Leopold’s model -'■*
when applied to meandering reaches in general, the sine-generated

’ J

curve has been shown-, using empirical and theoretical
considerations, to underlie the stable form of meanders and
describes regular forms very well. As the present study may 
only treat regular shapes with definable geometric characteristics .
the sine-generated curve has been adopted, and will be used in 
the model to represent the channel centre line.

2.4. Initial input required by Planimetric Geometry model y
I «2.4.1. Floodplain seditnent s • 2

That actual meanders are often irregular is well known,
’3and deviations from the idealised case are caused by heterogen

’ Icities in bank materials, structural controls, and other random
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actions causing varying flow.

In order that the model meanders conform to the minimum
variance equations, it will be assumed that the bank materials
are reasonably homogeneous laterally, and there are no random
actions of any nature causing shifts from stable to unstable
forms. The meanders will therefore be ’free’ meanders. Lateral
homogeneity in bank materials is built into the model, the
vertical variation of sediments in the floodplain, however^will 
be specified as input.

2,4,2. Wavelength
Meander wavelength, like other form characteristics of 

stable alluvial channels, is a function of the independent 
variables. It has been recognised empirically for years by many 
authors that wavelength, 1, increases with stream size according
to

1 « (2.13)
in which stream size is measured by a discharge Q, c- is a 

coefficient and N is an exponent close to 0.5. Because channel 
width, w, and mean depth, d, depend on discharge relations can
also be formed between w and 1 and d and 1. It was shown in 
equation (2.1) that 1 and r are closely related.

As will be expanded in section 8, the precise interpre
tation of the discharge, or the range of discharges, that defines
the channel form in natural streams is a major source of dis
agreement (Carlston, 1965? Ackers and Charlton, 1970c). This 
is not a problem under controlled laboratory studies with constant 
discharge, Although exponent N does not appreciably vary, c^ 
varies considerably according to different authors depending on
the data used, suggesting that one equation of the form given
above cannot describe the wavelength of all free meandering

streams. Indeed, discharge is but one of the independent
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variables and the control of wavelength is undoubtedly more 
complex than equation (2.13) would suggest.

The dependence of wavelength on some or all of the other 
independent variables has been empirically examined by many
authors, often involving the arranging of the independent variable 
into dimensionless groups (e.g. Ackers and Charlton, 1970a,b; 
Carlston, 19&5; Chang et al, 1971; Charlton and Benson, 1966?
Freidkin, 19^5; Itinosita, 1961? Schumm, 1967, 1969;
Shahjahan, 1970)• Theoretical studies of meandering have also 
yielded relationships for wavelength (e.g. Anderson, 1967; 
Callander, 1969; Engelund and Hansen, 1967; Fujiyoshi, 1950? 
Hansen, 1967). There appears to be some confusion and apparently 
conflicting views concerning the wavelength of meandering 
laboratory and natural streams of different sizes and types. It 
is clear that wavelength cannot be taken as uniquely related to 
discharge. Although the exponent in equation (2,13) appears to 
represent the effect of discharge fairly well when about 0.5, 
the coefficient c-^ obviously represents the net effect of the 
other independent variables. Although various investigators
have attempted to account for the effects of some of these
variables in their equations, valley slope has hot been accounted
for by any of them. None of the equations uniquely describes 
the effect of the independent variables, and even the theoretical
studies require empirical information. It follows that in a
natural stream, for a given discharge pattern, a number of
different wavelengths may occur depending on the variation in
the other dependent variables, either along the same stream or
between different streams. The existence of a number of wave
lengths in a given stream has been confirmed by Speight (1965a,b, 
1967), Toebes and Chang (1967) and Chang and Toebes (1970).

Jr4
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In view of the aforesaid it appears that the theoretical

or empirical relationships developed to date can only be used for
an approximate estimate of the effect of the independent variables
on wavelength. The problem of multiple wavelengths will not be 
encountered because of the choice of model conditions (see 
section 2.4,1), If 1 is being defined for input using one of 
the equations cited in the literature, estimates of empirical
constants would necessarily be subjective. Furthermore, a time
integral of the discharge hydrograph is more preferable than a 
single measure of discharge (see section 8), It will be seen 
later that channel width must be specified as input to the model. 
Leopold and Wolman’s (i960) relation, that wavelength is approx
imately 3even to ten times the channel width is a useful
approximation linking these two parameters.

2.4,3 Amplitude
Freidkin (1945) showed in flume studies that in uniform 

material, at constant discharge, amplitude did not continue to
increase nor did meander loops cut off as the meanders migrated
downstream. After the initial development of the bends, the
wavelength reached a limiting value, amplitude increased due to
erosion at the concave banks but was checked by the formation of
chutes when flow resistance was less over the bai' than in the
channel. After formation of a chute the bend formed a little
further downstream, and again started to increase in amplitude
to a limiting value, wavelength remaining constant, until another
chute formed.

It is to be expected that this limiting amplitude, like
wavelength, will be a function of the independent system variables.?; 
The variation of the limiting amplitudes (and the similar 
parameter, meander width) with the independent variables are best 
obtained from laboratory meanders that have been allowed to
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develop freely to a stable form (e.g. Shahjahan, 1970)• How
ever, the measured amplitude may not represent a stable limiting 
value in laboratory meanders that were not allowed to develop 
freely, or in natural rivers where meandering was developing, say, 
after cut off, and therefore not in dynamic equilibrium. A 
further problem in natural rivers is the variation of the 
independent variables along the length of the stream (i.e. 
tributaries, local variations in stream banks, etc.) which makes 
an objective measure of meander amplitude for a reach difficult 
to obtain. These points explain the poor correlations of 
amplitude separately with discharge, wavelength and channel width 
(Leopold and Holman, i960; Carlston, 1965; Ackers and Charlton, 
1970a-) » and the poor multiple correlations, including various 
other hydraulic variables (Chitale, 1970)•

One interesting study (Nagabhushanaiah, 1967) expresses 
meander width, W, of laboratory meanders in terms of discharge, 
critical discharge at which bed load movement begins, Q^, mean 
diameter of bed material, D, bed slope, S, , and time, t, i.e.

2 = 0.76 <QSb2 " %Sb2h ' (2-14)

D3 *

It is interesting to note that the time term describes the
progressive development of the meander amplitudes from zero up to 
a limiting value (see fig. 2.6). The shapes of the curves 
broadly agree with the data on natural streams obtained by Handy 
(1972). Nagabhushanaiah further noted that the quantity and 
size of transported sediment increases with discharge and slope, 
and decreases with time; that is, in a developing meander, as 
amplitude increases, water surface slope decreases ahd rate of
sediment transport decreases.
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run no. discharge(cfs) initial bed slope
16 0.147 0.003
17 0.078 0.006
18 0.038 0.006
19 0.038 0.012
20 0.079 0.012
21 0.019 0.012
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Fig.2.6 Variation of meander width with time, 
(after Nagabhushanaiah ,1967).

valley slope

Fig.2.7 Relation between valley slope and sinuosity for 
experimental studies ' »fter Schumm eta, ,1972).
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In general, limiting amplitude of meanders increases

with increasing discharge, valley slope and sediment discharge,
and decreases with increase in size of bed material. Some of
the empirical derived relationships in the literature should be
examined with caution as the values of amplitude used in their 
derivation may not be limiting values. Obviously the amplitude 
of a meander developing to a limiting value may have any value
depending on the progression of time from any initial situation.

Amplitude is not actually required as physical input to 
the model, however its relationship with other dependent 
variables, notably 1 and sn in equation (2.12), is useful if a 
particular amplitude is required in the model.

2.4.4 Sinuosity
In this study sinuosity is defined as the ratio of length 

along the channel centre line to length along the valley axis. 
This definition is sometimes altered slightly by various authors
to suit particular situations.

Schumm (1963, 1969) has shown, using data from natural
streams, that sinuosity is related to width-depth (max.) ratio,
F, and the weighted mean percentage of silt and clay in the 
perimeter of the channel, M, by the following regression
equations

sn = 3.5 P~°*27 (2.15)
sn = 0.94 M°‘25 (2.16)

where the lower limit of the sand sizes is defined as 0,074mm.
M is considered as an index of the ratio of bed material load to
sediment load, that is the type of sediment load moved through
the channels. For channels in the Great Plains of the United
States and the Riverine Plain of New South Wales, Australia,
M ~ 55/Qt where Q.fc is the total sediment load that is sand or 

bed load at mean annual discharge. Although the dimensions of



meanders (wavelength, limiting amplitude, channel width, etc.) 
are .related primarily to discharge, there is no significant
relationship between sinuosity and discharge. However, a change
in discharge may cause a modification through its effect on type
of sediment load transported in the channel.

Valley slope has been found to control sinuosity 
(Freidkin, 19^5; Ackers and Charlton, 1970a,d; Schumm, 197^, 
Schumm and Khan, 1972; Schumm et al., 1972), however some
qualification is needed here. Fig. 2.7 relates to the 
experimental work of Schumm and Khan (1972). It should be noted 
that in this study the sediment load was increased to maintain 
a stable channel (nonscouring and nonaggrading) as valley slope 
was increased. if valley slope is too small or large for a 
given introduced sediment load general aggradation or degradation, 
respectively, will tend to occur, hence changing valley and 
channel slope (Ackers and Charlton, 1970^1 Schumm and Khan, 1972). 
Sediment load and valley slope therefore cannot be viewed as
mutually independent variables in this respect. Valley slop© may 
be largely independent of sediment load when there are tectonic
influences, that is, uplift, depression or tilting of the valley.

Fig. 2,7 shows sinuosity increasing with increasing valley
dp

slope (increase in sediment load is not shown). If, however, the 
valley slope is too steep for a given sediment discharge the river
may either’ degrade in order to reduce the valley slope or reduce 
the channel gradient by increasing sinuosity (Schumm, 1971)• The 
latter situation and fig. 2.7 therefore represent two apparently 
irreconcilable situations. The channel slope and sediment load
in the latter situation must however be above that critical for
the existence of meanders. There are obviously limits to the
amount of degradation possible, and the relative amounts of
adjustment will depend on the distribution of energy expenditure,

23.

It should be noted that sinuosity in these relations,



derived from natural streams, is that limiting sinuosity assoc
iated with a stable wavelength and limiting amplitude, i.e, in
dynamic equilibrium, However sinuosity will vary somewhat with 
time about these measures of* mean tendency depending on the
occurrence of cut-offs and subsequent growth to a stable form.
In the model limiting sinuosity and initial sinuosity are
required as input. These will be synonymous if the meander is
in a stable form. If the meander is developing to a stable form
initial sinuosity may take any desired value
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3 * MEANDERS IN A DYNAMIC FRAMEWORK
Although the meandering' behaviour may be stable through 

time, meanders shift continuously in the mean downvalley and 
normal to the mean downvalley directions by the orderly erosion 
of the concave banks and deposition on point bars. The spatial
and temporal distribution of erosion and deposition around a 
meander is determined by the interaction between the flow pattern
and the sediment forming the perimeter of the channel. Inherent
difficulty lies in expressing the magnitude and the direction of
the forces involved at every point along the channel. These
forces are discussed later in section 6.

Although theoretical studies make it possible to predict 
the flow around a channel bend given channel shape and discharge 
(e.g. Rozovskii, 19^1; Yen, 1971), the flow may mould a loose 
sediment bed, which in turn will alter the flow pattern. The
interactive relation between the shape of a loose sediment bed
and the flow cannot be described adequately for every point in 
the bend. Difficulty also is experienced in describing the other
forces acting on the bed and banks within the context of the
whole meander. furthermore, from a practical viewpoint, there
would be severe limitations imposed by the availability of
computer memory if the erosional and depositional activity of a
meander was to be completely described and recorded in three
spatial dimensions.

By using the sine-generated curve in a dynamic framework,
however, the movement of meanders in plan can be referred to 
specific moving reference axes (see fig. 3.l). The net river 
behaviour can be described simply by looking at the movement of 
the reference axes and the changes in the shape of the sine
generated curve relative to the reference axes



Fig. 3.1 General mechanism of meander loop movement

6 3



Fig.3.2 Observed modes of movement in meander loops(modified
from Daniel,1971).
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Daniel (1973.) used this method in studying- the movement 
of meandering streams in Indiana, and observed various modes of 
change, as shown in fig. 3.1 & 3.2. In the first case of fig.
3.2, the meander is developing to a stable limiting amplitude, 
the lack of downstream migration indicating a restriction to bank
movement in the dov/nvalley direction, perhaps due to clay plugs.
In examples 2 and 3 the situation is essentially similar except 
one arm of the meander in each case is not having its downvalley
migration hindered, Where erosion rates differ greatly within a 
loop in this way, rotation of the reference axes occurs and the 
meander wavelength changes. Example 4 represents the stable 
situation whereby path length is not increasing, wavelength, 
amplitude and sinuosity are constant and the meander is migrating 
downvalley. Daniel states that the three forms of movement,
increasing path length, rotation, or translation, should have 
application to all forms of meanders, the dominance of any single 
mechanism depending on the local physical constraints. In
natural streams the usual condition would be some combination of

all three, as in fig. 3.1.
In the model, rotation will not occur because of the

’built in’ lateral homogeneity of the bank materials. The only 
modes of movement will be (a) translation (downvalley migration 
of a meander in a stable form), fig. 3.2, example 4, and (b) 
translation and expansion together. The latter will be the
situation in the case of a meander developing to a limiting
stable form. During the development of free meandering from a
straight natural or laboratory channel, the meander length remains 
essentially constant although the meander amplitude increases 
(Charlton and Benson, 1966; Ackers and Charlton, 197Oa> Kinosita 
196.1; Anderson, 1967) . See fig, 3.3. In the model, therefore, 
meanders can be allowed to develop to a limiting sinuosity/ 
amplitude according to mode (b), while wavelength remains constant



Fig.3.3 Meander loop migration by translation and expansion(developing meander).
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Assuming these modes of movement, it can be seen that by- 

specifying only the downvalley rate of bank migration and the 
rate of expansion (path length increase) of the meanders, the 
movement of the whole meander in plan form can be accounted for.
Furthermore, as will be shown later, path length increase can be
expressed readily in terms of rate of bank erosion in a direction 
through the axis of the bend.
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4. CROSS SECTION DEFINITION
It has already been pointed out that it is not possible

to analyse the detailed spatial and temporal distribution of
erosion and deposition around the whole of a meander bend.
This is quite possible, however, if dealing with specific cross
sections across the channel. Because of the modes of movement
of the meander in plan that are being considered, it it convenient 
to define cross sections across the channel in the downvalley 
direction and approximately normal to this direction.

In the model it is possible to look at the processes of 
erosion and sedimentation in three types of cross section.
These are:-
(1) Through the axis of the bend at the inner (convex) bank in 

a direction approximately normal to the mean downvalley
direction. The actual direction will depend on the
successive positions of the bend axis at the inner bank as
the meander migrates. This is the LATERAL section.

(2) In a direction parallel to the mean downvalley direction 
through one arm of the meander loop. This is the ONE-CHANNEL
DOWNVALLEY section. In the case of a developing meander
this section is located through the point of inflection of the
meander limb.

(3) In a direction parallel to the mean downvalley direction 
through both arms of the meander, and located through the 
points of inflection of both meander limbs. This is the
TWO-CHANNEL DOWNVALLEY section.

The best type of section to use will often depend largely 
on the type of migration that is occurring. In case (a) of 
section 3, downvalley migration of meanders in dynamic equilibrium 
there is no point in using a lateral section as no deposition or 
erosion is occurring normal to the mean downvalley direction,



'■'4?

0 = 90° ± 4>

mean downvaHey 
direction

Fig.4.1 Cross section def i n s t ion - downva Ney sections.
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Cross section types 2 and 3 are the obvious choice. Type 2
could be located anywhere on a meander limb (except near the 
axis), hoAvevcr type 3 is always located through the points of 
inflection of the loop. This is largely because along this
section the straight line distance between the channel centre
lines can easily be calculated as half the wavelength.

It can be seen from fig. 4,1 that the angle the channel
centre line makes with the mean downvalley direction, and hence 
the projection of the actual channel width in this direction,
will depend on the distance of the cross section from the parallel
line joining the points of inflection of the loop and, of course,
the shape of the loop. In the model the width of the channel as
represented in the chosen cross section must be adjusted with
respect to the actual channel width. In this case of translation
only, the adjusted channel width remains constant as migration
proceeds, and the relation between actual width and width
projected in the cross section, w , is given by s

w - w/sin0 (4,l)s
The value of the angle 0 at a normal distance, Z ., from the sect
line joining the points of inflection of the loop, is obtained 
using an equation of the form of equation (2.9b), i.e.

A/2.0 sect
sn, 1 
2 7T

(4.2)

o
The integral in equation (4.2) was evaluated numerically by 
Simpson’s rule for various values of co( ~f (sn) ) and 0, Polynomial 
surfaces of degree 1,2 and 3 were then fitted by least squares to 
the values of sn, 0, and the integral as the dependent variable. 
It was found that the cubic fit is statistically best, which 
yields the following equation.
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*~(A - 2zsect> 
sn. 1 = O.28O40J - O.1713sn0 + O.11390sn

-O.O292sn3 + O.224402 - O.5520sn
(^.3)

+0.2123sn2 + 0.88930 - O.4651sn 

+0,2668.

In the model, 0 can be found, given A, sn, 1, and zsec£> by
solving equation (4.3) using the Newton-Raphson method (see
appendix l). A good initial estimate of 0, which is required 
by this method, is obtained using the equation of the fitted 
polynomial surface of degree 1 (plane surface). Full details 
of the trend surface fitting are given in appendix 2.

In case (b) of section 3, the developing meander, any type 
of cross section can be used, however the channel width projected
in any of these cross sections does not remain constant as
migration proceeds. Whichever of the three types of cross section 
is used, continual adjustment of channel width is necessary as
outlined below.

In a developing meander the rate of downvalley migration
must be referred to a specific axis, as each point in the meander 
is migrating downvalley at a different rate (see fig. 3.3)•
This reference axis is conveniently taken as the line joining the
points of inflection of the loop. Cross section types 2 and 3
are therefore taken as lying along the line of this reference
axis. Z . is therefore equal to zero, and the angle at which
the channel centre line crosses the reference axis is of course
60 . The width adjustment is given by 

w3 = w/sin(2.2y

The lateral section is alxvays defined through the inner
bank at the axis of the bend. The direction therefore depends on
the relative bank migration in^ the downvalley direction and normal 

to the downvalley direction (see fig. 4.2). The net amount of



Fig.4.2 Definition of direction of line of section in a lateral section.

Fig.4.3 Definition of projected channel width (ws) in a lateral section.
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bank migration in this section, RMIG, is given by

RMIG - yRLMIG2 + RDMIG2 , (U.5)

where RLMIG and RDMIG are the amounts of” bank migration normal
to and in the downvalley direction in any given time increment,
The angle, <=< t that the line of section makes with the normal 
to the downvalley direction is given by

« - issi- ("•«)
It can be seen that this angle will vary depending on the relative
rates of bank migration. As in section types 2 and 3, the
channel width represented in the section must be continuously
adjusted as the meander develops. The adjustment formula is
developed below.

By inspection of fig. ^-.3> it can be seen that the sine 
rule applied to triangle OBC gives

ws ,
s ±n2 jzf

OG__ _
sin( 180- ©< ) 

and for triangle ABC gives
w w

rTn^O*"- <x+0"7" sinTfpO - 0)

Eliminating w in the above equations, we obtain ■ s
OCsln20

sin<x
wcos0 ... _
cosc*cos0 + sin<x sin 0

» OCs.in20
w~2OCs±n20

2 2As 1 + cot 0 = cosec 0 and sin20 ™

tan

2tan0 
1+tan20 we can write

ban°<- 0C (1+tan
„ ) z (2OCtan”0)~0 \ / W > --- --v( l+tair-0 )
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* tan 0 (w - 20C ) tan<x - tan02OC + wtane< 0

* tan 0 = 0C~ x/oc^Z (w-20C) wtan^f
• • **

(w~20C ) tanoc
The physically meaningful value of tan0 involves the negative of 
the square root term* Therefore 0 is given by

-1 OC - \/ OC^»»(W-20C ) wtan%<
" ( w~20C~J tan<*

0 = tan

As OC - r + w/2.0 Ml

0 s= tan •lr r + w/2.0 « / (r +w/2.0)^«. 2r wtanrf 
m 7_____ y v m 7 7 m_____~

2r tario< in
(4.7)

The projected width, w , is then given by

W as WCOS0
3 -0) (4.8)

If the rate of downvalley migration is large relative to
the migration normal to this direction, the angle, c< , is large 
and the width of the channel represented in the cross section will 
be considerably greater than the actual channel width. This will 
also depend on the radius of curvature of the bend. Furthermore, 
in this situation the point bar deposits produced in the cross 
section will very quickly be wiped out by the meander limb
immediately upstream. Normally, in a developing meander, across 
valley migration of the channel will be several times greater 
than downvalley migration and angle is small. Dut as the 
meander develops to its limiting amplitude, the across valley 
migration gradually slows down, while downstream migration remains 
about constant (see section 6), Therefore, unless cut off 
occurs before the rate of downvalley migration becomes large
relative to the across valley migration, much of the deposit 
produced in type 1 section will be wiped out by the upstream



meander limb. The model does not take account for the erosive 
effect of this upstream meander limb in section types 1 or 2,

32.

therefore care should be exercised when examining these sections
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5. MODEL FOR DEPOSITION ON THE POINT BAR '

Introduction
The model adopted is based largely on Allen’s (1970a,b) 

quantitative semi-empirical theory of lateral deposition which 
relates grain size and bed form across a curved channel to the
existing flow conditions, If the changes across such a channel
can be arrived at, the vertical variation within the sediment

i*
bar produced by lateral deposition at once becomes known, The
term ’lateral deposition’ here implies deposition lateral to the
local mean downcurrent direction.

In the model it is assumed that the channel geometry is 

known and that the stream flow can be described by the conventional
hydraulic equations, supplemented by a single additional relation
ship for the helicoidal secondary flow in the channel bend. It
will be assumed that each type of bed form in the channel, lead
ing to a distinctive type of sedimentary structure, is character
ised by a unique value of the friction coefficient.

5•1 Qualitative features of a system involving lateral 
deposition

Figure 5*1 shows the main features of the physical 
situation in which lateral deposition occurs. The curved
channel, containing a water stream powerful enough to entrain and 
transport sediment, is bounded by a steep outer bank and a gently
inclined inner bank with a sigmoidal cross profile. The
dimensions of the channel are discussed in section 5*6.1.

A water particle travelling along the channel follows a 
holico.idal spiral path taking it from inner to outer bank when
close to the water surface, and from outer bank to inner bank 
when near the channel bed. The pitch of the spiral path taken
by the particle is large even compared with the channel width



Accretion topography Channel

Cross-bedding Flat-beddingDecreasing grain size Cross-lamination

—>— Skin-friction line
Fig, 5,1. Qualitative features of an ideal channel bend migrating by processes 

of lateral deposition, Vertical scale exaggerated, (from Allen, 
1970a).
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so that the transverse component of the particle velocity is 

small compared with the downstream component. The water particles 
moving exceedingly close to the channel bed can be represented by 
special limiting stream lines (skin friction lines) to which the 
bed shear vector is everywhere tangential. From the pattern of
skin friction lines it can be seen why sediment accumulates on 
the inner bank rather than the outer, lateral deposition building 
up the inner bank of the channel to balance the erosional losses 
on the outer bank. Because of its migration in this way, the
talveg of the channel sweeps out laterally an erosional surface
on which is laid sediment deposited on the inner bank.

It is evident from the pattern of skin friction lines
that the fluid flow must exert a component of bed shear stress
directed tangentially up the slope of the cross profile. For
equilibrium, this upslope force must be balanced by a force of
equal magnitude acting tangentially down the slope of the cross 
profile. Allen (l9?0a-»k) states that the balancing force is 
purely the body force associated with the sediment travelling
over, and in substantially continuous contact with, the channel 
bed. However the work of Bagnold (195^, 1966) has established 
the existence also of a direct frictional opposition to the
impulsion of the bed load, in the direction of motion, which is
proportional to the excess weight of the sediment. The dynamic
friction coefficient is defined as tanO and is of the same order
as the static solid friction coefficient, not only when the grains, 
are closely packed but also when they are considerably dispersed.
In this dynamic condition when the mass of grains is under con
tinuing shear, with mutual jostling motions in all directions, 
the angle 0 is associated with the average angle of encounter 
between Individual grains, and tan 0 is the ratio of the tangential 
to the normal components of grain momentum resulting from the
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encounters, By equating these forces, the way grain sizes
of bed material varies over the cross profile may be predicted
for equilibrium conditions,

When considering what bod form arises it is assumed that 
longitudinal slope of the water surface is constant over the
cross profile, whence, from the conventional hydraulic equations,
the bed shear stress and stream power must both in general
decrease inwards from the talweg, Selection of the bed
structure will be seen to follow, given empirical data on the
hydraulic limits and friction coefficients of different bed forms. 

5.2, Shape of cross profile ,
To describe the geometry of the cross profile it is

assumed that the local flow depth varies as

Xh
COS 7V ( Z ) ni 

<W1 t ( = < w,) , (5.1)

where y is the flow depth, (measured positively downward from 
water surface), at any transverse distance z across the channel, h 
is the maximum flow depth measured above talweg, z is the
perpendicular transverse distance across the water surface
measured from edge of water at inner bank, and w- is the width 
of flow between inner bank and talweg (see fig. 5*2). The 
exponent prescribes the degree of concavity or convexity of 

the cross profile (see fig. 5*3)* The cross profiles of natural 
channel bends are closely approximated by choosing n^ similar to 
or a little larger than unity (Allen, 1970a)* .

The 3hape of the cross profile in bends has also been 
described using empirical expressions (e.g. Ripley, 1927)» and 
theoretical expressions which attempt to describe the interactive 
effect between the loose sediment bed and the fluid flow (e.g.

Yen, 1970; Ibade-Zade and Kiyasbeili, 1967; Pokhsraryan, 1957» 
195S)• An option will exist in the model to enable the use of 

an alternative expression to equation (5»l)» However, a
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Fig. 5.3 Dimensionless channel cross profiles,according 
to equation(5.1). (after Allen,1970a)„



prerequisite of an alternative expression is that the value of 
dy/dz and any other defining parameters can be readily supplied.
Some of the theoretical equations are unfortunately very cumber
some and others require parameters whose values cannot be readily
obtained.

The above expression describes only the inner channel bank
on which deposition takes place. An accurate description of the
outer bank is not needed, but it is essential to relate channel *
width, w, to width measured outwards to the talweg. Thus /

36.

w k^w1 (5.2)
where normally 0„70.<^k O»95» In the model the shape of the
outer bank is defined, for simplicity, with an equation of the 
form of equation (5»l) with the exponent assuming a value of unity,

3•3 Hydraulic properties of the system
The flow in the cross section of the channel bend can be

described using the conventional hydraulic equations. At any
transverse distance, z, the bed shear stress parallel to the x- 
direction (see fig.5«2) is

= ^gSycosA. (5*3)
x ‘ '

This reduces to

= pgsy (5.M
X

since (3 is a small angle and cos^ is near unity. Here the slope,| 
S, in the general case represents the slope of the energy grade
line. In the special case of uniform flow, the slope of the 
energy grade line is equal to the bed slope and the longitudinal 
water surface slope. In this study, S is actually taken as the
longitudinal water surface slope, the rationale for which is
discussed later



37
The bed shear tress at any station z can also be

expressed in a form which includes the fluid flow velocity
averaged over the vertical at that station, thus

(5.5)

in which V is the mean fluid flow velocity parallel to the x- 
direction and f is the Darcy-Veisbach friction coefficient, both
at the given station z. The value of f depends on the character
of the bed and the flow and describes the flow resistance of the
channel. The flow resistance in open channels is a complex 
problem. The shape of the channel in alluvium changes with 
flow conditions, bed features of various scales may form, and
various degrees of channel sinuosity may develop. Thesd changes
affect the drag caused by the surface roughness and introduce
form drag caused by bed features, as well as energy losses due
to secondary currents. Furthermore, the fluid properties and
turbulent characteristics of the flow are changed by moving 
sediment along the bed and in suspension (Raudkivi, 1967). A 
further discussion of flow resistance is warranted at this point.

Experimental investigations confirm the conclusions of
dimensional reasoning that f is a function of Reynolds number and 
boundary roughness, as measured by the ratio of the size of
roughness elements to the flow depth, or relative roughness.
For fully turbulent open channel flow, f no longer depends on 
the flow Reynolds number, (Allen 1970c). However the applicat
ion of the Darcy term ’friction coefficient’ beyond the context 
within which it was developed (i.e. uniformly distributed wall 
friction in pipes) has tended to encourage the tacit assumption 
that flow resistance in open channels is due principally to 
friction associated with distributed boundary roughness. This

simplified and traditional view of open channel resistance



disregards the fact that the ’square law' resistance, described 
by f as in equation (5*5)> may be appreciably increased by the 
distortion of the flow at discrete bends and other large scale
channel irregularities. Also, such internal distortion is
accompanied, inevitably, by some deformation of the free water
surface, invalidating the required condition that the whole boun
dary remains fixed.

With steady, nonuniform flow, tangential accelerations
occur when velocity is changed in magnitude, and normal acceler
ations when the velocity is changed in direction. These changes
in velocity result in changes in momentum flux, which is
accomplished only by pressures against the fluid in addition to 
pressures which would be associated with uniform flow (i.e. not 
a hydrostatic pressure distribution). When such changes in 
velocity occur, zones of separation and secondary flow (i.e. 
helicoidal flow) frequently result, and this consequently 
increases the shear and turbulence at the expense of the piezo
metric head. Hence head losses result. Since the foregoing
changes in velocity and the resulting head losses are caused by 
nonuniform distribution of pressures on the boundary, the losses
are termed form losses because of the pressure resistance and 
the associated changes, usually increases, in shear (Albertson 
and Simona, 1964). .

38.

The components of resistance to flow in a non-prismatic
free boundary channel can therefore be stated as:- '
(a) Surface resistance (due to grain roughness). Where

surface resistance occurs, the flow does not separate from 
the macroboundary but does separate from the grains, or 
microroughness. This type of resistance occurs on a
plane bed, on the back of dunes, and in antidune flow 

(Simons and Richardson, 1966).

(b) Pressure resistance (due to form roughness). On the



smaller scale, flov/ separates from the macroboundary in the
case of ripples, dunes, and, to a limited extent with
antidunes. The result is a pressure reduction in the 
separation zones (form drag) and the generation of large 
scale eddies (Simons and Richardson, 1966). A further 
source of energy dissipation is associated with the
nonuniform flow over backs of dunes, and when antidunes
grow and subside. On a larger scale, nonuniform flow
in meanders gives rise to pressure resistance due to
changes in width and depth and changes in alignment, which 
set up helicoidal flow and sometimes eddies. As ali-eady 
stated pressure resistance normally involves increases in
shear.

39.

(c) Spill resistance (Leopold et al., i960). Occurs locally
at particular places in open channels under some conditions
Energy is dissipated by local waves and turbulence when a
sudden reduction in velocity is forcibly imposed on the 
flow. Spill resistance is associated with local high
velocities as when water backs up behind an obstruction
and spills into lower velocity flow. This type of 
resistance occurs with breaking waves in chute and pool
flow, and sometimes in antidune flow. Blocks of bank
material slumped into a channel cause such spills as do
some bends of sharp curvature.
If the types of resistances (a) and (b) are described in 

terms of a mean distributed boundary stress, pgRS (where R is the 
hydraulic radius), they will vary as the square of the flow 
velocity (Leopold et al♦, i960). However, when energy dissipat~ 
ion due to spill is introduced the equivalent distributed
boundary stress can no longer be expected to vary as the square
of the mean velocity because spill resistance in an open channel
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cannot exist at low velocities but must start increasing from
zero at some finite mean velocity at which parts of the flow
become locally supercritical. Such resistances cause foci of 
intense energy dissipation. Leopold et al. (i960) state that
Froude numbers in natural streams show a distinct cut off below
the critical value at which spill resistance occurs. They 
suggest that there exists some threshold beyond which processes 
operating in a natural channel alter the hydraulic relations at 
channel cross sections in such a way that the velocity depth ratio
is reduced and thus the Froude number is limited.

Discussing the resistance to flow in terms of the Darcy- 
Veisbach friction coefficient, Ackers and Charlton (l970d) 
separated the overall friction coefficient, f, into that part 
representing form losses introduced due to the addition of bends, 
f, , and another part representing the resistance due to bed
friction of a comparable straight channel, f , thus* • s

f = rfs + rb ’ (5.6)

where r is a factor by which the straight channel friction factor
would have to be multiplied to account for the change in relative 
roughness (arising from bed features) due to change in hydraulic 
radius with meandering. This subdivision is convenient for the
present study, and the values of f ,f and r to be used in the 
model are discussed in section 5*6.3,

Bearing in mind these points concerning flow resistance, 
we can proceed by combining equations (5*^) and (5*5) to give for 
each station z

V = /(8gSy/f) . (5.7)

The Froude number, Fr, an important parameter describing open 
channel flow, is defined as

Fr V/y (gy) , (5.8)
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whence from equation (5*7) the Froud© number at each station
becomes

Fr ./(8S/f) . (5.9)

The stream power, a significant quantity determining the sediment 
transport rate and the existence of certain bed forms, is defined

as

w = vf

where CO is the stream power.
can write

(5.io)

From equations (5.1*) and (5.7), we

OJ =|0 7(87f) .(gSy)3/Z2 . (5.11)

In the computations of velocity, Froude number, boundary 
shear stress and stream power, the longitudinal water surface will
be used as an approximation for the required energy slope. In
steady, uniform flow this is only approximately true. In the
nonuniform flow associated with pools and riffles and horizontal
bends, the water surface 3lope would be expected to vary along the
length of the river, and not be parallel to the energy slope. 
Leopold jet al. (1964) have shown, however, that in a meandering 
reach the energy slope and water surface slope at high stage are
more uniform than in a comparable straight reach. The effect of
the bend is to increase energy losses due to secondary circulation
thus locally increasing the slope, which would otherwise be lover
than over the crossover. This tendency towards uniform distribut 
ion of energy expenditure is discussed earlier. Fig. 5*^ from 
Leopold et al» (1964) shows the uniform water surface slope and
energy slope, also that they are practically parallel, the
velocity heads being virtually constant along the reach in
question
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Leopold et a1. (i960) comment that an appreciable part
of the whole flow resistance ^9gRS of an irregular channel i3 
due to internal energy losses in eddies and vortices at local
deflections, and therefore the friction slope is not equal to the
energy slope. The stresses are probably borne by the projecting
portions of the flow boundary, A considerable portion of this
stress will consist of components normal to the local flow
boundary and therefore of a nonerosive nature. As a result, the
river bed on the whole must be relieved of a portion of the
overall bed shear as given by pgRS. This does not detract from 
the fact that shear is increased with nonuniform flow, as previously
discussed, and that the maximum bed shear is higher in bends than 
in comparable straight reaches (ippen and Drinker, 1962; Ackers 
and Charlton, 19?0d). It should be noted, however, that increase 
in shear due to transverse circulation alone was not found to be 
very great by Shukry (1950) in his experiments. Rozovskii (1961) 
derives an expression for these losses.

Assuming that the longitudinal slope of the water surface 
( energy slope) is constant across the channel cross section 
we find that in a given cross section (a) local bed shear stress 
parallel to the channel centre line depends only on the local 
flow depth (b) the local mean flow velocity and stream power 
depend only on the local flow depth and the Darcy-Weisbach 
coefficient and (c) the local Froude number depends only on the
local friction coefficient.

It remains necessary to account for the helicoidal motion
of fluid particles carried through the channel bend and past a 
cross section of interest. We are chiefly concerned with the flow
exceedingly close to the bed on the inner bank of the channel, 
that is, with the skin-friction lines, or limiting streamlines, of 
the motion. Rozovskii (1961) found theoretically and empirically

that
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tancx =3 lly/r_ (5* 12)

where c< is the angle on the bed between the channel centre line
• I ‘

and the skin friction line of the helicoidal flow, at any station
z. Here, is the local l'adius of curvature. This expression
will be found sufficient to take account of the helicoidal flow.

5*^ Variation _of grain size over the cross profile
Because of the helicoidal flow in the channel, the fluid

exerts a shear stress component directed upslope in the plane of
the cross profile. However, a sediment particle moving over the
bed in substantially continuous contact with it must be affected
by the downslope component of the body force and the dynamic
frictional stress due to shearing over other grains. Because the 
speed of lateral movement of the channel cross profile due to bank
erosion and deposition is small compared with the speed of advance
in the bed load layer of a slowly moving sediment particle, it can
be supposed that equilibrium is achieved when the downslope force
components are equal to the upslope component of the fluid force.
The particle will then follow a path parallel to the channel
centre line and, by equating the three force components, we can
find the variation of particle size over a cross profile whose
geometry is specified.

With the conventions of fig, 5*2, the body force component,
G, acting on a particle of diameter I) at a station on the cross
profile is

G “ 3 (<^-p)ssinp (5.13)
where ^3 is the angle of slope of the cross profile, and cr* and p 
are the sediment and fluid density respectively.

The frictional force opposing motion, T, in the plane of
the cross profile is given by

ss PtanO
K £ TV 3 ( tanO

T
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where P is the normal stress, and tanO is the dynamic friction
coefficient of solid friction as previously described.

The upslope componenent of the fluid force is

'7* sin u s zr(b) . rxtan‘x(2) (5.15)
where 'X is the bed shear stress measured tangentially to the 
skin friction line at the station considered. For equilibrium,
F=T+G and

3^ tancx
sin# + cos A3 tan Q - x___  __ /-

As is very small, we may write sin^J^tan^ and cos^j^I,
whence

d£
dz

3 2" tan<* 
x

~/?)gD
tanOtan^B =

A second expression for dy/dz is obtained by differentiat
ing with respect to z the equation for the variation of local flow
depth in the cross profile, y. If this is taken as equation 
(5.1)» neglecting the negative sign, we obtain

Axdz nlZ
(n ~1)
~-n-1 7\ h sin 71

j-3 f1 . (z< wl)-(5.18)

F 71 iss

(3717)

1
Eliminating dy/dz between equations (5.17) and (5*18), and after 
substitutions from equations (5*4) and (5.12), an expression for
D can be obtained as

n.233fSy w±
(n 1 ~TJ~ z r x

r ^ ( «• jo) /n^z 71 hsin/T - — '
n = /— s -1- 2w.. 1tan©>y.

(Wf) 1
Bagnold (1956) was able to define values of tanO under 

conditions in which the moving bed load solids are sufficiently

numerous to interpose an effective flow boundary between the free
fluid flow above and the stationary bed below. This critical
stage is approximately when bed features disappear, or at least
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cease to create appreciable form drag. Above this critical stage 
experiments show tanO to vary from 0.375 to 0.75 according to the 
conditions of shear owing to the variation of fluid-viscosity
effects with variation of grain size and mass. Below this critical
stage, Bagnold gives grounds for assuming values of tanQ over a
similar range of values, depending on grain size only.

Grain size profiles were calculated using constant values 
of tanQ of 0.0, 0.3 and 0.6 for six separate cross sections in 
order to assess the importance of the dynamic frictional stress.
The values of the other parameters used in equation (5*19) were 
conveniently taken from Allen (1970a). In reality the value of 
tanQ will vary over each profile with the conditions of shear, as 
defined by Bagnold (1956, 1966), however, by inspection of fig.
5.5 it can be seen that the effect of tanQ on the grain size
distributions is so small that its variation over the cross profile
can be ignored.

For simplicity, therefore, it is considered justifiable to
oinit the effect of tanO and assume a value of zero. Equation 
(5«19) then becomes

D =
n.33 p Swx V

TTn^ <5~ • - )rJL hz
1^-1)

(5.20)
sin If ( z ) 

(w±)
Equation (5.20) has implications about the general calibre of the 
load that can be carried through a specified channel bend, as well
as about the variation of particle size over a given cross profile
in the bend. The general calibre of the load increases with
ascending water surface slope, maximum channel depth, and channel 
width between the inner bank and the talweg. The general
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FIG. 5.5 GRAIN SIZE PROFILES, ACCORDING TO EQUATION ( 5.19), C 
FOR DIFFERENT VALUES OF DYNAMIC FRICTION COEFFICIE 
OTHER INPUT PARAMETERS TAKEN FROM ALLEN,1970a.

h (metres) w,(melres) rm(metres) S

A 4.05 405.0 4050.0 0.000285 n, = 2
C 3.2 96.0 336.0 0.000125 k, = 0.8
D 4.4 110.0 228.8 0.0000973 <7“ = 2.65 gn^/cm1 1

E 1.92 48.0 201.6 0.000124 p =1.0 gnyfcm3
F 3.2 80.0 300.0 0.0000666
G 5.55 138.0 520.0 0.0000768



3*
0

Fig. 5.6 Grain size prof iles, according to equation (5.20), calculated for 
different values of nv
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calibre decreases with increasing radius of curvature of the
bend and convexity of the cross profile. As regards the cross
profile, particle size increases from D~0 on the inner bank of the
channel, to D~t>o at the talweg. In practice D is not equal to
infinity at.the talweg, though it is commonly large, gravel being
present. The steepness of the grainsize profile is very
sensitive to changes in n1 and fig. 5>G illustrates some of the 
alternative grain size profiles obtained with different values of

nl* ■
5.5 Variation of bed form and internal structure over the

cross profile
In the absence of large bars, the bed forms that occur in 

flume experiments and natural rivers (depending on flow, fluid, 
geometry and sediment characteristics) are ripples, ripples on 
dunes, dunes, plane beds, antidunes, and chutes and pools. These
bed forms are classified into a lower flow regime, an intermediate 
transition zone, and an upper flow regime (Simons et al., 1961,
1965» Simons and Richardson, 1966, 197-1). Classification is 
based on similarity of bed foi'in, mode of sediment transport, and 
magnitude of resistance to flow (see fig. 5*7).

The primary sedimentary structures associated with ripples,
dunes, flat beds and antidunes are respectively, cross lamination,
cross bedding, flat bedding, and cross beds inclined at low angles 
upstream (Allen, 1968; Harms and Fahnestock, 1965). Although 
trough cross bedding is generally thought to be associated with
dune migration, controversy exists over the exact nature>of the 
sedimentation process and the type of dunes responsible (Allen, 
1968), Tabular cross beds are thought to be associated with 
straight crested dunes, although flat topped transverse bars are
probably responsible for some of the larger scale varieties

(Allen, 1968)



Flow regime Bed form
Bed Material 

concentrations 
(Ppm)

Lower regime

Ripples 10-200

Ripples on dunes 100-1,200

Dunes 200-2,000

Transition Washed out 
dunes 1,000-3,000

Upper regime

Plane beds 2,000-6,000

Antidunes 2,000—>

Chutes and 
pools 2,000—»

Fig, 5»7. Classification of flo^
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5.5 ♦ 1 Allen*_s model
To determine the variation of bed form, hence sedimentary 

structure over the cross profile, Allen (l970a,b) draws heavily 
on empirical information. The results of Guy et al> (1966) and
Williams (1967) lead to fig. 5*8 showing that the occurrence of 
ripples, dunes and lower phase plane beds in quartz density sands
is determined by stream power and calibre of load. It will be
noted that a plane bed, and not ripples, is generated at conditions
just a little more severe than the threshold of movement in the 
case of quartz density sands for which D O.O65cm. If, in the 
case of a given flow, the flow conditions are made severe enough,
a plane bed referable to an upper phase of such beds will appear. 
Upper phase plane beds depend for their appearance simply on a 
relationship between the bed shear stress and the body force
exerted by the particles of the load, and not uniquely on stream
power, as seen below.

Fig. 5»9 shows the variation of the Darcy~Veisbach 
friction coefficient with stream power and bed form, using the 
data of Guy et al. (1966). It can be seen that there is a well 
defined value of the stream power at which ripples of lower phase 
plane beds change to dunes for a given calibre of load, but that
plane beds overlap with dunes as regards stream power. Under
very severe flow conditions in an open channel, antidunes appear
when the Froudo number is in the neighbourhood of unity. These
bed forms also are not uniquely determined by stream power.

Referring to fig. 5.9 it can be supposed that ripples and
dunes are associated with a constant value of the friction
coefficient. This will be designated as f^ (s=0,08 in fig. 5.9).
It can also be supposed that plane beds of eithei' phase and 
antidunes also take a constant value f?(~0.02 in fig. 5-9). In

practice, the friction coefficient for a given bed form is nob



(395/ ^Uio/sbje) J9M0d UUD9JIS
Fig- 5«8« Bed form as a function of stream power and 

calibre of load using data of Guy et al», 
1966; Williams, 1967° (from Allen, 1970a)
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unique, being subject to a 20^ variation or thereabouts in the 
diagram shown. Allen (1970s*-) considers the assumption of* a 
constant value of the coefficient acceptable at the level of
accuracy desired in the study. One further point is that diagram 
5.9 refers to experiments in straight flumes, therefore the
values of f, and f quoted by Allen must be adjusted to account
for the additional losses associated with bends, according to 
equation (5*6). This is discussed fully in section 5*6.3,

Kennedy (1963) showed that the minimum Froude number for 
the appearance of antidunes is Fr=O,844 and that the Froude
number at which antidunes are the bed forms is insensitive to
changing flow conditions. Therefore the bed form in the channel
is antidunes if

Fr ss y(8s/f2) > 0.844 (5.21)

but is either a plane bed, dunes or ripples if

/(8s/f2) < 0.844 . (5.22)

If the bed form is ripples or dunes by the inequality (equation 
(5*22)), then the friction coefficient f. is used in the calculat 
ion of actual mean flow velocity, Froude number and stream power.

In order to say whether a plane bed, dunes or ripples
appear as the bed form at a given station, we first write for
that station the dimensionless shear stress

0 = rx/gD(o--(») (5.23)

where © is the dimensionless shear stress and I and D are the x
bed shear stress parallel to the channel centre line and the
particle diameter, respectively, at the given station,

Bagnold (1966) and Hill (1966) showed theoretically, with
an experimental justification, that granular solids driven over

the bed of a fluid stream will exist as an upper phase plane bed
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provided that

0^0 
wherein 0

(5.24)cri t
is the critical value of the dimensionless shearcrit

stress, dependent on particle size. When this inequality is
not satisfied then either ripples, lower phase plane beds, or
dunes will appear, depending on the local stream power. 
Substituting for D from equation (5,20), equation (5»23) can b

n„written as
7Tn1r hz sin7\ (5.) (5.25)

n.
y

which, like equation (5*20) itself, depends strongly on exponent

0

nl*
Inspection of equation (5*25) will show that the value of 0 for a 
channel bend increases in general magnitude with ascending radius
of curvature, but decreases with increasing flow width. Thus 
large ratios of radius of curvature to channel width favour upper 
phase plane beds as the bed form, whereas small ratios favour
ripples and dunes. There is, however, a critical range of values
of the ratio which could permit upper phase plane beds at restricted 
levels in the channel cross profile, depending on values of the 
exponent n, (see fig. 5*1°)•

It remains explicitly to assign numerical values to 0 ...
According to the results of Bagnold (195^» 19^6) these are,
approximately ,,

0 cri t
crit

0.52 (D < O.O25em.)
(0,56-1.^30) (0,025 4 D <0„20cm.) (5.26)

°crit = °’27 (D>0.20ora.)

for quartz density sands in water, depending primarily on how the 
grains behave when sheared in dense array over the stream bed, 
which was discussed previously in section 5*^.



0

FIG. 5.10 PROFILES OF DIMENSIONLESS BED SHEAR STRESS AS A FUNCTION OF RATIO OF RADIUS OF CURVATURE TO 
CHANNEL WIDTH, ACCORDING TO EQUATION (5.25).
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Either ripples, lower phase plane beds, or dunes are the 
bed form if the inequality, equation (5*24), is not satisfied.
The choice may be made on the basis of the local stream power, for,
as can be seen in figure 5»9» there is a definite value of the 
power for a given calibre of load at which ripples or lower phase 
plane beds give place to dunes. The bed form is dunes if

^X^crit (5.27)
where CO ..is the critical power for the transition from ripples crit
or lower phase plane beds to dunes, but ripples or lower phase
plane beds if

Oo <6 CO,.crit (5.28)

Values of Co .. can be obtained from the experimental data crit
in fig. 5. 9, thus

CO . . crit - 750 (D

o9cri t = 950 (0

^crit U75 (0

Wcrit 520 (D

. i s in the units

(5.?-9)

where Co , .crit
If the inequality, equation (5*27)> is not satisfied, then 

from fig, 5*8 ripples are the bed form if
D < D . . (5.30)

but lower phase plane beds appear when

D>Dcrit 0.31)

where D is the particle diameter of the local bed material and
D = O,O65cm,crit

Thus the bed form is selected by the application of a
series of inequalities to stations on the channel cross profile
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Whether antidunes appear is determined by the Froude number, 
controlled primarily by the longitudinal slope of the water surface 
It may be noted that since in the present model the slope is
assumed constant in each cross section, antidunes either fill the
whole channel width or do not appear at all. In the field, how
ever, antidunes can occur in the same reach of the river1 as other 
bed forms (Kennedy, 1963). If the Froude number of flow is less

A

than that required for antidunes, either plane beds, dunes or
ripples may occur. Distinction between an upper phase plane bed
and dunes, ripples or lower phase beds is made on the basis of an
inequality involving the bed shear stress and the calibre of load
combined in the form of a dimensionless stress. When the dimension
less stress falls below a critical value for an upper phase plane 
bed, either dunes, ripples or lower phase plane beds may be the 
bed form. The choice between the latter three is made using the 
knowledge that ripples or lower phase plane beds give place to 
dunes at a critical value of the stream power, and that ripples
occur only when the calibre of the load material is less than a
certain value.

5.5.2 Alternative models
Allen’s (l9'ZOa,b) model for the prediction of bed form 

across the channel cross profile draws on the results of both
theoretical and experimental work. Over the years many authors
have attempted to predict the hydraulic limits for the existence 
of the various bed forms, and consequently a large body of
experimental and field data exist. The predictive methods used
have been by graphical or multivariate statistical analysis of 
empirical data, based on some theoretical reasoning, or by purely 
theoretical approaches. These methods are summarised, for

example, in Allen (1968), Graf (1971), Raudkivi (1967), and Simons 
and Richardson (l97l)»

It is not intended here to go into the analysis of



alluvial bed form mechanics (see, for instance, Allen (1968), 
Mercer (l97-l), Raudkivi (1967)), or perforin a critical assessment 
of the many different approaches to the problem of bed form 
prediction, It is intended to describe some alternative models 
to that of Allen, which are thought to be equally acceptable in 
view of the prevailing state of knowledge. These alternative
models inevitably contain certain elements in common with each
other and with Allen’s model. The differences that exist lie
essentially in the prediction of the change from lower regime 
forms to upper regime forms.

5•5♦3 Alternative model no. 1
In discussing the graphical method of prediction, Simons 

and Richardson (1971) point out its inability to consider all the 
variables involved in the problem, as opposed to the multivariate
statistical technique. They point out the failures of some of
the graphical methods proposed, and conclude that the rotation
between bed form, stream power, and median fall diameter of bed
material fits the field and flume data fairly well. In fact the
lower flow regime part of this relation is used in Allen’s model
previously discussed, with the substitution of median grain size
for fall diameter.

Simons and Richardson (1971) also favour a Fr,R/D plot 
proposed by Athaullah and Simons (197O)» however this plot only 
distinguishes between regimes rather than specific bed form types 
(see fig, 5*11). In this model, therefore, additional criteria 
are required to distinguish the different bed forms within the 
regimes. The delineation of the transition regime constitutes
an improvement on Allen’s model.

Prom fig. 5.11, the equations of the lines dividing the 
upper regime, transition and lower regime can be obtained. The 

line dividing the upper flow regime from the transition is given

52.

approximately by
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los10Pru = °-75 0.27 log10(R/D) (5.32)

where Fr is Froude number at the change from transition to
upper flow regime, R is the hydraulic radius and D is the particle 
diameter. Upper flow regime forms, upper phase plane beds or
antidunes, will therefore form at a station if

log1QPr - log1Q( y 8s/f2) > lo£10Fru. (5.33)

In order to separate the antidunes and plane bed fields, the 
critical Froude number of 0.844 is used, as in Allen's model.

The line dividing the transition from the lower flow
regime is given approximately by

los10Frt = 0.67 - 0.33 log10(R/D) (5.31*)

where Fr. is the Froude number at the change from lower flow
regime to transition, Lower flow regime bed forms, dunes, 
ripples, or loiver phase plane beds, will therefore form at a
station if

logi0Fx’ « log1Q( s/^S/fj^) log1QFrt . (5.35)

The lower flow regime bed form fields will be separated by the
stream power, median diameter of bed material criterion, fig. 
5.8, as in Allen’s model.

It should be noted here that extrapolation of boundary 
lines separating bed forms or regimes, outside the data fields
to which they relate, is not strictly valid. This should be 
borne in mind when using equations (5.32) and (5.34) above, and 
in any other cases where a limited range of data points is used.
5.5•Alternative model no• 2

This model is the same as Allen’s except that the exist
ence of an upper phase plane bed instead of ripples or dunes is 

determined using the criteria proposed by Hill el; al. (1969).



From dimensional analysis and theoretical considerations, they
produce a general functional relationship applicable for the 
instability of an upper phase plane bed,

VY . , D *crit =: f
(S2f)
( 772) (5.36)2/ - \ y

where V„ , . is the critical shear velocity for the instability *crit J
2and V is the kinematic viscosity (cm'/sec). Shear velocity, V ,

is defined here as y C^/, and has the dimensions of velocity. 
They further state that the two instabilities of upper phase plane 
bed to dunes and upper phase plane bed to ripples would represent 
two distinct functional relationships. Fig* 5*12 represents the 
stability diagram drawn from their own experimental data combined
with that of other investigators, and demonstrates the existence
of the two apparently distinct trends. The greater scatter of
points shown by the data of ’other investigators’ is due to the
fact that the lowest observed values of shear on a plane bed were
used. It should be realised that no transition regime is
explicitly recognised in this model.

3 2For high values of gD /is ' the plane bed is replaced by 
dunes while for low values the plane bed changes over to ripples.
The authors explain this situation in terms of a dominant force 
at the particle level. The parameter gD / j/ can be looked upon 
as a ratio of the gravitational force to the viscous force on the
particle. Then it simply follows that when the gravitational
force dominates compared to the viscous force dunes result on the
plane bed. On the other hand, if the viscous forces are more
dominant than the gravitational forces, ripples soem to develop
on the plane bed.

Hill et slI. (1969) then tried to fit equations of the form
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N
V* • +D *cnt ocl( V3) (5.37)+

to the straight lines of fig. 5*12, where and are constants
and N is an exponent, In general it is not possible to fit an
equation of the form given above to straight lines drawn on semi
log scales. In fact subsequent examination has revealed that the
best fit equations derived by the authors were fitted to all the 
data for each type of instability and not to the straight lines 
marked on fig. 5.12 (Hill, 1972, pers, comm,).

The intersection point of the equations derived by Hill 
et al. (1969) is at V*cria? 6.6 , gD^/2/ 2 6O.63. As can be

seen from fig. 5*12, this point is neither at the intersection of
the two straight lines marked, nor at the point where the
experimental data show the transition from one type of instability
to the other, i.e. V- . , D/j/#»10.63 , glP/i/ 2 121,51. The« w c n u
equations cannot be used therefore to determine when either type 
of instability will occur, because of this considerable inaccuracy 
in the ’transition’ area. In order to overcome this difficulty, 
a polynomial regression analysis was performed for all the data 
points available, as the data appears to vary as a smooth
function. The resulting best fit equation is

V*critD
—57—

(jgsZ)
3.13+O.O?3( F2) 0.92 x 10“

3>2(•^2)
(5.38)

+0.62x10' -7(gP^) 
(jT*-) 0,15x10

As can be seen from fig. 5*13, equation
position of the transition between the
fairly well, and corresponds to a value

Pull details of the polynomial regress!
Thus, in the absence of antidun

"10

(5*38) describes the 
two types of instabilities

of gD"/3/ of about 120. 
on. are given in appendix 2,

es, upper phase beds will

form at a station if



FIG. 5,13 STABILITY DIAGRAM FOR RIPPLES,DUNES AND UPPER PHASE PLANE BEDS, ACCORDING TO CRITERIA OF HILL ET AL., 1983. STABILITY 
BOUNDARY ACCORDING TO EQUATION (5.38).

V
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>
7/

otherwise dunes or 
3 2gD / 2, ~ is greater 

By way of
upper phase plane
rewrite V„ . , D/tP *cnt '

-v
ripples will
or less than
comparison of
beds and that
as follows

(5.39)

form, depending on whether*
120, respectively.

this method of prediction for
used in Allen’s model, we can

V, . . D *cnt ( Tcri t D 0
P 2/ cri t (<r~ p)) =

p V 2.
,3

d~2)
(5.4o)

{
J ( 1,2}

This is similar to the Bagnold criterion used in Allen’s model
except that,in addition, the viscosity of the fluid is taken into 
account. Pig. 5»1^- shows ®crit Plotted against D, using the 
data from Hill et al’3 (1969) compilation and the values taken 
from Bagnold (195^, 1966) which Allen cites. It can be seen
that the values of 0 . , used in Allen's model are not truly
representative of the observed values for the range of D covered.
The value of 0 , for a given D in this range should be higher

C 2? 1 C

than is shown, and clearly the excessive scatter of the data is
an indication of the omission of important controlling factors. 
Indeed, Bagnold (1966) states ’0though the value of 0 is an 
approximate guide in default of a better one, it is not, as
pointed out earlier, a precis© criterion for either the disappear
ance of dune features on the bed of the change of trend in the
transport rate versus power curves...’ and ’...dune features
often persist at the higher flow stages..,’.

5 • 5 ♦ 5 Alternative mod e 1 no • J3
One of the theoretical models that has received a lot of 

attention is that of Kennedy (1963, 1969)» He made an elaborate 
stability analysis of the bed forms on lines similar to those 
adopted by Anderson (1953)» hut recognised phase differences

between bed and surface waves. He also .recognised that a change
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in the local transport rate might lag by a certain amount the
causative change in the local fluid velocity.

Development of the model proceeds in the usual manner of
fluid-stability analysis by tracing the development of sinesoidal 
shaped bed forms from a nearly flat bed on which there is an 
initial small sinesoidal disturbance. The flow over the develop
ing bed forms is assumed to be two-dimensional, irrotational 
and incompressible, and the free surface is assumed to adjust
itself continuously according to the requirements of the Bernoulli
equation. The Bernoulli equation requires that the surface
disturbance also be sinesoidal with the same wavelength as the
bed form and have an amplitude given by

fl - (l/Fr^kd)tanh kd
cosh kd , (5JH)

where a(t) and A(t) are the amplitudes of the bed and surface 
disturbances respectively, d is the mean depth of flow, Fr is the
Froude number based on the velocity for mean depth, and k is the
wave number.

Equation (5*^l) can be used to show the conditions under 
which, theoretically, dunes and antidunes can form. For dunes, 
the bed wave and surface wave are 180° out of phase and a(t)/A(t) 

is less than zero; alternatively, for antidunes the two wave 
forms are in phase and a(t)/A(t) is greater than zero. Setting 
a(t)/A(t) to zero above gives

2Fi' tanh kd / kd

which is shown plotted in fig. 5*3-5 along with data accumulated 
by Kennedy (1963) from a number of sources. It does appear to i
separate the two types of bed forms successfully.

The sediment transport relation was then formulated, which 1

relates transport rate to some power of the difference between flow J

j >
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velocity and the critical velocity for the initiation of motion 
(Kennedy, 1969)» The problem here is, if a simple bed load 
equation is used relating sediment transport to velocity alone, 
the transport of material will be symmetric about the crests and 
troughs so that the bed form will migrate but not grow. The 
asymmetry required for bed form growth is provided in Kennedy's 
model by introducing a lag distance 8 whereby changes in bed 

load transport lag changes in velocity, as must be the case when 
particles at rest are picked up and accommodated in the main
flow and moving particles are dropped and deposited in decelerat
ing flow that can no longer move them (transport relaxation 
distance), Another factor contributing to 8 is the phase 

shifts between the bed displacement and the longitudinal 
distributions of the local flow properties (Kennedy, 1969).

Using the sediment transport relations, the expressions
for the velocity potential and the shape of the sinesoidal wave, 
and equation (5*^2), given above, Kennedy (1969) derived the 

following relation for the bed form velocity

Tnk • V . i-Fr^kd tanh kd 
tanh kd-Fr^kd cos kS (5.^3)

and for the bed amplitude
2 2a(t)~A(0)(1/Fr kd)cosh kd (Fr~kd-tanh kd),

r ‘exp tnTk _y_
v-v

i-Fr kd tanh kd
2 'Fr ltd-tanh. kd

(5.^)

sin kS

b

where is the bed form velocity, Vc the critical velocity for 
initiation of motion, V the mean flow velocity, T is the net 
forward sediment transport rate for the whole stream, n is an
exponent from Kennedy's transport lavz, and t is time.

Equation (5»^+) shows that the amplitude of small bed
waves on an otherxvise flat bed caused by any arbitrary disturbance
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will increase exponentially with time provided that k and S 
are such that the exponential term is positive. In reality,
factors not accounted for in this linearised model must inter
vene and fix the equilibrium height of the bed forms. Table
5.1 summarises the various classes of bed forms predicted by 
equations (5.^2), (5*^3) and and the conditions of
occurrence of each. The configurations are classed as anti
dunes or as ripples or dunes according as the bed and surface
waves are in phase or out of phase, as already discussed. The 
sign of the exponent in equation (5»^'O constitutes the stability 
criterion: positive, zero and negative values of the exponent
correspond to unstable, neutrally stable, and stable configurat
ions respectively.

The possibility of an instability occurring at Froude 
2numbers for which Fr'kd.tanh kd > 1 was pointed out by Reynolds 

(1965). At these higher Froude numbers the horizontal component 
of the velocity perturbation changes sign between the bed and the
free surface, whereas at lower values of Fr it retains the same
sign over the full depth at each station. This high Froude
number region is of little practical importance, as for a given
Froude humber, values of kd less than that corresponding to 

2Fr kd,tanh kd-1 have a greater initial growth and hence are 
dominant (Kennedy, 1969). The curve of Fr’kd.tanh kd=l is 
therefore the upper limit of two dimensional waves (Reynolds, 

1965).
So far, no restrictions have been imposed on the wave

length. However, it is observed in both laboratory flumes and
natural streams that flow-generated bed configurations have
characteristic wavelengths and amplitudes that depend on the
properties of the flow, fluid, and bed material. It is now

assumed, as is customary in classical fluid stability analysis,



Case Froude Number
!

Bed and
Surface Profiles £6

J /?*&/> tanh kd In phase

la FSkd tanh kd < 1 In phase 0, 2tt
lb PFkd tanh kd < 1 In phase 0<£S<tt/2
1c FFkd tanh kd < 1 In phase ir/2
Id Frlkd tanh kd<\ In phase 7r/2 <£5 <7T
le FFkd tanh kd<\ In phase it
If FFkd tanh kd < 1 In phase ir<£S <2tt

lg Frlkd tanh kd = 1 In phase —

lh FFkd tanh kd > 1 In phase 0, 2-tt
li FFkd tanh kd > 1 In phase 0 <£5 <7r
lj FFkd tanh kd>\ In phase 7T
lk Fr'kd tanh kd>\ In phase 7T <£5 <3^/2
11 Tr^kd tanh kd > 1 In phase 3tt/2
1m FFkd tanh kd>\ In phase 3tt/2 <£5<27t

2 Fr'kd •- tanh kd Indeterminate from 
potential 

formulation

3 ?7-z'£d<tanh kd Out of phase

3a FFkd <tanh kd Out of phase 0, 2ir
3b /?*&/< tanh kd Out of phase 0 <&5 <7T
3c Fr*kd < tanh kd Out of phase 7T

3d i ?r’,£d<tanh kd Out of phase TT <k8 <3tt/2
3e ^fo/Ctanh kd Out of phase 3tt/2
3f | /-/■&/< tanh kd Out of phase 37t/2 <£5 <2tt

Table 5°1» Summary of conditions for occurre 
Kennedy, 19^9)*



Bed Stability Movement of
Bed Forms Bed

Configuration

Neutral
Unstable
Unstable
Unstable
Neutral
Stable

Upstream
Upstream
None
Downstream
Downstream

Antidunes
Antidunes
Antidunes
Antidunes
Antidunes
Flat bed

Neutral None Antidunes

Neutral
Stable
Neutral
Unstable
Unstable
Unstable

Downstream

Upstream
Upstream
None
Downstream

Antidunes
Flat bed
Antidunes
Antidunes
Antidunes
Antidunes

Indeterminate from 
potential 

formulation

Indeterminate from 
potential 

formulation

Neutral
Stable
Neutral

Unstable
Unstable
Unstable

Downstream

Upstream

Upstream
None
Downstream

Ripples or dunes
Flat bed
Ripples or dunes

(Transition)//
n

Ripples or dunes

;nce of various bed configurations (after
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the characteristic or' dominant wavelength is that

the growth rate of the small amplitude disturbances is a maximum. 
The initial rate of amplification is obtained by differentiating 
equation (5*44) with respect to t, then putting t to zero, i.e.

r ~

that for which

a (0)=A(0)nTk2 V 
v-v (l/Fr kdjcosh kd-sinh kd sin kS 

(5.45)

Before the value of kd for which a (0) is a maximum can be 
determined it is necessary to refine the specification of the
lag distance. As previously mentioned, at least two factors 
contribute to 8: the phase shifts between the bed displacement

and the longitudinal distributions of the local flow properties,
and the transport relaxation distance. The relative Importance
of each for a given flow cannot presently be assessed, however
it is possible to examine the dominant wavelengths corresponding
to the two limiting cases in which one or the other of these 
contributors to 8 can be disregarded (Kennedy, 1969),

Where the lag distance results only from phase shifts 
between the local flow properties and bed displacements, 8 can, 
as a first approximation, be treated as a constant multiple of 
the wavelength. Introducing 8= c^2 7V /k into equation (5.45) 
and equating to zero the derivative of a.(0) with respect to k 

give s

J

Fr
2cosh kd

kd (sinh "kdTkd") (5.46)

In the other limiting case where the transport relaxation 
distance plays the predominant role, 8 would be constant and 
independent of wavelength. It is then convenient to normalise 
by the flow depth and introduce 8/d into equation (5.45). 
Differentiating tho resulting expression for a, (0) with respect 
to k and equating to zero yields the following implicit equation

for the dominant values of kd



Figo 5»l68 Dominant kd given by equations (5,46) and
(5°^7)s) and regions of occurrence of various 
bed forms. The various configurations are 
identified by the character of the lines 
representing equation (5,47), except j-$> 0, as 
follows, Fr^kd <tanhkd; solid lines 
correspond to ripples and dunes, dashed lines 
to transition, Fr^kd >• tanhkd : solid lines
correspond to antidunes moving upstream, 
dashed lines to antidunes moving downstream, 
(after Kennedy, 1969)®
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Fig« 5ol7« Occurrence of bed forms according to analysis 
of JiF. Kennedy, Antidunes are distinguished 
according to whether they move upstream or 
downstream, (after Kennedy, 1963)•
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pr2 __ l+lcdtanh kd+ jkdcot jkd______ (5.^7)
(kd)(2+jkdcob jkd)kdtanh kd

Pig. 5*16 shows the relation between Pr and kd given by
equations (5.46) and (5*^7)♦ Only the first two maxima of 
equation (5»^) are shown for each value of j; one each for

2pr tanhkd/kd. Reynolds (1965) argues that some subsequent 
maxima actually have a higher growth rate, and hence should be 
retained. However, Kennedy (1969) states that it seems physically 
unlikely that the transport distribution over an individual bed 
form would be more strongly affected by more remote bed waves
than by adjacent ones, and hence the higher harmonics are
disregarded. As was noted above, all maxima of interest fall 

2below the Proude number given by Pr kdtanhkdssl. The expected
bed configurations summarised in table are indicated by the
character of the lines representing equation (5*^7)•

It is now therefore possible to define the conditions of
occurrence of the various bed forms in table 5»i» for different 
values of Pr and j, by eliminating kd between equation (5»^2) 
and (5»^7)» (thus assuming that £> is a constant rather than a 
function of k). An expression for the value of kd at the 
critical intersection of equation (5*^2) and (5»^7) is found to 
be the solution to

sinh kd - jkdcotjkd = 1 (5.^8)
For any given j there are two solutions to equation (5*^8) 
giving the two values of Pr which bound the plane bed field, 
as shown in fig. 5*17* In the model, antidunes will occur at
a station if

Pr - 8S/f„ > Pr ' 2 a tanhkd/kd , and 0 < jkd <C 7V
(5.^9)
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where Fr is the minimum Froude number for the formation of anti- a
dunes. The value of kd needed in this case by equation (3»^9) 
cannot be easily obtained, as this involves finding the solutions 
to equation (5*^8) numerically. The Newton-Haphson method breaks 
down here because the roots are very close at some values of -j
and an initial estimate of a root has to be very close to the
actual root. To overcome this difficulty within the model, the
roots of equation (5®^8) were found by trial and error for various
j values and a polynomial regression was performed with Fr as the a
dependent, and j as the independent, variable. The resulting
best fit equation, which gives the value of Fr for use in the 
inequality (5*^9)f is

Fra=O.84+0.27j + 0.0047J2 - O.OOO89J3 (5.50)

Full details of the analysis can be seen in appendix 2.
The plane bed configuration will therefore occur if the 

value of Fr lies below the curve of equation (5»5O), for a given 
j, or lies above the curve which was obtained by performing a 
similar regression analysis using the lower Fr values (Fru)» 
corresponding to the alternative roots of equation (5*^8). The 
resulting polynomial regression equation of this lower boundary 
for plane beds is .
Fru « 0.00^9 + 072 j-0.25 j^-hO.O^ j3'-0,002^ . (5®5l)

If Fr, as defined in inequality (5*^9)» is less than Fr given 
in the above equation, a transition regime will exist at a station, 
provided Fr is greater than Fr^. Fr is the maximum Froude 
number for the formation of dunes or ripples. Fr_ is defined by 
substituting jkd~3rr/2 in equation (5*^7)> thus

2
1

i + 3rr 
2 JFr tanh

2
3k 

, 2 j
(3K /2j) + (3ir/j)

3k
tanh 2J

(5.52)
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As can be seen from fig, 5*1?j there is no transition field above

a value of j of 5*35*
Therefore, dunes or ripples will be the bed form if

Fr2 = SS/f-L < Fr2 (5.53)

which fulfills the requirements, shown in table 5*1> that
Fr2 < tanhkd/kd and 37V/2 < jkd < 2 7V , To separate the fields 

of dunes, ripples and lower phase plane beds, the stream power 
and median diameter of bed material criteria are adopted, as used
in Allen’s model.

Pig, 5,15 presents a comparison of the experimental data
summarised by Kennedy (1963) and the four reference curves shown
in fig. 5.16, The agreement is seen to be very satisfactory.

2Practically all points fall below Fr kdtanhkd=l, which is taken 
as a justification for not including in figs. 5.16 and 5*17 case 
lh to lm of table 5*1 (Kennedy, 1969)» A comparison of figs.
5.15 and 3*l6 indicates that some dunes have values of j of five 
and greater. Such large values of £ seem very large for the bed 
load, but are readily conceivable for the suspended load, in which 
the transported material must settle significant distances to the 
bed as the flow decelerates, and be diffused upward as the local 
transport capacity increases. Accordingly, Kennedy (1969) argues 
here that dunes are formed by a perturbation of the longitudinal
distribution of the suspended load transport, which has a
relatively large value of £ , while ripples are formed by a
perturbation of the bed load transport for which S is much 
smaller. This would explain the simultaneous occurrence of
ripples and dunes in some flows as resulting from two different 
modes of instability, the ripple instability associated with the 
bed load, and the dune instability with the suspended load.
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In the model, the value of j, which depends on the depth

and velocity of flow and the sediment and fluid properties, must 
be specified,, However, nothing is really known about this para
meter, upon which the appearance of the different bed forms 
depends. In this respect, a constant value of j is not really 
justifiable, but represents a best approximation for our present 
purposes. This problem is returned to in section 5*6.5» Ono 
further point is that, in Kennedy’s formulation, the occurrence
and effects of the separation zone when dunes and ripples occur
is not accounted for,

Hayashi (1970) built upon Kennedy's model retaining his 
basic concepts and his results but mainly improving on the
sediment transport flow relationship. Besides the lag distance 
S, he introduced the local bed slope as a parameter influencing
the sediment transport. The § here is the distance by which the 
local sediment transport rate lags behind the local tractive
force at the mean level of the bed. This will be a small distance 
and differs essentially from the quantity S , in Kennedy'3 work. 
His analysis yields the following expression for the rate of growt
of the waves.

r
a( t) r-a( 0) exp

2r 4. 2 ,2 ,In^* 4 r c ^C-2Pr kd (1-Er "kd tanhkd)
tanhkd~Fr^kd~ j

(5,54)
C

where in is a dimensional coefficient in Hayashi’s sediment trans
port relationship, is a constant and C is a dimensionless
parameter defined by

y!
2g%

S
(5.55)

Equation (5*54) shows that the amplitude of bed waves will 
increase with time when the sum in the parentheses is positive;

in this case a flat bed is unstable. Put ting J ~C-2Fi' kd .
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Zl-Fr2 kdtanhkd)/(tanhkd-Fr kd)J7,Pz>0 gives the regions of 

occurrence of sand waves and P< 0 gives the regions of flat bed. 

The limits of the regions of occurrence of sand waves are given
n 2by {-0 and tanhkd~Fr kd=O, and the limiting values are

, 2\(F r )
- ( ol « 1 C + 2-- y (C + 2 ) 2-8C tanh^kd(Fr*) 4kdt anhkd 5.56)

where Fr^ is the maximum Fr for the formation of dunes, and Fr^ 
is the maximum Fr for the formation of antidunes, and

Fr^ Fr^ =s tanhkd/kd (5.57)

which divides dunes from antidunes as in Kennedy's work.
The region of occurrence of dunes is delineated in the

(Fr,kd) plane by O^Fr^Fr^, that of antidunes by Fr^<Fr<Fr^,
and the regions of flat beds are delineated by Fr1<Fr<Fr and x a
Fr„<Fr, It can be seen from equation (5»5^) that in the case 
of CkO, instability occurs only in the region the limits of which 
are given by equation (5.57) and

2 2Fr ™ Fr = cothkd/kd. (5»58)

It is to be noted that if G were zero, no dunes, only antidunes,
would occur on erodible beds. As already mentioned, Reynolds 

(1965) argues that equation (5»58) marks the end of the region of 
instability of bed waves of small amplitude (antidunes) and the 
beginning of another region of instability. However, Hayashi1s 
analysis indicates, in general, that equation (5»56) delineates 
the upper limits for antidunes, and beyond this flat beds will
occur. Inspection of the dominant wave number in fig. 5*19 will 
indicate that Reynolds’ (1965) criterion appears to be correct.

The magnitude of C has not been determined experimentally 
nevertheless a comparison of experimental data summarised by 

Kennedy (1963) and the regions of occurrence of sand waves for
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the case 0=2.0 provides the best agreement between theory and 
experimental data (Hayashi, 1970).

The initial rate of growth of sand waves is given, from 

equation (5*5^)» as

case 0=2,0 is plotted in Fig, 5»18 for different values of kd

and Fr,
By way of explanation of Fig. 5*18, singularities have

occurred in equation (5*58) for values of Fr from 0,5 to 0.9 at 
2the resonant point, Fr kd-tanhkd. Through the artifice of

specifying the initial amplitude of the surface wave rather than 
that of the bed wave, the resonancy is replaced by a null point 
(see Kennedy, 1969). It can therefore be assumed, for
practical purposes, that the maximum initial rabes of growth in 
the dune field gradually decrease from Fr » 0,1 to zero at about
Fr = 0,7. At and above about Fr - 1,0 the maximum initial
rates of growth occupy the antidune field. As already stated,
the dominant wavelength is that for which the initial rate of 
growth is a maximum. The maximum initial rates of growth are 
plotted on fig. 5*19, which indicates that dunes or ripples will
exist as bed forms from Fr=0 to about Fr-0,7* Flat beds will
exist from Fr 0,7 1° Fr 1.0. Above Fr 1.0 antidunes are
the stable bed form. It is worth noting that the line of
maximum initial rates of growth is broadly similar to equation 
(5*^6) of Kennedy, as previously cited. Furthermore, Hayashi*3 
model for 0=2.0 is consistent with fig, (5*1?) and represents a 
value of j of about 2,5*

5.5*6 Other alternative models

As pointed out by Simons and Richardson (l9?l) the
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Fig. 5.19 Regions of occurrence of sand waves for the case C = 2, according to Hayashi (l970),with lines of maximum initial 
growth rate indicated.
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multivariate statistical approach, specifically discriminant 
analysis, shows considerable promise in the field of bed form 
prediction. Its usefulness lies in its ability to consider the 
many variables which affect the existence of a particular bed 
form. Thus far, discriminant analysis has been used only to
classify bed forms into lower, transition, or upper flow regimes
based on four dimensionless hydraulic parameters that are assumed 
to control bed forms (Athaullah and Simons, 1970). Obviously 
considerable scope for development exists. For instance,
Southard (197^) argues that dimensionless measures of depth, 
mean velocity, and sediment size (or these three parameters them
selves) can be used as coordinates in three dimensional diagrams 
to characterise the various bed configurations. These have the
property of one to one correspondence between possible bed
configurations and points in the diagrams, thus eliminating over
lapping fields in diagrams involving bed shear stress. Depth-
velocity diagrams plotted primarily from the data of Guy et al. 
(1966) and Williams (1967, 1970) fox’ five sediment sizes ranging 
from fine to very coarse sand show contiguous but nonoverlapping
fields for the various bed forms. Discriminant analysis could be 
used to advantage here by classifying the bed forms according to
the three parameters mentioned. Alternatively, examination of
the boundaries between bed form fields in three dimensions could
be analysed using multiple nonlinear regression.

With regard to theoretical approaches to bed form 

prediction, similar shear flow models to that of Kennedy (1963, 
1969) have been developed (Reynolds, 1965; Gradovczyk, 1968), 
but the small additional information that they yield is obtained 
at the price of considerable analytical complexity (Kennedy, 1969} • 
Engelund and Hansen (1966) developed a comprehensive stability 
theory based on the flow of a real fluid over a sinusoidal



68
movable bed and. were able to present stability diagrams for two 
and three dimensional bed waves. Improved account of the 
physical mechanisms involved in formation of bed waves in real 
fluid flow over movable beds has recently been made by Engelund 
(1970) and Engelund and Fredsoe (1971) with encouraging results.
It is worth noting here that these two studies confirm Reynolds* 
(1965) upper stability limit for two dimensional bed waves (see 
equation (5*58)), but that the transition from antidunes to dunes 
from potential theory (see equation (5.^2)) is a stability 
boundary marking the lower limit fox' antidunes,

5•6 Discuss!on of input parameters required in point bar mode1

5,6,1 Channel wldth and depth
The greater quantity of water that moves through a

channel, the larger the cross section of that channel will be.
Preceded by numerous studies of canal morphology and stability, 
Leopold and Maddock (1953) demonstrated that for most rivers 
the width and depth increase with mean annual discharge as

cw =
(5.59)

where cand Cz are coefficients and Q is mean annual discharge, 50 ',m
The coefficients vary for each river, however, in some cases,
with a downstream increase in discharge width or depth decreases. 
It is probable therefore that another independent variable is 
influencing channel dimensions, and this must be sediment load 
(Schumm, 1971)♦ Analysis of data from the stable sand bed 
streams of the Great Plains of the United States and the River

ine Plains of New South Wales, Australia (Schumm, 1969, 1971)
has produced the following relations
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w = 2.3 Q °-38/M°-39

' ' m (5.60)
d = 0.6 Q °-29 M0-34 

111

where M is Schumm’s weighted mean percent silt and clay in the
perimeter of the channel. The relation for channel width
indicates that 88$ of the variability of width can be accounted for 
by mean annual discharge and type of sediment load (m being an 
index of the latter), both being about equally important. The 
relationship for channel depth is not quite as good with about 
81$ of the variability of channel depth accounted for by discharge 
alone. Similar equations with equivalent correlation coefficients 
were obtained using mean annual flood discharge instead of mean 

annual discharge (Schumm, 1969)•
When discharge is used with M to develop a multiple 

regression equation for width-depth ratio, that is

F ~ 56 Qm /M ‘ (5.6l)

only a slight improvement over Schumm’s earlier relation

F « 255M™1,08 (5.62)

is obtained.

Hence Schumm (l9?l) concludes that variations in channel 
dimensions with constant discharge are attributable to changes 
in sediment load. Local variations may be strongly affected by 
local variations in bank resistance, but the width-depth ratio 
of alluvial channels appears to be primarily determined by the 
nature of the sediment transported through the channel. This
conclusion is supported by the observation of Leopold and Maddock 
(1953) that .decreasing width at a constant velocity....
results in increased capacity for suspended load at constant 
discharge*, and ’»oat constant velocity and discharge, an incx'ease
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in width is associated with a decrease of suspended load and an
increase in bed load transport', Therefore a high width-depth
ratio is associated with large bed material load.

It is to be . expected that width and depth are significantly 
related to the other dependent morphological variables, which are
also controlled by the independent system variables. Many
authors have formed such relations. Some of the most useful ones
in the present context are those linking wavelength and sinuosity
with width and depth, i.e,

1 ss 10. pw1,01 from Leopold and Volman (i960) (5*63)

1 -- from Schumm (1972) (5*6^)
sn « 3»5F O,27 from schumm (1963) (5*65)

These equations can be used to define approximate relations be
tween the dependent input variables, without making reference
explicitly to the independent variables, specifically discharge
and sediment load. An important point in this respect is that 
width and maximum depth (at specific cross sections) have to be 
defined in the model. It is well known that width and depth
vary along the length of a meandering reach, as well as across
the channel, with the alternating occurrence of pools and riffles.
Averaged values of width and depth, either in the downstream
direction or across the stream, will therefore not be truly
representative of the channel dimensions at any specific cross
section. Here, interest is centred around the pool areas, where
width is normally less than over the riffles and maximum depth is
normally greater.

Finally, another study of interest graphically relates
depth-width ratio to various dependent and independent hydraulic 
variables. This work is summarised by Simons (1971)•

5.6.2 Mean radius of curvature, 1ongitudInal water surface
slope and valley slope

Mean radius of curvature is defined in the planimetric
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geometry model, section 2.2, through its relationship with
sinuosity and wavelength. Longitudinal water surface slope is
obtained indirectly from the planirnetric geometry model and is
defined as valley slope divided by sinuosity. Valley slope
is one of the substantially independent variables that is
required as input to the model. The only specification restrict

ion for the valley slope value is that, for a given discharge,
the channel pattern is meandering. Straight, meandering and
braided channels can be distinguished empirically in terms of 
slope and discharge (Leopold et al., 1964; Ackers and Charlton,
1970a,d; Schumm and Khan, 1972).

5.6.3 Resistance coefficients
As already stated, the Darcy-Veisbach friction coefficient

can be conveniently separated into that part representing form
losses introduced due to the addition of bends, f, , and another

*part representing the resistance due to bed friction of a
comparable straight channel, f . This subdivision involves the s
introduction of a factor, r, by which the straight channel
friction factor must be multiplied to account for the change in 
relative roughness (arising from bed features) due to change in 
hydraulic radius with meandering.

Because of the large range of bed forms that may occur in
an alluvial channel, the large variation of resistance to flow

among the different bed forms, and the large number of inter
related independent variables affecting the bed form, it has not 

been possible to write a generalised function to predict resistance 
to flow or the velocity of flow (Simons and Richardson, 1966).
As Simons and Richardson (1966) point out, ’A generalised function 
may not exist, because (l) more than one resistance to flow may 
occur for a given slope, depth, and bed material, (2) hys teres is 
exists in the change in bed configuration and resistance to flow 
depends on the preceding flow conditions, and (3) the bed configur
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ation will oscillate between a dune bed and a plane bed fox' a 
given bed material at certain slopes and discharges. This 
pi-'oblem is further complicated by three-dimensional flow, varying 
depth, varying bank roughness, and nonuniformity of flow in
alluvial channels', In this discussion of f only, however.
we can assume that the complications due to the three dimensional
helicoidal and nonuniform flow associated with meanders are
accounted for in f. , the discussion of which will follow.

In predicting the bed configuration present under different 
hydraulic conditions, it is necessary to know the value of f for 
the different bed forms that may exist. There are, in fact,
various methods for estimating the resistance to flow under
various conditions, and these are described in, for example, Graf 

(l97l)» Raudkivi (1967)t Simons and Richardson (1966, 197l)• 
Unfortunately, these methods normally require some information on
the bed forms present, which precludes their general use in the
model. With the appreciation that fc> varies for different bed
forms and with the same bed form, due to the reasons outlined in
Simons et al. (1965) and Simons and Richardson (1966, 1971)» a
single value of f may be assumed for each bed form as a
reasonable first approximation. As mentioned in section 5*5*1»
plane beds of either phase and antidunes take on one constant
value, as do ripples and dunes. When these two constant values
are multiplied by the factor r and combined with the component of
the total coefficient which is due to the addition of bends, they
become f^ and respectively. Table 5«2 shows some of the
observed ranges of f for different bed forms in flumes and s
natural rivers (in the absence of meanders),

Leopold e t ala (i960) performed experiments in order to 
find the relative magnitudes of the resistance elements in 
straight £ind sinuoous channels with fixed banks. The additional



Bedform Range of f

Lower phase plane bed 0.02-0.035'
0.019-0.145

Ripples
0.052-0.13
O.O6932

Dunes
0.042-0.l6J
o.056-0.0993
0.048-0.08^

Upper phase plane bed
O.O2-O.O3x
0.014-0.022’

0.018-0.025^ 0.011-0.O345

Anfcidunes
0.02-0.35 (Stand- 

(
(waves

O.O3-O.O71 (break
ing

(waves

1. Simons and Richardson (1966)
2. Ackers and Charlton (l970d)
3. Nordin (1964)
4. Culbertson et al (1972)
5. Culbertson and Dawdy (1964)

Table 5*2 Some observed ranges of the friction coefficient 
in straight flumes and natural rivers.
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losses due to bends were obtained using a constant cross section
and boundary roughness in the straight and curved channels,
In these experiments, therefore, there was no need to introduce
the factor r, as there were no changes in relative roughness due
to changes in hydraulic radius. In the straight channel the 
resistance to flow was wholly surface resistance, measurable by 
pgllS. For a sinuous channel p gRS no longer gives the surface 
resistance only but includes energy losses due to the addition
of bends.

The experimental results confirmed their anticipated
relation between resistances in the curved and straight channels 
and the square of the flow velocity (3ee fig. 5.20)• In fig. 
5.20 the overall resistance coefficient (=f/8) is given by the 
slope of the straight lines, except where spill resistance begins
and resistance no longer varies as the square of the flow
velocity. .

The data indicate that the channel curvature alone can
account for energy loss of the same order as that due to the
surface resistance in straight channels in the absence of bed
forms, and in tight curves may be double that quantity. Further 
more, Ackers and Charlton (l970d) find in their experiments on 
small meandering streams with rippled beds that some 6Oc/o of the
head losses are due to bends and variations in cross section. 
Similar results were obtained by Allen (1939) and Allen and 
Shahwan (195^) from their model experiments and field studies,

Grave uncertainties exist in the relation between the
extra * square law' resistance introduced by channel bends and the
geometric characteristics of the bends (Bagnold, 19^0; Leopold
et al, I960; Shukry, 195O> Yen, 19^5, 1971)• Figure 5.21 show
the values of f, , from the data, of Ackers and Charlton (l97Ofl)>

plus additional data on r from their records, and Leopold et aj-.m ——
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Fig. 5.20 Postulated relation of bed shear stress to 
square of flow velocity in sinuous fixed bed channel, 
(after Leopold et al.).
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Fig. 5.21 Plots of ffa against various geometric proportions.



(i960), plotted against various geometric proportions. The 
values of f^ computed from the Ackers and Charlton data were 
derived by comparing the losses in the meanders at crossings
with only one average straight reach with a corrected friction
coefficient, rf , of 0.086. Due to the excessive scatter of s
the data available and the restricted range of experimental
conditions, no general relation for the value of f, is available.
If the value of f. is drawn from fig. 5*21 it must only be
approximate, and there may be inherent danger in extrapolation
based on these restricted data. Ackers and Charlton (l970d)
used the following average values in their analysis based on

small meandering streams; f =0.135? r=1.249? f =0.0693D 3

5.6.4 Fluid viscosity, fluid and sediment density
A value of fluid viscosity is required for alternative

model no.2 (section 5*5.4), and fig. 5.22 shows the effect of 
fine sediment (bentonite) and temperature on the apparent 
kinematic viscosity,^ (Simons and Richardson, 1971). This is 
an apparent viscosity because aqueous dispersions of fine sediment 
are non-Newtonian. The magnitude of the effect of the fine
sediment on viscosity is large and depends on the chemical make-up
of the fine sediment. The changes in fall velocity of the
median diameter as a result of the changes in the viscosity and 
the fluid density can be noted in fig. 5*23 (see Simons and 
Richardson, 1971). Therefore, by specifying a particular value 
of (cm /sec units) in the model, implicit mention is made of 
the amount and nature of the suspended sediment concentration and
the temperature of the fluid, which constitute substantially
independent variables.

74.

In addition to changing the viscosity, fine sediment
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suspended in water increases the mass densityof the mixture 

The mass density of a water sediment mixture can be computed

from
p^

p <5" -CS S K Q I W'
(5.66)

' ■:T;where yOw is the density of pure water, is the density of the
'gsuspended sediment, CQ is the suspended sediment concentration

3in by weight (Simons and Richardson, 1971). As p w 1 gm,/cm,,rw

p -
<re

(5.6?)
s ( “• 1 )

The density of the sedimentary particles in the bed load is an
independent system variable and is normally taken as the value 

.3

of j
and &

for quartz grains, i.e, 2*65 gm./cm , 
5,6*5 Kennedy j factor

fluid properties, also that nothing is really known about the 
parameter. In alternative model no.3, it is required to specify 
a single value of j for the whole cross profile. This
constitutes only a first approximation.

As there is no theoretical definition available for the
value of j, it will be necessary to turn to the body of
experimental data that exists* As an example, from the data of 
Guy et al. (1966), j appears to vary between about 2 and 3 for
their finer sand grades.
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St silt
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ms medium sand
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vcs very coarse sand 
g gravel

——-----— flat bedding
.......  — (upper plane bed)

FIG. 5.24

Z//A\T cross bedding 
(dunes)

VERTICAL VARIATION OF GRAIN SIZE AND SEDIMENTARY STRUCTURE WITHIN POINT BAR.ACf 
TO MODIFIED ALLEN (l970a,b) MODEL, FOR SELECTED VARIABLE INPUT PARAMETERS.
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5 • 7 Experiments Jto show variation of grain size and

s edimentary s true bure different input parameters
and alternative bed-form models pr<

pig. 5*2^ shows the vertical variation of grain size and 
sedimentary structure within a point bar, calculated using Allen’s
bed-form model. The figure is designed to show the effect of
variation of selected parameters on the sedimentary deposit over
a point bar of constant dimensions. The sections shown should
therefore be compared with the reference section in the centre of
the figure. They all have the same input parameters listed except
for the specific parameters which are being varied in each case.

The effect of variation of k-, with all other input
variables constant, is to vary the full width of the channel,
which affects the local radius of curvature at a particular
station. Increase in k^ effectively increases the local radius 
of curvature. The effect on the grain size and sedimentary
structure profiles is slight, but with an expected decrease in
general calibre of the load as k increases, and a slight down
ward extension of upper phase beds due to the decreased grain
size. x

Variation of the friction coefficients will obviously have 
no effect on the grain size, by virtue of the model used, however, 
in these particular cases, there is no effect on the sedimentary 
structure profiles either. This is by virtue of the criteria used
to predict upper phase plane beds, and that the hydraulic conditions
pertaining to the lower part of the profiles were not near the 
limiting conditions for the existence of ripples of lower plane 
beds. In the case of the hydraulic situation being near to these 
boundary conditions, dunes will be expected to occur at the

4?

expense of ripples or lower plane beds with decrease in the
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friction coefficients. The appropriate choice of friction
coefficients for a particular meander is obviously an important
consid eration.

As already noted, the grain size profiles, and hence the 
sedimentary-structure profiles, are very sensitive to changes in 
the shape of the cross profile (e.g. fig. 5.6). Fig. 5.24 shows, 
as expected, a decrease in general calibre as the convexity, n , 
increases, also a steepening of the grain size profile. This
variation in grain size has the effect of extending the upper 
phase plane bed field downwards, effectively doubling the thick
ness from n-,-0.5 to n1=2. Substitution of a straight point-bar 
cross profile for the sigmoidal curve (equation (5.1)) has the 
effect of increasing the amount of coarse sediment grades relative
to the finer grades, when compared with the reference section.
This has the effect of upward extension of cross beds in the
section at the expense of upper plane beds. In fact, with a
straight profile, D varies approximately as the square of the
local depth when r^ is large, but has an approximately linear
relation when r is small, m

Figure 5*25 Is designed to show the effect of variation
of the channel and meander dimensions on the grain size and
sedimentary-structure profiles, and to compare the alternative 
bed-form models proposed. The parameters that were varied in 
fig. 5.24 are kept constant in this figure. The actual data used 

were taken from Allen (1970a).
From equation (5*20) it is expected that, apart from the 

effects of n,, the general calibre of the load increases with
longitudinal water-surface slope, maximum channel depth, and
channel width between the inner bank and the talweg, but decreases
with increasing radius of curvature. These constitute a
sufficiently large number of variables such that the general

calibre can be very similar for many different combinations.
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However, rig. 5° 25 does show 
a generally high calibre of 
h.S over r^, Case F has a 
has a low general calibre.

The value of 0 given

, for instance,
load exists due
relatively low

in the case of D that 
to a high ratio of w^ 

ratio and subsequently

in equation (5*25) in Allen’s bed-
z

form model depends, apart from n- , on the ratio of r. over w..
Tlie large ratio of r,/w. in the case of A therefore gives a 
dominance of upper-phase plane beds, whereas low ratios in cases
B and D give considerably less, as was expected.

The sedimentary structure profiles obtained using the
different bed-form models are broadly in agreement, except Allen’s
model predicts more upper plane beds than the others. All of the
alternative models concur fairly well in their prediction of the
change from ripples to dunes or upper plane beds, however there is 
generally disagreement in the prediction of dunes or upper plane 
beds (except in the cases of models 1 and 3). Part of this dis
agreement may be due to the fact that the transition regime has
been ignored in all the models except no.l, In the last case the
sedimentary structures will be expected to be those resulting from
washed-out dunes, Where only lower-regime forms are predicted, 
profiles will be the same, as the models differ fundamentally only
in their prediction of the transition from lower-to upper-regime
forms. It is worth noting that neither the grain size nor
sedimentary structure can be assumed to be wholly correct at the 
top of the profiles where the grain-size model predicts fine silt a 
clay. The grain-size and bed-form models are based on a
consideration of cohesionless particles and cannot take account of
the cohesive forces involved with fine sediment. Nevertheless,
although not theoretically correct, the profiles may be qualitat
ively acceptable in this range.

The alternative model no,3 is unfortunately limited by the

lack of data on the variation of j, and in alternative no ,2 the
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criterion for the change from dunes or ripples to upper piano 

beds is defined only for a small range of grain size ranging up 

to medium sand. Alternative no.l appears to be generally 
applicable and has the advantage of being able to predict transit
ional bed forms. Allen’s model is generally applicable and, 
although quoted values of 0 are only approximate, they cover
a wide range of grain sizes. ' In default of a better one this
model is most favourable because it combines a sound theoretical
basis with a strong empirical justification. Allen’s model has 
therefore been adopted in the simulation model, although any
alternative may be easily incorporated if preferred.

5.8 Validity and limitations of the point-bar sedimentation
model

The model is a considerable simplification of a physically 
complex natural situation and it contains a sufficiently large 
number of variables to produce closely corresponding deposits in 
a number of ways (Allen, 1970a). The only realty independent 
variables are amount and character of fluid and sediment discharge
and the valley slope. It has not been possible to produce a model
which has only the independent variables as the starting point.
Some of the input variables are system dependent, some are independ
ent. For instance, the channel shape and dimensions are made 
’independent’ variables by specifying them as input, where they are 
in fact dependent. The bed sediment-size is treated as dependent 
where in fact it should be independent. Furthermore, availability 
of all size grades is assumed.

The dependent morphological variables to be specified as 
input (i.e. wavelength, width, depth, etc.) share an inter-depend

ency, as shown previously, because of their common link with the 
independent variables. These system dependent input variables must 
be mutually compatible, and, without specific reference to the 
independent variables, the relationships given by equations (5*63)»
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(5*6^) and (5»65) are the most useful way of monitoring the 
compatibility of the input variables.

Naturally the choice of any of the dependent variables has
implications relating1 to the independent ones. Moreover, the 
amount and character of fluid and sediment discharge may be pre
defined explicitly in an approximate way by using the various
relationships between the dependent and independent variables that
exist in the literature and that have been mentioned hitherto.

The use of uniform-flow equations constitutes somewhat of
a simplification, however uniform-flow formulae may be used for 
nonuniform flow if the flow is ’gradually varied* (Chow, 1959)•
As already stated, this involves using the energy slope in the
computations, and assuming that the hydrostatic distribution of 
pressure prevails over the channel section. Yen (1965) has shown 
that the pressure distribution along any vertical is virtually 
hydrostatic as long q.s the ratio of depth to radius of curvature 
is small. The use of these formulae becomes increasingly suspect 
as the curvature of flow becomes more pronounced, producing non
hydrostatic-pressure distributions, separation zones, and a state 
of high turbulence (i.e. ’rapidly varied flow’). Yen (1965) and 
Rozovskii. (1961) state that stream separation and eddy-zone 
formation is only encouraged at very sharp bends as depth increase 
relative to width, and particularly when the banks have gentler
slopes; that is, the greater the influence of wall friction, An
analysis of this problem does not therefore seem warranted.

Because of the secondary currents associated with flow in
bends the subdivision of the channel cross-section into discrete
subsections will likely result in the continuity principle being 
violated. However Yen (1965) has shown that the lateral discharge 
is very small compared with the downstream (longitudinal) discharg 
It should be noted that the mean fluid velocity and bed stress

calculated in the model, and used in the delineation of bed-form
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fields, are. those measured in the longitudinal direction.

Assumptions have been made about the uniqueness of the longitudinal 
water-surface slope and no account has been taken of the minor, 
yet characteristic superelevation of the transverse water surface. 
The substitution of the longitudinal water-surface slope for the 
energy slope was rationalised earlier. ::

Assumptions have also been made regarding the friction
factors, hysteresis effects have not been analysed, and, in
general, the effects of temperature and fine sediment on the
development of bed-forms have been ignored. Subsequent refine
ments to the model may describe variations in the shape and 
dimensions of bed forms with hydraulic conditions, For instance, 
it is to be expected that, if present, dune height will vary with 
depth across the point-bar profile.

Only events at the bankful], stage of the stream have been 
considered, whereas in reality stage varies with time and deposit- <
ion may occur over a range of stages. This is discussed more 
fully below (section 8). Associated with this is the fact that 
the model does not account for the deposition of ’clay drapes’ 
during the late stages of the flood period, when suspended fines
settle from the flow. This is seldom seen, however, because bar
deposition is greatest when stage is high and scouring by
successive floods may remove the mud drapes and much of the
previous deposits. By virtue of the scales involved, and the
fact that most deposition is assumed to occur around bankfull
stage, much of this finer detail will be lost in the model.

Although the shape of the cross profile, approximates the
shape of sandy point bars described by many authors, others have
noted distinct levels, particularly associated with chutes and 
chute bars, (McGowan and Garner, 1970; Bluck, 1971). The shape 
of the cross profile will be expected to vary along the length of 

the channel, not only due to chutes and chute bars if present, but



with the natural occurrence of pools and riffles*
Despite the simplifications involved, Allen (1970a) shows

the model to agree with the overall characteristics of known or
inferred lateral deposits, and he goes on to make some generalisat-;; 
ions based, on the model. He points out that the abundance of 4
erosional contacts between sedimentary units testifies to the
incompleteness of the depositional record. The applicability of . *

i
Allen’s model as an entity is however limited to ’complete’ point 4
bar* sections. It is anticipated that by embodying this component
model in a real dynamic situation, and taking account of other
important processes, that a fuller interpretation and understandings
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6 MOBEL for bank erosion

6.1 Factors effect!ng the nat ure and rate of bank erosion
Recent work by Turnbull et al. (1966) on the Mississippi

has shed much light on the detailed processes involved in bank 
erosion. During rising flood stages the river erodes a deep 
pool in its talweg. An oversteepening occurs at the toe of the 
concave bank slope, resulting in a subaqueous failure. Some
times nothing further occurs but at other times the subaqueous
bank failure triggers a further upper-bank failure. The upper- 
bank failures may be either by shear or by partial to complete
liquefaction of the soil, resulting in a floi^r failure. The 
type of failure is determined by the type of sediment composing 
the river bank, but the initiating process was believed to be
the same. The study indicates that when long spans of time are
considered the subaqueous and upper-bank failures appear to be
continuous. Within the period of a year bank failure is a
discontinuous process which is seasonally controlled.

The accompanying diagrams, fig. 6.1, show the exact
nature of bank failure in different types of exposed deposits,
as the hydraulic and gravity forces acting are offered varying
degrees of resistance to erosion. The nature of the applied and
resisting forces are discussed below.

With regard to hydraulic forces, many authors describe
the formation of a scour pool associated with the high velocities
and bed sheai* stresses during high-water periods. Rozovskii 
(1961) has shown that the downward vertical component of velocity 
at the concave bank associated with the helicoidal flow is not
very great, and so its erosive effect is not considered a dominant
hydraulic factor. The impact of fluid on the concave bank is
also considered unimportant (Kondratev, 1962)
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A substantial difference exists between cohesionless sands 
and gravels and cohesive silt and clay in their interaction with
these flow-induced hydrodynamic forces. For the cohesionless 
sediment the resistance to erosion will depend on the submerged 
weight of the particles and their angle of repose. In the
cohesive beds, surface forces and electrochemical forces control
the resistance to erosion. These cohesive forces are only
partially understood, however it is known that they are not
constant forces but are functions of the fluid quality and have 
time-dependent strength properties (partheniades and Paaswell, 

1970)* A large number of physico-chemical factors of cohesive 
soils control erosion resistance, and various gross soil 
properties have been used as' indices of erodibility, i.e. shear 
strength, plasticity index, mean particle size, percent clay, 
Atterberg limits, dispersion ratio etc. Some of the indices 
are unsatisfactory for various reasons (e.g. not unique measures, 
do not accurately convey the state of the soil at the surface, 
etc.), and although single properties are pi’obably undesirable in 
such a complex system, better indices may be surface moisture
content, density, potential swell, or particle orientation.
Unfortunately there is no quantitative standard of erodibility by 
running water yet developed (Leopold et al. , 1964; Task committee
on erosion of cohesive material, 1968; Partheniades and Paaswell, 

1970; Partheniades, 197-1-)*
In the talweg, the material is normally cohesionless sand 

or gravel, however the concave bank may have varying amounts of 
cohesive material exposed to the flow. Where the banks are 
noncohesive, sloughing (the continual and general movement of 
particles) occurs, as well as slumping. In cohesive sediment, 
although lumps of cohesive sediment are removed by direct action 
of fluid forces and impact of suspended sediment, the dominant
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inode of erosion here is slumping (Fisk, 19^7) •
The bank Failures (slumping) by shear or Flow are caused

by gravitational instability, which has been shown to be a result
oF oversteepening oF the bank due to the Formation oF a scour
pool or due to undercutting oF more easily erodible sediment
deep on the eroded bank* Failures by Flow or shear occur in the
dominantly noncohesive point-bar deposits, and by shear in the 
thick backswamp clays and clay plugs (see Fig. 6.1). Failure 
is greatly influenced by wetting oF bank materials. Arroyos cut
in fine-grained alluvium experience most bank cutting after, not 
during, Flow, with wetting causing later slumping (Leopold and 
Miller, 1956). Wolman (1959) showed that a combination oF 
thorough bank wetting and Freeze and thaw promoted the greatest
bank erosion in winter, despite large discharges in summer.
Failure is also enhanced by the return seepage of water which 
infiltrates the banks during high flow. Upon lowering the stage
the balancing pressure of the water in the channel is released and 
Failure may occur (Jahns, 1947; Fisk, 1947; Inglis, 194-9). The 
slumped blocks are broken up by the river and then subsequently 
become swept away and incorporated in the Floodplain and channel
deposits.

As Far as slumping is concerned, therefore, the shear 
strength and permeability are important Factors controlling
erosion resistance, as are the spatial distribution of sediment
types in the bank. Vegetation in the stream bank will inhibit 
sloughing and slumping, and Jahns (1947) cites the particular 
example of a vegetated slumped block on which trees re-established 
themselves at a lower level and severely inhibited erosion.
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6.2 Mathematical model

Due to the complexity of the processes of bank erosion,
an analytical treatment is not yet possible, however it is
possible to look at bank erosion in the required directions using 
semi-empirical deterministic models. Rate of bank erosion in the
direction normal to the mean downvalley direction is discussed 
first, followed by the development of an expression for downvalley 
migration. .

Handy (1972) has shown that a first-order rate equation of
the form

S/So = (6.1)

■was found to describe the distance S of the channel at the bend
axis from an assumed equilibrium position (i.e. from the position
at limiting amplitude) as the meander was developing after cut off.
SQ is the initial distance from equilibrium, and t is the time
taken to get from S to S. The constant c, depends on the nature o 1
of the bank materials and the size of the river. From his
analysis, the average rate of erosion at the bend axis, in a
direction normal to the mean downvalley direction, can be
expressed as

RLMIG ~ CjS . (6.2)

The equation describes the net rivei' behaviour and indicates that
in general the rate of erosion, RLMIG, will decrease as the
meander amplitude increases. This is substantiated further by 
the flume study of Nagabhushanaiah (1967) discussed previously 
(see fig. 2,6). Although the equation (6.2) describes the 
gradual reduction in eroding ability in the direction normal to
the mean downvalley direction, this will also vary on a different
level as discharge varies with time, and as the erosion resistance
varies with changes in bank materials
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As already mentioned, Daniel (1971) fitted the sine 
generated curve to successive meander shapes as the meanders 
migrated. He also correlated the increase in path length with 
flow volume, Qvoi (time integral over a year of all daily flows 
above mean annual flow), and percent of silt and clay in the 
banks. The flow volume showed a linear, and the grain size
index a nonlinear, relation with increase in path length. It
should be noted that the number of points used to define these 
relations was very small. Inspection of equation (2.12) and fig, 
2.5 will show that path length (equals sn.l) increase has an 
approximate linear relation with amplitude increase, wavelength 
remaining constant. The erosion rate, RLMIG, will therefore also
have a line relation with flow volume and a nonlinear relation
with percent silt and clay. An expression for the erosion rate 
may therefore be written

RLMIG = Sk2Qvol/GS.ln2- (6.3)

where GSI is a grain size index ($ silt and clay in the outer 
bank of the stream), is an exponent, and is a constant.
Here the term k2Q.^o^/GSin2 replaces c^ of equation (6.2). QVol 

will not be expected to vary very much because the annual flow
volumes for days above average discharg© are relatively constant 
(Daniel, 1971). 
in section 11.3.
measure of stage, as long as the relation with erosion rate is 
ascertained. This may, however, involve complications involved 
with discontinuities in the stage-discharge relation (shifts in 
rating).

A discussion of the variability of Qvojl is given 
It may be possible to replace Q ^y some

Flume studies (e.g, Freidkin, 19^5 
1966; Ackers and Charlton, 1970a) and the 
(1972) have shown that the downvalley rate

Charlton and Benson,
field work of Handy 
of meander migration is
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independent of the amplitude growth and development, Given
lateral homogeneity in bank materials and a constant discharge 
Ijattern, therefore, the rate of downvalley migration (RDMIG) will 
be constant, A general expression for the rate of dov/nvalley 
migration, of the same form of equation (6,3) is therefore

RDMIG = l<3Qvol/GSin2 (6.4)

By specifying the constants k? and k in equations (6.3) and (6.^) 
the overall physical limitations to erosion are indicated, and the 
overall effects of tho bank materials and variation in discharge 
pattern on bank erosion are accounted for, The exponent n^ 
describes the nature of the variation in the ’bank materials term’
with grain size, RLMIG and RDMIG refer to average erosion over
the period of time covered in 0 ,,

6,3 Validity of models proposed
It has not been possible to construct generalised models

which take account of the numerous controlling factors of bank
erosion that have been described, particularly the specific
distributions of bank materials that give rise to characteristic
modes of bank failure. Instead a simplified view of the ’sub
system1 has been taken, and a more practical empirical approach 
has been substituted for a more desirable, yet impracticable,
analytical approach. Thus, the flood period volume has been used 
to account for the hydraulic forces acting, This may be assumed 
to account not only for direct fluid stress in the talweg and over
the concave bank, but also the effect of the flood waters on the
condition of the bank sediment and the return seepage of water on
falling stages. A grain size index has been used as a measure of
the resistance to erosion by direct fluid forces and failure due 
to gravitationa1 instability. In reality, a number of different 
parameters of the sediment forming the banks will be expected to

affect resistance to erosion, as previously discussed, and the



spatial distribution of sediment types has been shown to be 
important. Furthermore, the effects of vegetation have not

89

been accounted for explicitly.
The models do, however, maintain the general relationship

that exists in natural streams, which is that bank erosion and
recession is most rapid in the case of banks of loose sand and 
gravel and streams of large power, and is least rapid in the 
case of silt of clay and low powered streams (e.g. Jahns, 19^7; 
Kolb, 19^3; Allen, 1970c). Furthermore, equation (6.3) 
adequately accounts for the reduction in bank erosion normal to
the mean downvalley direction as amplitude reaches a limiting 
value. The constants of proportionality, k^ and k„, and 
exponent » give sufficient flexibility in the equations such
that there is adequate representation of the controls of bank
erosion in specific cases. As an example in this respect, a * r
factor like vegetation may be accounted for implicitly by
choosing the appropriate empirical constants.

6 • • Input
Actual rates of erosion in natural streams vary from

a few decimetres to many tens of metres a year. Some of the
observed rates of erosion are compiled by WoIraan and Leopold

(1957).

Fig. 6.2 shows the nature of the variation of bank 
migration rate, using equation (6.4), for various values of

GSI,Qn and constants ko and n,,. Similar curves would be
'VO.

obtained for equation (6.3) with si<2^vol rePlacin£ k^Qvol«
No quantitative measure of is available, however, by

inspection of fig. 6,2, a value close to 0.5 seems appropriate. 
Obviously more specific empirical data are required to define 
adequately. More empirical information is also required to
define the relative rates of lateral and downvalley migration in 

the case of a developing meander, and thus to define the relative
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FIG. 6.2 PLOT OF BANK EROSION RATE AGAINST GRAIN SIZE INDEX, ACCORDING TO EQUATION 
(6.4), FOR DIFFERENT VALUES OF k3Qvoi and n2.
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values of k^ and 1<^ given S and Qvoj • Handy’s (1972) data 
suggest that the maximum lateral migration is more than three 
times the downvalley migration. The absolute values of k^ and 
k« will depend on the values of Qvqjl* In this respect, it 
should be noted that the absolute values and units of Q , for 
a particular channel are not explicitly specified (see section 
therefore kQ and k„ assume the role of sealing constants.

11) ,
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7 BANK recesston and bar growth

Bank erosion in the bend of a meander is usually counter
acted by an approximately equal amount of deposition on the
opposite bank, thus explaining why the width and cross sectional 
area remain about the same as the channel moves laterally across 
the floodplain (Volman and Leopold, 1957 > Leopold and Wolrnan, 
19^0; Leopold et a1,, 196^). This is the basis for determining
the amount of lateral sediment deposition in the model. However, 
certain important points must not be overlooked when using this
simplified approach.

In the particular case of a meander developing to a stable
form, under conditions where the independent variables are
constant, the various dependent variables will be expected to 
change. The direction of the changes at a cross section may be 
discussed by examining the Darcy equation,

Q = a /~8gRS/f (7.1)

where a is the cross sectional area of flow and Q is discharge.
For the case of constancy in the independent variables of the
channel, at bankfull stage, of a stable meander, all of the 
parameters on the right hand side of the equation (7.1) are 
constant (assuming that the ’friction’ coefficient is the same 
for all occurrences of bankfull stage). However, as a meander 
increases in amplitude at constant wavelength, sinuosity increases
and longitudinal water surface slope will decrease. Reference
here is being made to development of meanders in which the initial
water-surface slope is too steep fox' a given constant aqueous 
and sediment discharge (e.g. after the cut off or avulsion 
situations), and not the situation where water-surface slope is 
increasing during the development of meanders due to general
aggradation which results from too high a sediment load for a

given slope (see Ackers and Charlton, 1970) Involved with
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increase in sinuosity is a characteristic variation in the mean 
radius of curvature of the bend (see fig, 2,4). Radius of 
curvature decreases with sinuosity up to a value of 1.5; above 
this sinuosity, the radius of curvature gradually increases. To
counteract the decrease in S on the right hand side of equation 
(?.l),f,a, and R may vary in any combination, however f has been 
shown to be intimately related to a,R and r .

In general, ffe and f will increase with sinuosity. With
a and R constant, f will increase with decreasing bed shear s
stress and stream power and increase in the degree of form 
roughness with the lower flow regime.
increase with sinuosity, however it also depends on the ratio

f. has been shown to b

r /w. With width constant, f, will be expected to increase up to nr b A
a sinuosity of 1.5? and then gradually decrease. This anomaly
may be spurious but at the moment no further light can be thrown
on the problem.

If it is assumed that f is increasing with development of 
the meander, a and/or R must increase. The effect of increasing 
R, keeping width constant, would be to increase the spiral 
motion (Yen, 1965? Rozovskii, 1961), thus increasing f . How
ever f may be decreased due to relative roughness effects or
increase in bed shear stress and flow power.

Increase in a, keeping R and the shape of the cross
section constant, involves increasing width. The effect of
increase in width on spiral flow appears to be somewhat confused 
in the literature. Yen (1965) infers that an increase in width 
at constant depth reduces the strength of the spiral flow;
Shukry (1950) says the opposite but is dealing with channels of 
small width/depth ratio. Rozovskii (1961) says the losses due 
to spiral flow are independent of width.

As can be seen the relationship between f,a,ll and r is



93
very complex and is not properly understood. Furthermore, 
despite the difficulty in determining the direction of change in 
f,a and R, the relative amounts of change are indeterminate at 
present. Suffice it to say that there will be adjustments, 
however slight they may be, in the dimensions and resistance of 
the channel as the meander increases in sinuosity. Unfortunately 
these cannot be accounted for at present.
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8 EROSION AND DEPOSITION DURING HIGH WATER PERIODS
It has been noted by many authors that most of the

erosional and depositional activity of rivers is limited to
periods of high water (Leopold et a1., 1964), and the dimensions
of various morphological characteristics of meandering rivers
have been related to various measures of discharge that are
considered to be 'dominant' discharge (e.g. equation (2.13)).

Volman (1959) states that 85/& of observed erosion occurred during 
the winter floods, supporting Carlston’s (1965) conclusions that 
the dominant deposition and erosion controlling meander wavelength 
occurred during flows that are equalled or exceeded 10-40/° of the 
year. Schumrn (1968, 1969) found that when average, bankfull, and
mean annual flood discharge are each correlated with the percentage
of silt and clay in the channel perimeter and the channel
properties, the results are, to nearly equal degrees, significant
explanations of meander wavelength and channel cross-section 
properties. Stall and Pok (1968) found that hydraulic geometry 
was best explained using the discharge that is exceeded 107° of the 
year. Recent work by Ackers and Charlton (1970c) supports some 
of the earlier workers in their contention that bankfull discharge
determines meander pattern,

These facts show that no single measure of discharge can 
be assumed to control meander dimensions but that a range of 
discharges are involved. Indeed, Preidkin (19^5) shows the 
position of the main velocity thread in a meander1 loop at varying
discharge, and indicates that low flow, half--bankfull flow and
bankfull flov?, respectively, attack the upstream, mid, and down
stream parts of the concave bank. At discharge greater than
bankfull the meandering pattern is not lost, and vigorous
erosional and depositional activity within the channel continues,

however with a much more complicated flow field prevailing
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(Toebes and Sooky, 1967).

Daniel (197^-) submits evidence to support the assumption 
that channel formation will begin at just about the average 
discharge and continue for all higher discharges (not, however, 
making any distinction with respect to what part of this range 
will have the greatest effect), In the model this quantity, 
flood period volume, is calculated for every year and used in
various computations involving erosional and depositional
activity. For the reasons outlined above, this ’time integral’ 
of the discharge hydrograph is much more preferable than an 
instantaneous measure of discharge (c.f. Allen, 1971)*

Despite the range of discharges influencing channel
formation much of the erosional and depositional activity is 

expected to occur at discharges closely associated with bankfull
stage. This lends support to the study of events within the 
channel at bankfull stage only (see section 5*8), Bankfull stage 
recurs on average once or twice every year or so according to 
climatic regime (Leopold et al,, 1964; Woodyer, 1968). It can 
be assumed, therefore that bankfull stage will be attained, or
nearly attained, at least once a year, associated with the seasonal
high water periods.

During the rising stages of a high water period, increase 
in velocity and bed shear stress bring about an increase in bed 
sediment transport and bank erosion. The outer concave bank,
together with previously slumped material, is scoured outwards 
and normally net erosion will occur in the pool and over the point 
bar. Chutes may develop over the top of the bar and permanent
chute or neck cut off may occur when certain limiting conditions
exist Avulsion is also a flood stage phenomenon



96

On falling stages sediment is normally deposited on the
bar and in the pool and, ultimately, approximately the same
channel.width and cross sectional area that existed before the
flood period will be attained. The position of the bar will be
different from that before the flood period, due to the recession
of the outer bank, Bank caving following scouring in the pool 
is often a falling stage phenomenon (Matthes, 19^1; Jahns,
19^7; Inglis, 19^7 > Russell, 1967), and those caved blocks 
left after the end of the flood period will be swept away in
subsec|uent flood periods. A detailed discussion of ’scour and
fill’ and cut-off follows
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9 SCOUR AND FILL
9.1 Preliminary d1scussion

Colby (lp6^) discusses two principles which are helpful
in understanding scour and fill in sand bed streams. One is the
principle of continuity of volume of bed material along a stream
reach. This principle simply states that changes in the
average elevation of a bed in a reach result from the difference
in the rates at which sand enters and leaves the area, The
second principle is that a relation exists between the discharge
of sands and the characteristics of flow and available sediment 
(e.g. Bagnold, 1966). Therefore in the case of steady uniform 
flow the average sediment transport rate at a point remains 
constant with time and remains unchanged with distance along a
streamline. In such a case there will be no progressive erosion
or deposition of sediment and the stream bed elevation will
remain constant. However, when the flow is unsteady and non
uniform, the ability to transport sediment varies and erosion and 
deposition can occur. For gradually changing flow, Allen (1970c) 
expressed the rate of erosion or deposition as

rate of erosion ^i 
or deposition

1 Z i (9-1)~ 3 x V 3 fc
where i is the sediment transport rate (immersed weight passed 
pert' unit width per unit time) , V the mean fluid flow velocity, 
t is time, and x is the distance measured in the local downstream
direction. The first term represents the contribution from the
nonuniformity of flow and the second term the contribution from
the unsteadiness, Whether' erosion or deposition occurs depends 
on whether the right hand side is positive or negative respectively 
which depends on tho relative magnitudes and signs of the two 
terms. In fact, on further study of equation (9*l)» it can be

seen that the unsteady term indicates that erosion or deposition
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may occur at a point only because of changing transport rate at 
that point. This is not in agreement with Colby’s principle of*
continuity of* sediment movement and so in studies of* scour and
fill the meaningful use of this term is precluded.

The proviso of* gradually varying flow is partly due to
the lag between sediment transport rate and changes in flow.
The quantities determining local sediment transport rate do not
change instantaneously with changes in flow but instead, at any 
point, these quantities are strongly influenced by the flow
conditions prevailing upstream from this location. Furthermore,
a finite time and corresponding distance are required for the excess 
entrained sediment to settle to the bed as the flow power
decreases, and for additional sediment to be entrained as flow 
power increases (Kennedy, 1963),

Study of the hydraulic geometry shows that, during the
passing of a flood wave at a cross section, changes in water
discharge and energy gradient will result in changes in flow
resistance, width, depth, water surface slope, and velocity
(Leopold et a1., 196^). In particular width, depth, slope and 
velocity genex'ally increases. Flow resistance is affected by
the changing concentration of fine sediment or, in a more
discontinuous way, due to changing bed forms or overbank flow.
Turbulence, fluid density and apparent viscosity, hence effective
fall velocity of particles, are affected by changes in temperature
and fine sediment concentration. This in turn affects bed
configuration. The changes in hydraulic variables are inter
related in a complex way, however, in general, it can be said that
sediment transport rate at a section increases with the flood
wave •

The principles involved in scour and fill can be applied

to meandering streams in two contexts; in terms of a reach and ,
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in terms of a single bend. In the first case, for simplicity, 
we will assume that there is no overbank flow and that the general
characteristics of flow and available sediment are the same at
each end of the reach. During a flood wave the hydrograph will 
lag a little from one end of the reach to the other, hence 
average sediment discharge will lag in a similar way. This will 
result in net deposition in the reach during the rising stages, 
i.e. <3 1/ x is negative, and net erosion during the waning period, 
i.e. di/ dx is positive. If however, for some reason, the inflow 

to the reach is stopped, scour over the distance required to
entrain an equilibrium sediment load would occur at the beginning 
of the reach, Also, if the characteristics of flow and available
sediment are not the same for both ends of the reach, perhaps due 
to differences in slope or flow resistance, then di/ dx would not 

be zero and scour or deposition may occur.
Colby has shown that the thickness of sediment eroded or 

deposited in these cases is very small when averaged out over the
stream bed. These points indicate that the average bed elevat
ion in a reach, under the conditions specified, is usually fairly 
stable during the passage of a flood period, and that there is not
general scouring and filling over the whole reach during rising
and falling stages.

In the context of a single bend, the characteristics of
flow and available sediment during the low water stages can be 
expected to be different between the pool and the riffle, and thus 
sediment transport rates will be different. However sediment
transport rates will be very small at low discharges, so they 
warrant little attention, Lane and Borland (195^) have shown 
that as the water surface rises the cross sectional area of flow
increases faster at the riffles than in the pools, and this is 
formally accompanied by changes in the hydraulic parameters in 

a difpereng way in the pool from at the rifile. In general
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on rising stages 31/ x becomes a positive number at the pool 

and scouring occurs in the pool. At the riffle 3i/ c) x becomes a 
negative quantity and deposition occurs on the riffle. On 
falling stages the opposite will happen (Freidkin, 1*9^5 5 Sundborg, 
1956; Kondratev, 1962). Such bed changes will be significantly 
more than in the cases previously mentioned (Colby, 196^), See

fig. 9«1»
9 *Mathemat1cal model for scour depth

Scour and fill in a meander can be treated empirically
on a deterministic basis with certain stochastic properties.

The average net scour (in terms of immersed weight per
unit width) at a cross section in the pool, NS, can be written

T
NS = / -^ (t) dt (9.2)

where c> i/ C5x( t) is the time varying rate of erosion or deposition 
at a particular section. T is the time from the beginning of 
appreciable sediment movement on rising stages (^i/<^x(t) may not 

necessarily be positive at this time) through the positive range 
of J i/ <)x(t) until it becomes zero. c)i/ c)x(t) will then become 

negative and deposition will occur until it becomes zero again 
(see fig. 9.2).

It can be seen that the net scour (area A~B in fig. 9»2) 
will depend on T and the shape characteristics of the curve of 
di/ d x( t) as t varies between 0 and T. The shape of the curve 

of 3i/ dx(t) depends, as already indicated, mainly on (a) the 
hydraulic nature of the cross sections within the pool and riffle
at a given stage, which controls the relative spatial and
temporal distribution of sediment transport rates, together with 
(b) the time variation of the changes in stage. Fig. 9 ■» 1 shows 
a tendency for di/ 3x(t) to change from positive to negative
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FIG. 9.2 IDEALISED VARIATION OF EROSION AND DEPOSITION AT A CROSS SECTION IN A 
CHANNEL BEND (POOL) WITH THE PASSING OF A HIGH WATER PERIOD.
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(i.e, t=T) at about the peak stage for each flood period and 
that there is a tendency for a change from negative to positive 
(deposition to scouring) in the early rising stages, T is also 
expected to depend on (a) above, as well as the flood period 
hydrograph. The curve shown in fig. 9*2 is assumed to be smooth
for simplicity, although by virtue of the controlling factors it 
would probably have fluctuations imposed on the general trend.

We may now say qualitatively that for any high water
period, the average net scour at a cross section is a sole
function of the cross section characteristics around the meander
and the shape of the flood period hydrograph. An analytical
representation of this functional relation cannot be determined
at present J however a somewhat approximate relation will be
determined for this study,

A measure of the flood pei'iod hydrograph can be obtained
as the integral of the flood period discharges with respect to
time, that is, the flood period volume, Q , as defined earlier.vo.L
It will now be assumed that the hydraulic nature of the cross
sections within the pool and riffle at any given stage is constant 
for every flood period. This assumption may not be valid, 
especially when meander sinuosity and amplitude is increasing,
however much further research is needed to test this assumption
adequately. For tho present the variation of NS can be described
using an equation of the form

DSCR - k4(Qvol)n3 (9.3)

where DSCR is a measure of NS and is the net depth of scour below 
the bed elevation before and after the flood period, measured at 
the talweg. The empirical values of the constants and nQ for
a particular cross section are imposed by the characteristics of
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the channel cross sections around the meander, .for the range of 
Q _ used. For a given value of Q _ (with constant k. and n„), 
NS (and DSCR) may vary for some combination of the following 
reasons; (a) Apart from the approximating assumption of using 
Qvq^ as the only variable, approximations are also involved in 

the use of Qvo-£ as a parameter and effectively ignoring separate 
flood events within a flood period. (b) Local effects of
scouring, i.e, in the lee of dunes. (c) General scouring or
deposition affecting the whole reach as previously discussed.

ft will therefore be assumed that all fluctuations about 
the mean curve (equation (9»3)) can be treated stochastically by 
introducing a term, er, which is a normally distributed random
variable with mean 0 and standard deviation, stdvn, some function 
of the absolute limits of scour depth. Therefore, we write

“ q
DSCR kZ^(Qvoi) + er (°» stdvn) (9.^)

Unfortunately, at present the general validity of equation (9-^) 
cannot be assessed, however it is sufficiently flexible to
account for scouring in the specific case, as defined by the 
empirical input variables, , n^ and stdvn.
In the model the overall shape of the scour hollow is obtained by
assuming no scour at the junction of the bankfull water surface
and the inner bank. The scoured bed profile is then defined 
using the equation for the point bar profile (e.g, equation 
(5.1)) but, at the talweg, the bed is a distance DSCR below the 
original depth. This is illustrated in fig. 14.2, The shape 
of this scoured bed is purely heuristic, however inspection of
fig, 9*3 lends a fair degree of credibility to the method used.

9 * 3 Deposition on falling 3tages
On falling stages, in the absence of any external disturb

ing factors, deposition will normally fill the bed to its original

depth, however probably at a slower rate because the hydrograph is
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not as steep on falling stages (see fig. 9*1)• In the model it 
will be assumed that, after scour, most of the filling to the 
original bed profile is accomplished on falling stages, or at
least before the next flood period. The scoured bed is filled
by incrementally reducing the depth at the talweg and redefining 
the bed profile at each increment using the equation of the point 
bar profile. The grain size and sedimentary structure in the 
fill are obtained by repeated application of the point bar 
sediments model (section 5) across the profile as the depth is 
incrementally reduced to the original (see section l4 for details). 
It is therefore assumed that the ’equilibrium’ bed forms, corres
ponding to the different flow conditions, have time to develop at
each level of the bed as filling proceeds, Throughout this
operation it is assumed that the water level and slope are constant
at bankfull level. Thus, as in the point bar sediments model,
it is assumed that all the depositional activity occui-s at bank-
full stage, .
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9. U Input
The values chosen for k^,n^ and stdvn can only be heuristic 

at present, and they will be expected, because of their empirical 
nature, to he limited for use on any one specific cross section 
under discussion. As previously stated, the absolute values and 
units of Qvoj are not explicitly specified as they are only being 
used in empirical equations which are scaled by proportionality 
constants, in this case k^. Having chosen the necessary
empirical values, the variation of scour depth will be described, 
whilst also making a statement describing the limitations imposed 
on scouring by the whole hydraulic makeup of the meander in 
question, The shape of the curve of DSCR plotted against Qvo^ 
is described by exponent n„. It is expected to be a positive
number* but little else can be said at present, Stdvn is expected



R6.0.4 VARIATION OF D8CR WITH Qv@j ACCORDING T@ EQUATI©N<®.4$ FOft
(Q) DIFFERENT VALUES OF n3 ANO U4 .WITH sSduo^O, AND (b>C©NSTANT 
s3 ANO U4, AND stdvn ® 1.
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to be some fraction of the limiting scour depth. The value of 

k^ for a given range of Qvo^ can be alluded to by using as a 
general guide the fact that the bed commonly recedes about the 
same order of magnitude as the water surface rises (Leopold et al. 
1964» Lane and Borland, 1954)• Fig, 9*4 shows the variation of 
DSCR with Qvol for various values of the parameters. It is to 
be noted here that if is required to be varied, for a given 
range of Qvo^ and DSCR, must be adjusted also.

The phenomenon of scour and fill is characteristic of
ephemeral sand bed streams and large rivers in semi-arid
climates; it is less typical of rivers in humid areas or those
in high mountains, presumably because perennial flow tends to
winnow away the fine material and the bed becomes armoured with 
coarse materials (Leopold et al,, 1964), In the sand bed
streams of the present study scour and fill is to be expected,
however an option will exist in the model if scour and fill is
not required,

10 CUT-OFF
Cut-off occurs whenever the meandering stream can shorten 

its course and thus locally increase its slope, the frequency of 
cut-off increasing with channel sinuosity (Allen, 1965a).

10.1 Model for chute cut-off
As already stated, the formation of chutes is associated

with a limiting sinuosity and amplitude to the extent that flow 
resistance is less over the bar than around the bend (Freidkin, 
1945). An increase in amplitude and sinuosity towards limiting 
values, wavelength constant in the model, thus involves an 
increasing tendency for the formation of chutes. During flood 
stages, the directing of a greater part of the flow across the
bar enhances the tendency for chute formation. Due to the
assumed homogeneity of the bank materials, there will be no other 

cause of change in alignment of the flow upstream.
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Permanent chute cut-off can therefore be treated as a probability 
function of the magnitude of the flood volume and the sinuosity, 
a higher probability of occurrence being associated with high 
floods and with a limiting value of sinuosity, thus

P(c) = (Q™i/Qvol volmax
ec ec_

) (sn/sn ) 10.1)

where p(c) is the probability of chute cut off, sn^ is the
limiting sinuosity, and Qvolmax is the value of Q , at which vol
cut off would be a certainty if sn is also equal to By
increasing the empirical exponents ec.. and oc„, the probability 
of cut-off becomes very small unless Q , and sinuosity are close
to their limiting values.

The occurrence of chute cut-off in the model is determined
by generating a pseudorandom number in the range 0 to 1. This 
number is then compared with the value of p(c) for the particular 
high water period under consideration. If p(c) is greater than 
the number, chute cut-off will occur. In fact the process of 
chute cut-off takes place slowly because the angle of diversion
of the water down the shorter course is small and the increase 
in flow is gradual (Fisk, 19^7)• The occurrence of chute cut-off 
is therefore defined as the beginning of the process which is 
assumed to go to its end point. The model will be stopped after 
the initiation of cut-off because of the complicated flow patterns 
that result, the inability to predict where the new channel will 
form, and the inability to account for the deposition in the old
channel,

10.2 Model for neck cut-off
Neck cut-off will tend to occur when the meander neck, the 

shortest distance from the adjacent banks of closing meander 
limbs (therefore only defined in meanders in which the local 

downstream direction makes an angle greater than 90° with the
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mean downvalley direction), approaches close to a limiting width, 
necessarily a small quantity, Neck cut-off could occur if
sinuosity could increase, wavelength remaining constant, to such
a value that the meander neck, GAP, becomes very small. This is
the situation in the meandering tidal creeks of the Niger Delta 
region (Nedeco, 1959)• Decreasing wavelength of a meander due 
to a clay plug, and the associated distortion of the loop, will
cause sinuosity to increase rapidly and the meander neck to become
small. Neck cut-off in this situation is described by Fisk 
(19^^, 19^7) from the Lower Mississippi, Because of the
conditions imposed in this study, the effects of clay plugs
cannot be accounted for and the latter mechanism cannot be
simulated, A probability function similar to that used for
chute cut-off may be used for neck cut-off, i.e.

en en„
P(n) = (Qvol/%olraax) (0APlini/GAP) ' (10.2)

where GAPt. is the limiting value of GAP, and fin, and en„ are la. in ’12
empirical exponents, The occurrence of neck cut-off will be
determined as outlined above, and the model will again be stopped
after neck cut off has been initiated,

10,3 Input
The expressions given in equation (10.1) and (10,2) 

above are necessarily of a heuristic nature because of the lack 
of precise knowledge on the subject, The values of ec.,ecp,en. 
and en? will be intuitive and will be expected to be relatively 
large positive numbers. Their values can only be inferred by 
trial and error, and in this respect it is noteworthy that 
average times taken to cut-off from inception of a meander loop 
to cut-off are of the order of hundreds of years (see Handy,
1972; Lathrap, 1968). This will be expected to vary with the 
general hydraulic setting, Specifically, the time taken before

cut-off is initiated will be expected to depend on the general



calibre of sediment: in the perimeter of the channel, which will
influence the rate of lateral erosion relative to the size of
the stream, the ’equilibrium’ sinuosity, and the susceptibility 
to deep scouring. It will also depend on the variability of the & 
flood period volume above that which exerts most control on the
channel formation. 3

■i
Examination of the maps produced by Fisk (19^7) of the 

Mississippi Valley shows that natural chute cut-off occurs at $
sinuosities up to about 2.0, and before the angle between the locaij 
direction of the channel and the mean downvalley direction exceeds 
about 90 » If the value of the limiting sinuosity is greater 
than about 2.0 (approximately) chute cut-off will not normally 
be expected and mutual adjustments of the exponents may be
required here.

The limiting value of sinuosity has been discussed
£earlier, and expected to depend on the grade of sediment in the
■OS

meander and, related to this, the width/depth ratio of the channel,^ 
Fisk’s maps further show that neck cut-off involves meanders with i

Iconsiderably greater sinuosity than 2.0, and the limiting value
■ yof the meander neck is expected to be very small relative to the

dimensions of the meander.
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The relationship between any Qv and the value of Q“volmax
(presumably based on long period records) depends on the character
of the river regime under consideration. Presumably adjustments
in ec^ and en^ will be required as the variability of Qvoj vari os
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11 FLOOD PERIOD VOLUME
Introduction

It is now necessary to compute the flood period volume, 

QVol* defined as the sum over a year of all daily
flows above the mean daily flow for a particular hydrograph.
This is done by sequential generation of daily streamflows using 
the apparatus of operational hydrology. The absolute values of
daily flows, hence flood period volumes, are not important as
they are used only in empirical equations which are scaled with
proportionality constants. The important point therefore is 
the shapes of the hydrographs and not the absolute scales. It 
would in fact be difficult to find an absolutely rigorous dis
charge hydrograph (dimensionwise) to fit a particular channel 
section, as the discharge pattern, specifically bankfull dis
charge, is not explicitly defined. By virtue of model con

*
struction, discharge, an independent system variable, is made
dependent by specifying the channel and meander dimensions.

11.1 Sequential generation of streamflow data
One approach to streamflow simulation involves analysis 

of the hydrological system in order* to find the causal relation
between streamflow and its controlling factors. Numerous
deterministic methods have been proposed and developed to
empirically relate one or more climatic and physiographic factors
to the streamflow hydrograph or some other streamflow character
istic, with considerable variation in the number of factors used 
(see Chorley and Kennedy, 1971, Crawford and Linsley, 1966). 
Although such methods of streamflow generation may be useful in 
reconstructing the climatic and physiological characteristics of
the basin to which a particular streamflow record is related, 
their use is precluded by the amount and nature of the input data
required,



Other approaches seek only to analyse the observed stream-
flow record. The flood record is often analysed and fitted with
a certain probability distribution to determine the recurrence
intervals of the flood or the flood frequencies. This type of
analysis cannot be used for sequential generation of streamflow 
data. Because the hydrologic process is stochastic (chow, 196^, 
1967) the streamflow hydrograph may be thought of as a continuous 
time series, and daily, monthly or annual discharges (or stages) 
represent discrete time series. A time series may be approximated
by a mathematical generating model, the choice of which is based
on how well the mathematical structure of the model fits the
physical characteristics of the time series. Hydrological
processes and time series are generally treated as stationary, 
sometimes after simple transformations on the original time series
in order to simplify the mathematics. Various mathematical model
or combinations of models have been used in hydrology, and, in
order to decide which provides the best fit, the sample correlo- 
gram and power spectrum have been used (e.g. Chow and Kareliotis, 
1970; Dawdy and Matalas, I96U; Quimpo, 1967, 1968a,b),

11.2 Mathematical model of hydrologlc time series
In this study it is intended to generate a pattern of 

daily flows at a given stream section (absolute values being 
irrelevant) using the mathematical representation of the time 
series pertaining to that section. Such a series will be the
combined effect of a deterministic component and a stochastic
component. In general, the deterministic component may be
composed of a trend and an oscillatory component. Trends may
be removed from the time series by such methods as moving
averages or polynomial regression, however, in this study the

109.

trend will, for simplicity, be assumed absent
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The mathematical model used is a combination of the sum 

of harmonics and autoregressive models (e.g. Roesner and Yevjevlch 
1966; Quimpo, 1967» 1968a; Rodriguez-Iturbe, 1968; Adamowski,
197l)» If* is a nonstationary time series of daily flows,
that is assuming the observed value of each of the 365 days in 
the year is to be drawn from a different population, stationarity 
can be approximated and the components of can be separated by
the following transformation,

Zt " (Xt ~ nl/£ (11.1)

where is the daily mean value of the day X, is the standard
deviation of day , and '£ runs from 1 up to 365* The 
’standardised series’, Z., is second order stationary, being 
distributed with zero mean and standard deviation unity for all
daily values.

Using Fourier analysis, a mathematical representation of 
the m^- and the s^ may be expressed as continuous functions, 
rn, and 3, , by the expressions

mt=m^ 2 rr k . _ . 2 n k , sclvA. cos — t + D. sm — -- t)
L, Kb

(11.2)

t z A, cos 27ik . . _ . n , pvs k - t * B. sm 2nkk L s k -- *
JLr

t) (11.3)

where m^. and s,^ are the means of the and s^. respectively, and

Ak,Bk’ . A, , and s k’ B, are Fourier coefficients, s k Experience shows
that a plot of the expected daily values of the time series X.
over a number of years results in a periodic movement with a 
fundamental period of one year, L therefore becomes 363.

It should be noted that in order to fit the trigonometric 
functions of the Fourier series to the shape of the observed

<
periodic movements, the number of harmonics required varies
depending on the shape of the periodic movements in question
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For ins banco, physical considerations of hydrologic periodicities 
normally indicate a yearly cycle, often with a 6~montli cycle as 
well* If the yearly periodic movement is far from a sine function, 
some or all of the other subharmonics may be needed, depending on 
their contribution to the observed variance. Thus, because of 
the method of analysis used, more harmonics than those correspond
ing to the basic astronononiical cycles raay'be required. In this 

study, no more than five subharmonics of the yearly cycle will be 
used, that is, k=l,2,».6»

If equation (ll.l) is rewritten using the harmonic 
representation of and s^the resulting series

Yt = (H.'l)
in the general case is no longer distributed with zero mean and 
standard deviation unity. A further transformation is necessary,
i . e .

Yt-Y t t t
S s , y t

(11.5)

where Y and s are the mean and standard deviation of Y^ , respect
ively. This is the 'standardised fitted series’ or just 'fitted 
series'. It can be seen that Z, may be described by equation (ll. 
or (11.5)» however the number of parameters required will always 
be much less using equation (ll«5)> thus making this expression 
more desirable.

Now that the periodic movement has been isolated, the
residual series Z, can be fitted with a mathematical model. The
shape of the correlogram of Z will indicate the type of model to 
be used, If, on a given level of significance, it can be said that 
E(r^)- where r^ and are the Lth order serial correlation
coefficients of sample Z.^, and the population from which Z j. is 
drawn, respectively, then the time series Z, may be considered

as a sequence of stochastic variables which are independent

among themselves, A significance test is available
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to test for independence. •

It has been shown that in general the series Z, for
daily values cannot be represented by the independent model, but 
may be represented by a linear autoregressive (Markov) model of 
the second order (Quimpo, 1967, 1968a). The adequacy of the 
model is based on the fact that the computed variance of the
model based on the estimated parameters agreed well with the 
computed residual variance. The model is given as

Zt alZt~l + a2Zt-2 f ^t * (11.6)

Estimates of a^ and ap are given as

r i (1" r „ )
ai~ “ and a,

1 — r -1

r «* r 2 1
7 2l--r „2

1
The residual series Cj. is independent of Z^ ^,Z^ ?> an<^ other 
<£ ’ s. For the model adopted

Il a,
(l-a9)t i-"a2 1 v'“ *~1 (11.7)t

where fl^ is a standardised independent stochastic variable (the 
primary variable). 2

It is necessary to know the distribution of <£• as this
may be crucial if it contributes much of the variance of the whole
series. However the model only accounts for second order
stationarity in Z^, therefore the frequency distribution of
cannot be simply determined because the expected values of the centr
al moments greater than two may not be constant. If they were
constant, for instance if the residual series C follows a . t
Gaussian distribution, then Z^ would be strictly stationary. In 
practice the residual values are positively skewed because of the
restraint imposed by a minimum flow of zero. Evaluation of the
higher moments is unrealistic and so stationarity of order higher

than two is best approximated by assuming that the residual series, .
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(~L or is distributed with a positive skew, i.e. lognormal
or gamma (Pearson type III) (Hamlin, 1971)• Upon the determinat
ion of the probability distribution, a series X, may be generated 
by generating random variables with the appropriate distribut
ion using Monte Carlo techniques (see appendix l)«

It is obviously important to know the relative influence 
of each component of the original time series in order to assign 
limits of accuracy when one or more of the components are
neglected or approximated in a simplified synthesis of hydrologic
data. In this study simplified models have been used at the cost
of generality. The number of harmonics used to describe the
periodicity has been limited to six, and the order of the auto- ~~ 
regressive model has not been tested beyond order three.
Furthermore, the trend component, which may include a ’persistence
effect, has been ignored.

11.3 Input and experimentation with the model
Once the series of daily flows for a year has been

generated it is a simple matter to find the flood period volume. 
The parameters used in the hydrology model adopted will depend on 
the shape of the hydrograph that is selected for use in the model,
or the ’river regime* that is desired.

Fig. 11,1 represents the daily means and standard deviat
ions about the means for selected rivers in the U.S.A., taken 
from Quimpo (1967). They are classified into different river 
regimes according to the classification given by Beckinsale (1969) 
Table 11.1 shows the values of the parameters used in the 
stochastic models of the daily river flows, as calculated by 
Quimpo (1967)*

500 years of records were generated using the parameters 
given in table 11,1 for each station, using three different 

distributions for the primary variable 7^. The values of Qvoj_
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Fig. 11.1 Daily means and standard deviations about means for selected stream 
flows in the U.S.A.. (taken from Quimpo,1967 ).



coefficients 
of variation

variances explained by
periodic autoregressive primary series

BATTEN KILL RIVER
O.l43(N)
0.151(G)
O.l86(L)

0.2904 0.4627 0.2469

COWPASTURE RIVER
0.119(N)
0.132(G)
O.182(L)

0.1051 0.3912 0.5037

OCONTO RIVER
o.234(n)
0.245(G)
O.297(l)

0.3525 0.4514 0.1961

DELAWARE RIVER
o.ii6(n)
0.129(G)
0.195(L)

0.0216 0.3170 0.6614

NECHES RIVER*
0.27l(N)
0.282(G)
O.332(l)

0.1969 0.7613 0.0418

FALLS CREEK
o.ii6(n)
0.119(G)
0.12l(L)

0.5387 0.3035 0.1578

BOISE RIVER
O.235(N)
0.244(G)
0.285(L)

0.6725 0.2699 0.0576

N - Normal distributed primary variable
G - Gamma distributed primary variable, skewness«=l
L • Lognormal distributed primary variable
* Not shown in fig, 11,2
Table 11,2, Coefficients of variation of Qvo^ for simulated stream flows. Variances 

explained by different components of the stochastic generating model 
(taken from Quimpo, 1967).
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were calculated in each case, and the means, standard deviations
and coefficients of variation over the period of 500 years were
found, Figs. 11„2 show sample plots of the simulated flows
over a three year period, Table 11.2 shows the coefficient
of* variation of Q for each station and for each differently
distributed primary variable. Also shown on the table are the
variances explained, as fractions of unity, by the periodic and 
autoregressive components of the stochastic models adopted.
As can be seen the coefficients of variation are closely dependent 
on the primary variable distribution. No obvious relation of
the coefficients of variation with the other parameters in
table 11.2 can be seen, however a detailed statistical analysis
with additional data may yield one.

It is obvious that the variability of Q _, hence the vol
variability of the processes it influences, is not only a
function of the flow regime in question but also on the method
of flow synthesis used.
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12 CONSTRUCTION OF FLOODPLAINS

12•1 Overbank deposition
The annual high-water periods will equal or exceed the 

elevation of the floodplain just about every year. That the 
frequency of overbank flow is nearly the same in regions of very 
diverse runoff, from tropics to semi-arid regions, implies that 
the size of the river channel is appropriate to the quantity of 
flow provided by the drainage basin. It is also apparent, 
however that if overbank flooding by sediment-laden waters does
occur, some deposition will in all likelihood be associated with
it. If there were continuous deposition the channel would
gradually appear to become depressed within its own alluvium.
The regular frequency of flooding indicates that this is not the 
case, and hence some mechanisms must counteract this tendency 
(Volman and Leopold, 1957; Leopold et al., 196^). It will be 
necessary to consider the nature of the deposits making up the
flood plain and some possible explanations of the inferred lack
of importance of overbank deposition in flood plain formation.

In tlieir manner of construction and in the nature of the
deposits which make them up, flood plain deposits form two
fundamentally distinct groups (see Wolman and Leopold, 1957)*
Point bars, channel bars and alluvial islands result from the
•lateral* accretion of stream bed load on the sideways migration 
of channels. As a meandering stream shifts laterally, deposition 
on point bars is concomitant with erosion of the opposite concave 
bank, Wolman and Leopold (1957) further state that the surface 
of the material deposited approaches the level of the older part 
of the flood plain.

The ’vertical* accretion of suspended load after overbank 
flow leads to the construction of levees, crevasse splays, and

floodbasins on top of lateral accretion deposits Averaged
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thicknesses of* sediment that have been deposited op flood plains
by great floods is of the order of mm. and cm,. Observations
show, however, that widespread deposition of sediment by overbank 
flows is not the case. In fact there is large variation in the 
thickness of deposits locally (with some deposits ranging up to 
metres in thickness); furthermore, velocities are often large 
enough to produce scour (see Wolman and Leopold, 1957; Wolman 
and Eller, 1958; McKee et al., 1967)•

Observations of Wolman and Leopold (1957) on U.S. riverd 
indicate that as much as 80-90$ of a normal floodplain may be 
composed of deposits of lateral accretion, and the remaining 10
20$ consists of overbank deposits. Whether significant vertical 
accretion occurs or not depends on internal factors, inherent in
the stream regime, and on others external to the stream.

There are three ’internal* factors which help to explain 
the relative unimportance of overbank deposition in flood plains, 
and why the elevation of the surface of a flood plain remains 
stable relative to the level of the channel bed, despite frequent 
flooding (Wolman and Leopold, 1957)• First, the highest 
discharges are often characterised by lower concentrations of
suspended sediment than discharges of intermediate sizes. Second
periodic removal of the flood plain by lateral erosion holps to 
control its height. Third, velocities of the overbank flow may 
be high enough to move sediment of appreciable size.

Suspended sediment load is a substantially independent 
quantity within the floodplain system, and although correlated
with discharge, is not a function of discharge itself. This 
explains the observations of Wolman and Leopold (1957) that many 
streams show a maximum concentration of suspended load at stages
well below the bankfull and not, as might be expected, at the 

flood stage. Fisk (19^7) refers the poor development of levees
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along certain Mississippi tributaries to small suspended loads.

The extent to which periodic removal and replacement is 
effective in limiting the height of the floodplain surface
depends on the relative rates of channel migration and overbank 
accretion. Relatively steep braided streams with coarse loads
are notorious for the rapidity with which their channels move 
across a floodplain, so keeping floodplain relief low and 
minimising the effect of overbank deposition. Many such streams 
are aggrading rapidly, although solely by net deposition follow
ing lateral accretion (e.g. Coleman, 1969)* Meandering streams 
are also free to range and level their floodplains. It is 
noteworthy that with very sinuous streams, cut off and subsequent 
development of channel fills of fine sediment may lead to meander 
belt fixation, and an ’alluvial ridge’ may form. Avulsion may 
occur, producing a surface of complex and appreciable relief.
This will have the effect of hampering overbank flows in their 
movement downvalley, as well as inhibiting rapid channel migration.

When floodplain relief is kept low by the ’ploughing' 
action of shifting channels, overbank flows are able to move 
down the plains when floods occur. Wolman and Leopold (1957) 
report mean velocities of overbank flow in such situations to 
range between 0,15 and 2.7 ft/sec, and to average 1.6 ft./sec.
McKee et al. (1967) compute mean velocities about five times 
greater than these. The downvalley slope may be considerably 
greater than that of the channel, and this higher gradient, 
together possibly with less roughness in the flood plain section, 
tends to keep the velocity high and reduces the probability of 
deposition of fine material on the flood plain. Indeed, widespread 
scouring has been observed.

The external factors include changes in stream base level
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Z3,and changes of land level due to subsidence (tectonic, compactional )J 

or uplift (tectonic, isostatic). These are discussed more fully i 
in the following section on aggradation,

Bearing in mind the aforesaid, it will be assumed in the 
model that the elevation of the surface of the floodplain remains | 
stable relative to the general level of the channel bed. Also,
sediment deposited on the point bai1 will extend up to the level
of the floodplain, taken here obviously as the bankfull level of J
the channel, The surface of the flood plain will be assumed
plane and horizontal in the direction normal to the mean down*
valley direction. The relief of the floodplain surface will
therefore be lost,, The grain size of the pre-existing flood
plain sediments must be specified in the model, assuming that, 
at any level, they are laterally homogeneous. In this respect,
it should be realised that a specified proportion of the total
floodplain thickness may have the character of overbank deposits.
Processes of overbank deposition will not be treated in the model

■■n
because of (l) the negligible .rates of erosion and deposition,

£(2) the complicated flow patterns within the channel and over the 
floodplain, which will partly determine the spatial and temporal
distribution of erosion and deposition, (see Sellin, 1964j Toebes j$
and Sooky, 1967), and (3) indeterminate concentrations of
suspended sediment. The process of avulsion also cannot be treated.
at this stage,

12.2 Aggradation {
There are various ’external’ factors which influence the £ 

relative proportions of overbank and point-bar deposition within 
the floodplain. Variation of these external factors bring about J 
persistent long term erosional and depositional trends over the 
floodplain. These are termed degradation and aggradation respect-
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ively. Degradation will not be considered here, as interest -y

lies at present only in net deposition, By definition, progressive?,
■«

long term deposition both within the channel and on the floodplain
I

is aggradation, Under these conditions overbank deposition may 
be expected to comprise a significant part of the floodplain 
deposits, but this will depend on the rate of channel migration 
relative to the rate of aggradation.

As already stated, the dimensions, shape, slope and pattern? 
of stable alluvial streams are delicately adjusted to transport
the amount of water and sediment supplied by the headwaters.
Aggradation occurs when the production of sediment exceeds the
amount that can be carried away by the processes of transportation « 
(Leopold et a1., 1964). Up to this point we have considered
meandering streams in the stable nonaggrading, nonscouring
situation with the independent variables remaining constant.
Various external factors can affect the independent system
variables as defined previously, leading to aggradation in
certain cases; that is, climatic changes and river diversions
can modify the balance between sediment and water discharge.
Also structural movements, sediment compaction, or eustatic sea
level changes will cause valley slope to vary independently.

In the recent past the combination of subsidence and |
rising base level has led to deep alluviation by overloaded
streams in the lower valley of the Mississippi (Fisk, 1944, 1947). ? 
Here the alluviation took place because rise in base level
decreased the overall slope of the valley, which was reflected in * 
the progressive upstream loss in carrying power. The gradational 
nature of the sediments throughout the valley and the occurrence -4 
of coarse elastics at depth at the present coastline indicate
that aggradation kept pace with rise in sea level throughout most

4

of the aggrading period. The constant general aggradation of the
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presently overloaded Brahmaputra causes the channel to become
wider and shallower and to cause the main current to seek better 
gradients, new alignments and paths of least resistance (Coleman, 4

1969), Local faulting is partly responsible for these changes d
in direction. Slope oversteepening due to structural movements, ) 
with subsequent flattening due to aggradation, has also been
recorded elsewhere (Leopold et al, 196^). 1

When changes in the independent factors cause aggradation a
the various dependent hydraulic variables may adjust in a wide a
variety of ways in order to maintain continuity of sediment and 
water transport. Scliurnm (1969, 1971) has formed generalised -|
expressions relating water discharge and ratio of bed load to 
total load to various hydraulic variables, in order to illustrate j 
expected directions of change of the dependent variables to -j
changes in water* and sediment discharge. Many other authors have d- M
noted changes in different hydraulic variables in response to
changes in discharge and slope. However the precise form taken J

I

by the adjustments cannot be described quantitatively. They J
will probably be such that the rate of work expended in the
system is minimised, the local conditions determining their exact
na ture.

Leopold et al. (196^) state that the tendency for the
J

maintenance of quasi-equilibrium in stream channels is sufficiently '
"f

pervasive that only slight deviations, if sustained for a long 
enough period of time, may account for aggradational features of !

j

considerable magnitude, but the deviation from equilibrium
iconditions necessary for the construction of such depositional U

- !1 

features cannot be recognised or identified by any criteria now d
!

available. Stratigraphic studies of alluvial sequences indicate
that large scale aggradation in valley systems results from 
processes which act relatively slowly. For example, during the

.1
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aggradation of the Mississippi valley since late Wisconsin times 
the average valley slope has only changed on the order of 10~^

(10~ of a percent).
It does not seem unrealistic, by virtue of the very small if 

average changes in the hydraulic variables over the periods of 
time to be simulated in the model (up to the order of hundreds of 
years), to assume that the hydraulic parameters are constant 
during aggradation. Account cannot therefore be taken of large 
scale channel and flood plain changes due to sudden short-term
variation in the independent variables, as happened, for example,
in the Cimarron River of southwestern Kansas between 191*1 and 1939 <!X
(Schumm and Lichty, 1963). Such changes in the independent
variables are not persistent and the channel changes are not
permanent,

Although the stability of the absolute elevation of the
surfaces of most flood plains cannot be proven, evidence indicates.$
that even during aggradation the difference in elevation between
the river bed and surface of its floodplain does in many instances

,5

remain constant over long periods of time (Wolman and Leopold,
1957)* Wolman and Leopold (1957) further state that 'In those 
cases where continual aggradation produced the valley fill, it is $

"■s,
difficult to explain how the relative position of the channel to

is*
the floodplain remained fixed during aggradation if overbank |

-J?
deposition is considered the principle mechanism of laying down the;;
valley fill. Rather, concomitant rise of both stream bed and

■floodplain surface appears to be best explained by attributing the jI
bulk of the deposited material to the process of point bar 1
formation', . ,

The uniform frequency of flooding of flood plains does not 
rule out the possibility that both the surface of the flood plain 
and the bed of tho channel are being built simultaneously. >3

JS



Gages on the Nile river, which provide the longest periods of 
record of any river in the world, indicate that both the bed and 
banks of the Nile are being raised at a rate of about one metre 5
in 1000 years. The maximum thickness of recent valley alluvium 
in the Mississippi valley varies from about 200 ft, (av, 125 ft,) 
in the north to over 350 ft. (average 138 ft.) in the south, and 
this was deposited in 25,000-30,000 years (Fisk, 19^). Other 
data from Leopold et al. (196^-) sugges t comparable rates of "i
aggradation.

In the model, it will be assumed that during aggradation
the elevation of the surface of the floodplain remains stable
relative to the level of the channel bed. As in the last
section, the surface of the floodplain will be assumed plane and
horizontal in the direction normal to the mean downvalley direction 
It is not intended bo look at the processes influencing aggradat
ion, but to assume that the whole floodplain is aggrading at a 
specified constant rate due to one or more of the previously 
discussed factors, without taking account of them explicitly. The 
rate of aggradation will be specified as input and it will bo 
assumed that progressive aggradation is continuing at this constant 
rate, without interruption, for the whole cross section represented 
in the model, irrespective of its direction. Due to the fact that 
the processes of overbank deposition in nonaggrading and aggrading 
situations are too complex to treat here, the nature and surface
relief of the overbank deposit cannot be determined in detail.
During aggradation much of the overbank deposit will be expected 
to be crevasse splay and levee deposit. However, by virtue of
the observed rates of aggradation mentioned earlier, and the
expected rates of channel migration, much of the total floodplain 
deposit is expected to be produced in the channel. In such an

123. J

instance, relief will be kept low and the formation of ’alluvial
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ridges’ would be inhibited* Movement across the .floodplain of 
the meander belt continuously or discontinuously (avulsion) 
cannot be accounted for in the model. Avulsion and continuous
meander belt migration may be expected to assume more importance
in this aggrading situation with local slope oversteepening, 
perhaps due to tilting of the valley associated with tectonisin, 
(e.g. Russell, 195*B Coleman, 1969) ♦ In the model, overbank
deposits produced during aggradation will be separately designated

Z
although their detailed structure and texture will be indeterminal
For the purpose of defining their erosion resistance in exposed 
cut banks they will be assumed to be predominantly silt and clay, 
although sand may be present also (e,g» Allen, 1965a).



PART THREE

THE COMPUTER PROGRAM
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13. GENERAL REMARKS.

«Once the structure of the mathematical model is established^; 
the next step is to develop a computer program that represents the
various components and processes to be simulated. The programming ;

i

language FORTRAN TV was found sufficiently versatile. Numerous
texts deal with the definition and efficient use of the language 
(e.g. IBM, Ip^S; Cress et al, 1970; Kreitzberg and Shneiderman, 
1972) .

Flow of time is implicit in any dynamic system where all
the processes are time dependent. In dealing with digital models,
time can be moved forward in a series of discrete steps, the state
of the system being altered by an increment at each step.
Continuous time would be more closely approximated as the time
increment is decreased. The choice of time increment of a year 
is purely for convenience, in that there is normally one major
flood period a year during which most of the erosional and
depositional activity takes place, ignoring the separate flood
events that inevitably constitute a high water period. There 
may, however, be two flood periods (i.e. double equatorial maxima) 
where erosional and depositional activity are vigorous. This
does not affect the model, as quantities involving the flood
volume are defined bearing in mind that the time span involved 
is a year. For instance, in the case of scour and fill, if there
were two equally important discrete flood periods in a year, then 
the net depth of scour for a given meander will be expected to be
less fox' each one than fox’ a single flood period with the same
annual flood volume. If it is required to look at these flood
periods within one year separately, it would be an easy matter to 
do so, as a mathematical model of the hydrograph has been made.
By virtue of the model construction the time increment cannot be
smaller than the length of time between the major seasonal periods

of vigorous erosional and depositional activity which the model
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records9

Accompanying the examination of erosion and deposition 
in vertical cross sections arises the need to represent two 
dimensional space within the computer program. Not only is it 
required to locate a particular type of material (i.e, sand, 
water, dunes, etc.) in a cross section, taut also discrete 
quantities of these materials must be transported to and frqm
different locations within the section as erosion and deposition
in the meander proceed. Because of the need to incorporate
this accounting system space is represented by a fixed grid of 
rectangular (or square) cells. Two-dimensional FORTRAN arrays 
readily allow this, the accounting information is easy to handle,
and can be displayed easily. The scale of the cells is a
critical factor, which depends on the dimensions of the cross
sections and the availability of computer time and storage,
Clearly the greater the resolution required for a given cross 
section, the greater the number of cells are required, thus
increasing computer time and storage requirements. In order to
give the greatest number of cells possible the information in
the two-dimensional FORTRAN arrays is accommodated in ’half
length integer’ form. Furthermore, two programs were written, 
one using only the addressable storage (core store) of the 
computer, and the other using additional disc storage.

Both programs have been run successfully many times on 
the IBM 360/44 computer in St. Andrews University Computing 
Laboratory. A CIL off-line graph plotter was used to plot 
channel-centre lines of meander planforms, but otherwise all 
output was produced on an IBM 1403 line printer. A disc is 
required by one of the programs. The maximum core store
requirements depend on the number of cells, and whether a disc is
used With cross sections of 200 cells by 60 cells the program



with a disc uses 78k bytes, and 129k bytes without a disc. The 
approximate running time (CPU time) depends on the number of 
time increments, the selection of various options within the
program, and on the number of cells in the cross sections. When 
a disc is used the running time is considerably increased by 
the large number of input/output operations. Running times 
will accordingly be reported for the particular conditions of

127.

the individual experiments conducted
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l4 DESCRIPTION OF MYIN PROGRAMS AND SUBROUTINES

The following descriptions are given in conjunction with
the simplified flow diagrams, and the program listings. The 
programs are listed in tables l4.1 and 1^.2. Table l4«l lists 
the program that uses only core storage. The same subroutines
listed here are required by the program using additional disc 
storage and are therefore omitted from table 1^.2. In the 
following sections words in capital letters are FORTRAN variables, 
arrays or subroutine names.

14,1 Main Program (no disc)
1. Reads input parameters. The job is terminated if (a) NPRINT, 

NFPLOT, or NTPLOT equal zero, (b) the initial bankfull stage 
measured from the section base, WS, is greater than the 
section thickness, YTOT, (c) initial sinuosity, SN, is 
greater than the limiting sinuosity, SNLIM, (d) maximum 
unscoured flow depth measured above talweg, H, is greater
than WS.

Some of the terms used within the program in the definition
of the cross sections, and which are referred to above and

£S

subsequently, are shown in fig. l4»l.
2. Calls subroutine RNDMIN.
3. Finds cell depth (size in vertical direction), YCEL and cell 

width (size in the horizontal direction), ZCEL. If amount 
of aggradation per year, DWS, is greater than YCEL the job
is terminated.

4. Finds bankfull stage relative to base of section, IWS, in 
cell depths/rows, and distance of inner bank of channel from 
left hand side of section, IBANK, in cell widths/columns.

See fig. 14.1.
5» Finds initial amplitude, AMP, and the limiting amplitude, 

AMPLIM, by calling subroutine NEWRAP* Checks that a ons- 
channel downvalley section is not located near the bend axis.
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That is, if the normal distance of the line of section from
the line joining the points of inflection of the loop,
ZSECT, is greater than the arbitrary value of AMP/3.0, the 
job is stopped, Finds initial distance of channel at the
bend axis from the limiting amplitude position, SS. If
SS-^-O.O, the indicator, LIM, is set to 1.

6. Alphameric characters are read into array SEDIN(l), and the 
arrays SEDGS(l,j) and SEDSTR(l,j), which hold the grain size 
and sedimentary structure cross sections respectively, are
filled with alphameric characters, SEDGS is filled from
the bottom of the section up to row IWS with the characters 
read into SEDIN(l), one character of this array specifying 
the character for one complete row, I, of SEDGS. The
remaining rows are filled with blanks. Similarly, SEDSTR
is filled with the old sediment character, OLDSED, and the 
array holding the time line cross section, TLPLOT(l,j), is 
filled with blanks.

7* Initialisation of synthetic hydrology parameters. Initial
ises parameters involving skewness, SKEW, the autoregressive 
model parameters, ZTM1, ZTM2 , and COEFF (calling subroutine 
RANSAM), and stores the daily mean flow values and daily 
standard deviations of flow in FMSUM(NDAY) and FSSUM(NDAY), 
respectively, after evaluating them with the harmonic 
representation of equations (11.2) and (ll,3).

8. Finds full width of flow between inner and outer banks, WW,
Finds values of WW and the width of flow between inner bank
and talweg, W, measured in cells, NZCEL and NZCEL1, NZCEL1
is also expressed in real mode, FLT2. Finds limiting width 
of meander neck measured from channel centre lines, GAPLIM. 
GAPLIM is initially read in as the limiting meander neck

129.

measured between immediately adjacent banks Finds value of
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H measured in cells, NH. Finds parameters used in sub
routine MEANDR for use in calculating Froude numbers and
for scaling the plot of the meander plan. Finds parameters
used in subroutine BAR, Note VARl and EXNMl are only
required if the sigmoidal cross profile is used. The number
of the time increment, NFLD, is set to 0, the time keeping
devices, IPRINT and ITPLOT, are initialised, and the ratio 
YCEL/ZCEL is calculated.

9. Write scales and titles on graph containing traces of channel
centre line. Calls subroutines CHAR and PLOT, for this
operation.

10. Prints out cross section, channel, synthetic hydrology, bank
migration, scour and fill, and cut-off control parameters.
Prints out whether cross sections are lateral or downvalley 
sections, and the value of ZSECT for downvalley sections,
Prints legend.

11, Calls subroutine MEANDR to calculate and plot initial 
planimetric form of the meander, and calculate other paramete
for use in subroutine BAR.

12, Initial operations are performed concerning the projected 5
/■

channel widths in cross sections, including redefinition of
NZCEL & NZCEL1, If a two-channel downvalley section is 
being used (i.e. if 1FC0D6 = 2) the straight line distance 
between points of inflection of loop, NDAVA, is calculated.
Then jumps to step 19 to Initialise and print channel section
using subroutine BAR.

All the above operations (1--12) are performed only once, 
Noxv begins the major loop of the program which is entered once 
every time increment. Steps 13 to 18 are omitted during 
initialisation (i.e. NFLD-O),
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13» Reinitialises time keeping devices. If IPRINT and/or s J

ITPLOT equal 0, printed output and/or a time line will be 
produced this time increment, NF'LD, <

14. Finds flood period volume, QVOL, by summing all daily flows,
XT, in the year (generated using equation (ll.5)) which are 
above the value of the mean daily flow, DM, Calls sub- >
routine RANSAM for this operation. 4

15. Tests to see if the meander has a neck or chute cut-off during
this year. Calls subroutine RNDM for these tests. If cut
off occurs (iCUT put to 2 or 3) various parameters are /

'3:
printed, the meander trace is plotted (MEANDR is called),
and the job is terminated. 4

16. Finds amount of bank migration in downvalley direction, RDMIG,/ 
and normal to this direction, RLMIG. Finds respective total
amounts of migration, TDMIG and TLMIG. RLMIG and TLMIG are
not calculated if the limiting sinuosity has been reached 
(LIM-l). Prints various parameters if IPRINT-O,

17• Aggrades the flood plain if required. As amount of aggrad-
• ation, AGG, fills the cells corresponding to a particular row,*|

•4jkthe row elements are allocated an alphameric character,
FLOOD, for every column in the sedimentary structure and grain 
size cross sections. As the cells become filled, bankfull 
stage, IWS, is adjusted accordingly by adding 1. Thus 
although aggradation continues at a constant rate, the program 
represents it as a discontinuous process within the cross 
sections, However, a record is kept of AGG which is printed /
out if IPRINT=0. 1

<r*:
18, Finds amount of bank migration in cross section represented, K 

RMIG. I

The following operations, as far as step 32, are involved ?■ 

with recording on SEDGS (INDEX, NCOL) and SEDSTR (INDEX, NCOL) the 

resulting erosion and deposition after this year's 'floods’, and
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putting a time line on TLPLOT (INDEX, NCOL) if ITPLOT=O.
19. Adjusts channel width (in cells), NZCEL & NZCELl, represented 

in the cross section, and related parameters, depending on
type of cross section and changes in shape of the meander.
The error due to smoothing in the amount of bank migration
for the preceding time increment, DEV, is added to RMIG.
DEV is then recalculated for the next time increment. The 
amount of concomitant point bar migration (in cells)., NRMIG, 
is then defined depending on changes in channel width in the
cross section represented.

20. Finds total number of cell widths/columns required for the 

channel section, NZCELT, and test to see if the right hand
edge of the cross sections have been exceeded, If so, the
job is terminated.

Scour and fill operations-if NFLD-0 or the scour and fill 
process is not required (lFC0D5"0) , steps 21 to 2k are skipped.
21. Maximum depth of scour below unscoured depth measured above 

old talweg (i.e. position of talweg at end of last time 
increment), DSCR, is calculated using equation (9«k). Sub
routine RANSAM is called during this operation. A test is 
made to ensure DSCR>0.0. If IPRINT-O, DSCR is printed out.

22. Maximum depth of water measured above the old talweg, IIH, is
calculated. If this exceeds the bottom of the specified 
section the job is terminated.

23. Every column of the inside bank of the channel section 
(lBANK-j-1 to IBANK+NZCELl) is now filled to the original depth 
by successive recalculation of the transverse profile, the 
depth at the old talweg being progressively decreased by one 
cell depth/row until filling is complete. Subroutine BAR or1 

BARI is called during these operations in order to fill the
appropriate elements of SEDGS and SEDSTR with alphameric

characters
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24. The area bounded by the position of the old talweg, the /g
maximum scour depth below the old talweg’, and the position 
of the new talweg (i.e. the base of the outer channel bank at p 
the end of this time increment) is now filled by allocating ,2 
for each row in this area the grain size and bed form symbols ij 
calculated for the row elements of the old talweg column,

IBANK-i-NZCELl, in step 23. •
Fig. 14,2 illustrates the sequence of events in the scour- y 

ing and filling operation described above. Steps 25 to 32* 
constitute a major loop and are concerned with erosion of the outer? 
bank and deposition on the point bar. As a result of the erosion
of the outer bank and changes in the projected channel width in 
the cross sections, the whole transverse profile is shifted |

accordingly, and the left hand side of the new point bar profile
is started at column IBANK+NRMIG+1 of the cross section.
25* Parameters are initialised and if IPRINT-0 headings are

written for the printed output from subroutine BAR. 4
For every column, NCOL, of the new point bar (up to IBANK 

NZCELl+NRMIG) steps 26 to 31 are executed.
26. The depth of water, sediment size and bed form are calculated y

by calling subroutine BAR or BARI and the appropriate 
elements of SEDGS (INDEX, NCOL) and SEDSTR (INDEX, NCOL) A
that describe the profile of the new point bar are filled with, 
alphameric characters. S

27. If the grain size at a particular station is silt or clay 5
this is recorded.

28. The alphameric character fox' the time line is allocated to
the appropriate element in TLPLOT (INDEX, NCOL) if ITPLOT-O. J

The area between the old and new point bar is 'filled' by
filling each row, INDEX, with the alphameric character as y-

ri'

just allocated, in step 26, to the corresponding row of the i 

new point bar profile. See fig. 14.2.

29.





13
30.

done

31.

32.

33.

3;4.

35.

If the section scaling is such that not all of the rows in 
the point bar section had a character allocated in 26, the 
row(s) with ’missing1 symbols is (are) filled with the same 
symbols as are on the next ’full’ row beneath.

Steps 29 and 30 are omitted if there is no filling to be

Each column is finally filled with water. •
For every column of the outer bank (IBANK+NZCELl+NRMIG+1

up to IBANK+NXCELT) the following step is executed.
The depth is calculated using a similar equation to that of
the sigmoidal profile of the point bar. The indices of the 
cells, (INDEX, NCOL), corresponding to the position of the 
bank are calculated and, if ITPL0T=0, alphameric character^
for the time line are allocated to the appropriate elements 
in TLPLOT (INDEX, NCOL)• The amount of exposed silt, clay, 
overbank deposit, and gravel are recorded by scanning each
row in the outer bank. Each column is finally filled with
water. M

The weighted percentage of silt and clay (including overbank 
deposits) in the perimeter of the projected channel, SCHUMM, is 
calculated. This is not the same index as that used by |
Schumm (i960) which is calculated in a different way and uses 
0.07^ cm. as the lower limit of sand sizes.
Percentage of silt and clay in inner bank, BGSI, and the outers

5
bank (including overbank deposits with the silt and clay),
OBGSI, and the percentage of gravel, GRAVI, in the outer bank -5 
are calculated. If OBGSI-O it is set to 1.0 for the purposes;! 
of equations (6,3) and (6,/4). If GRAVI is greater than the

1J
limiting value, GRAVLM, the job is terminated, .£•

• £
If a two-channel downvalley section is being used, the channel

section data just computed and stored in SEDGS, SEDSTR and
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36.

37*

38.

39.

the

TLPLOT, are used to fill these arrays with the same informat-
■ ision, NDAVA columns further on, NDAVA is the distance

between the two channels measured in columns/cell widths &
* • $

along the valley axis, 2
If IPRINT=O the cross sections showing grain size and
sedimentary structure (bed form) distribution are printed out/f

3

IBANK is incremented by NRMIG and a test is made to see if 
XMAX has been exceeded, before trying to plot the planimetrie § 
geometry with the graph plotter. . /
The new amplitude, AMP, and the distance of the channel at the
bend axis from limiting amplitude, SS, are now calculated if
the limiting sinuosity/amplitude has not already been reached,;-

’.‘A

i.e. LIM--O, If LIM-0 subroutine MEANDR is called and a test
is made to see if the two limbs of the meander have closed on 4

- ¥each other. If the limiting sinuosity is just reached after
the recalculation of AMP and SS, LIM is set to 1, AMP is set 
to AMPLIM, RLMIG and SS are set to 0,0, and MEANDR is called, J 

Also a message is written saying that the limiting sinuosity/ ** 
amplitude has been reached, and if a lateral section is
represented the program is stopped. If LIM is already equal 5

5$to 1, AMP and SS are left unaltered and MEAND1 is called, 
unless the downvalley migration is zero in which case neither 4 
MEANDR or MEAND1 are called. ;
NFLD is incremented by 1 and, if less than or equal to the
number of required time increments, NTIM, control is trans- £
ferred back to step 13. %

The job is stopped either with an error message or due to *
execution of the required number of time increments.

A simplified flow diagram of the main program is shown in
fig, l^-.3. This diagram relates to both main programs



Fig. 14.3. Flow diagram for main programs
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C
C CONTROL STATEMENTS
C

REAL NEWRAP
DIMENSION FMT4I5),A(6) ,8(6),SA(6),SB(6),FMSUM(365), FSSUM( 365) 
INTEGER*2 SEDGS,SEDSTR,TLPLOT(60,200 ),GRAVEL,SAND,SILT,CLAY,UPPB,L

1PPB,ANTIDN,RIPPLE,DUNES,OLDSED,WATER,DOT,BLANK,SEDIN!60),FLOOD 
COMMON/COM1/IPRINT,RINB,FROUDi,FR0UD2,VAR2S,RC
C0MM0N/C0M2/INDEX,NCOL,W,EXN,IWS,Y,NYCEL,D,VARl,EXNMl,YCEL,SIGRO,Z 

1,GRAVEL,SAND,SILT,CLAY,UPPB,LPP8,ANT I ON,RIPPLE,DUNES,SEDSTR160,200 
2),SEDGS(60,200)
COMMON/COM3/NFLD,TITLE!15),WVL,AMP,VS,GAP,NFPLOT,CHS,WW, R,RO,VAR2,

IF28,F18,SS,TDMIG,SN
C0MM0N/C0M4/SKEW2,SKEW6,SKEW62
DATA RMIG,TLMIG,AGG,DEV,NDAVA,LIM,MARK,ICUT/4*0.0,2*0,2*1/

C
C FORMAT STATEMENTS
C

1 FORMAT!15A4,110,
2 FORMAT!Il,3F12.0,11)
3 F0RMATI4I4,
4 FDRMATl314,6F8.0,5A4)
5 FORMAT!80A1)
6 FORMAT(6F12.0)
7 FORMAT(8F8.0,I4)

21 FORMAT!1H1,IX,15A4//1X,'CROSS SECTION PARAMETERS'»49X»'METRES'♦5X» 
l'CELLS'//6X,'WIDTH OF SECT I ON•,48X,F10.3,110/6X,•THICKNESS OF SECT 
2I0N • ,44X,F10.3,110/6X,'INITIAL DISTANCE OF INNER CHANNEL BANK FROM
3 L.H.S. OF SECTION',3X,F10.3,I10/6X,•INITIAL BANKFULL STAGE MEASUR 
4ED FROM SECTION BASE•,15X,F10.3,I10/6X,•CELL SIZE IN VERTICAL(Y) D 
5IRECTI0N’,30X,F10.3/6X,'CELL SIZE IN HORIZONTAL!/ OR X) DIRECTION' 
6,23X,F10.3///)

23 FORMAT!IX,'CHANNEL PARAMETERS',55X,’METRES•,5X,•CELLS'//6X,’TOTAL 
1WIDTH OF CHANNEL(W,',39X,F10.3,I10/6X,'WIDTH OF FLOW BETWEEN INNER 
2 BANK AND TALWEG(W1)»,17X,F10.3,110/6X,•RAT IO OF W1 TO W',68X,F10. 
33/6X,’MAXIMUM FLOW DEPTH MEASURED ABOVE TALWEG',24X,F10.3/6X,'DENS 
4ITY OF SEDIMENTARY PART ICLES',52X,F10.3,' GM/CM3’/6X,’FLUID DENSIT 
5Y',71X»F10.3» • GM/CM3’/6X,•DARCY-WEIS BACH FRICTION COEFFICIENT FOR 
6 DUNES AND RIPPLES',27X,F10.3/6X,'DARCY-WEISBACH FRICTION COEFFICI 
7ENT FOR PLANE BEDS AND ANT I DUNES20X,F10.3/6X,'EXPONENT N1',73X,F 
810.3///)

24 FORMAT!IX,'SYNTHETIC HYDROLOGY PARAMETERSIUNITS NOT NECESSARY)•//6 
IX,’MEAN OF ALL DAILY MEAN VALUES’,25X,F10.3/6X,•STANDARD DEVIATION 
2 OF DAILY MEAN VALUES',15X,F10.3/6X,'MEAN OF YT SERIES',37X,F10.3/ 
36X,’STANDARD DEVIATION OF YT SERIES',23X,F10.3/6X,•COEFFICIENTS IN
4 AUTOREGRESSIVE MODEL•,15X,•Al=•,F10.3,7X,•A2=’,F10.3/60X,’HARMONI 
5CS FROM 1 TO 6•/6X,•FOURIER COEFFICIENTS FOR DAILY MEANS!A)•,15X,6 
6F10.3/42X,•!B)•,15X,6F10.3/6X,'FOURIER COEFFICIENTS FOR DAILY STD 
7DEVIATI0NS(SA)• ,5X,6F10.3/51X,•(SB)•,5X,6F10.3/6X,•MAXIMUM VALUE 0 
8F QVOL *,33X,F10.3///)

25 FORMAT!IX,'BANK MIGRATION PARAMETERS•,/6XEXPONENT N2•,53X,F10.3/ 
16X,'VALUE OF CONSTANT IN LATERAL MIGRATION RELATION’,14X,•K2=•,E10 
2.3/6X,'VALUE OF CONSTANT IN DOWNVALLEY MIGRATION RELATION',11X,'K3 
3=',E10.3/6X,'LIMITING PERCENTAGE DF GRAVEL ALLOWABLE IN OUTER BANK 
4',1IX,F10.3///)

26 FORMAT!IX,'SCOUR AND FILL PARAMETERS•/6X,»CONSTANT K4',43X,E10.3/6 
IX,'EXPONENT N3’,39X,F10.3/6X,’STANDARD DEVIATION OF ERROR TERM’,18 
2X,F10.3///)

27 FORMATtIX,’LEGEND•//6X,'LOWER PHASE PLANE BED',5X»Al,7X,'GRAVEL',5 
1X,A1,8X,’OLD SEDIMENT',5X,A1/6X,’RIPPLES',19X,A1,7X»•SAND'» 7X,Al,8 
2X»'WATER',12X.A1/6X,’DUNES»,21X,A1,7X,'SILT',7X,A1,8X,’TIME LINE’, 
38X,5A1/6X,’UPPER PHASE PLANE BED•,5X,Al,7X,•CLAY',7X,A1,8X,•AIR',1 
44X,'BLANK'/6X,'ANTIDUNES',17X,Al,7X,'OVERBANK’,3X,A1/40X,’DEPOSITS 
5'//)

28 F0RMATI1X,’CUT-OFF CONTROL PARAMETERS'/6X,•LIMITING WIDTH OF MEAND 
1ER NECK’,24X,Fl0.3,' METRES'/6X,'EXPONENTS IN NECK CUT-OFF RELATIO 
2N ',16X,'EN1=',F10.3,6X,'EN2=',F10.3/6X,’LIMITING SINUOSITY',36X.F1 
30.3/6X,'LIMITING AMPLITUDE•,36X,F10.3,’ METRES’/6X,'EXPONENTS IN C 
4HUTE CUT OFF RE L AT I ON' , 15X , ' EC 13' , F10.3 » 6X , ' EC 2=' » F10.3///,

29 FORMAT!IH1,IX,15A4,'TIME INCREMENT',15//IX,•FLOOD PERIOD VOLUME FO 
IR THIS YEAR’,26X.F10.3//1X,’OUTER BANK GRAINSIZE INDEX AT BEGINNIN 
2G OF YEAR',12X,F10.3//1X,•INNER BANK GRAINSIZE INDEX AT BEGINNING 
30F YEAR',12X,F10.3//1X,'? SILT-CLAY IN CHANNEL PERIMETER AT BEGINN 
4ING OF YEAR',6X,F1O.?//1X,'DISTANCE FROM LIMITING AMPLITUDE AT BEG 
5INNING OF YEAR',6X,F10.3,’ METRES'//IX,'LATERAL MIGRATION DURING T 
6HIS YEAR',25X,F10.3,' METRES *//IX,'TOTAL LATERAL MIGRATION AT END 
70F THIS YEAR',16X,F10.3,' METRES'//IX,'DOWNVALLEY MIGRATION DURING 
8 THIS YEAR',22X,F10.3,• METRES•//IX,'TOTAL DOWNVALLEY MIGRATION AT

Table l'i »1 Listing of main program (no disc) and 
subroutines„
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0040
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0060
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9 END OF THIS YEAR*,13X,F10.3,• METRES*//)
30 FORMAT!IX,'TOTAL AGGRADATION AT END OF THIS YEAR*,22X,F10.3,• METR 

1ES*//)
31 FORMAT!///IX,*A DOWNVALLEY SECTION IS REPRESENTED IN THIS TEST*/1X

1, *OISTANCE OF LINE OF SECTION FROM POINT OF INFLECTION OF LOOP IS*
2, F10.3,* METRES*//)

33 FORMAT!///IX,*A LATERAL SECTION IS REPRESENTED IN THIS TEST*//)
35 F0RMATI1H1,1X,15A4,• TIME INCREMENT*,I5//1X,'CROSS SECTION SHOWING 

1 DISTRIBUTION OF GRAIN SIZE ACROSS MEANOERING RIVER FLOOD PLAIN*// 
2/!

36 FORMAT!1H1,IX,15A4,* TIME INCREMENT*,I5//1X,'CROSS SECTION SHOWING 
1 DISTRIBUTION OF SEDIMENTARY STRUCTURE ACROSS MEANDERING RIVER FLO 
20D PLAIN*///)

39 FORMAT!IX, ’THE SPECIFIED SECTION WIDTH HAS BEEN EXCEEDED-THE WIDTH 
1 MUST BE INCREASED IF MIGRATION IS TO PROCEED*!

41 FORMAT!IX,'DEPTH OF SCOUR AT TALWEG FOR THIS YEAR*,21X,F10.3,* MET 
IRES*//)

42 FORMAT!1H0,IX,15A4,* TIME INCREMENT*,I5//1X,’VARIATION OF GRAINSIZ 
IE AND BED FORM OVER CHANNEL CROSS PROFILE*//7X,* DEPTH*,3X,•GRAINSI 
2ZE*,8X,*BED FORM•,6X,*LOCAL MEAN *,4X,*LOCAL*,10X,•LOCAL STREAM*,2X
3, 'LOCAL BED*,5X,'LOCAL FROUDE•/7X,•IM)*,5X,•!CM)•,27X,* FLOW VELOCI 
4TY*,1X,'DIMENSIONLESS*,2X,*POWER*,9X,*SHEAR STRESS*,2X,* NUMBER */46 
5X,*(CM/SEC)*,6X,'SHEAR STRESS*,IX,•(ERGS/CM2/SEC)•,2X,*(DYN/CM2)•/ 
6)

43 FORMAT!IX,'UNFORTUNATELY THE PERCENTAGE OF GRAVEL IN THE OUTER BAN 
IK IS *,F10.3)

45 FORMAT!'SCALE-1 INCH T0*,F10.2,* METRES*,100X)
47 FORMAT!'MEANDER GEOMETRY*,100X)
49 FORMAT!////IX,'TIME INCREMENT *,I5,* LIMITING SINUOSITY/AMPLITUDE 

1HAS BEEN REACHED*)
972 FORMAT!///IX,• TIME INCREMENT •,I5,/1X,*LIMITING S INUOSITY/AMPLITU 

IDE REACHED IN A LATERAL SECTION - TEST TERMINATED*)
977 FORMAT!///IX,’INITIAL BANKFULL STAGE MEASURED FROM BASE OF SECTION 

1 EXCEEDS SPECIFIED SECTION THICKNESS - TEST TERMINATED*)
979 FORMAT!///IX,'ERROR IN SECOND DATA CARD - LAST THREE VARIABLES MUS 

IT BE NONZERO*)
981 FORMAT!IX, *THE LOWER BOUNDARY OF THE CROSS SECTION HAS BEEN EXCEED 

1ED -'/IX,'ADJUSTMENT IS REQUIRED IN EITHER INITIAL BANKFULL STAGE, 
2DEPTH AT TALWEG,OR SCOUR AND FILL PARAMETERS')

983 FORMAT!IX,'INITIAL SINUOSITY IS OUTSIDE THE SPECIFIED LIMITS - TES 
IT TERMINATED*)

985 FORMAT!IX,'THE SPECIFIED SECTION THICKNESS HAS BEEN EXCEEDED - RES 
1CALING IS REQUIRED IF AGGRADATION IS TO CONTINUE*)

987 FORMAT!IX,'THE SPECIFIED LENGTH OF THE X-AXIS ON THE GRAPH PLOTTER 
1 HAS BEEN EXCEEDED - RESCALING IS REQUIRED*)

989 FORMAT!///IX,’RATE OF AGGRADATION PER FLOOO INCREMENT IS GREATER T 
1HAN ONE VERTICAL CELL - RESCALING IS REQUIRED*!

991 FORMAT(///IX, • TIME INCREMENT *,I5,* - TEST TERMINATED DUE TO CHUT 
IE CUT OFF*)

993 FORMAT!///IX, ' TIME INCREMENT *,I5,* - TEST TERMINATED DUE TO NECK 
1 CUT OFF')

995 FORMAT!///IX,'DEFINITION OF LINE OF SECTION IS IN ERROR - TEST TER 
1MINATED*)

C
C READ INPUT PARAMETERS
C

READ!5,1)TITLE,1X
READ(5,3)NTIM,NPRINT,NFPLOT,NTPLOT
IFINPRINT.EQ.O.OR.NFPLOT.EQ.O.OR.NTPLOT.EQ.O)GO TO 978 
R EAD(5,4)NC OL S,NROWS,IFC0D6,ZT OT,YT OT,BANK,WS,DWS,ZSECT,FMT4 
IF(WS.GT.YTOT)GO TO 976
READ!5,6)SN,WVL,VS,XMAX
READ!5,6)Cl,C2,El,GRAVLM
READ(5,6)ECI,EC2,EN1,EN2,GAPLIM,SNLIM
IF(SN.GT.SNLIM)GO TO 982
READ!5,7)W,H,EXN,C5,FI,F2,SIGMA,RO,IFC0D7 
IF(H.GT.WS)G0 TO 980
READ(5,5)GRAVEL,SAND,SILT,CLAY,UPPB,LPPB,ANT IDN,RIPPLE,DUNES,OLDSE 

ID,WATER,DOT,BLANK,FLOOD
READ!5,2)IFC0D3,QV0LMX,SKEW
READ(5,6)DM ,DS,YM,YS,A1,A2,A,B,SA,SB
READ(5,2)IFC0D5,C6,E2,STDVN,IFC0D1

C
C CALL RNDMIN
C

CALL RNDMIN(IX)
C
C FIND CELL DIMENSIONS

0062



c
0063 ZCEL=ZTOT/FLOAT(NCOLS)
0064 YCEL=YTOT/FLOAT(NROWS)
0065 IF(DWS.GT.YCELIGO TO 988

C
C FIND BANKFULL STAGE RELATIVE TO BASE OF SECTION AND DISTANCE OF INNER 
C BANK OF CHANNEL FROM LEFT HAND SIDE OF SECTION (IN CELLS)
C

0066 IBANK=BANK/ZCEL
0067 IWS=WS/YCEL

C
C FIND INITIAL AMPLITUDE 
C

0068 AMP»WVL*NEWRAP(SN,0.0000001)
0069 IF(ZSECT.GT.(AMP/3.0))GO TO 994

C
C FIND LIMITING AMPLITUDE 
C ’

0070 AMPLIM=WVL*NEWRAP(SNLIM,0.0000001)
C
C FIND INITIAL DISTANCE FROM LIMITING AMPLITUDE 
C

0071 SS=(AMPLIM-AMP)/2.0
0072 IF(SS.LE.O.O)LIM=1

C
C INITIALISE CROSS SECTION ARRAYS 
C

0073 READ! 5,5) (SEDIN(I ) ,I=1,IWS)
0074 DD 146 J=1»NCOLS
0075 DO 146 I=1,NROWS
0076 IF{I•GT.IWS)GO TO 145
0077 SEDGS(I»J)=SEDIN(I)
0078 SEDSTR(I,J)=OLDSED
0079 GO TO 146
0080 145 SEDGS(I»J)=BLANK
0081 SEDSTR(I,J)=BLANK
0082 146 TLPLOT(I,J)=BLANK

C
C INITIALISE SYNTHETIC HYDROLOGY PARAMETERS 
C
C SKEWNESS PARAMETERS
C

0083 IFlSKEW.EQ.0.0)GO TO 162
0084 SKEW2=2.0/SKEW
0085 GO TO 163
0086 162 SKEW2=0.0
0087 163 SKEW6=SKEW/6.0
0088 SKEW62=SKEW6*SKEW6

C
C AUTOREGRESSIVE MODEL PARAMETERS 
C

0089 ZTM1=RANSAM(IFC0D3)
0090 ZTM2=RANSAM{IFC0D3)
0091 COEFF=SQRT((1.0+A2)/<1.0~A2)*(<1.0-A2)**2-Al**2))

C
C CALCULATE MEAN AND STANDARD DEVIATION OF FLOW FOR EACH DAY OF THE YEAR 
C AND STORE IN ARRAYS 
C

0092 DO 150 NDAY=1»365
0093 FSSUM(NDAY)=0.0
0094 FMSUM(NDAY)=0.0
0095 VAR-O.017211*FLQAT(NDAY)
0096 DO 149 K=l,6
0097 ARG=FLOAT(K)*VAR
0098 FMSUM(NDAY)=FMSUM(NDAY)+A(K)«COS(ARG)*B(K)*SIN(ARG)
0099 149 FSSUM{NDAY)=FSSUM(NDAY)+SA(K)*COS(ARG)+SB(K>*SIN(ARG)
0100 150 CONTINUE

C
C FIND FULL WIDTH OF FLOW BETWEEN INNER AND OUTER BANKS 
C

0101 WW=W/C5
C
C FIND VALUES OF W AND WW IN CELLS 
C

0102 NZCEL=WW/ZCEL
0103 NZC E L1 = W/ZCE L
0104 FLT2=FL0AT<NZCELl)

C



C
r

FIND LIMITING WIDTH OF MEANDER NECK MEASURED FROM CHANNEL CENTRE LINES

0105
b

r
GAPLIM=GAPLIM+WW

b
c
c

FIND VALUE OF H IN CELLS

0106
b

r
NH=H/YCEL

b
c
r

PARAMETERS USED TO CALCULATE FROUDE NOS. IN MEANDR

0107
b

F18=8.0/Fl
0108

r
F28=8.0/F2

b
c
c

PARAMETERS USED IN BAR

0109
b

SIGR0=SIGMA-R0
0110 EXNM1=EXN-1.O
0111 VAR1=3.14*EXN/(200.0*W**EXN)
0112

r
VAR2=16.5*R0/SIGR0

b
c
r

PARAMETERS FOR SCALING PLOT OF MEANDER GEOMETRY IN MEANDR

0113
b

SCALE=AMPLIM/9.0
0114 SCALE2=SCALE/2.0
0115 XL=XMAX/AMPLIM*9.0
0116

r
TDMIG=0.0

b
c
r

INITIALISE TIME KEEPING DEVICES AND NFLD

0117
b

NFLD=0
0118 IPRINT=MOD(NFLD,NPRINT)
0119 ITPLOT=MOD(NFLDtNTPLOT)

b
c
r

RATIO OF YCEL/ZCEL

0120
b

r
YCOZC=YCEL/ZCEL

b
c
c

WRITE SCALES AND TITLES ON GRAPH

0121
b

CALL PLOT!1»0.0»XMAX»XL»XMAX>0.0,AMPLIM,9.0,AMPLIMJ
0122 CALL PL0T(99)
0123 CALL PLOT(90»SCALE2»~SCALE2)
0124 WRITE(3>45)SCALE
0125 CALL CHAR(O.2rO)
0126 CALL PLQT(99)
0127 CALLPLOT(90>SCALE2>AMPLIM)
0128 WRITE(3>47)
0129 CALL CHAR(0.2>0)
0130

f*
CALL PL0T(99)

b
c PRINT OUT CROSS SECTION PARAMETERS

0131
b

P
WRITE(6,21)TITLE»ZTOT >NCOLS>YTOT>NROWS>BANK,IBANK,WS, IMS,YCEL,ZCEL

b
c
p

PRINT OUT CHANNEL PARAMETERS

0132
b

p
WRITE(6,23)WW,NZCEL»W>NZCELl,C5,H,SIGMA,RO,F1,F2,EXN

b
c
p

PRINT OUT SYNTHETIC HYDROLOGY PARAMETERS

0133
b

p
WRITE(6,24)DM,DS>YM,YS,A1,A2»A,B,SA,SB,QVOLMX

b
cp

PRINT OUT BANK MIGRATION PARAMETERS

0134
b

p
WRITE(6,25)EltCl,C2,GRAVLM

b
c
p

PRINT OUT SCOUR AND FILL PARAMETERS

0135
b

p
WRITE(6,26)C6,E2tSTDVN

b
c PRINT OUT CUT OFF CONTROL PARAMETERS

0136
b

p
WRITE(6,28)GAPLIM,EN1,EN2,SNLIM,AMPLIM,ECI,EC2

b
c
p

PRINT OUT TYPE OF SECTION

0137
b

IFCIFC0D6.GT.0)GO TO 167
0138 WRITE(6,33)



0139
0140

0141

0142

0143
0144
0145
0146
0147
0148
0149
0150
0151
0152

0153
0154
0155
0156
0157
0158
0159

0160
0161
0162
0163
0164
0165

0166
0167

0168
0169
0170
0171
0172
0173
0174

0175
0176
0177
0178
0179
0180
0181

0182

0183
0184
01R5
0186

GO TO 168
167 WRITE(6,31)ZSECT 

C
C PRINT LEGEND
C

168 WRITE(6,27)LPPB,GRAVEL♦OLDSED,RIPPLE,SAND,WATER,DUNES.SILT,DOT,DOT 
1»DOT,DOT,DOT »UPPB,CLAY»ANT IDN,FLOOD

C
C FIND AND PLOT INITIAL PLANIMETRIC FORM OF MEANDER
C

CALL MEANDR 
C
C INITIAL OPERATIONS CONCERNING CROSS SECTION DEFINITION - THEN BRANCH 
C TO INITIALISE AND PRINT CHANNEL SECTION 
C

IF(IFC0D6-1)170,172,174
170 NZCELO=NZCEL 

ZCEL1=ZCEL
IF(LIM.EQ.1>GO TO 971 
GO TO 218

172 IF(LIM.NE•1)GO TO 175
PARI=3.14159*(AMP-2.O*ZSECT)/(SN*WVL)
PHI=(O.0505+SN+PAR1+0.06921/0.6371
PAR2=((-0.0292*SN+0.21321*SN-0•46511*SN-PAR1+0.2668

130 FA = ((PH I*0.2804+(0.2244—0.1713*SN))*PHI + ((0.1139*SN-0.5521*SN+O.88 
195))*PHI+PAR2

FB = {PHI*0.8412+(0.4488-0.3426*SN))*PHI+(0.1139*SN-0.552)*SN+O.8895 
PHIN=PHI-FA/FB
IF(ABS(PHIN-PHI)-0.0001)140,140,135

135 PHI=PHIN 
GO TO 130

140 SINPHI=SIN(PH IN)
GO TO 176

C
C STRAIGHT LINE DISTANCE BETWEEN POINTS OF INFLECTION OF LOOP
C

174 NDAVA=WVL/(2.0*ZCEL)
175 SINPHI=SIN(2.2*SQRT((SN-1.0)/SN))
176 ZCEL1=SINPHI*ZCEL 

NZCEL=WW/ZCEL1 
NZCEL1-W/ZCEL1
GO TO 216 

C
C BEGIN MAJOR LOOP,ONCE THROUGH EVERY YEAR
C
C INITIALISE TIME KEEPING DEVICES
C

169 I PR INT = MODI NFLD,NPRINT)
ITPLOT=MOD(NFLD,NTPLOT1

C
C FIND FLOOD PERIOD VOLUME
C

QV0L=0.0
DO 180 NDAY=1,365
ZT=A1*ZTM1+A2*ZTM2+COEFF*RANSAM(IFC0D3)
XT=DM+FMSUM(NDAY)+(DS+FSSUM(NDAY))*(YM+YS*ZT)
IF{XT.GT.DM)QVOL=QVOL+XT
ZTM2=ZTM1

180 ZTM1=ZT 
C
C TEST FOR CUT OFF
C

PC = (QVOL/QVOLMX)**EC1 *(SN/SNLIM)*»EC2 
PN=(QVOL/QVOLMX)**EN1*(GAPLIM/GAP)**EN2 
X=RNDM(-1)
IF (X. LE.PC ) ICUT=2 
X=RNDM(-1)
IF(X.LE•PN)ICUT=3
IF(ICUT.EQ.1)G0 TO 182

C
C CUT-OFF HAS OCCURRED - OUTPUT REQUIRED INFORMATION ANO TERMINATE PROG. 
C

WRITE(6,29)TITLE,NFLD,QVOL,OBGSI,BGSI,SCHUMM,SS,RLMIG,TLMIG,RDMIG, 
1TDMIG
WRITE(6,30)AGG 
IPRINT-0 
NFPLOT-NFLD 
CALL MEANDR



0187
r

60 TO 548
u
C
r

FIND AMOUNT OF LATERAL AND DOWNSTREAM BANK MIGRATION

0188
v>

182 I F ( LI M. EQ. 1) GO TO 185
0189 RLMIG=SS*Cl*QV0L/08GSI**El
0190 TLMIG=TLMIG+RLMIG
0191 185 RDMIG=C2*QVOL/OBGSI**E1
0192

r
TDMIG=TDMIG+RDMIG

c
r

PRINT OUT REQUIRED DATA FOR THIS TIME INCREMENT

0193
V

r

IFIIPRINT.EQ. 0)WRITE!6,29)TITLE,NFLD,QVOL,OBGSI,BGSI,SCHUMM,SS,RLM 
1IG,TLMIG,RDMIGtTDMIG

u
c
r

AGGRADE THE FLOODPLAIN IF REQUIRED

0194
r

AGG=AGG+DWS
U
C
r

WRITE TOTAL AMOUNT OF AGGRADATION SO FAR

0195
V

IF I IPRINT.EQ.O)WRITE(6,30)AGG
0196 NAGG=AGG/YCEL
0197

r
IFINAGG.LT.MARK)GO TO 210

V
c IF ROW OF CELLS IS FILLED,ADJUST BANKFULL STAGE AND FILL ROW WITH
c
c

ALPHAMERIC CHARACTERS

0198
V

IWS=IWS+1
0199 IF(IWS.GT.NROWS)GO TO 984
0200 MARK=MARK+1
0201 DD 200 J=1fNCOLS
0202 SEDGS!IWS,J)=FLOOD
0203

Q
200 SEDSTR!IWS,J)=FLOOD

C RECORD ON 2-D ARRAYS THE RESULTING EROSION AND DEPOSITION AFTER THIS
c
r

YEAR
V
C FIND AMOUNT OF BANK MIGRATION IN CROSS SECTION REPRESENTED.ADJUST
c CHANNEL WIDTHdN CELLS) REPRESENTED IN CROSS SECTIQNIAND RELATED
c PARAMETERS).DEPENDING ON TYPE OF CROSS SECTION AND CHANGES IN SHAPE
c
r

OF MEANDER

0204
V

210 IF!IFC0D6.GT.0JG0 TO 215
0205 RMIG=SQRTIRLMIG*RLMIG+RDMIG*RDMIG)
0206 AA=ATAN(RDMIG/RLMIG)
0207 TANA=RDMIG/RLMIG
0208 P=ATAN(!R+WW/2.O-SQRT !IR+WW/2.0)**2+2.0*R*WW*TANA*TANA))/(-2.0*R*T 

1ANA))
0209 ZCELi=ZCEL*COS!AA-P)/COS!P)
0210 GO TO 216
0211 215 RMIG=RDMIG
0212 SINPHI = SINI 2.2*SQRT!(SN-1.0)/SN))
0213 ZCEL1=ZCEL*SINPHI
0214 216 NZCELO=NZCEL
0215 NZCL1O=NZCEL1
0216 NZCEL=WW/ZCEL1
0217 NZCEL1=W/ZCELI
0218 FLT2=FL0AT(NZCEL1)
0219 YZOZC=YCEL/ZCEL1
0220 IF!NZCELl-NZCL10)218,218,217
0221 217 NZDIF=NZCEL1-NZCL1O
0222 GO TO 225
0223

r
218 NZDIF=O

V
c
r

ADD LAST YEAR’S SMOOTHING ERROR TO THIS YEAR’S BANK MIGRATION

0224
r

225 RMIG=RMIG+DEV
V
c FIND BANK MIGRATIONIIN CELLS) IN CROSS SECTION,AND CALCULATE ERROR
c
r

DUE TO SMOOTHING,DEV

0225
U

NRMIG=RMIG/ZCEL
0226

p
DEV=RMIG-ZCEL*FLOAT!NRMIG)

c DEFINE AMOUNT OF CONCOMITANT POINT BAR MIGRATION!IN CELLS),DEPENDING
c ON CHANGES IN CHANNEL WIDTH IN CROSS SECTION REPRESENTED
c



0227 IFCIFC0D6.EQ.0)G0 TO 227
0228 NRMIG=NRMIG+NZCELO-NZCEL
0229 IF(NRMIG.LT.O)NRMIG=O
0230 227 FNRMIG=FLOAT(NRMIG)

C
C FIND TOTAL NUMBERS OF CELLS REQUIRED FOR CHANNEL SECTION AND CHECK 
C THAT DOES NOT EXCEED SPECIFIED LIMITS 
C

0231 NZCELT=NZCEL+NRMIG
0232 IF ((IBANK+NZCELT+NDAVA) • GT. NCOLS) GO^ TO 585

C
C IF NO SCOUR AND FILL GO TO 400 
C

0233 IF(NFLD.EQ.O)GO TO 400
0234 IF! IFC0D5.NE.DG0 TO 400

C
C FIND MAXIMUM DEPTH OF SCOUR MEASURED ABOVE TALWEG 
C

0235 DSCR=C6*QV0L**E2+RANSAM(IFC0D1)*STDVN
0236 IFtDSCR.LT.0.0)DSCR=0.0
0237 IF(IPRINT.EQ.0)WRITE(6,41)DSCR
0238 HH=H+DSCR

C
C IF MAX. CHANNEL DEPTH NOW EXCEEDS LOWER BOUNDARY OF SECTION - JOB ENDS 
C

0239 IF(HH.GT.(FLOAT(IWS)*YCEL))GO TO 980
C
C FOR EVERY COLUMN OF POINT BAR GRADUALLY FILL TO ORIGINAL DEPTH 
C

0240 370 Z-ZCELl
0241 DO 390 J=l,NZCELl
0242 NCOL=J+IBANK
0243 IFIIFC0D7.EQ.0)GO TO 372
0244 CALL BAR1I0.HH)
0245 GO TO 373
0246 372 CALL BAR(O,HH)
0247 373 Z=Z+ZCEL1
0248 390 CONTINUE
0249 HH=HH-YCEL
0250 IF(HH.GE.H)GO TO 370

C
C FILL SCOURED TALWEG 
C

0251 IF(NRMIG.LT.1)G0 TO 400
0252 DO 380 J»l,NRMIG
0253 NCOL=IBANK+NZCEL1+J
0254 Y=-DSCR/2.0*(C0S(3.14*(FLOAT! NRMIG-Jl/FNRMIG))-1.0)
0255 NYCEL3!H+Y)ZYCEL
0256 INDEX=IWS-NYCEL
0257 381 SEDGS!INDE X,NCOL)=SEDGS(INDEX ,IBANK+NZCEL1)
0258 SEDSTR(INDEX,NCOL)=SEDSTR(INDEX,IBANK+NZCEL1)
0259 Y=Y-YCEL
0260 INDEX*INDEX+1
0261 IF(Y.GE.0.0)GO TO 381
0262 380 CONTINUE

Q
C FOR EVERY COLUMN IN CHANNEL SECTION,FIND GRAINSIZE AND BEDFORM ACROSS
C INNER BANK AND ERODE OUTER BANK
pw
C INITIALISE PARAMETERS AND WRITE HEADINGS 
r

0263 400 Z-ZCEL1
0264 0BGS=0.0
0265 BGS=0.0
0266 GRAV=0.0
0267 NRMIG1=NRMIG+NZDIF+1
0268 INDEXK=IWS
0269 KOUNT=O
0270 INDEXO=IWS-NH+1
0271 IF(IPRINT.EQ.0)WRITE(6,42)TITLE,NFLD

c
C BEGIN MAJOR LOOP ENTERED ONCE FOR EVERY COLUMN OF CHANNEL SECTION

0272
Q

DO 450 J=l,NZCEL
0273 NCOL=IBANK+J+NRMIG
0274 IF(J.LE.NZCELI)GO TO 410

C
C ERODE OUTER BANK



0275
0276
0277
0278
0279
0280

0281
0282
0283
0284
0285
0286

0287
0288
0289
0290
0291
0292
0293

0294
0295
0296
0297
0298
0299

0300
0301
0302

0303
0304
0305
0306
0307
0308
0309

0310
0311
0312
0313
0314

0315
0316
0317
0318
0319
0320

0321
0322

0323
0324
0325
0326
0327

Y=~H/2.0*{COS(3.14*(WW-Z)/(WW-W))-l.O)
NYCEL=Y/YCEL 
INDEX=IWS-NYCEL
IF <ITPLOT.EQ.O)TLPLOT(INDEX,NCOL-1)=DOT 
INDEXK=INDEX

405 IF(SEDGS!INDEX,NCOL).EQ.CLAY.OR.SEDGS(INDEX,NCOL).EQ.SILT.OR.SEDGS 
1( INDEX,NCOL)•EQ.FLOOD)OBGS=OBGS+1•0
IF(SEDGS(INDEX,NCOL).EQ.GRAVEL)GRAV=GRAV+1.0
KOUNT=KOUNT+1
INDEX=INDEX-1
IF!INDEX.GT.INDEXOIGQ TO 405
INDEXO=INDEXK
GO TU 440

C
C DEPOSIT SEDIMENT ON INNER BANK
C

410 IF(IFC0D7. EQ. 0 ) GO TO 411 
CALL BAR1!1»H)
GO TO 412

411 CALL BAR!1,H)
412 IF(D.LE.0.00625)BGS=BGS+1.0

IF(ITPLOT.EQ.O.AND.J.NE.NZCELI)TLPLOT(INDEX,NCOL)=DOT 
IFINFLD.EQ.0)GO TO 440

C
C ‘FILL* POINT BAR
C

IFINRMIGl.LT.DGO TO 440 
DO 415 JJJ=1,NRMIG1 
JJ=NCOL-JJJ 
IF!JJ.LT.1)GO TO 415
IFINZCELl.LT. NZCL10. AND.IFC0D5.EQ.1)G0 TO 413
IF CSEDSTR!INDEX,JJ).NE.WATER.AND.SEDSTR(INDEX.JJ).NE.FLOOD.AND.SED  

1STRIINDEX,JJ)•NE.OLDSED)GO TO 415
413 SEDGS!INDEX*JJ)=SEDGS<INDEX,JJ+1)

SEDSTR!INDEX»JJ)=SEDSTR(INDEX,JJ + 1)
415 CONTINUE 

C
C FILL IN ’EMPTY* ROWS
C

420 IF!(INDEXK-INDEX).LT.2)GO TO 424 
INDEXK=INDEXK-1
DO 422 JJ=1,NRMIG1 
NCOLK=NCOL-JJ 
I F(NCOLK.LT.1)GO TO 422
IF(NZCELI.LT.NZCL10.AND.IFC0D5.EQ.1)GO TO 421
IFt SEDSTR(INDEXK,NCOLK).NE.WATER.AND.SEDSTR(INDEXK,NCOLK).NE.OLDSE 

1D)GO TO 422
421 SEDGS!INDEXK,NCOLK)=SEDGS!INDEX,NCOLK)

SEDSTR!INDEXK»NCOLK)=SEDSTR(INDEX»NCOLK)
422 CONTINUE 

GO TO 420
424 INDEXK=INDEX 

C
C FILL NEW CHANNEL WITH WATER
C

440 INDEX=IWS-NYCEL+1
IF!NYCEL.EQ.0)GO TO 450 
DO 445 II=INDEX,IWS 
SEDSTR!11»NCOL)=WATER

445 SEDGS!11,NCOL)=WATER 
450 Z=Z+ZCEL1

C
C CALCULATE PERCENT SILT-CLAY IN PERIMETER OF CHANNEL
C

FLTK=FLOAT(KOUNT)
SCHUMM=100.0*!BGS+OBGS*YCOZC)/(FLT2+YC0ZC*FLTKI 

C
C CALCULATE GRAIN SIZE INDICES FOR INNER AND OUTER BANKS
C

BGSI=BGS/FLT2*100.0
OBGSI=OBGS/FLTK*100.0
IF(OBGSI.EQ.0.0)OBGSI=1.0
GRAVI=GRAV/FLTK*100.0
IF(GRAVI•GT.GRAVLM)GO TO 460

C
C FILL 2-D ARRAYS FOR THE SECOND CHANNEL IF A TWO CHANNEL DOWNVALLEY 
C SECTION IS BEING USED

C

IFINZCELl.LT


c
0328 IF(IFC0D6.NE.21 GO TO 548
0329 DO 545 J«l,NZCELT
0330 JJ-IBANK+J
0331 JJ J=»JJ+NDAVA
0332 DO 545 I»l,IWS
0333 TLPLOT(I,JJJ)“TLPLOT(I,JJ)
0334 SEDGS(I, JJJ)=SEDGS(I,JJ)
0335 545 SEDSTR(I,JJJ)“SEDSTR(I,JJ 1
0336 548 IF(IPRINT.NE.0)GO TO 570

c
C PRINT OUT CROSS SECTION SHOWING GRAIN SIZE DISTRIBUTION 
C

0337 WRITE(6,35)TITLE,NFLD
0338 DO 550 J=l,NCOLS
0339 550 WRITE(6,FMT4)(SEDGS(I,J),I“1,NROWS),(TLPLOT(I,J),1“1,NROWS)

C
C PRINT OUT CROSS SECTION SHOWING SEDIMENTARY STRUCTURE DISTRIBUTION 
C

0340 WR ITE (6,36 )TITLE ,NFLD
0341 DO 560 J«l,NCOLS
0342 560 WRITE(6,FMT4)(SEDSTR(I,J),1=1,NROWS),(TLPLOT(I, J ), 1=1,NROWS)
0343 GO TO (570,990,992),ICUT
0344 570 IBANK“IBANK*NRMIG

C
C FIND PLANIMETRIC FORM OF MEANDER AT END OF THIS YEAR 
C

0345 IF(NFLD.EQ.O)GO TO 575
0346 IF((TDMIG+WVL)•GT.XMAX)GO TO 986

C
C FIND CHANGES IN AMPLITUDE 
C

0347 IF(LIM.EQ.1)GO TO 572
0348 AMP=AMP+RLMIG*2.0
0349 SS“(AMPLIM-AMP)/2.0
0350 IF(SS.GT.O.0)GO TO 573
0351 LIM»1
0352 RLMIG=0.0
0353 AMP=AMPLIM
0354 SS=0.0
0355 CALL MEANDR
0356 IF(IFC0D6.LE•0,GO TO 971
0357 WR ITE (6 ,49, NF LD
0358 GO TO 575
0359 572 IF(RDMIG.LE.0.0)GO TO 575
0360 CALL MEAND1
0361 GO TO 575
0362 573 CALL MEANDR
0363 IF(GAP.LE-WW)GO TO 992
0364 575 NFLD-NFLD+1
0365 IF(NFLD.LE.NTIM)GO TO 169

C
C ERROR MESSAGES 
C

0366 GO TO 999
0367 460 WRITE(6 ,43,GRAVI
0368 GO TO 999
0369 585 WRITE(6,39)
0370 GO TO 999
0371 971 WRITE(6,972)NFLD
0372 GO TO 999
0373 976 WRITE(6,977)
0374 GO TO 1000
0375 978 WRITE(6,979)
0376 GO TO 1000
0377 980 WRITE(6,981)
0378 GO TO 1000
0379 982 WRITE(6,983)
0380 GO TO 1000
0381 984 WRITE(6,985)
0382 GO TO 999
0383 986 WRITE(6,987)
0384 GO TO 999
0385 988 WRITE(6,989)
0386 GO TO 1000
0387 990 WRITE(6,991JNFLD
0388 GO TO 999
0389 994 WRITE(6,995)
0390 GO TO 1000
0391 992 WRITE(6,993)NFLD
0392 999 CALL PL0T(7)
0393 1000 STOP
0394 END



c
0001

C-

r-
SUBROUTINE MEANDR

c
c
r

CONTROL STATEMENTS

0002
u

EXTERNAL FUNC2
0003 DIMENSION COSPHI(50).SINPHI(50)
0004 COMMON/COM1/IPRINT,RINB,FRQUD1,FROUD2,VAR2S,RC
0005

r

C0MM0N/C0M3/NFLD,TITLE(15),WVL,AMP,VS,GAP,NFPLOT,CHS,WW,R,RO,VAR2, 
1F28,F18,SS,TDMIG,SN

w
c
r

FORMAT STATEMENTS

0006
U

3 FORMAT!IX,'SELECTED GEOMETRIC RAT I OS'//6X,'WAVELENGTH TO RADIUS OF 
1 CURVATURE•,11X,F10.3/6X,'WAVELENGTH TO CHANNEL WIDTH',17X,F10.3/6 
2X,'RADIUS OF CURVATURE TO CHANNEL WIDTH•,8X,F10.3/6X,'AMPLITUDE TO 
3 CHANNEL WIDTH',18X,F10.3///)

0007 4 FORMAT(1H1,IX,15A4.' TIME INCREMENT•,15//IX,'PLANIMETRIC FORM OF M 
IEANDER',26X,•METRES'//6X,'WAVELENGTH'.34X.F10.3/6X,'AMPLITUDE'.35X 
2,F10.3/6X,'SINUOSITY',45X.F10.3/6X,'RADIUS OF CURVATURE AT BEND AX 
31S'.12X,F10.3/6X,'WIDTH OF MEANDER NECK*,23X,F10.3/6X,'CHANNEL LEN 
4GTH ALONG MEANDER',16X,F10.3/6X,'VALLEY SLOPE',42X,F10.8/6X,'LONGI 
5TUDINAL WATER SURFACE SLOPE•,22X,F10.8///)

0008
r

6 FORMAT!14,100X)
U
c
r

REGRESSION EQUATION RELATING SINUOSITY TO AMPLITUDE/WAVELENGTH

0009
V

IF(NFLD.EQ.0)G0 TO 5
0010 AOW=AMP/WVL
0011

r
SN=((-0.4301562*AOW+1.674662I4AQW+0.337086)*AOW+O.9634151

U
c
r

CALCULATE CHL.CHS.AND R

0012
U

5 CHL=WVL»SN
0013 CHS=VS/SN
0014

f
R=WVL*(SN**1.5)/(13.0*SQRT(SN-l.O))

c
r

CALCULATE MISCELLANEOUS PARAMETERS

0015 RINB=R-WW/2.0
0016 RC=RO*CHS
0017

r
VAR2S=VAR2*CHS

w
c
r

CALCULATE FROUDE NUMBERS

0018
u

FROUD1»SQRT(CHS*F18)
0019

r
FR0UD2-SQRT(CHS*F28)

V
c
c

CALCULATE SELECTED RATIOS

0020 WVLR-WVL/R
0021 WVLWW-WVL/WW
0022 RWW-R/WW
0023 AMPWW-AMP/WW

c
r

CALCULATE GAP

0024 OMEGA-2.2*SQRT((SN-1.0)/SN)
0025 IF(OMEGA.LE.1.57)G0 TO 8
0026 CALL SI MINT(0.0,OMEGA,1.57,0.005,SIMP2.FUNC2)
0027 GAP-WVL*!1.O-SN/3.14*SIMP2)
0028 GO TO 9
0029 8 GAP-99999999.0
0030

r
ENTRY MEAND1

u
c
c

PRINT GEOMETRIC PARAMETERS AND RATIOS IF REQUIRED

0031 9 IF(IPRINT.NE.O)GO TO 20
0032 WRITE(6,4)TITLE,NFLD,WVL,AMP,SN.R,GAP,CHL,VS.CHS
0033

r
WRITE(6,3)WVLR,WVLWW.RWW,AMPWW

U
c
r

PARAMETER INITIALISATION FOR PLOTTING IF NFLD(MOD NFPLOT) EQUALS ZERO

0034
V

20 IF(MOD(NFLD,NFPLOT).NE.O)GO TO 55
0035 DSI-CHL/100.0
0036 S-DSI



«

0037
0038
0039
0040
0041

0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061

0062
0063
0064
0065
0066

CHL2=CHL/2.0
0ZT0T=SS
DXT0T=TDMIG
CALL PLOT(90,DXTOT,DZTOT)
1 = 1

C
C PLOT PLANIMETRIC FORM OF MEANOER IF NFLDtMOD NFPLOT) EQUALS ZERO 
C

10 PHI=OMEGA*SIN(SZCHL+6.28)
COSPHK I)=COS(PHI)
SINPHK I ) = SIN(PHI )

11 CALL PLOT(90.DXT0TtDZTOT)
IFd.LT.DGO TO 44 
DX=DSI*COSPHI(I)
DZ=DSI*SINPHI(I)
DXTOT=DXTOT+DX
IF(I.EQ.50)GO TO 41
IF(S-CHL2)40,41,42

40 DZTOT=DZTOT+DZ 
1 = 1 + 1 
S=S+DSI
GO TO 10

41 DZTOT=DZTOT+DZ 
S=S+DSI
GO TO 43

42 DZTOT=DZTOT-DZ
43 1 = 1-1

GO TO 11 
C
C LABEL MEANDER TRACE
C

44 WRITE (3,6) NFLD 
CALL CHARtO.l,0)
CALL PL0T199)

55 RETURN 
END

0001

0002

0003
0004

0005 
000 6 
0007 
0008 
0009 
0010

0011
0012
0013
0014

0015

0016

0017
0018

C
C------------------------------------------------------------------------------------------ --------------------------------------------------—--------....

SUBROUTINE BAR(IFC0D4,H)
C------------------------------------------------------------------------ .---------------------- ---------------------------------------------------------------
C

INTEGER*2 SEDGS,SEDSTR,GRAVEL,SAND,SILT,CLAY,UPPB,LPPB,ANT I ON,RIPP 
ILE ,DUNES
COMMON/COM1/IPRINT »RINB»FROUD1,FR0UD2,VAR2S,RC
COMMON/COM2/INDEX,NCOL,W,EXN,IWS,Y,NYCEL,D,VAR 1,EXNMi,YCEL,SIGRO,Z 

1,GRAVEL,SAND,SILT,CLAY,UPPB,LPPB,ANT IDN,RIPPLE,DUNES,SEDSTR(60,200 
2),SEDGS(60,200)

35 FORMAT!2F12.4,3X,A1,8X,Ai,8X,5F14.4)
ARG=3.14»tZZW)**EXN
Y=-HZ2.0*tC0StARGI-l.O)
DYDZ=VAR1*H*Z**EXNM1*SIN(ARG)
GO TO 10
ENTRY BARK IFC0D4,H)

C
C INSERT ASSIGNMENT STATEMENT CARDS FOR Y AND DYDZ IMMEDIATELY BELOW IF 
C USER SPECIFIED INNER BANK SHAPE IS REQUIRED.VALUE OF DYDZ MUST BE 
C SCALED SUCH THAT UNITS OF D ARE CM.
C

Y=Z*HZW
DYDZ=H/(H*l00.0)

10 NYCEL=Y/YCEL
INDEX=IWS-NYCEL 

C
C FIND LOCAL RADIUS OF CURVATURE
C

RL=RINB+Z
C
C FIND GRAIN SIZE
C

D=VAR2S*Y*YZ(DYDZ*RL)
C
C FIND GRAIN SIZE CLASS
C

IF(D.GT.0.00039)GO TO 15
SEDGStINDEX,NCOL)=CLAY



0019 GO TO 25
0020 15 IF(D.GT.0.00625)GO TO 17
0021 SEDGS(INDEX,NCOL)=SI LT
0022 GO TO 25
0023 17 IF<D.GT.0.2)GO TO 19
0024 SEDGS(INDEX,NCOL)=SAND
0025 GO TO 25
0026

r
19 SEDGS!INDEX,NCOL)=GRAVEL

b
c
r

FIND HYDRAULIC PARAMETERS

0027
b

25 YCM=100.0*Y
0028 YG=YCM*981.0
0029 VELI=FROUD1*SQRT(YG)
0030 TX=RC*YG
0031 OMEGA1=VEL1*TX
0032 IF(D.EQ.0.0)GO TO 36
0033 THETA=RC»YCM/(D*SIGRO)
0034 GO TO 37
0035

r
36 THETA=0.0

b
c
r

TEST FOR ANTIDUNES

0036
b

r
37 IF{FR0UD2.GT.0.84)GO TO 70

b
c
r

TEST FOR UPPER PHASE PLANE BED

0037
b

IF(D.GE.0.025)GO TO 90
0038 THETAC=0.52
0039 GO TO 94
004 0 90 IF(D.GT.0.2)GO TO 92
0041 THETAC=0.56-l.43*D
0042 GO TO 94
0043 92 THETAC = 0.27
0044

r
94 IF(THETA.GE.THETAC)GO TO 60

b
c
r

TEST FOR DUNES

0045
b

IF<D.GT.0.023)GO TO 100
0046 OMEGAC=75O.O
004 7 GO TO 110
004 8 100 IF(D.GT.O.036)G0 TO 102
0049 QMEGAC=950.0
0050 GO TO 110
0051 102 IFtD.GT.0.069)GO TO 104
0052 OMEGAC=475.0
0053 GO TO 110
0054 104 OMEGAC=520.O
0055

r
110 IF(0MEGA1.GE.OMEGAC)GO TO 50

b
c
r

TEST FOR RIPPLES

0056
b

IF(D.LE.0.065)G0 TO 40
0057 SEDSTR!INDEX,NCOL)=LPPB
0058 GU TO 71
0059 40 SEDSTR!INDEX,NCOL)=RIPPLE
0060 GO TO 72
0061 50 SEDSTR!INDEX,NCOL)=DUNES
0062 GO TO 72
0063 60 SEDSTR!INDEX,NCOL)=UPPB
0064 GO TO 71
0065 70 SEDSTR!INDEX,NCOL) =*ANT I DN
0066 71 IF(IFC0D4.EQ.0)G0 TO 80
0067 VEL2=FR0UD2*SQRT!YG)
0068 0MEGA2=TX*VEL2
0069 IF!IPRINT.EQ.0)WRITE!6,35)Y,D,SEDGS(INDEXtNCOL),SEDSTR(INDEX,NCOL) 

1,VEL2,THETA,OMEGA2,TX,FROUD2
0070 GO TO 80
0071 72 IF 1 IFC0D4.EQ.0)GO TO 80
0072 IF!IPRINT.EQ.0)WRITE!6,35)Y,D,SEDGS!INDEX,NCOL),SEDSTR!INDEX,NCOL) 

1,VEL1,THETA,0MEGA1,TX,FROUD1
0073 80 RETURN
0074 END



c

0001
c —

SUBROUTINE SI MI NT<A,OMEGA,B,E,SI MP,FUNC,

0002
c

H=(B-A,/2.0
0003 SM1=FUNC(A,OMEGA)+FUNC(B,OMEGA)
0004 SIMP0«0.0
0005 SM2«0.0
0006 R=A+H*2.0
0007 20 SM2=SM2+FUNC(R,OMEGA)
0006 R=R+H*2.0
0009 IF(R+H-B,20,70,30
0010 30 SM4-0.0
0011 R=A+H
0012 40 SM4=SM4+FUNC(R,OMEGA)
0013 R=R+H*2.0
0014 IF(R-B,40,70,50
0015 50 SIMP=H/3.0*(SMl+2.0*SM2+4.0*SM4,
0016 IF(ABS(SIMP-SIMPO)-E)70,70,60
0017 60 SM2=SM2+SM4
0018 SIMPO=SIMP
0019 H»H/2.0
0020 GO TO 30
0021 70 SIMP=SIMPO
0022 RETURN
0023 END

C—
0001

f —
FUNCTION FUNC2(X,OMEGA)

0002
c

FUNC2=C0S(X)7SQRT{OMEGA*OMEGA-X*X)
0003 RETURN
0004 END

c
0001

C---------

r _____
REAL FUNCTION NEWRAP(SN,E)

0002
C

AOW=(SN-O.4529037,/2.186882
0003 130 FAM(-0.4301562*A0W+l.6746621*AOW+O.337086,*AOW+O.9634151-SN
0004 FB=(-1.2904686*AOW+3.349324)*AOW+O.337086
0005 AOWN=AOW-FA/FB
0006 IF(ABS(AOWN-AOW,-E,140,140,135
0007 135 AOW=AOWN
0008 GO TO 130
0009 140 NEWRAP=AOWN
0010 RETURN
0011

c
C-

END

0001
c«

FUNCTION RANSAMlIFC0D3,

0002
c

CDMM0N/C0M4/SKEW2,SKEW6,SKEW62
0003

Q
IF(IFC0D3.GT.2)G0 TO 30

C
r RANDOM SAMPLE FROM USER SPECIFIED THEORETICAL DISTRIBUTION

0004 GO TO 41
000 5 30 SUM=0.0
0006 DO 31 1=1,12
0007 X=RNDM(-1,
0008 31 SUM=SUM+X
0009

r
IF( IFC0D3-4)32,33,34

c
r

RANDOM SAMPLE FROM NORMAL DISTRIBUTION

0010 32 RANSAM=SUM-6.0
0011

r
GO TO 41

c
c

RANDDM SAMPLE FROM GAMMA DISTRIBUTION

0012 33 RANSAM=SKEW2»(1.0+SKEW6*(SUM-6.0)-SKEW62,♦♦3-SKEW2
0013

r
GO TO 41

c
c

RANDOM SAMPLE FROM LOGNORMAL DISTRIBUTION

0014 34 RANSAM=(EXP(SUM-6.0,-1.65, /2.15
0015 41 RETURN
0016 END



136

l4,2 Main Program (using d1sc storage)
-j®

The structure of this program is essentially the same as ?g
the main program without a disc, therefore only those steps and 
comments which are not the same are listed below. /;
6. Alphameric characters are read into array SEDIN(l) and the i

grain size, sedimentary structure and time line cross sections
are initialised and stored on disc. For every column of the

j
cross sections the following operations are executed:-
Array TEMPGS(i) is filled from the bottom of the section up g

5.
to the row IWS with the grain size characters read into - f

- ' ~ j

SEDIN, one character of SEDIN specifying the character for
*s

the complete row, I, of the grain size cross section, 4
TEMPST(l) is filled up to IWS with the OLDSED character and 
the remaining rows in TEMPST and TEMPGS are filled with blanks.. 
Every element in TEMPTL(l) is filled with blanks. Each set 1 
of three columns of data, one from each cross section, is X:
then stored in one record on disc. f
Operations 19 to 32 are involved with recording on SEDGS 
(INDEX,NCOL) and SEDSTR (INDEX,NCOL) the resulting erosion and 
deposition after this years ’floods’, and putting a time line 
on TLPLOT (INDEX,NCOL) if ITPLOT-O. These arrays are then 
stored on disc in the appropriate place.

20. Find total number of cell widths/columns, NZCELT, required 
for the channel section and corresponding array elements
needed in the core store at once. If NZCELT exceeds the
specified maximum number, MNCOLS, the job is terminated, as
is the case if the right hand edge of the cross sections is
exceeded. The necessary columns of the cross sections are 
read off disc into SEDGS (INDEX,NCOL), SEDSTR (INDEX,NCOL) 
and TLPLOT (INDEX,NC OL),

23. Every column of the inside bank of the channel section (l to
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NZCELl) is now filled to the original depth by successive 
recalculation of the transverse profile, the depth at the 
old talweg being progressively decreased by one cell depth 
row until filling is complete. Subroutine BAR or BARI is 
called during these operations in order to fill the 
appropriate elements of SEDGS and SEDSTR with alphameric
characters.

24. The area bounded by the position of the old talweg, the
maximum scour depth below the old talweg, and the position 
of the new talweg is now filled by allocating for each
row in this area the grain size and bed form symbols
calculated for the row elements of the old talweg column, 
NZCELl, in step 2j.

Eig. 14.2 illustrates the sequence of events in the 
scouring and filling operation described above. Steps 25 to 32 
constitute a major loop and are concerned with erosion of the
outer bank and deposition on the point bar. As a result of the
erosion of the outer bank and changes in the projected channel
width in the cross sections, the whole transverse profile is 
shifted accordingly, and the left hand side of the new point bar 
profile is started at column NRMIG+1 of the cross section.

For every column, NCOL, of the new point bar (up to 
NZCELl+NRMIC) steps 26 to 31 are executed.

For every column of the outer bank (NZCEL1+NRMIG+1 up to 
NZCELT) the following step is executed. (This is step 32).
35» The arrays SEDGS, SEDSTR, and TLPLOT containing the channel

section data just computed, are written onto disc in the
appropriate place with respect to the whole cross section.
If a two-channel downvalley section is being used, this
same information is also written on the disc, NDAVA records

further on



0001
0002
0003

0004
0005

0006

0007
0008
0009

0010
0011
0012
0013
0014
0015
0016

0017

0018

0019

0020

0021

0022

0023

Table

C
C CONTROL STATEMENTS
C

REAL NEWRAP
DIMENSION FMT4 (5 ) »A(6 ) » B (6),SA(6),SB(6),FMSUM(365),FSSUM(365) 
INTEBER*2 SEDGS.SEDSTR,TLPLOT<60,50),GRAVEL,SAND,SILT,CLAY,UPPB,LP

1PB,ANTI DN,RIPPLE,DUNES,OLDSED,WATER,DOT,BLANK,SEDIN(60),TEMPGSt60) 
2,TEMPST(60),TEMPTL(60).FLOOD
C0MM0N/C0M1/IPRINT,RINB,FROUD1,FR0UD2,VAR2S,RC
COMMON/COM2/INDEX,NCOL,W,EXN,IWS,Y,NYCEL,D,VARl,EXNMl,YCEL.SIGRO.Z 

1,GRAVEL,SANO,SILT,CLAY,UPPB,LPPB,ANTIDN,RIPPLE,DUNES,SEDSTR(60,50) 
2,SEDGS(60,50)
C0MM0N/C0M3/NFLD,TITLE(15),WVL,AMP,VS,GAP,NFPLOT,CHS,WW.R.RO,VAR2, 

1F28,FIB,SS,TDMIG,SN
COMMON/COM4/SKEW2,SKEW6,SKEW62
DATA RMIG,TLMIG,AGG,DEV,NDAVA,LIM,MARK,ICUT/4*0.0,2*0,2*1/
DEFINE FILE 4(200,360,L,ID)

C
C FORMAT STATEMENTS 
C

1 FORMAT(15A4,110,1 2)
2 FORMAT!11,3F12.0,11)
3 FORMAT!414,5A4)
5 FORMAT!80A1)
6 FORMAT(6F12.0)
7 FORMAT! 8F8.0,14)

21 FORMATdHl ,IX,15A4//1X,'CROSS SECTION PARAMETERS’,49X,’METRES’,5X, 
1’CELLS'//6X,’WIDTH OF SECTION',48X,F10.3,110/6X,•TH ICKNESS OF SECT 
21 ON',44X,F10.3,110/6X,’INITIAL DISTANCE OF INNER CHANNEL BANK FROM
3 L.H.S. OF SECTION’,3X,F10.3,110/6X,’INITIAL BANKFULL STAGE MEASUR

’ 4ED FROM SECTION BASE•,15X,F10.3,I10/6X,•CELL SIZE IN VERTICAL(Y) D
5IRECTI0N' ,30X,F10.3/6X, ’CELL SIZE IN HORIZONTAL!/ OR X) DIRECTION’ 
6,23X ,F 10. 3///)

23 FORMAT!IX,’CHANNEL PARAMETERS',55X,•METRES'.5X,•CELLS’Z/6X,•TOTAL 
1WIDTH OF CHANNEL(W)•.39X.F10.3,I10/6X,•WIDTH OF FLOW BETWEEN INNER 
2 BANK AND TALWEG(WI)•,17X,FIO.3,110/6X,•RAT IO OF WI TO W’,68X,F10. 
33/6X,’MAXI MUM FLOW OEPTH MEASURED ABOVE TALWEG',24X,F10.3/6X,’DENS 
4ITY OF SEDIMENTARY PARTICLES•,52X,F10.3,' GM/CM3'/6X,•FLU ID DENSIT 
5Y',71X,F10.3, ' GM/CM3'/6X,’DARCY-WEIS BACH FRICTION COEFFICIENT FOR 
6 DUNES AND RIPPLES',27X,F10.3/6X,'DARCY-WEISBACH FRICTION COEFFICI 
7ENT FOR PLANE BEDS AND ANT I DUNES',20X,F10.3/6X,’EXPONENT N1’,73X,F 
810.3///)

24 FORMAT(IX,'SYNTHETIC HYDROLOGY PARAMETERS(UNITS NOT NECESSARY)'//6 
IX,’MEAN OF ALL DAILY MEAN VALUES',25X,FIO.3/6X,•STANDARD DEVIATION 
2 OF DAILY MEAN VALUES',15X,FIO.3/6X,'MEAN OF YT SER IES',37X,F10.3/ 
36X,'STANDARD DEVIATION OF YT SERIES’,23X,F10.3/6X,•COEFFICIENTS IN
4 AUTOREGRESSIVE MODEL',15X,'Al=•,F10.3,7X,•A2=•,F10.3/60X,•HARMON I 
5CS FROM 1 TO 6»/6X,'FOURIER COEFFICIENTS FOR DAILY MEANS! A)•,15X,6 
6F10.3/42X, ’(B) •,15X,6F10.3/6X,'FOURIER COEFFICIENTS FOR DAILY STD 
7DEVIATIONS(SA) •,5X,6F10.3/5IX,’(SB)',5X,6F10.3/6X,•MAXIMUM VALUE 0 
8F QVOL' ,33X ,F10.3///)

25 FORMATdX,'BANK MIGRATION PARAMETERS',/6X,'EXPONENT N2•,53X,F10.3/ 
16X,'VALUE OF CONSTANT IN LATERAL MIGRATION RELAT ION*,14X,*K2='»E10 
2.3/6X,’VALUE OF CONSTANT IN DOWNVALLEY MIGRATION RELATION',1IX,'K3 
3=',E10.3/6X,'LI MITING PERCENTAGE OF GRAVEL ALLOWABLE IN OUTER BANK 
4’,llX,F10.3///)

26 FORMAT(1X,'SCOUR AND FILL PARAMETERS’/6X,’CONSTANT K4',43X,E10.3/6 
IX,'EXPONENT N3',39X,FIO.3/6X,'STANDARD DEVIATION OF ERROR TERM’,IB 
2X.F10.3///)

27 FORMATdX,'LEGEND'//6X , 'LOWER PHASE PLANE BED’ , 5X.A1, 7X, ' GRAVEL ', 5 
IX,Al,8X,'OLD SEDIMENT',5X,A1/6X,•RIPPLES',19X,A1,7X,•SAND’,7X,A1,8 
2X,’WATER’,12X.A1/6X,’DUNES',21X,A1,7X,’SILT’,7X.A1,8X,’TIME LINE', 
38X.5A1/6X,'UPPER PHASE PLANE BED’,5X,Al,7X,•CLAY',7X,Al,8X,•AIR•,1 
44X,’BLANK'/6X,'ANTI DUNES',17X,Al,7X,'OVERBANK',3X.A1/40X,’DEPOSITS 
5’//)

28 FORMATdX,’CUT-OFF CONTROL PARAMETERS '/6X, ' L IM IT ING WIDTH OF MEAND 
1ER NECK’,24X,F10.3, ' METRES'/6X,'EXPONENTS IN NECK CUT-OFF RELATIO 
2N',16X,'EN1=',F10.3,6X,'EN2=',F10.3/6X,'LIMITING SINUOSITY',36X.F1 
30.3/6X,'Ll MITING AMPLITUDE',36X,FIO.3,' METRES'/6X,•EXPONENTS IN C 
4HUTE CUT OFF RELATION',15X,'EC1=',F10.3,6X,'EC2=',FIO.3///,

29 FORMAT(1H1,1X,15A4,'TIME INCREMENT',15//IX,'FLOOD PERIOD VOLUME FO 
IR THIS YEAR',26X,FIO.3//1X,’OUTER BANK GRAINSIZE INDEX AT BEGINNIN 
2G OF YEAR',12X,FIO.3//1X,’INNER BANK GRAINSIZE INDEX AT BEGINNING 
30F YEAR»,12X,FIO.3//1X,•? SILT-CLAY IN CHANNEL PERIMETER AT BEGINN 
4ING OF YEAR',6X,FIO.3//1X,'DISTANCE FROM LIMITING AMPLITUDE AT BEG 
5INNING OF YEAR*,6X,F10.3,' METRES'//IX,•LATERAL MIGRATION DURING T 
6HIS YEAR',25X,F10.3,’ METRES’//1X,'TOTAL LATERAL MIGRATION AT END 
70F THIS YEAR•,16X,F10.3,• METRES'//IX,'DOWNVALLEY MIGRATION DURING

14.2. Listing of main program (using additional disc 
storage).



0024

0025

0026
0027

0028

0029

0030

0031

0032

0033

0034

0035
0036
0037

0038

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061

0062
0063

8 THIS YEAR • ,22X,F10.3,1 METRES1//IX,1 TOTAL DOWNVALLEY MIGRATION AT
9 END OF THIS YEAR1,13X,F10.3,1 METRES1//)

30 FORMAT)IX,'TOTAL AGGRADATION AT END OF THIS YEAR1,22X,F10.3,1 METR 
1ES1//)

31 FORMATl///IX,'A DOWNVALLEY SECTION IS REPRESENTED IN THIS TEST'/IX
1, ’DISTANCE OF LINE OF SECTION FROM POINT OF INFLECTION OF LOOP IS1
2, F10.3,' METRES1//)

33 F0RMATI///1X,'A LATERAL SECTION IS REPRESENTED IN THIS TEST'//)
35 FORMAT)1H1,IX,15A4,1 TIME INCREMENT',15//IX,•CROSS SECTION SHOWING 

1 DISTRIBUTION OF GRAIN SIZE ACROSS MEANDERING RIVER FLOOD PLAIN1// 
2/)

36 FORMAT)1H1,IX,15A4,1 TIME INCREMENT1,15//IX,1 CROSS SECTION SHOWING
1 DISTRIBUTION OF SEDIMENTARY STRUCTURE ACROSS MEANDERING RIVER FLO 
20D PLAIN1///)

37 FORMAT)IX,’THE NUMBER OF COLUMNS REQUIRED FOR THE SPECIFIED CHANNE 
IL WIDTH IS GREATER THAN'/IX,'THE CORE STORE WILL HOLD - RESCALING
2 IS REQUIRED1)

38 FORMAT)1X,'A DEVICE ERROR CONDITION WAS ENCOUNTERED DURING DATA TR 
1ANSFER FROM DEVICE TO STORAGE1)

39 FORMAT)IX,'THE SPECIFIED SECTION WIDTH HAS BEEN EXCEEDED-THE WIDTH 
1 MUST BE INCREASED IF MIGRATION IS TO PROCEED1)

41 FORMAT)IX,‘DEPTH OF SCOUR AT TALWEG FOR THIS YEAR1,21X,F10.3,1 MET 
IRES1//)

42 FORMATl1H0,IX,15A4♦1 TIME INCREMENT1,15//IX,1VARIATION OF GRAINSIZ 
IE AND BED FORM OVER CHANNEL CROSS PROFILE1//7X,1 DEPTH1,3X,'GRAINSI 
2ZE',8X,'BED FORM1,6X,'LOCAL MEAN1,4X,1 LOCAL1,10X,1 LOCAL STREAM1,2X
3, 'LOCAL BED1,5X,'LOCAL FROUDE1/7X,1)M)1,5X,1tCM)1,27X,1 FLOW VELOCI 
4TY',1X,'DIMENSIONLESS1,2X,'POWER1,9X,'SHEAR STRESS1,2X,1 NUMBER 1/46 
5X, MCM/SEC) ',6X,'SHEAR STRESS1 ,IX,1 )ERGS/CM2/SEC)1,2X, 1 IDYN/CM2I '/ 
6)

43 F0RMATI1X,'UNFORTUNATELY THE PERCENTAGE OF GRAVEL IN THE OUTER BAN 
IK IS ',F10.3J

45 FORMATl'SCALE-1 INCH TO',FIO.2,» METRES1,100X)
47 FORMAT)'MEANDER GEOMETRY1,IOOX)
49 FORMAT)////IX ,'TI ME INCREMENT SIS,1 L IMIT ING S INUOS IT Y/AMPL ITUDE 

1HAS BEEN REACHED1)
972 FORMATl///IX,1 TIME INCREMENT 1,15,/IX,1LIMIT ING S INUOSITY/AMPLITU 

IDE REACHED IN A LATERAL SECTION - TEST TERMINATED1)
977 FORMAT)///lX,'INITIAL BANKFULL STAGE MEASURED FROM BASE OF SECTION 

1 EXCEEDS SPECIFIED SECTION THICKNESS - TEST TERMINATED1)
979 FORMATl///IX,'ERROR IN SECOND DATA CARD - LAST THREE VARIABLES MUS 

IT BE NONZERO1)
981 FORMAT)1X,1 THE LOWER BOUNDARY OF THE CROSS SECTION HAS BEEN EXCEED 

1ED -'/lX,'ADJUSTMENT IS REQUIRED IN EITHER INITIAL BANKFULL STAGE, 
2DEPTH AT TALWEG,OR SCOUR AND FILL PARAMETERS1)

983 F0RMAT11X,'INITIAL SINUOSITY IS OUTSIDE THE SPECIFIED LIMITS - TES 
IT TERMINATED1)

985 FORMAT)IX,1 THE SPECIFIED SECTION THICKNESS HAS BEEN EXCEEDED - RES 
1CALING IS REQUIRED IF AGGRADATION IS TO CONTINUE1)

987 FORMATlIX,'THE SPECIFIED LENGTH OF THE X-AXIS ON THE GRAPH PLOTTER 
1 HAS BEEN EXCEEDED - RESCALING IS REQUIRED1)

989 FORMATl///IX,'RATE OF AGGRADATION PER FLOOD INCREMENT IS GREATER T 
1HAN ONE VERTICAL CELL - RESCALING IS REQUIRED1)

991 FORMAT)///IX,1 TIME INCREMENT ',15,* - TEST TERMINATED DUE TO CHUT 
IE CUT OFF1)

993 FORMAT)///IX,1 TIME INCREMENT ',15,’ - TEST TERMINATED DUE TO NECK 
1 CUT OFF1)

995 FORMAT)///IX,'DEFINITION OF LINE OF SECTION IS IN ERROR - TEST TER 
1MINATED1)

C
C READ INPUT PARAMETERS
C

READ 15,1)TITLE,IX,I DISK
RE AD (5,3) NTI M,NPRI NT , NF PLOT , NT PLOT
IF(NPRINT.EQ.0.OR.NFPLOT.EQ.O.OR.NTPLOT•EQ.O)GO TO 978 
READt5,3)NCOLS,NROWS,MNCOLS,IFC0D6,FMT4 
READ)5,6)ZTOT,YTOT,BANK,WS,DWS,ZSECT 
IF I WS. GT. YTOT) GO TO 976
READ(5,6)SN,WVL,VS,XMAX
READ)5,6)Cl,C2,E1,GRAVLM
READ)5,6)ECi,EC2,EN1,EN2,GAPLIM,SNLIM
IF ( SN.GT. SNLI M) GO TO 982
READ(5,7)W,H,EXN,C5,F1,F2,SIGMA,RO,IFC007 
IF(H.GT.WS)GO TO 980
READ(5,5)GRAVEL,SAND,SILT,CLAY,UPPB,LPPB,ANT IDN,RIPPLE,DUNES,OLDSE 

ID,WATER,DOT,BLANK,FLOOD
READ)5,2)IFC0D3,QVOLMX,$KEW
READI 5,6)DM,DS,YM,YS,Al,A2,A,B,SA,SB



0064 READ(5*2)IFC0D5,C6»E2»STDVN»IFC0D1
C
C CALL RNDMIN 
C

0065 CALL RNDMIN(IX)
C
C FIND CELL DIMENSIONS 
C

0066 ZCEL=ZTOT/FLOAT(NCOLS)
0067 YCEL=YTOT/FLOAT(NROWS)
0068 IF(DWS.GT.YCELJGO TO 988

C
C FIND BANKFULL STAGE RELATIVE TO BASE OF SECTION AND DISTANCE OF INNER 
C BANK OF CHANNEL FROM LEFT HAND SIDE OF SECTION (IN CELLS)
C

0069 IBANK=BANK/ZCEL
0070 IWS’WS/YCEL

C
C FIND INITIAL AMPLITUDE
C

0071 AMP=WVL*NEWRAP(SN,0.0000001)
0072 1F(ZSECT.GT.(AMP/3.0))G0 TO 994

C
C FIND LIMITING AMPLITUDE 
C

0073 AMPLIM=WVL*NEWRAP(SNLIM,0.0000001)
C
C FIND INITIAL DISTANCE FROM LIMITING AMPLITUDE 
C

0074 SS=(AMPLIM-AMP)/2.0
0075 IF (SS. LE.O.O) LI M=1

C
C INITIALISE AND STORE SECTION DATA ON DISK 
C

0076 READ(5,5)(SEDIN(I),1=1,IWS)
0077 ID=1
0078 DO 150 J=l,NCOLS
0079 DO 146 1=1,NROWS
0080 IF(I.GT.IWS)GO TO 145
0081 TEMPGSII)=SEDIN(I)
0082 TEMPST(I)=OLDSED
0083 GO TO 146
0084 145 TEMPGSU)’BLANK
0085 TEMPSTtI)’BLANK
0086 146 TEMPTL(I)’BLANK
0087 150 WRITE(IDISK’ID)(TEMPGS(I).TEMPST(I).TEMPTL(I),I’l,NROWS)

C
C INITIALISE SYNTHETIC HYDROLOGY PARAMETERS 
C
C SKEWNESS PARAMETERS
C

0088 IF(SKEW.EQ.0.0)GO TO 162
0089 SKEW2’2.O/SKEW
0090 GO TO 163
0091 162 SKEW2=0.0
0092 163 SKE W6’SKEW/6.0
0093 SKEW62=SKEW6*SKEW6

c
C AUTOREGRESSIVE MODEL PARAMETERS 
C

0094 ZTM1=RANSAM(IFC0D3)
0095 ZTM2=RANSAM(IFC0D3)
0096 COEFF’SQRT((1.0+A2)/(1.0-A2)*((1.0-A2)**2-Al**2))

C
C CALCULATE MEAN AND STANDARD DEVIATION OF FLOW FOR EACH DAY OF THE YEAR 
C AND STORE IN ARRAYS 
C

0097 DO 165 NDAY»1,365
0098 FSSUM(NDAY)=0.0
0099 FMSUM(NDAY)-0.0
0100 VAR=0.0172ll*FL0AT(NDAY)
0101 DO 164 K=l,6
0102 ARG=FLOAT(K)*VAR
0103 FMSUM(NDAY)=FMSUM(NDAY)+A(K)*COS(ARG)+B(K)*SIN(ARG)
0104 164 FSSUM(NDAY)=FSSUM(NDAY)+SA(K)*COS(ARG)+SB(K)*SIN(ARG)
0105 165 CONTINUE

C
C FIND FULL WIDTH OF FLOW BETWEEN INNER AND OUTER BANKS



0106
C

r
WW-W/C5

b
C
r

FIND VALUES OF W AND WW IN CELLS

0107
b

NZCEL=WW/ZCEL
0108 NZCELI=W/ZCEL
0109

r
FLT2=FL0AT(NZCELI>

b
c
r

FIND LIMITING WIDTH OF MEANDER NECK MEASURED FROM CHANNEL CENTRE LINES

0110
b

p
GAPLIM=GAPLIM+WW

b
c
p

FIND VALUE OF H IN CELLS

0111
b

r
NH=H/YCEL

b
C
r

PARAMETERS USED TO CALCULATE FROUDE NOS. IN MEANDR

0112
b

F18=8.0/Fl
0113

r
F28=8.0/F2

b
c
p

PARAMETERS USED IN BAR

0114
b

SIGRO=SIGMA-RO
0115 EXNM1=EXN-1.O
0116 VAR1=3.14*EXN/(200.0*W**EXN)
0117

r
VAR2=16.5*R0/SIGR0

b
c
p

PARAMETERS FOR SCALING PLOT OF MEANDER GEOMETRY IN MEANDR

0118
b

SCALE=AMPLIM/9.0
0119 SCALE2=SCALE/2.0
0120 XL=XMAX/AMPLIM*9.0
0121

p
TD MIG =0.0

b
c
p

INITIALISE TIME KEEPING DEVICES AND NFLD

0122
b

NFLD=O
0123 IPRINT=MOD(NFLD»NPRINT)
0124

p
I TPLOT=MOD(NF LD , NT PLOT)

b
c
p

RATIO OF YCEL/ZCEL

0125
b

r
YCOZC=YCE L/ZCEL

b
c
p

WRITE SCALES AND TITLES ON GRAPH

0126
b

CALL PLOTd »0. 0 »X MAX » XL »X MAX » 0.0 » AMPLIM.9.0, AMPLIMJ
0127 CALL PL0T(99)
0128 CALL PL0T(90,SCALE2,-SCALE2)
0129 WRITE(3.45)SCALE
0130 CALL CHAR(0.2,0)
0131 CALL PL0T(99)
0132 CALLPLQT(90.SCALE2»AMPLIM,
0133 WRITEC3.47)
0134 CALL CHAR(0.2,0)
0135

p
CALL PL0T(99)

b
c
p

PRINT OUT CROSS SECTION PARAMETERS

0136
b

p
WRITE(6,21)TITLE,ZTOT.NCOLS.YTOT,NROWS,SANK,I BANK,WS, IWS,YCEL,ZCEL

b
c
p

PRINT OUT CHANNEL PARAMETERS

0137
b

p
WRITE(6,23)WW,NZCEL,W,NZCEL1,C5,H,SIGMA,RO,FI,F2,EXN

b
c
p

PRINT OUT SYNTHETIC HYDROLOGY PARAMETERS

0138
b

p
WRITE(6,24)DM.DS,YM,YS,Al,A2,A,B,SA,SB,QVOLMX

b
c
p

PRINT OUT BANK MIGRATION PARAMETERS

0139
b

p
WRITE(6,25)El,C1,C2.GRAVLM

b
c
p

PRINT OUT SCOUR AND FILL PARAMETERS

0140
b

WRITE(6,26)C6.E2.STDVN



■s'

0141

0142
0143
0144
0145

0146

0147

0148
0149
0150
0151
0152
0153
0154
0155
0156
0157

0158
0159
0160
0161
0162
0163
0164

0165
0166
0167
0168
0169
0170

0171
0172

0173
0174
0175
0176
0177
0178
0179

0180
0181
0182
0183
0184
0185
0166

c
C PRINT OUT CUT OFF CONTROL PARAMETERS
C

MR ITE(6,28,GAPLIM,EN1,EN2,SNLIM,AMPLIM,ECI,EC2
C
C PRINT OUT TYPE OF SECTION
C

IF (IFC0D6. GT. 0) GO TO 167 
WRITE(6,33)
GO TO 168

167 WRITE(6,31,ZSECT 
C
C PRINT LEGEND
C

168 WRITE(6,27>LPPB,GRAVEL,OLDS ED,RIPPLE,SAND,WATER,DUNES,SILT,DOT,DOT 
1,DOT,DOT,DOT,UPPB,CLAY,ANT IDN,FLOOD

C
C FIND AND PLOT INITIAL PLANIMETRIC FORM OF MEANDER
C

CALL , MEANDR 
C
C INITIAL OPERATIONS CONCERNING CROSS SECTION DEFINITION - THEN BRANCH 
C TO INITIALISE AND PRINT CHANNEL SECTION 
C

IF(IFC0D6-1>170,172,174
170 NZCELO=NZCEL 

ZCEL1=ZCEL
IF(LIM.EQ.1,GO TO 971 
GO TO 218

172 IF(LIM.NE.1)GO TO 175
PAR1=3.14159*(AMP-2.O*ZSECT,/(SN+WVL)
PHI=(0.0505*SN+PARl+0.0692,/0.6371
PAR2=((-0.0292*SN+0.2132)*SN-O.4651,*SN-PAR1+O.2668

130 FA=((PHI*0.2804+(0.2244-0.1713*SN,)*PHI+((0.1139*SN-O.552,*SN+O.88 
195,>*PHI+PAR2
FB=(PHI*0.8412+(0.4488-0.3426*SN))»PHI+(0.1139*SN-0.552,*SN+O.8895 
PHIN=PHI-FA/FB
IF(ABS(PHIN-PHI>-0.0001)140,140,135

135 PHI=PHIN 
GO TO 130

140 SI NPHI=SIN(PH IN)
GO TO 176

C
C STRAIGHT LINE DISTANCE BETWEEN POINTS OF INFLECTION OF LOOP
C

174 NDAVA=WVL/(2.0*ZCEL,
175 SINPHI=SIN(2.2*SQRT((SN-l.OJ/SN))
176 ZCEL1=SINPHI*ZCEL 

NZCEL=WW/ZCEL1 
NZCEL1-W/ZCEL1
GO TO 216 

C
C BEGIN MAJOR LOOP,ONCE THROUGH EVERY YEAR
C
C INITIALISE TIME KEEPING DEVICES
C

169 IPRINT=MOD(NFLD,NPRINT,
ITPLOT=MOD(NF LD,NTPLOT)

C
C FIND FLOOD PERIOD VOLUME
C

QV0L=0.0
DO 180 NDAY=1,365
ZT“A1*ZTM1+A2*ZTM2+CQEFF*RANSAM(IFC0D3)
XT=DM+FMSUM(NDAY,+(DS+FSSUM(NDAY,,*(YM+YS*ZT)
IF(XT.GT.DM,QVOL=QVOL+XT
ZTM2=ZTM1

180 ZTM1=ZT 
C
C TEST FOR CUT OFF
C

PCx(QVOL/QVOLMX)**EC1*(SN/SNLIM,**EC2 
PN=(QVOL/QVOLMX,**EN1*(GAPLIM/GAP)**EN2 
X=RNDM(-1)
IF(X. LE.PC, ICUT-2 
X=RNDM(-1)
IFtX. LE.PN) ICUT=3
IF(ICUT.EQ.1,GO TO 182



c
C CUT-OFF HAS OCCURRED - OUTPUT REQUIRED INFORMATION AND TERMINATE PROG. 
C

0187 WRITE(6,29)TITLE,NFLD,QVOL,OBGSI,BGSI,SCHUMM,SS.RLMIG,TLMIG,RDMIG, 
1TDMIG

0188 MRITE(6,30)AGG
0189 IPRINT=O
0190 NFPLOT=NFLD
0191 CALL MEANDR
0192

p
GO TO 548

b
C
p

FIND AMOUNT OF LATERAL AND DOWNSTREAM BANK MIGRATION

0193
b

182 IF ( LI M. EQ. 1) GO TO 185
0194 RLMIG=SS*C1*QVOL/OBGSI**E1
0195 TLMIG’TLMIG+RLMIG
0196 185 RDMIG=C2*QV0L/0BGSI**El
0197

r
TDMIG=TDMIG+RDMIG

b
c
c

PRINT OUT REQUIRED DATA FOR THIS TIME INCREMENT

0198
b

p

IF(IPRINT.EQ.O)WRITE(6,29)TITLE,NFLD,QVOL,OBGSI,BGSI,SCHUMM,SS.RLM 
1IG,TLMIG.RDMIG,TDMIG

b
c
p

AGGRADE THE FLOODPLAIN IF REQUIRED

0199
b

P
AGG-AGG+DWS

b
c
p

WRITE TOTAL AMOUNT OF AGGRADATION SO FAR

0200
b

IF(IPRINT.EQ.O)WRITE(6,30)AGG
0201 NAGG=AGG/YCEL
0202

P
IF(NAGG.LT.MARK)GO TO 210

b
c IF ROW OF CELLS IS FILLED,ADJUST BANKFULL STAGE AND FILL ROW WITH
c
p

ALPHAMERIC CHARACTERS

0203
b

IWS’IWS+1
0204 IF ( I WS. GT. NROWS) GO TO 984
0205 MARK=MARK+1
0206 ID = 1
0207 DO 200 J=1,NCOLS
0208 READ(IDISK* ID)(TEMPGS(I,.TEMPST(I).TEMPTL(I),1=1,NROWS)
0209 ID=J
0210 TEMPGStIWS)’FLOOD
0211 TEMPSTt I WS)’FLOOD
0212

P
200 WRITE(IDISK’ID)(TEMPGStI),TEMPST(I),TEMPTL(I),1=1,NROWS)

b
c RECORD ON 2-D ARRAYS THE RESULTING EROSION AND DEPOSITION AFTER THIS
c
p

YEAR - STORE ARRAYS ON DISK
b
c FIND AMOUNT OF BANK MIGRATION IN CROSS SECTION REPRESENTED.ADJUST
c CHANNEL WIDTHtIN CELLS) REPRESENTED IN CROSS SECTIONtAND RELATED
c PARAMETERS).DEPENDING ON TYPE OF CROSS SECTION AND CHANGES IN SHAPE
c
p

OF MEANDER

0213
b

210 IFtIFC0D6.GT.0)GO TO 215
0214 RMIG’SQRTtRLMIG*RLMIG+RDMIG*RDMIG)
0215 AA=ATANIRDMIG/RLMIG)
0216 TANA=RDMI G/RLMIG
0217 P’ATANt(R+WW/2.O-SQRT((R+WW/2.0)**2+2.O*R»WW*TANA*TANA))/(-2.0*R*T 

1ANA))
0218 ZCEL1=ZCEL*COS(AA-P)/COS(P)
0219 GO TO 216
0220 215 RMIG’RDMIG
0221 SINPHI’SI Nt 2.2+SQRT( (SN-l.O MSN) )
0222 ZCELI=ZCEL*SINPHI
0223 216 NZCELO’NZCEL
0224 NZCLIO’NZCELI
0225 NZCEL’WW/ZCELl
0226 NZCELl’W/ZCELl
0227 FLT2=FL0AT(NZCEL1)
0228 YZOZC’YCEL/ZCELl
0229 IFt NZCEL1-NZCL10)218,218,217
0230 217 NZDIF’NZCELl-NZCLIO
0231 GO TO 225
0232 218 NZDIF’O

C



0233

0234
0235

0236
0237
0238
0239

0240
0241
0242

0243
0244
0245

0246
0247

0248
0249
0250
0251

0252

0253
0254
0255
0256
0257
0258
0259
0260
0261
0262

0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274

C ADD LAST YEAR'S SMOOTHING ERROR TO THIS YEAR'S BANK MIGRATION
C

225 RMIG=RMIG+DEV 
C
C FIND BANK MIGRATIONdN CELLS) IN CROSS SECTION,AND CALCULATE ERROR 
C DUE TO SMOOTHING,DEV 
C

NRMIG=RMIG/ZCEL 
DEV=RMIG-ZCEL*FLOAT(NRMIG,

C
C DEFINE AMOUNT OF CONCOMITANT POINT BAR MIGRATIONdN CELLS),DEPENDING 
C ON CHANGES IN CHANNEL WIDTH IN CROSS SECTION REPRESENTED 
C

IF(IFC0D6.EQ.0,G0 TO 227 
NRMIG=NRMIG+NZCELO-NZCEL 
IF(NRMIG.LT.O,NRMIG=O

227 FNRMIG=FLOAT(NRMIG)
C
C FIND TOTAL NUMBERS OF CELLS REQUIRED FOR CHANNEL SECTION AND CHECK 
C THAT DOES NOT EXCEED SPECIFIED LIMITS 
C

NZCELT=NZCEL+NRMIG
IF(NZCELT.GT.MNCOLS)GO TO 580
IF((IBANK+NZCELT+NDAVA,.GT.NCOLS,GO TO 585

C
C READ APPROPRIATE COLUMNS FROM DISK
C

ID=IBANK+l 
DO 230 J=1,NZCELT

230 READ(I DISK'ID,ERR=590, (SEDGS(I,J),SEDSTR(I,J),TLPLOT(I,J),1=1»NROW 
IS)

C
C IF NO SCOUR AND FILL GO TO 400
C

IF(NFLD.EQ.0)GO TO 400 
IF(IFC0D5.NE.1)GO TO 400

C
C FIND MAXIMUM DEPTH OF SCOUR MEASURED ABOVE TALWEG
C

DSCR=C6*QV0L**E2+RANSAM(IFCODi)*STDVN 
IF(DSCR.LT.0.0)DSCR=O.0 
IF (I PRI NT. EQ.O) WRITE (6,41 )DSCR 
HH=H+DSCR

C
C IF MAX. CHANNEL DEPTH NOW EXCEEDS LOWER BOUNDARY OF SECTION - JOB ENDS 
C

IF(HH.GT.(FLOAT(IWS)*YCEL))GO TO 980 
C
C FOR EVERY COLUMN OF POINT BAR GRADUALLY FILL TO ORIGINAL DEPTH 
C

370 Z=ZCEL1
DO 390 NCOL=1 ,NZCEL1 
IF (I FC0D7. EQ. 0) GO TO 372 
CALL BAR1(O,HH)
GO TO 373

372 CALL BAR(O.HH)
373 Z=Z+ZCEL1 
390 CONTINUE

HH=HH-YCEL 
IF(HH.GE.H)GO TO 370

C
C FILL SCOURED TALWEG
C

IF (NRMI G. LT. 1) GO TO 400 
DO 380 J=1,NRMIG 
NCQL=NZCEL1+J
Y=!-DSCR/2. 0*( COS (3. 14* (FLOAT (NRMIG-J J/FNRMIG ) )-1.0 )
NYCEL=(H+Y)/YCEL 
INDEX=IWS-NYCEL

381 SEDGS(INDEX,NCOL,=SEDGS(INDEX,NZCEL1)
SEDSTR(INDEX,NCOL,“SEDSTR(INDEX,NZCEL1,
Y=Y-YCEL
INDEX=INDEX+1
IF(Y.GE.O.OJGO TO 381

380 CONTINUE 
C
C FOR EVERY COLUMN IN CHANNEL SECTION,FIND GRAINSIZE AND BEDFORM ACROSS 
C INNER BANK AND ERODE OUTER BANK



C INITIALISE PARAMETERS AND WRITE HEADINGS 
C

0275 400 Z=ZCEL1
0276 OBGS=0.0
0277 BGS=0.0
0278 GRAV=0.0
0279 NRMIG1=NRMIG+NZDIF+1
0280 INDEXK-IWS
0281 KQUNT=0
0282 INDEX0=IWS-NH+i
0283

p
IF(IPRINT.EQ.0)WRITE(6,42)TITLE,NFLD

c
r

BEGIN MAJOR LOOP ENTERED ONCE FOR EVERY COLUMN OF CHANNEL SECTION

0284
V

DO 450 J=1,NZCEL
0285 NCOL=J+NRMIG
0286

p
IF CJ.LE.NZCELl)GO TO 410

Iz
c
p

ERODE OUTER BANK

0287
V

Y=-H/2.0*(COS(3.14*(WW-Z)/ (WW-WH-1.0 I
0288 NYCEL=Y/YCEL
0289 INDEX=IWS-NYCEL
0290 IF(ITPLOT.EQ.0)TLPLOT(INDEX,NCOL-1)=DOT
0291 INDEXK=INDEX
0292 405 IF(SEDGS(INDEX,NCOL).EQ.CLAY.OR.SEDGS(INOEX.NCOL).EQ.SILT.OR.SEDGS

1(INDEX,NCOL).EQ.FLOOD)0BGS-0BGS+1.0
0293 IF(SEDGSt INDEX,NCOL).EQ.GRAVEL)GRAV=GRAV+1.0
0294 KOUNT-KOUNT+1
0295 INDEX=INDEX-1
0296 IF(INDEX.GT.INDEXO)GO TO 405
0297 INDEXO=INDEXK
0298

p
GO TO 440

V
c
r

DEPOSIT SEDIMENT ON INNER BANK

0299
u

410 IF (IFC0D7. EQ. 0) GO TO 411
0300 CALL BARI(1 ,H)
0301 GO TO 412
0302 411 CALL BAR(1,H)
0303 412 IF(D.LE•0.00625)BGS=BGS+1.0
0304 IF(ITPLOT.EQ.0.AND.J.NE.NZCELlJTLPLOT(INDEX,NCOL)=DOT
0305

p
IF (NFLD.EQ.O)GO TO 440

c
p

•FILL' POINT BAR

0306 IF(NRMIG1.LT.1)GO TO 440
0307 DO 415 JJJ=1,NRMIG1
0308 JJ-NCOL—JJJ
0309 IF ( JJ.LT.DGO TO 415
0310 IF(NZCELI.LT.NZCL10.AND.IFC0D5.EQ.1)GO TO 413
0311 IF(SEDSTR(INDEX,JJ).NE.WATER.AND.SEDSTR(INDEX,JJ).NE.FLOOD.AND.SED 

1STR(INDEX,JJ)•NE.OLDSED)GO TO 415
0312 413 SEDGS(INDEX,JJ)=SEDGS(INDEX,JJ + l)
0313 SEDSTR!INDEX,JJ)=SEDSTR(INDEX,JJ + i)
0314

p
415 CONTINUE

c
p

FILL IN 'EMPTY' ROWS

0315 420 IF(<INDEXK-INDEX).LT.2)GO TO 424
0316 INDEXK=INDEXK-1
0317 DO 422 JJ=1,NRMIG1
0318 NCOLK=NCOL-JJ
0319 IF ( NCOLK. LT. 1) GO TO 422
0320 IF(NZCELI.LT.NZCL10.AND.IFC0D5.EQ.1)GO TO 421
0321 IF(SEDSTR(INDEXK,NCOLK).NE.WATER.AND.SEDSTR(INDEXK,NCOLK).NE.OLDSE 

ID)GO TO 422
0322 421 SEDGS(INDEXK,NCOLK)=SEDGS(INDEX,NCOLK)
0323 SEDSTR(INDEXK,NCOLK)=SEDSTR(INDEX,NCOLK)
0324 422 CONTINUE
0325 GO TO 420
0326

p
424 INDEXK=INDEX

L
p

FILL NEW CHANNEL WITH WATER

0327
V

440 INDEX=IWS-NYCEL+1
0328 IF (NYCE L. EQ. 0) GO TO 450



0329 DO 445 II’INDEX,IWS
0330 SEDSTR!11,NCOL)’WATER
0331 445 SEDGS!I IfNCOL,’WATER
0332 450 Z=Z+ZCEL1

C
C CALCULATE PERCENT SILT-CLAY IN PERIMETER OF CHANNEL 
C

0333 FLTK’FLOAT!KOUNT)
0334 SCHUMM’100.0*!BGS+OBGS*YCOZC,/IFLT2+YC0ZC*FLTK,

C
C CALCULATE GRAIN SIZE INDICES FOR INNER ANO OUTER BANKS 
C

0335 BGSI=BGS/FLT2*100.0
0336 QBGSI=OBGS/FLTK*100.0
0337 IF(OBGSI.EQ.0.0,OBGSI=1.0
0338 GRAVI=GRAV/FLTK*100.0
0339 IF(GRAVI.GT.GRAVLM)GO TO 460

C
C FILL 2-D ARRAYS FOR THE SECOND CHANNEL IF A TWO CHANNEL DOWNVALLEY 
C SECTION IS BEING USED - STORE ON DISK 
C

0340 ID’IBANK+1
0341 DO 540 J=1,NZCELT
0342 540 WRITE(IDISK’ID,(SEDGS(I,J,,SEDSTR(I,J,,TLPLOTI I,J,,1=1,NROWS,
0343 IF(IFC0D6.NE.2,GO TO 548
0344 ID=IBANK+NDAVA+i
0345 DO 545 J=1,NZCELT
0346 545 WRITE(IDISK’ID,(SEDGS(I,J,,SEDSTR(I,J,,TLPLOT(I,J,,1=1,NROWS,
0347 548 IF(IPRINT.NE.0,GO TO 570

C
C PRINT OUT CROSS SECTION SHOWING GRAIN SIZE DISTRIBUTION 
C

0348 ID=1
0349 WRITE16,35,TITLE,NFLD
0350 DO 550 J=1,NCOLS
0351 READ(I DISK•ID,ERR=590,(TEMPGS(I,,TEMPST(I),TEMPTL(I,, 1 = 1,NRO WS ,
0352 550 WRI TE ( 6 ,FMT4, ITEMPGSd, ,1=1,NROWS,, (TEMPTL! 11, 1=1,NROWS ,

C
C PRINT OUT CROSS SECTION SHOWING SEDIMENTARY STRUCTURE DISTRIBUTION
C

0353 ID’l
0354 WRITE(6,36,TITLE,NFLD
0355 DO 560 J=1,NCOLS
0356 READ!I DISK’ID,ERR=590, (TEMPGS(I,,TEMPST(I,,TEMPTL(I>,1=1,NROWS,
0357 560 WRITE(6,FMT4,(TEMPST!I,,1=1,NROWS,,(TEMPTL!I),1=1,NROWS,
0358 GO TO (570,990,992),ICUT
0359 570 IBANK’IBANK+NRMIG

C
C FIND PLANIMETRIC FORM OF MEANDER AT END OF THIS YEAR 
C

0360 IF(NFLD.EQ.0,GO TO 575
0361 IF!ITDMIG+WVL,•GT.XMAX,GO TO 986

C
C FIND CHANGES IN AMPLITUDE 
C

0362 IF(LIM.EQ.1,GO TO 572
0363 AMP=AMP+RLMIG*2.0
0364 SS = (AMPLIM-AMP)/2. 0
0365 IF ! SS. GT. 0. 0) GO TO 573
0366 LIM=1
0367 AMP’AMPLIM
0368 RLMIG’0.0
0369 SS’0.0
0370 CALL MEANDR
0371 IF(IFC0D6.LE.0)GO TO 971
0372 WRITE(6»49,NFLD
0373 GO TO 575
0374 572 IF(RDMIG.LE.0.0)GO TO 575
0375 CALL MEAND1
0376 GO TO 575
0377 573 CALL MEANDR
0378 IF(GAP.LE.WW,GO TO 992
0379 575 NFLD’NFLD+1
0380 IF(NFLD.LE.NTIM)GO TO 169

c
C ERROR MESSAGES 
C

0381 GO TO 999



460

580

5 85

590

971

976

978

980

982

984

986

988

990

994

992
999

1000

0382 
0383 
0384 
0385 
0386 
0387 
0388 
0389 
0390 
0391 
0392 
0393 
0394 
0395 
0396 
0397 
0398 
0399 
0400 
0401 
0402 
0403 
0404 
0405 
0406 
0407 
040 8 
0409 
0410 
0411 
0412 
0413

WRITE(6,43)GRAVI 
GO TO 999 
WRITE(6,37)
GO TO 999 
WRITE(6,39)
GO TO 999 
WRITE(6,38)
GO TO 999 
WRITE (6 ,972 ) NF LD 
GO TO 999 
WRITE(6,977)
GO TO 1000 
WRITE(6,979)
GO TO 1000 
WRITE(6,981)
GO TO 1000 
WRITE(6,983»
GO TO 1000 
WRITE(6,985)
GO TO 999 
WRITE(6,987)
GO TO 999 
WRITE(6,989)
GO TO 1000 
WR I TE ( 6 ,991) NF LD 
GO TO 999 
WRITE(6,995)
GO TO 1000 
WRITE(6,993)NFLD 
CALL PL0T(7)
STOP
END
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36. If* IPRINT-0 the contents of' the disc data set corresponding
to the cross sections are read and printed out as sections
showing grain size and sedimentary structure distribution.

14.3 Subroutine BAR (with entry point BARI)
This subroutine calculates the grain size and bed form

present at a particular station on the point bar using the some
what modified version of Allen’s (l970a,b} model.

1. Calculates the argument, ARG, required in the SIN and COS
functions of the next two operations.

2. Calculates depth of water, Y, at a station (column NCOL),
using equation (5.1)* *

3. Calculates local transverse slope of point bar, DYDZ, 
using equation (5.18),
If a user specified transverse profile is required, the 

above operations are skipped by using entry point BARI. Arith
metic assignment FORTRAN statements defining Y and DYDZ must be 
added immediately below the ENTRY BARI statement (see listing). 
The value of DYDZ must be scaled such that the units of D are cm.
In this respect it should be noted that units of length are 
everywhere metres, except where otherwise specified, and VAR2S is
dimensionless.

4. Finds row, INDEX, in the two-dimensional arrays corres
ponding to calculated depth. A-

5. Finds local radius of curvature, RL.
6. Calculates grain size, D, at the station, using equation 

(5.20). Units are in cm.
7. Allocate grain size to Wentworth scale division, clay, 

silt, sand or gravel, and fill appropriate element of 

SEDGS (INDEX, NCOL) with corresponding alphameric character; 
Changing the program to accommodate further subdivision of
grain size classes would be a simple task if required



SUBROUTINE BAR

Calculate flow depth and transverse slope at a station using 

sigmoidal transverse profile of point bar.

ENTRY BAR1

Calculate flow depth and transverse slope at a station using user- 

specified transverse profile. FORTRAN statements need insertion here,

Find row index for station in question

Find local radius of curvature

Find grain size at station

Find grain size class according to Wentworth scale, and allocate 

grain size symbol to appropriate element of array SEDGS.

□Find VEL1, TX, OHEGA1, and THETA.

TeBt for bed form. |

Allocate required bed form symbol to appropriate element of SEDSTR,

yes Is IFCOD4 = 0?

no

1
| If bed form is plane bed or antidunes, calculate VEL2. and 0MEGA2,

Write out depth, grain size, bed form, and hydraulic parameters 

if IPRINT = 0.

| RETURN 1

i4,4 Flow diagram for subroutine BAR
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8, Calculates local depth of water expressed in cm., YCM.
9• Calculates product of YCM and acceleration due to gravity,

G, where the units of G are cm./sec/sec,
10. Calculates local mean flow velocity, VELl, using equation

and using the friction coefficient for dunes and ripples, FI 
Units are cin/sec.

11. Calculates local bed shear stress parallel to the channel 
centre line, TX. Units are dynes/sq,cm.

12. Calculates local stream power, 0MEGA1, as the product of TX 
and VELl. Units are ergs/sq.cm./sec.

13. Calculates local dimensionless shear stress, THETA, using
equation (5.23). ' '

14• Tests to see if bed form is antidunes, upper phase plane
bed, dunes, ripples, or lower phase plane beds by applying 
a series of inequalities, as in Allen’s (1970a) model. The 
appropriate element of SEDSTR (INDEX, NCOL) is filled with 4 
an alphameric character’ corresponding to the bed form *3
chosen,

15. If IPRINT-0 writes out grain size, bed form and other 
hydraulic variables, calculating VEL2 and 0MEGA2 where 
necessary. VEL2 and 0MEGA2 are the local mean flow velocity 
and stream power respectively, calculated using the friction 
coefficient for plane beds and antidunes, F2 . If IFCOD^-O 
step 15 is skipped, as BAR is being called during a scour
and fill operation.

A simplified flow diagram for subroutine BAR is given in51
fig. l4.4.

14.4 Subroutine MEANDR (wi th entry point MEAND1)
This subroutine calculates the planimetric geometry of

the meander for every time increment and plots a trace of the
channel centre line whenever required. If entry point MEANDl is

used, the planimetric geometry is not calculated.



SUBROUTINE MEANDR

no
—-----------------------------J
| Is a trace of the

f ...................................-. ■ . - ............................

channel centre line required?r
yes____________________ _I_________________________________________

| Parameter initialisation for plotting meander trace

Sequentially plot a trace of the channel centre line 

around the meander.

Label trace with time increment.

----->

RETURN 1
Pifi. 5e Flow diagram for subroutine MEANDR
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1. Sinuosity, SN, is calculated, given amplitude, AMP, and 
wavelength, WVL, using the regression equation (2,12). If 
NFLD-0 this step is omitted as SN is read initially as input
data. . -I

2. Channel length along the meander centre line, CHL, is ;
calculated as the product of WVL and SN. . t

3. Longitudinal water surface slope, CHS, is calculated as :4
valley slope, VS, divided by SN. 4

4. Radius of curvature of the channel centre line at the bend J
axis, R, is calculated from equation (2.5) • 4

5. Radius of curvature of the inner bank at the bend axis, RINB, 4
is calculated for use in subroutine BAR.

6. Calculates product of fluid density, RO, and CHS for use in 4
subroutine BAR. Units in gin./cu.cm. -?

ct
7. Calculates product, VAR2S, of VAR2 and CHS for use in BAR.

Dimensionless variables, -4♦ .«§•
8. Calculates Proude numbers, FROUD1 and FR0UD2 (calculated 

using friction coefficients Fl and F2 , respectively), foi’ use / 
in BAR.

9. Calculates selected geometric ratios, 4
10. Calculates the maximum angle (radians) that the path of the 4

channel centre line makes with the mean downvalley direction, 4 
OMEGA, using equation (2.4). If OMEGA is less than K/2, the 
width of the meander neck, GAP, is set to a very large 4
numbei’ as an indication of being undefined, and the next step < 
is omitted. |

11. Calculates width of meander neck measured to channel centre
lines, GAP, after solving the necessary integral by calling 
subroutine SIMINT (and FUNC2).

The preceding operations are skipped, by using entry point 4 
MEAND1, if amplitude growth of the meander has ceased, the

variables above remaining unchanged. The following operation
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is skipped if no printed output is required,
12. If IPRINT=O write out planimetric geometry parameters and M

Z '

selected geometric ratios, •
The following operations are skipped if no trace of the ig

■ $ -xchanrreJ. centre line is to be plotted. .
13. Divides CHL into 100 incremental lengths and, by calculating 

the deviation angle, PHI, from the downvalley direction 
(using equation (2,3)) for each incremental length, 
sequentially plots the meander trace. The sines and cosines 
of the deviation angles for the first half of the bend (50 < 
of each) are stored in COSPHI (50) and SINPHI (50) and thenj 
used for plotting the second half. • Subroutine PLOT is used
during this step.

14. Labels the trace with the appropriate time increment. 
Subroutines PLOT and CHAR are called here.

All units of length are metres unless otherwise specified 
A flow diagram of subroutine MEANDR is shown in fig. l4.5.

14.5 Subroutine SI MINT (and FUNG 2)
This subroutine is called by MEANDR and evaluates inte

grals numerically using Simpson's rule. The interval is successive? 
ly halved until estimates of the integral do not differ by more than
the specified limit, E. This is set to 0.005. The function to 
be integrated, given in equation (2.1l) is specified in a FUNCTION 
subroutine FUNG2, which is called by SIMINT. See appendix 1 for 
description of Simpson's rule.

1b.6 Subroutine RANSAM
This FUNCTION subroutine returns random samples from

specified frequency distributions. It is called by the main
program, and is used when finding the flood period volume, also 

in the scour and fill relation, equation (9«^)» A flow diagram is 
shown in fig. lU.6.

. If IFC0D3 equals 3»^ or twelve pseudorandom numbers are
- :

1
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generated, using subroutine RNDM, and summed.
2. This sum is then converted to a normally distributed random 

variable, using equation (AI.2). If IFCOI)3 = 3 this variable 
is returned, but may be further converted to a gamma dis
tributed (see equation (Al.7 )J or a lognorinally distributed 

(see equation (Al.6))random variable, if IFCOD3 equals 4 or 5, 
respectively. These random samples are distributed with zero 
mean and standard deviation unity.

If a random sample from a user specified distribution is 
required, FORTRAN statements must be added immediately after 
the appropriate comment card (see listing). This is before 
step 1. Additional data will be required if more than the 
first three moments or any other parameters are required to
describe the distribution. ■>

14.7 Subroutine NEWRAP
This REAL FUNCTION subroutine is called by the main program 

during initialisation, and evaluates a root of the polynomial, 
given in equation (2.12), by the Newton-Raphson iteration procedure 
(see appendix l). It is required to find a particular value of 
AMP/WVL, which satisfies the equation. Whence AMP is found given 
the initial value of SN and WVL as input.

The initial estimate of the root required is given by the 
linear approximation of the third degree polynomial, given in
appendix 2. The estimate is sufficiently close to the required

*root, compared with other roots, to avoid any complications in the 
iteration procedure. The iteration continues until successive 
estimates differ by less than or equal to the specified amount, E. 
This is set to 0.0000001. Only a few iterations are required as
the convergence is fairly rapid
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14.8 Subroutines RNDMIN and RNDM
These subroutines are involved in the generation of* 

pseudorandom numbers (i,e. practically uniformly distributed 
random numbers)* The purpose of RNDMIN is to read a starting 
variable, IX, an integer preferably 9 or less digits, on which
the random floating point number generation will be based, RNDM
does the actual random floating point number generation using the
number declared above. It uses the same generating sequence as 
RANDU, in the IBM Scientific Subroutine Package (1971, p.77), to 
produce numbers between 0,0 and 1,0, RNDMIN and RNDM are auto
matically available on the IBM 360/44 system libraries,

14.9 Subroutines PLOT and CHAR
These are subroutines used for controlling the CIL graph

plotter. PLOT is used for drawing and scaling of graph axes,
and the actual plotting of the graph, CHAR is used for annotat
ion, PLOT and CHAR are specific to the installation, and are
automatically available in the system libraries of St, Andrews
University Computing Laboratory. Different installations will
be expected to use different graph plotter routines
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1.5 INPUT REQUIREMENTS AND PROGRAM MODI El CATION INSTRUCTIONS
FORTRAN ’FORMAT’ codes are given for each variable to be

read. With the I code all numbers must be right justified in the
specified fields. With the F code, numbers can be anywhere in the 
specified field as long as a decimal point is present. In this 
program F codes have been used such that a decimal point is always 
required unless no places of decimals are needed, in which case
the numbers must be right justified. Input requirements are given 
first for the program which uses no disc, and subsequently, those
data cards which are different when using a disc are described.

1 • Title Card
Column
1-60 TITLE

61-70 IX

2. Time and
Column
1-4 NTIM
6--Q NPRINT

9-12 NFPLOT

13-16 NTPLOT

The last three

Alphameric title (15A4), Can be placed anywhere 
in this 60 column field.
Starting number fox* pseudorandom nurnbex’ generator, 
preferably large. (HO), 
output con trol card

t?

Number of time increments (l4).
Line printer output is printed every NPRINT-th 
time increment (l4).
Graph plotter output is every NFPLOT-th time 
increment (l4),
A time line is plotted on the cross sections every 
NTPLOT-th time increment (l4). 
variables must not be set to zero.
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3. Cross sect 1 on conb.ro.1 card (see fig. l4.l)
Column
1-^ NCOLS Number of columns in a cross section (l4), If this 

if greater than 200 the dimensional information 
given in the INTEGER*2 and the labelled COMMON/COM2 
statements must be changed.

5**8 NROWS Number of rows (l^)> If this is greater than 60 
the dimensional information given in the’ INTEGER'*2 
the labelled COMMON/COM2 statements must be changed.

The maximum possible sizes of NCOLS and NROWS will depend on the 
addressable storage (core store) available at a particular install
ation. If a reduction in the amount of core store used in the
listed program is required, the same adjustments as outlined above
apply. The physical size of the line printer will also limit NROWS 
(i.e. 132 in IBM 1403).
9-12

13-20

21-38
29-36

37-^4

^5-52

IFC0D6

ZTOT
YTOT
BANK

WS

DWS

53-60 ZSECT

Condition code to determine type of cross section 
represented (l4). That is,
0 - Lateral section
1 - One-channel downvalley section
2 - Two-channel downvalley section.
Width of section, in metres (f8.0)
Thickness of section, in metres (F8,0),
Initial distance of inner channel bank from left 
hand side of section, in metres (f8.0).
Initial bankfull stage measured from section base, 
in metres (f8,0). Must not exceed YTOT.
Rate of aggradation, in metres per year (f8,0). 
Value must not be greater than the cell depth, 
given by YTOT/NROWS.

Normal distance of line of section from line joining 

points of inflection of loop (f8.0). Applies only

to one-channel downvalley section, therefore if
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IFCODi'S/’l, leave blank. Must not exceed AMP/3.0. 

61-80 FMT4 Object time FORMAT code used for printing out
cross sections (5A4), Must be of the form (lX,nAl) 
where n equals NROWS

4• Meander Geometry card
Column
1-12 SN Initial sinuosity (F12.0). Must not exceed

limiting sinuosity, SNLIM, which is read from card
13-24 WVL Meander wavelength, in metres (F12.0),

25-36 VS Valley slope (f12.0), t

37~zt8 XMAX Maximum length in the X (downvalley) direction
required for plotting the plan form of the meander
as it migrates downvalley, in metres (F12.0),
XMAX must not be less than WVL+total amount of
downvalley migration.

5• Bank migration card
Column
1-12 Cl Constant k^ in bank

(6.3). (F12.0).
migration relation, equation

13-24 C2 Constant k^ in bank
(6.4). (F12.0).

migration relation, equation

25-36 El Exponent n^ in bank
(F12.0).

migration relations above.

37-48 GRAVLM Limiting percentage of gravel (grain diameter 2mm
allowable in outer ’bank (F12. □). Measured as
amount of areal exposure.

6 . Cut-of f c ontrol caa?d
Column
1-12 ECl Exponent ec^ in chute cut-off relation, equation

(10.1) (F12.0).
13-24 EC2 Exponent eCr> in chute cut-off relation (F12.0).



25-36 ENl

37-48 EN2 
49-60 GAPLIM

61-72 SNLIM 
7 . Channel _
Column
1-8 W

9-16 H

17-2U EXN

25-32 C5

33-40 El

41-48 F2

49-56 SIGMA

57-64 RO 

65-70 IPC0D7

Exponent en in neck cub-off relation, equation 
(10.2) (F12,O).
Exponent en„ in neck cub-off relation (F12.0). 
Limiting width of meander neck, in metres, measured
as the shortest distance between the adjacent banks 
of each meander limb (f.12.0).
Limiting sinuosity (F12,0),
arameter card

Width of flow between inner bank and talweg, wn, 
in metres (f8,0).
Maximum unscoured depth of flow measured above 
talweg, h, in metres (F8.0). Must be less than 
or equal to WS, as specified in card 3»
Exponent n^ in transverse profile equation (5.1) 
(F8.0).
Ratio of w^ to full width, w (constant k^ in 
equation (5•2)) (F8.0). .
Darcy-Weisbach friction coefficient for dunes and 
ripples, f- (f8.0).
Darcy-Weisbach friction coefficient for plane beds 
and antidunes, f^FS.O),
Density of sedimentary particles, in gin/cu.cm,
(F8.0).
Fluid density, in gm/cu.cm, (P8,0).
Condition code to determine type of transverse 
profile of point bar (l4). That is,

0 - sigmoidal profile as given by equation (5»l).
1 - user specified profile. Extra parameters may

147.

be required to describe this.
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if

8 • Sy mbols card
Column

1

1 GRAVEL Alphameric character used in line printer output
to represent gravel (Al)•

2 SAND Character for sand (Al)•

3 SILT Character for silt (Al).
4 CLAY Character for clay (Al).

5 UPPB Character for upper phase plane bed (Al).
6 LPPB Character for lower phase plane bed (Al)•

7 ANTIDN Character for antidunes (Al).
8 RIPPLE Character for ripples (Al)•

9 DUNES Character for dunes (Al)•
10 OLDSED Character for old sediment (Al) .

11 WATER Character for water (Al)•
12 DOT Character used for plotting time lines (Al) .

Should ideally be a full stop.

13 BLANK Blank space.
14 FLOOD Character used for overbank sediments, produced wi

aggradation (Al) •

9. Synthetic hydrology cards - any units allowable as long as
they are consistent

Card 9a
Column
1 IFC0D3 Condition code used to determine the frequency

distribution of the independent residual series,
as given in equation (II.7) (ll). That is,

2 - User specified theoretical

2~13

3 ~ Normal
4 « Gamma
5 «• Lognormal

QVOLMX A maximum value of Q , to be used in the cut-off voi ’
tests (FI2.0).



14-25 SKEW

Card 9h
Column
1-12 DM
13-24 DS
25-36 YM
37-48 YS
49-60 A1
61-72 A2
Card 9c
Column
1-72 A(6)

Card 9d
Column 
1-72 b(6)

Card 9®
Column
1-72 SA(6)

Card 9f

Skewness of gamma distribution (or user specified 
distribution) if condition code in column 1 is 
appropriate. Otherwise leave blank (F12.0).

149.

a

Mean of all daily flow values (F12.0), *
.iStandard deviation of all daily flow values (F12,0)?> 

Mean of Y, series (F12,0),
Standard deviation of Y, series (F12.0),
Coefficient a. in autoregressive model (F12.0), 
Coefficient a^ in autoregressive model (F12.0).

Array of Fourier coefficients, A^, for the cosine
terms of the harmonic representation of the daily
means. Six coefficients corresponding to the first?

3
through to the sixth harmonic (kssl,6), each having 
(F12,0).

■’A

Array of Fourier coefficients, B^, for the sine
terms of the harmonic representation of the daily
means. Six coefficients corresponding to the first;; 
through to the sixth harmonic (6F12.O),

Array of Fourier coefficients A, for the cosine s k
terms of the harmonic representation of the daily 
standard deviations. Six coefficients corresponding 
to the first through to the sixth harmonic (6F12,0)i

Column
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2-13

1^-25
26-37

38

c6

E2

STDVN

1-72 SB(6) Array of Fourier coefficients, Bj , for the sine
terms of the harmonic representation of the daily 
standard deviations. Six coefficients corresponding 
to the first through to the sixth harmonic (6F12.0).

10. Scour and fill card
Column
1 IFC0D5 Condition code to determine whether scour and fill

process is required. If 1, the process is required,
If 0, the process is not required and Che whole
card may he left blank. •
Constant k. in scour and fill relation, equation 
(9.'+) (F12.0).
Exponent n^ in scour sand fill relation (F12.0). 
Standard deviation of error term in scour and fill 
relation (F12.0).

IFC0D1 Condition code to determine frequency distribution 
of error term in scour and fill relation (il)• The 
codes available are as for IFC0D3 on card 9^»

11. Flood plain sediments card(s)
Column
1-IWS SEDIN(6o) Array containing alphameric characters to

specify the initial grain size distribution in the
cross section. One symbol for each row according 
to the symbols read from card 8, each in (Al) format 
There will be IVS symbols, where IKS is the integer 
part of VS x NROVS/YTO'p. The symbol in column 1 
is allocated to the base of the section, and then

J• successively up the section until the last character 
is read into row IVS. If IVS is greater than 60 the 
dimensional information given in the INTEGER*2
statement must be changed. If IVS is greater than
80 the data must be continued onto another card

using the same format
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If a disc is being used a slightly different data input 
is required. The title card (l) and the cross section control 
card (3) must be replaced, the latter with two cards (3a and 3b). 
These replacement cards are as follows:
1. Title card
Column

1-60 TITLE

61-70 IX

71-72 IDISK

3.

Alphameric title (15A4). Can be placed anywhere 
in this 60 column field.
Starting number for pseudorandom number generator, 
preferably large (no).
Data set reference number for disc data set (12). 
The number will depend on the programming system, 
and whether a system or private disc is being used. 
If not equal to 4, the DEFINE FILE statement in 
the main program must be changed.

Cross section control cards
Card 3a
Column
1-4

5-8

9-12

NCOLS Number of columns (l4). If this is greater than 
200 the number of records in the DEFINE FILE
statement in the main program must be changed.
NCOLS records must be stored on the disc data set.

NROWS Number of rows (l4). If this is greater than 60
the dimensional information given in the INTEGER*2 
and the labelled COMMON/COM2 statements must be 
changed. This will also entail changing the record
size in the DEFINE FILE statement. The size of one
record is NROWS x 6 bytes.

MNCOLS Maximum number of columns that can be held in the ? 
core store at any one time (l4). If more than 50 

dimensional information given ini the INTEGER*2 and 
the labelled C0MM0N/C0M2 statement must be changed.
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The actual maximum number of columns required in
the program will depend on the cell width, given 
by ZTOT/NCOLS, the channel width and the maximum 
rate of bank migration in the cross section 
represented (see fig. l4.l), >

The maximum possible sizes of NROVS and MNCOLS will depend on 
the addressable (core) storage at a particular installation. If 
a reduction in the amount of core store in the listed program
is required, the same adjustments as outlined above apply. NROVS 
will also be limited by the physical size of the line printer. 
13-15 IFCOD6 Condition code to determine type of cross section

represented (l^). That is,
0 - Lateral section
1 - One channel downvalley section
2 - Two channel downvalley section,

17-37 FMT4 Object time FORMAT code used for printing out
cross sections (5A4). Must be of the form (lX, 
nAl) where n equals NROVS.

Card 3b
Column
1-12 ZTOT
13-2^4 YTOT 
25-36 BANK

37-^8 VS

^9-60 DVS

61-72 ZSECT

Width of section, in metres (F12.0).
Thickness of section, in metres (F12.0).
Initial distance of inner channel bank from left 
hand side of section, in metres (F12.0).
Initial bankfull stage measured from section base, 
in metres, (F12.0). Must not exceed YTOT.
Rate of aggradation, in metres per year (F12.0). 
Value must not be greater than the cell depth 
given by YTOT/NROVS.
Normal distance of line of section from line

joining points of inflection of loop (F12.0)
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Applies only to one-channel downvalley section, 
therefore if IFC0D6^1, leave blank. Must not 

exceed AMP/3.0.
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16. SAMPLE RUN
Table l6.1 contains the data input for an illustrative 

sample run of the program, Output is the same with or without 
the use of a disc. Tables 16.2 to 16.5 and figs. 16,1 to 16.3 
illustrate the output from this run as follows.

Table l6.2 shows data which is output once for each 
separate run of the program, and this precedes all subsequent
output for the run. The information given is partly that
supplied as input and partly computed during initialisation. The
notation used is as used in the development of the mathematical
model, part 2. The cross section parameters listed are shown in 
fig. l4.1, and some of the channel parameters listed are shown in 
fig. 5*2. As already stated the synthetic hydrology parameters
require no units to be specified. The data used in this case are 
taken from the data of Quimpo (1967) for the Oconto River as 
listed in table 11.1, and the maximum value of Q , was inferred
from inspection of 500 years of simulated streamflows, With
respect to the bank migration parameters, the word ’lateral’
here refers to bank migration in the direction normal to the
mean downvalley direction. This word is normally reserved for
erosion or deposition ’lateral* to the local mean current
direction. Limiting width of the meander neck specified here
is the distance measured between channel centre lines, and
therefore not as originally input. The legend refers to symbols
used in the cross sections. It should be noted here that any 
number of symbols could be used (within the limitations of the 
line printer) and an increase in the number of the qualities 
(i.e. grain sizes, bed forms, etc.) used in the program would 
entail simple and straightforward modifications. The symbols
used, however, are considered sufficient for present purposes



o

<n <\*
r—4 —
O' •—1
r—4 <3 CP
sT CP mj
CM O in
•—4 •» CP o co
00 X • m <r • o mr-4 r-» • • r— • •

***
O

o r- cm oc >3"

•
o

ui
s0 r-4
• r~

CM o 00 in CM CMr-4 o • • • •
• in O' CM r- m

o • m r- <r >T
o I l i 1

CM o u
• CM

I— o
z m

o o o in
• • • r—4

o co o •
o m r-M o

LU r-H o O r~
PL CM o • • • •
4—4 • • 00 in in r-4
ac O in s0 r- cc
LU O rM in o
Q_ • o • •
X o o o o
LU o rH

• CO
o •

ir O co
CJ in O' <t CM VO
4—t o • • • • CJ
t— • in O' o O CJ
c o co r- M3 CJ
~J o o 1 1 1 1 CJ
ZJ cp o CP • CJ
>_ • r—4 • 4* CJ
4—1 o cp cj r—4 CJ
VO co o CP CJ

o CP CP r-~4 CJ
vo • r-4 • CJ
VO cp o CJ
LU in o <r CP O r- CJ
cp cp C- o <4 44 • • • CJ
o CM r-4 • r—4 in in r—4 in CJ
a: o LC MT MT 00 <r o CJ
cl CM cp <r r—4 r-4 r—4 r—4 CJ

CJ CM O r-4 cp • • CJ
LU CM • o • 4—4 o CJ
-J CM cp o X CP CJ
4—4 CP CP Q CP CJ
h— O O o r—4 O fZ cj CJ
< CM O CJ • < co CJ

4—4 • o -J f—I co <T co CJ
> o o zj in • • 44 sO CJ
ZP o cp r—1 1 • CP CM Cl • LJ
_J CJ in CO Cl CP r—4 I'M in CJ
LL r—4 CO CJ <r CM r—l r—4 00 CJ

cp <r in 1 1 1 1 a

Ta
bl

e l6
ols Data

 inp
ut

 for
 sam

pl
e ru

n



FLUVIATILE PROCESS SIMULATION EXPERIMENT 2

CROSS SECTION PARAMETERS

WIDTH OF SECTION
THICKNESS OF SECTION
INITIAL DISTANCE OF INNER CHANNEL BANK FRCM L.H.S. 
INITIAL BANKFULL STAGE MEASURED FROM SECTION BASE 
CELL SIZE IN VERT1CAHYI DIRECTION
CELL SIZE IN HORIZONTALIZ OR XI DIRECTION

OF SECTION

METRES CELLS

1750.000 350
60.COO 60
0.0 C

30.000 30
1.000
5.000

CHANNEL PARAMETERS

TOTAL WIDTH OF CHANNEL!Ml
WIOTH OF FLOW BETWEEN INNER BANK AND TALWEGIW1I 
RATIO OF W1 TO W
MAXIMUM FLOW DEPTH MEASURED ABOVE TALWEG 
DENSITY OF SEDIMENTARY PARTICLES 
FLUID DENSITY
DARCY-WEISBACH FRICTION COEFFICIENT FOR DUNES ANO RIPPLES 
DARCY-WEISBACH FRICTION COEFFICIENT FOR PLANE BEDS ANO ANTICUNES 
EXPONENT N1

METRES CELLS

125.000 25
100.000 20

20.000
O.BCO

2.65C GM/CM3 
l.CCO GM/CM3 
0.21C 
0.150 
l.CCC

SYNTHETIC HYDROLCGY PARAMETERS!UNITS NCT NECESSARY)

MEAN OF ALL DAILY MEAN VALUES 543.5C0
STANDARD DEVIATION OF DAILY MEAN VALUES *41.000
MEAN OF YT SERIES 0.0
STANDARD DEVIATION OF YT SERIES 1.000
COEFFICIENTS IN AUTOREGRESSIVE MODEL Al= 0.567

HARMONICS 1
A2»

FROM 1 TO 6
0.306

FOURIER COEFFICIENTS FOR DAILY MEANS!A) -200.300 145.400 -B5.5C0 58.CC0 -35.BOO 7.400
(BI -112.ACO 165.COC -75.9CC 65.600 -72.500 27.800

FOURIER COEFFICIENTS FOR DAILY STD DEVI AT 1CNStSAI -123.300 141.600 -66.4CC 75.700 -47.200 6.600
(SB) -85.6C0 105.700 -46.2CC 31.7CC -43.200 4.300

MAXIMUM VALLE OF QVOL 130000.000

BANK MIGRATION PARAMETERS 
EXPONENT N2
VALUE OF CONSTANT IN LATERAL MIGRATION RELATION 
VALUE OF CONSTANT IN DOWNVALLEY MIGRATION RELATION 
LIMITING PERCENTAGE OF GRAVEL ALLOWABLE IN OUTER BANK

0.50C 
K2* 0.100E-05 
K3- 0.100E-03 

30.COO

SCOUR AND FILL PARAMETERS
CONSTANT KA 0.0 
EXPONENT N3 0.0 
STANDARD DEVIATION OF ERROR TERM 0.0

CUT-OFF CONTROL PARAMETERS
LIMITING WIDTH OF MEANDER NECK 
EXPONENTS IN NECK CUT-OFF RELATION 
LIMITING SINUOSITY
LIMITING AMPLITUDE
EXPONENTS IN CHUTE CUT OFF RELATICN

125.000 METRES
EN1 = 10.000 EN2= 1C.0CC

2.000
760.909 METRES

EC1= 100.000 EC2= 10C.0C0

A DOWNVALLEY SECTION JS REPRESENTED IN THIS TEST
CISTANCE OF LINE OF SECTION FROM PCINT OF INFLECTION CF LCOP IS 0.0 METRES

LEGENO

LOWER PHASE PLANE BED L GRAVEL G OLD SEDIMENT
RIPPLES R SAND C HATER
DUNES D SILT S TIME LINE
UPPER PHASE PLANE BED U CLAY AIK
ANTIDUNES A QVERBANK F

DEPOSITS

X

BLANK

Table l6®2 Sample output from main program 
initialisation„

during



Table l6Ji„ 
Sample output 

Table 16.3. 
Sample output from

from subroutine 
subroutine PAR,

MEANDR
.

TIME INCREMENT 0FLUVIATILE PROCESS SIMULATION EXPERIMENT 2

PLANIMETRIC FORM OF MEANDER METRES

WAVELENGTH 1000.000
AMPLITUDE 760.909
SINUOSITY 2.000
RADIUS OF CURVATURE AT BEND AXIS 217.571
WIDTH OF MEANDER NECK *#*=♦♦$$*♦*
CHANNEL LENGTH ALONG MEANDER 2000.000
VALLEY SLOPE 0.00010000
LONGITUDINAL WATER SURFACE SLOPE 0.00005000

SELECTED GEOMETRIC RATIOS

WAVELENGTH TO RADIUS OF CURVATURE 4.596 
WAVELENGTH TO CHANNEL WIDTH 8.000 
RADIUS OF CURVATURE TO CHANNEL WIDTH 1.741 
AMPLITUDE TO CHANNEL WIDTH 6.087

FLUVIATILE PROCESS SIMULATION EXPERIMENT 2 TIME INCREMENT 0

/ARIATION OF GRAINSIZE -AND BED FCRM OVER CHANNEL CRCSS PROFILE

DEPTH GRAINSIZE BED FORM LOCAL MEAN LCCAL LOCAL STREAM LOCAL BED LCCAL FRCUDE
(M ) (CM) FLOW VELOCITY DIMENSIONLESS POWER SHEAR STRESS NUMBER

(CM/SEC) SHEAR STRESS (ERGS/CM2/SEC) (0YN/CM2J

0.1230 C.CC01 - U 5.6716 3.8730 3.4207 0.6031 0.0516
0.4888 0.C007 S U 11.3083 1.9846 27.1140 2.3977 0.0516
1.0886 C.C024 S U 16.8754 1.3490 90.1076 5.3396 0.0516
1.9C75 0.CC56 s U 22.3385 1.0260 209.0086 9.3564 0.0516
2.9255 C.0107 0 U 27.6641 0.8279 396.9644 14.3494 0.0516
4.1174 C.0180 0 U 32.8194 0.6917 662.8142 20.1958 0.0516
5. A 540 0.0280 0 U 37.7725 0.5907 1010.4846 26.7518 0.0516
6.9024 C.C409 0 U 42.4931- 0.5114 1438.6509 33.8561 0.0516
8.4270 0.0572 0 D 39.6817 0.4462 1640.2112 41.3342 0.0436
9.9902 0.0775 0 D 43.2058 0.3906 2117.1675 49.0C2C 0.0436

11.5537 C.1C24 0 D 46.4639 0.3418 2633.1475 56.67C9 0.0436
13.0790 0.1331 0 D 49.4358 0.2977 3171.4243 64.1524 0.0436
14.5286 C.1713 0 D 52.1034 0.2570 3713.0173 71.2625 0.0436
15.8668 0.2199 G D 54.4501 0.2186 4237.6523 77.8264 0.0436
17.0607 0.2845 G D 56.4615 0. 1817 4724.8398 83.6825 0.0436
18.0809 0.3760 G D 58.1253 0.1457 5154.9531 88.6870 0.0436
18.9025 0.5203 G n 59.4311 0.1101 5510.2500 92.7166 0.0436
19.5C51 C.7957 G D 60.3710 0.0743 5775.8398 95.6724 0.0436
19.8739 1.5891 G D 60.9392 0.0379 5940.4531 97.4817 0.0436
20.0CQ0 127.5659 G D 61.1321 0.C005 5997.0430 98.0998 0.0436



MEANDER GEOMETRY
run 2c

SCALE-1 INCH TO 8C.55 METRES
Fig. l6ol„ Example of graph plotter output from subroutine MEANER.



Tables 16.3 and 16,4 are printed at the beginning of the 
run and every NPRINT-th time increment. Table 16.3 represents an 
example of output from subroutine BAR and shows the computed grain 
size, bed form and various hydraulic parameters (measured parallel 
to the x direction) for selected depths over the point bar profile. 
These depths correspond to stations located one cell width apart 
over the profile, from the top of the profile (starting at a 
distance of one cell width from the inner bank) down to the talweg. 
The profiles pertain to the unscoured channel which exists before
and after scouring and filling, and before slope adjustments are 
made (in the case of a developing meander). The depth at the 
talweg is therefore h. The symbols shown for grain size and
bedform at a given depth are allocated to the cross sections in 
the appropriate place. The actual depth, grain size and bedform
for a station, as seen approximately in the cross sections,
correspond to the right hand edge of the appropriate cell. As 
previously mentioned, the very top parts of these profiles, where 
clay is predicted, may not be theoretically correct, but should be 
qualitatively acceptable.

Table 16.^4 is an example of output from the subroutine 
MEANDR and refers to the planimetric form of the meander after a

high water period, that is, at the end of the time increment in 
question. Similar information is also printed out at the 
beginning of the run during initialisation. If the width of the
meander neck is not defined, asterisks are printed to indicate this
The longitudinal water surface slope is assumed constant all round 
the meander, as well as across the channel, during the water 
stages being considered. Fig. l6.1 shows an example of the graph 
plotter output from MEANDR. A trace of the channel centre line 
is produced during initialisation (and labelled with a zero),
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and subsequently every NFPLOT~th time increment. Each trace is



o
GO

FL
U

VI
AT

IL
E P

R
O

C
ES

S S
IM

U
LA

TI
O

N
 EXPE

R
IM

EN
T 2 

TI
M

E IN
C

R
EM

EN
T

vo
UJ
CX

LU
2

VO
LU
cX
h-
LU
2

VO
uu
ex
h"
LU
2

vo
LU

LU
22

VO
LU
CX
h~
LU
2

00 CO o o l*~ rM
00 o o r* in O'
o m o O o O rM <r
• • • • • • • • •

h~ o O o o LA
no <r CM <M M
O rM
O'
f***

ex
<1

LU
>•

ex
<

LU
>

LU LU
OX ox UJ UJ
<t <r ex
LU LU o O <t
>» > z z LU

MM MM ex >
LU LU z z
O a z z LU VO

M—< ►—1 > MM
o o o o X
2 2 LU IU VO h-
mm M-4 CD en MM ex
2 z X < LU
2 z J— h- t— IU a
•—< < < CX >

ex o o <c LU o
< LU IU ex LU LU O vo z
LU cc CO LU Q > MM LU
> h- 2D CO X

h— J— LU H- VO 2 h— H-
VO < < 2 ►m MM LU <
MM »—-t U X o
X X X CX (X 2 2
h- LU LU LU 2 <t a

Q a ex < o (X MM

cX z z 2 z X> J™
o mm •—< _j O MM o Q <2
LU LU 2 ex MM ex

LU LU Z »—« X h— Z O
LU rM r*J z h— CO < o MM

2 MM < eX H—< 2
22J VO U) JL 2 z u> J—
u z z u> m—» o MM < >
c M—• -J MM 2 eX UJ
> < < z O -J

CX ex 2 < -J MM ~j
Q o e> O ex < 2 <
O > cX o eX >M-t ^x iX < LU LU >» z
ex Z- 2 H~ LU 23C
LU <x < o LU <C -J a
(X CQ CO 1 o U u —J Q

H z < <
O ex ox —J <c ex u > U
o UJ LU MM h— LU <r z <c
o z vo vo JwW H- H"
mmJ X z MM < O O o
LU a M~< o -J h” Q h~ TO

TA
L AG

G
R

AD
AT

IO
N

 AT 
EN

D
 OF

 TH
IS

 YEA
R

 
8.

00
0 M

ET
R

ES



156

annotated with the appropriate time increment, and represents the 
position at the end of the time increment. When an experimental 
run was stopped due to cut-off, the appropriate cut-off information
has been added to these planform figures. The run numbers are
also added. The scales shown at the bottom of these figures are 
those of the original graph plotter output and are not appropriate 
for the figures reproduced here. As the dimensions of the meander 
plans are specified in the text, the scales of the reproduced 
figures can be obtained. ’

Table l6.5 is printed every NPRINT-th time increment but 
not during initialisation. The grain size indices and the total 
percent of silt and clay (including overbank deposits) in the 
channel perimeter represent actual percent areal exposure in the 
cross section defined, not necessarily in the transverse profile
defined at right angles to the local mean current direction. As 
already stated, the percent silt and clay in the channel perimeter 
is not the same as that used by Schumm (i960). The distance from 
the limiting amplitude at beginning of year refers to the
distance normal to the mean downvalley direction measured from the
channel centre line at the bend axis. Again, 'lateral’ migration
refers here to bank migration in the direction normal to the mean
downvalley direction.

Fig. 16.2 and fig. 16.3, respectively, show representative 
parts of the grain size and bed form distribution cross sections
produced after a certain number of time increments of this sample 
run. Each symbol marked (except for the time line dots) occupies 
one cell, the dimensions of which are given in table 16.2. The 
past positions of the unscoured channel bed are picked out with 
the dots of the time lines. These are plotted for the initial 
position, and subsequently every NTPLOT-th time increment, and
they represent the situation at the end of the time increment.

In the forthcoming experiments these time lines are annotated
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with the appropriate time.

Clearly the cross sections only record the response of the 
model to the processes as simplified from the real world system. 
However, an increasing degree of accuracy in the cross sections, 
within the simplified model system as it stands, could be
obtained, for instance, by increasing the number of grain size
divisions or decreasing the cell size. The symbols for dunes and
ripples should be assumed to represent cross bedding and cross 
lamination respectively, and those for upper and lower phase 
beds to represent flat bedding. The symbol for overbank deposits 
must be thought of as being internally variable in both grain
size and sedimentary structure, probably with some characteristics
similar to the immediately underlying point bar sediments
(particularly the grain sizes).

In the originals of cross sections shown and in subsequent 
sections produced in the experiments (except fig. 25.l)» the 

vertical and horizontal scales were 1 cm. to YCEL/0.25 metres and 
ZCEL/O.85 metres, respectively. YCEL and ZCEL are the depth 
(size in vertical direction) and width (size in horizontal 
direction) of the cells, and in these cases their values are 1.0 
and 5,0 metres respectively. The vertical exaggeration is there

fore (ZCEL/O.85) x (O.25/YCEL), which equals 1.47. .These scales 
only apply to the original line printer output (produced on IBM 
1403). Other line printers may have different spacing and size 
of characters. During reproduction the cross sections were
reduced^ The horizontal and vertical scales are therefore
calculated as, respectively, physical width of one cell (units) 
to ZCEL metres, and physical depth of one cell (units) to YCEL 
metres. The vertical exaggeration remains unchanged. This 
vertical exaggeration implies that the relief of any of the grain 
size, sedimentary structure, or sediment-water boundaries will be

exaggerated
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Associated with, the use of discrete cells which are filled
with a particular quality, is a smoothing error, as all lengths
in the cross section are rounded down to the nearest number of
cell units. As a result of this, the positioning of any quality 
is only within an accuracy of one cell. Confidence should not be 
placed, therefore, in, say, irregularity in facies boundaries 
with only one cell relief.

It should be noticed that in neither lateral nor down-
valley sections is the valley slope explicitly accounted for in
the cross sections. This is largely due to the negligible
slopes compared to the scales of the cross sections. It is
a simple matter, however, in the case of the downvalley sections,
to tilt the cross sections the required amount, as the bahkfull
level of the cross sections corresponds to the land surface.
Also, no control is made of the erosive effect of an upstream 
channel, which will be present in all sections. It is therefore
necessary to look at the plots of the channel centre lines to
discover how much of the deposits to the left of the current
channel in the cross sections can be sensibly assumed correct.

All lines separating different symbols or joining time
line dots are added by hand, thus subjectivity in the positioning
of such lines are the responsibility of the individual. In
future, lines separating different grain size classes, sedimentary
structures, etc., will be termed ’facies boundaries*



PART FOUR

EXPERIMENTATION AND RESULTS
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INTRODUCTION
The development of the overall mathematical model gives a 

more intimate insight into the natural system to be simulated, and 
it is interesting to look at the modes of sedimentation expected 
under particular conditions on the basis of this insight. Such 
an insight has also been important in the designing of selected 
experiments with the computer program, without the necessity of 
experimenting with every possible combination of variables.
Broadly the experiments fall into two categories; those where the
meandering is developing to a stable form and those already in

dynamic equilibrium. Data input is such that all dependent and
independent variables are in conformity with those found in natural
situations, as far as these are known. This aspect was discussed
in part 2
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17 EXPERIMENT 1 - MEANDERS IN DYNAMIC EQUILIBRIUM
It was noted that over a high-water period the bed in the 

pool of a meander characteristically scours and subsequently fills 
to the same position as existed before the high stages. When
such changes occur in the channel bed, together with lateral move
ment associated with bank recession, it is expected that some degree 
of relief will exist in the grain size and sedimentary structure 
boundaries and in the basal erosion surface. This experiment is

atherefore designed to examine the nature of sedimentation as the
rates of bank migration and depth of scour vary.

The experiment consists of nine runs of the program corres
ponding to all possible combinations of three different average 
rates of downvalley bank migration and three different average 
depths of scour at the talweg. The input data varied for each run 
are shown in table 17.1» and these correspond to average rates of 
bank migration of about 2.4, 12 and 48 metres per year (or, more 
precisely, per time increment), and average net depths of scour at 
the talweg of about 0.78, 7*8 and 15.6 metres. All other parameters/ 
shown in table 17.2 and 17.1, are constant for all runs. The
meanders are assumed in dynamic equilibrium with a sinuosity of 2.0, Jb
the meander and channel geometry being constant for all runs. Table*
17.3 shows the variation of grain size, bed form and hydraulic 4;
parameters over the point bar profile (at bankfull stage) before q

Fand after the scouring and filling of the bed. This profile and
the cross sections produced were defined in the mean downvalley 
direction. The input data deck set-up is listed in appendix 3* In 
this experiment a disc was used, the cross sections were made up of 
200 by 60. cells, and 78k bytes of core store were required. Average 
running times (GPU times) were 10 seconds per time increment,
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FLUVIATILE PROCESS SIMULATION EXPERIMENT 1

CROSS SECTION PARAMETERS METRES CELLS

WIOTH OF SECTION 1000.000 200
THICKNESS UF SECTION 60.000 60
INITIAL DISTANCE OF INNER CHANNEL BANK FROM L.H.S. OF SECTION 0.0 0
INITIAL BANKFULL STAGE MEASURED FROM SECTION BASE 60.000 60
CELL SIZE IN VEKTICAL(Y) DIRECTION 1.000
CELL SIZE IN H0R1Z0NTALIZ OR XI DIRECTION 5.000

CHANNEL PARAMETERS METRES CELLS

TOTAL WIDTH OF CHANNEL!Wi 125.000 25
WIDTH OF FLCW BETWEEN INNER BANK AND TALWEG(Wl) 100.OUO 20
RATIO UF Hi TO W o.aoo
MAXIMUM FLOW DEPTH MEASUREO ABOVE TALWEG 20.000
DENSITY OF SEDIMENTARY PARTICLES 2.650 GMZCM3
FLUID DENSITY l.CCO GM/CM3
DARCY-WEISBACH FRICTION COEFFICIENT FOR DUNES AND RIPPLES 0.210
DARCY-WEISBACH FRICTION COEFFICIENT FOR PLANE BEDS AND ANTICUNES 0.150
EXPONENT N1 l.OCC

SYNTHETIC HYDROLOGY PARAMETERS!UNITS NCT NECESSARY!

MEAN OF ALL OAILY MEAN VALUES
STANDARD DEVIATIUN OF DAILY MEAN VALUES
HEAN OF YT SERIES
STANDARD DEVIATIi N OF YT SERIES
COEFFICIENTS IN AUTOREGRESSIVE MODEL Al»

141.200
234.200

0.0
1.000
0.929 A2» -0.151

HARMONICS FROM 1 TO 6
FOURIER COEFFICIENTS FOR DAILY MEANS(A) -133.000 

-135.100
-485.000

125.300
62.4C0
-9.800

-14.3CC
-29.500

-7.100
1.000

0.0
7.400IB)

FOURIER COEFFICIENTS FUR DAILY STD DEVI AT IONS1SAI -49.500 -61.500 9.9C0 2.800 2.900 1.800
(SB) -47.600 Bl.luU 4.9C0 -31.4CC -10.200 5.700

MAX IMUM VALUE OF QVQL 90000 000

CUT-OFF CONTROL PARAMETERS
LIMITING WIDTH OF MEANDER NECK 
EXPONENTS IN NECK CUT-OFF RELATION 
LIMITING SINUOSITY
LIMITING AMPLITUDE-
EXPONENTS IN CHUTE CUT OFF Rt.LATICN

ENl =

EC1 =

125.000
10.000
2.000

760.909
50.000

METRES
EN2«

METRES
EC2=

10.000

50.000

A DOWNVALLEY SECTION IS REPRESENTED IN THIS TEST
OISTANCE OF LINE OF SECTION FROM POINT OF INFLECTION CF LOOP IS 0.0 METRES

LEGEND
LOWER PHASE PLANE BED L GRAVEL G OLD SEDIMENT X
RIPPLES R SAND 0 WATER I
DUNES D SILT s TIME LINE .....
UPPER PHASE PLANE BED U CLAY - AIR BLANK
ANTIOUNES A OVERBANK F

DEPOSITS

PLANIMETRIC FDRM OF MEANDER METRES

WAVELENGTH
AMPLITUDE
SINUOSITY
RADIUS OF CURVATURE AT BEND AXIS 
WIOTH UF MEANDER NECK 
CHANNEL LENGTH ALONG MEANDER 
VALLEY SLOPE
LONGITUDINAL WATER SURFACE SLOPE

1000.000
760.909

2.000
217.571

**********
2000.000

0.00010000
0.00005000

SELECTED GEOMETRIC RATIOS

WAVELENGTH TO RADIUS UF CURVATURE A.596 
WAVELENGTH TO CHANNEL WIDTH a.000 
RADIUS OF CURVATURE TO CHANNEL WIDTH 1.741 
AMPLITUDE TO CHANNEL WIDTH 6.087

Table 17*2 Initial data for experiment 1
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. I6l.
With regard to the simulated cross sections, the errors 

involved due to smoothing (section 16) and the vertical exaggerat
ion should be borne in mind. Unfortunately the cross sections do 
not record the position of* the scoured bar profile for each time 
increment. These profiles may be thought of as representing the 
boundaries of sigmoidal units which will subsequently be termed 
epsilon units. Each unit marks the deposition during one flood 
period. In the case of no scouring and filling the time lines give 
the shape of these units. Where possible, however, profiles of the
scoured bar for a number of time increments, have been added to the 
cross sections in order to show the variable distribution of grain 
size and sedimentary structure within and between the units.

The grain size distribution cross sections of runs 1 a,b 
and c, average downvalley bank migration about 2.U m./year, show 
very little relief in the facies boundaries separating clay,silt 
and sand sizes (fig, 17.1)• The sand-gravel facies boundary and 
the scoured basal surface, however, show increasing degrees of
relief as the scour depth increases. A relief corresponding to up 
to about 5$ of the unscoured talweg depth of the channel does not 
seem unrealistic for those channels that scour to the degree
suggested in the literature. The scoured bar profiles for the 
final time increment are shown in the sections, and an interesting 
feature is the sloping of all facies boundaries up to the contempor 
ary point bar surface. The upward slope represents the effect of 
filling of the scoured bar for the final time-increment with only
a small amount of lateral migration. This feature is, of course,
the basis for the relief of facies boundaries within the bar. If
the channel is abandoned after cut-off or avulsion fairly rapidly 
such a feature may be preserved. It is interesting to note that 
the grain-size facies boundaries do not slope down into the talweg 
as filling and migration proceed. This is a function of the
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Pig. 17.2. 
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construction of the model and must be viewed in the light of
approximations made. This point is returned to in part
Increasing scour depth has'the effect of increasing the thicknesses 
of silt and sand, but increasing gravel thickness to a relatively 
greater extent.

The effect of increasing the depth of scour is more marked
on the sedimentary structure sections for runs la, b and c, fig. 
17.2. The relief of the facies boundaries separating flat 
bedding and cross bedding is again very small with little scouring. 
As scour depth increases the relief of the boundary becomes as 
much as 10% of the channel talweg depth. The tendency for develop
ment of lenses of flat bedding within the cross bedding is apparent
in fig. 17*2, run lb. As well as thickening the deposit, increas
ing scour depth has the effect of increasing total thickness of 
flat beds at the expense of cross bedding. Hence the sloping of 
the facies boundary up to the latest point bar surface is present 
to such an extent in run lc that flat beds effectively interfinger 
with cross beds. Fig. 1?.3 shows the meander movement in plan 
which produced the deposits in figs. 17.1 and 17.2. *

In the grain-size distribution cross-sections of Id, e and 
f, (fig. 17.^; corresponding to an average downvalley bank 
migration rate of about 12 m./year) the sand-gravel boundary and 
the basal scoured surface again show increasing relief as scour 
depth increases. With the basal scoured surface the relief ranges 
from virtually planar to about 20-30% of the unscoured talweg 
depth as the scour depth increases, while the relief of the gravel- 
sand facies boundary increases from a few to 20% of the unscoured 
talweg depth. Furthermore, in le and If the basal scoured surface 
is not regularly undulating, but has stretches several tens of 
metres in length where there is no appreciable change in relief.
The relief of the clay-silt boundary does not vary and the 

regularly undulating relief is up to a few percent of the unscoured
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• * 163. 
talweg depth. Similarly with the sand-silt boundary, except in 
case Id where there is very little relief at all. In some cases, 
each separate undulation may mark the separate successive flood 
periods, particularly in the case of silt-clay and sand-gravel 
boundaries. As before, increasing scour depth involves increasing 
the thickness of sand and silt, with gravel thickening a relatively 
greater amount than the sand and silt.

The sedimentary-structure sections for runs Id, e and f
show a very marked variation in the flat bedding-cross bedding 
facies boundary with scour depth (fig. 17.5)• In case Id the 
relief is only a few percent of the unscoured talweg depth, but
as scour depth increases, the relief increases until a complex
system of interfingering and associated lensing becomes evident.
The scale of the interfingering in case If is comparable with the 
maximum unscoured channel depth. The trend of the lensing and
interfingering is associated with the scoured bar profiles. The 
relief and degree of lensing and interfingering is probably 
exaggerated a certain amount due to approximations involved in the 
mathematical model and computer program. However it seems likely
that under similar conditions in the natural situation a note
worthy degree of scoured basal surface and facies boundary relief
would be present, with associated facies lensing and interfinger
ing. Such features would be associated with discrete seasonal
periods of erosional and depositional activity. The thickness of 
flat bedding increases relative to cross bedding as scour depth 
increases. Fig. 17.6 shows the meander movement in plan relating
to these sections.

The grain-size distribution cross-sections of lg, h and i, 
shown in fig. 17«7» correspond to the cases with average downvalley 
bank migration of about ^8 in./year. The basal scoured surface 
and sand-gravel facies boundary increase in relief from virtually 

nil up to about 35$ of the unscoured talweg depth, with increase
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in scour depth. The relief of the clay-silt boundary does not 

vary and the regularly undulating relief is up to about 5$ of* the 
unscoured talweg depth. Similarly, with the sand-silt boundary, 
except in the case lg where the boundary is essentially planar. 
Where any relief is developed it is of considerably greater wave
length than in the previous sections discussed, and each complete 
wave corresponds to a discrete flood period. It is noteworthy
here that the peakedness of the depressions in facies boundaries
is probably exaggerated due to the construction of the computer
program, and becomes more so as the rate of migration increases.
They should probably be more asymmetrical with less steep river-
ward sides. Thus, in general, the degree of relief will not be
quite as marked as shown. It is expected, nevertheless, that
regular long wavelength undulations of grain-size boundaries and
scoured basal surfaces will be present where bank migration is
very rapid, each complete wavelength corresponding to a discrete
period of erosional and depositional activity. By virtue of the 
scale of the undulations, these surfaces may appear broadly planar 
when seen only in limited lateral extent.

As scour depth increases in the sedimentary structure cross 
sections for runs lg, h and i, the flat bedding-cross bedding 
boundary develops from virtually planar to an undulating pattern 
with interfingering and lensing until, finally, large scale inter
fingering is present on a scale comparable with the maximum 
unscoured channel depth (fig. 17.8). The disturbances in this 
boundary are again associated with seasonal floods, their trend
corresponding bo the scoured bar profile. The degrees of inter
fingering and undulation are again exaggerated, and in particular
the upper, riverward boundaries of the interfingering flat-bedded
areas are expected to expand riverward at the expense of the cross
bedding. Nevertheless, a marked degree of undulation, inter

fingering and lensing is expected under similar conditions in



the natural situation, despite the approximations made. Silt,
165

sand and gravel thicknesses increase as in the previous runs 
with increase in scour depth, and, in general, cross bedding
thickens at the expense of the flat beds. Fig. 17.9 shows
meander movement in plan associated with sections lg, h and i.

Experiment 1 demonstrates that the relief and nature of
the facies boundaries and erosion surfaces are dependent on the
rate of bank migration relative to the depth of scour.
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18 EXPERIMENT 2 MEANDERS IN DYNAMIC EQUILIBRIUM

As meanders migrate systematically downstream, point bar
and overbank deposits are eroded by the channel of the upstream
meander limb. If there is no net vertical deposition there will
obviously be no preservation of sediment. If there is continuing 
net deposition (aggradation) the level of the upstream channel will 
be above the basal erosion surface of the bar sequence it is
truncating. Whether the land surface is being raised during
aggradation or whether net vertical deposition is being accommodated
by subsidence with land level remaining constant, or a combination *
of both, is not relevant here. It is only necessary to know the
relative levels of the basal erosion surfaces being considered.
Dluck (1971) has indicated that an inordinate amount of aggradat
ion would be required to preserve a complete point bar sequence 
between erosion surfaces, but that it is possible for a small part 
of the sequence to be preserved. Furthermore, during aggradation, 
sediment deposited outside the channel is expected to be character
istically fine-grained silts, clays and some fine sands. As 
aggradation proceeds, therefore, the proportion of fine-grained 
alluvium exposed in the cut bank may increase, thus reducing the 
rate of channel migration calculated in the model. Experiment 2
is designed to examine the nature of the sedimentation in this
’moving phase’ situation as the rates of downvalley migration
and aggradation vary.

The experiment consists of nine runs of the program corres
ponding to all possible combinations of three different average
rates of downvalley bank migration and three different rates of
aggradation. The input data that are different for each run are
shown in table 18.1, and correspond to average rates of bank
migration of about 2, 10 and 42 in,/year, and rates of aggradation
of 0.001,0,01 and 0.1 m./year. All other parameters, shown in

table 18.2 and 18.1, are constant for all runs. The meanders are





FLUVIATILE PROCESS SIMULATION EXPERIMENT 2

CROSS SECTION PARAMETERS METRES CELLS

WIDTH OF SECTION 1750.COO
THICKNESS OF SECTION 60.000
INITIAL DISTANCE OF INNER CHANNEL BANK FROM L.H.S. OF SECTION 0.0
INITIAL BANKFULL STAGE MEASURED FROM SECTION BASE 30.000
CELL SIZE IN VERTICALS) DIRECTION 1.000
CELL SIZE IN FORIZONTAL(Z OR X) DIRECTION 5.000

350
60

0
30

CHANNEL PARAMETERS METRES CELLS

TOTAL WIDTH OF CHANNEL!h)
WIDTH OF FLOh BETWEEN INNER BANK AND TALWEG(Wl)
RATIO OF HI TO h
MAXIMUM FLOh DEPTH MEASURED ABOVE TALWEG
OENSITY OF SEDIMENTARY PARTICLES
FLUID DENSITY
DARCY-WEISBACH FRICTION COEFFICIENT FOR DUNES AND RIPPLES 
DARCY-WEISBACH FRICTION COEFFICIENT FOR PLANE BEDS AND ANTIDUNES 
EXPONENT N1

125.000
100.000

20.000

25
20

0.80C

2.65C GM/CM3 
l.OCC GM/CM3 
0.210 
C. 15C 
l.OCO

SYNTHETIC HYDROLOGY PARAMETERSI UN ITS NOT NECESSARY)

MEAN OF ALL DAILY MEAN VALUES 543.500
STANDARD DEVIATION OF DAILY MEAN VALUES 441.000
MEAN OF YT SERIES 0.0
STANDARD DEVIATION OF YT SERIES 1.000
COEFFICIENTS IN AUTOREGRESSIVE MCDEL Al= 0.567

HARMONICS
A2=

FROM 1 TO 6
C.306

FOURIER COEFFICIENTS FOR DAILY MEANS!A) -200.3C0 145.400 -85.5CC 58.CCC -39.800 7.400
(8) -112.400 185.000 -79.SCO 65.6CC -72.5C0 27.800

FOURIER COEFFICIENTS FOR DAILY STD DEVI AT ICNS(SA 1 -123.300 141.600 -66.4CC 75.7C0 -47.200 8.600
(SB) -85.600 105.700 -46.2CC 31.7CC -43.200 4.300

MAX IMUM VALLE OF QVOL 130000.000

SCOUR ANC FILL PARAMETERS
CONSTANT K4 0.0 
EXPONENT N3 0.0 
STANDARD DEVIATION OF ERROR TERM 0.0

CUT-CFF CONTROL PARAMETERS
LIMITING WICTH OF MEANDER NECK 
EXPONENTS IN NECK CUT-OFF RELATILN 
LIMITING SINUOSITY
LIMITING AMPLITUDE
EXPONENTS IN CHUTE CUT CFF RELATION

125.000 METRES
EN1= 10.000 EN2= 10.0C0

2.000
760.909 METRES

EC1= 100.000 EC2= 100.CCO

A DCWNVALLEY SECTION IS REPRESENTED IN THIS TEST
DISTANCE OF LINE OF SECTION FROM POINT OF INFLECTION CF LCCP IS 0.0 METRES

LEGEND

LOWER PHASE PLANE BED L GRAVEL G CLC SEDIMENT X
RIPPLES R SAND C WATER I
DUNES D SILT s Tlf'E LIhE
UPPER PHASE PLANE BED U CLAY AIR BLANK
ANT IDUNES A OVERBANK F

DEPOSITS

METRESPLANIMETRIC FORM OF MEANDER

HAVELENGTH
AMPLITUDE
SINUOSITY
RADIUS OF CURVATURE AT BEND AXIS 
WIDTH OF MEANDER NECK 
CHANNEL LENGTH ALONG MEANDER 
VALLEY SLOPE .
LONGITUDINAL hATER SURFACE SLOPE

1000.000
760.909

2.000
217.571

2000.000
0.00010000
0.00005000

SELECTED GEOMETRIC RATIOS

WAVELENGTH TO RADIUS OF CURVATURE 4.596 
WAVELENGTH TO CHANNEL hIDTH 8.000 
RADIUS OF CURVATURE TO CHANNEL WIDTH 1.741 
AMPLITUDE TC CHANNEL WIDTH 6.087

Table 1892„ Initial data for experiment 2
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assumed in dynamic equilibrium with, a sinuosity of 2.0. No 
scouring and filling was assumed in order to simplify examination
of the cross sections. The cross sections were defined in the 
downvalley direction (TWO-CHANNEL DOWNVALLEY SECTIONS). In 
this experiment no disc was used, the cross sections were made up 
of 33Q by 60 cells, and 182k bytes of core store were required. 
Average running times were 2-3 seconds/time increment.

Unfortunately the model does not explicitly record basal 
erosion surfaces in the cross sections. These are normally 
inferred by cross cutting of previously specified floodplain 
deposits by the simulated point bar sediments. This may not be 
obvious when the channel is cutting across sediment of a similar 
type, especially in the case where the channel is truncating 
previously deposited point bar sediments. With the simplification 
of no scour and fill the basal erosion surfaces, if not already 
obvious after inspection of the sections, can be drawn as straight 
lines joining successive positions of the channel bed at the 
talweg, as picked out with time lines. Where scouring and filling 
is present the nature of the cross cutting would be more difficult
to infer. .

Runs 2a, b and c refer to average downvalley migration of 
2 m./year. After 100 years of simulation the channels have not 
moved through half a wavelength and therefore the upstream channel 
has not ’caught up* with the recent deposits of the channel 
immediately downstream (see fig. 18.l). Another 100 years or so 
would suffice. Vertical accretion over this period of time is 
0,1, 1.0 and 10 metres respectively for runs 2a, b and c. Project 
ing these rates of movement and aggradation in time, it is seen 
that about 0.2,2 and 20 metres of sediment would be preserved 
between erosion surfaces. The two smaller rates of aggradation 
are not sufficiently great after 100 years to be recorded as 
vertical sedimentation on the simulated cross sections, figs. 18.2
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Pig, 18.2. 
G

rain size sections for runs 2a, 
b and
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and 18.3,because of the scale of an individual cell. All grain 
size and sedimentary structure facies boundaries and basal erosion

■
surfaces on these particular sections appear as level, despite a 

very slight slope, and the effect of overbank deposits on rate of 
migration is negligible for this time span. With the largest (p

aggradation rate (0.1 m./year) the overbank deposits can be seen / 
as wedges of sediment, and all boundaries in the grain size and
sedimentary structure sections are seen to slope up in the

. . . ■ direction of migration. With this appreciable aggradation the 
rate of channel migration has slowed down (see fig. 18.1) and the 
slope of the facies boundaries and basal erosion surfaces increases « 
with time. Thus in run 2 0 more than 20m. of sediment could be /
preserved, giving a complete point bar and some overbank deposits 
on top. Such rates of continuing aggradation are not common

, -.4•
(see section 12.2) and the smaller rates are much more realistic. 
Clearly with scouring and filling acting as well, the pattern of 
sedimentation would be very complex at the base of the bar
sequences•

Runs 2d, e and f correspond to an average downvalley 
migration of about 10m./year. With rates of aggradation of 0.001
and 0.01m./year (runs 2d and 2e) , about 0.04 and 0.4 metres of S
sediment, respectively, are preserved between the erosion surfaces 4 
as the time taken to move through half a wavelength is a little 
over 40 years (see fig. 18.4). The thicknesses deposited vertically 
were not great enough to appear in the cross sections for the time J;

span considered, and there is no effect of these extensive thin
sheets of overbank alluvium on bank migration rates. With an 
aggradation rate of 0,1m./year, run 2f (figs. 18.5 and 18.6), the 
thickness preserved is between 6 and 7 metres, as the slowing down 
of bank migration, due to increasing thicknesses of overbank 
deposit, has increased the time span to over 60 years for movement

%

IS

of a half meander wavelength. The wedging of the overbank deposits!



MEANDER GEOMETRY
run 2d and 2e

SCALE-1 INCA TO 8C.55 METRES 
Fige 18C4( Meander plan forms for runs 2d, e and f
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and the upward sloping of the facies boundaries and basal erosion
surfaces in the downvalley direction can be seen as in run 2c but

4
with a less steep slope. However the gradual increase in the
slope of these surfaces with time as the bank migration rate is 
reduced is not easily seen. Noteworthy is the sequence produced 
in this moving phase situation, gravel-sand-gravel-sand-silt- 
(clay)-overbank sediment. Again it should be noted that an 
aggradation rate of 0.1 m./year is very rapid and rather improbable 
also that scouring and filling would obscure the simple patterns 
shown in figs. 18.5 and 18.6.

Runs 2g, h and i correspond to an average downvalley 
migration of about ^2m./year. The time taken to move half a 
wavelength is a little over 10 years (see fig. 18.7), therefore 
there is about 0.01, 0,1 and 1 metres of sediment preserved between 
erosion surfaces, respectively with aggradation rates of 0.001,
0,01 and 0.1 raetres/year, The aggraded thicknesses are not great 
enough to appear in the cross sections for 2g and 2h, and the 
effect of aggradation on bank migration rate is negligible.
The grain size and sedimentary structure cross sections for the 
greatest rate of aggradation are shown in fig. 18.8 and fig. 18,9 
respectively. The general features are similar to runs 2c and 2f,
however, even in this extreme case, the slopes of the facies
boundaries and basal erosion surfaces are not particularly marked.

The dependence of the shape of the wedge of overbank
deposits and the upward slopes in the downvalley direction of the
facies boundaries and basal erosion surfaces on the relative rates
of bank migration and aggradation have been illustrated. The
general upward slope in the downvalley direction of the facies 
boundaries and basal erosion surfaces (in the cross sections) is 
naturally equal to rate of aggradation divided by rate of down
valley migration; this slope must be corrected for valley slope,

if an absolute value is required It is expected, given the
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1• '

.'t *1natural observed rates of aggradation, that in the moving phase .1
situation the thin overbank deposits will probably appear virtually 
constant in thickness (on the larger scale) although basically 
wedge shaped. Facies boundary slopes on the large scale will also
be negligible. Smaller scale complications are introduced when
considering scouring and filling, or if the relief of the flood-
plain and variability of overbank sedimentation and erosion were
accounted for.

The thickness of the deposit preserved in a moving phase
situation, in these cross sections, follows the simple algorithm,

thickness of _ J. aggradation rate
deposit 2 migration rate ’
although this is only approximate as there may be scouring and
filling to complicate matters. Preserved thicknesses of sediment
are expected to be only fractions of the total point bar thickness 
in the moving phase situation, and Bluck (1971) notes that many 
sequences of believed fluvial origin have many erosion surfaces
at their base. Clearly greater thicknesses or complete sequences
may be built up if the eroding medium does not act on the sediments
for a long interval of time with respect to the aggradation rate. 
This may apply in the case of the avulsion situation or in the
case of a cut-off which lies out of range of the main channel for 
a sufficient length of time, as discussed by Bluck (l97l)« It 
would appear that if the general slope of facies boundaries or 
basal erosion surfaces relative to the land surface is not great 
and complete bar sequences are preserved, then a process other 
than purely moving phase must be responsible.

(



171

19 EXPERIMENT 4 - DEVELOPING MEANDERS
According to the model, as meanders increase in amplitude

and sinuosity, wavelength remaining constant, both longitudinal
water surface slope and radius of curvature will change. In natural
rivers with the independent variables unchanging, width, depth at
the talweg, the friction coefficients, and the value of may be
expected to vary to some extent, although such variation cannot be 
accounted for and is assumed absent for our present purposes.
There may also be a systematic variation in the average scour depth
as the meander develops, which is also not accounted for in the
model. By inspection of equation 5*20, the model would predict a 
general decrease in the calibre of load as sinuosity exceeds 1.5»
Up to a sinuosity of 1.5» depending on the relative changes in S
and r, the general calibre could increase, decrease or remain
about constant. It is noteworthy that increasing depth or width
would always tend to increase general calibre of load.

In general, stream power will decrease as slope decreases 
at constant discharge (Bagnold, 19^6, p. 15) and the dimensionless 
shear stress will vary with the ratio r^/w (see equation 5*25)•
Such variation, combined with variation in D, will be expected to
affect the distribution of bed form and sedimentary structures over
the bar as the meander develops. In general, lower flow-regime 
forms are expected to increase at the expense of upper plane beds
as sinuosity increases. •

As the meander develops, the angle at which the mean channel 
direction cuts the line of section (lateral or downvalley) will 
cause the projected channel width to vary. This will be expected
to affect the facies patterns within the bar in the cross sections
represented in this experiment. An interesting point in this
respect is that field sections of fluvial sedimentary rocks may

suggest different channel widths due to varying channel direction



Table 19.1
Run number 4A/a and 4B/a 4A/b and 4B/b 4a/c and 4b/c
Average initial rate of 
migration normal to mean 
downvalley direction 
(Metres/year) 3 9 30

BANK MIGRATION PARAMETERS

exponent n2 0.5

constant O.3E-O6 O.9E-O6 O.3E-O5

constant 0.1E-03

Same parameters for experiment 4a (downvalley section) and experiment 4B (lateral 
section)•



FLUVIAT1LE PROCESS SIMULATION EXPERIMENT 48

CROSS SECTION PARAMETERS METRES CELLS

WIDTH OF SECTION 1000.000 200
THICKNESS OF SECTION 60.000 60
INITIAL DISTANCE OF INNER CHANNEL BANK FROM L.H.S. OF SECTION 0.0 0
INITIAL BANKFULL STAGE MEASURED FROM SECTION BASE 60.000 60
CELL SIZE IN VERTICAL(Y) DIRECTION 1.000
CELL SIZE IN HORIZONTALtZ OR X) DIRECTION 5.000

CHANNEL PARAMETERS METRES CELLS

TOTAL WIDTH OF CHANNEL!W) 125.000 25
WIDTH OF FLOW BETWEEN INNER BANK AND TALWEG(WI) 100.000 20
RATIO OF Wt TO W 0.800
MAXIMUM FLOW DEPTH MEASURED ABOVE TALWEG 20.000
DENSITY OF SEDIMENTARY PARTICLES 2.650 GM/CM3
FLUID DENSITY 1.000 GM/CM3
DARCY-WEISBACH FRICTION COEFFICIENT FOR DUNES AND RIPPLES 0.210
DARCY-WEISBACH FRICTION COEFFICIENT FOR PLANE BEDS AND ANTIDUNES 0.150
EXPONENT N1 1.000

SYNTHETIC HYDROLOGY PARAMETERS!UNITS NOT NECESSARY!

MEAN OF ALL DAILY MEAN VALUES
STANDARD DEVIATION OF DAILY MEAN VALUES
MEAN OF YT SERIES
STANDARD DEVIATION OF YT SERIES
COEFFICIENTS IN AUTOREGRESSIVE MODEL

FOURIER COEFFICIENTS FOR DAILY MEANS(A)
(8)

FOURIER COEFFICIENTS FOR DAILY STD DEVI AT IONS!SA1 
(SB)

MAXIMUM VALUE OF QVOL

543.500
441.000

0.0 
I.000

' 0.567
HARMONICS FROM I

-Z00.300
-112.400
-123.300
-85.600

110000.000

145.400
185.000
141.600
105.700

C.306

-85.500
-79.900
-66.400
-46.200

58.000 -39.800 7.400
65.600 -72.500 27.800
75.700 -47.200 8.600
31.700 -43.200 4.300

SCOUR AND FILL PARAMETERS
CONSTANT K4 0.100E-03
EXPONENT N3 1.000
STANOARD DEVIATION OF ERROR TERM 1.000

CUT-OFF CONTROL PARAMETERS
LIMITING WIDTH OF MEANDER NECK 225.000 METRES
EXPONENTS IN NECK CUT-OFF RELATION EN1= 5.000 EN2= 5.000
LIMITING SINUOSITY 3.000
LIMITING AMPLITUDE 1185.529 METRES
EXPONENTS IN CHUTE CUT OFF RELATION EC1 = 20.000 EC 2= 20.000

LEGEND

LOWER PHASE PLANE BED L GRAVEL G OLD SEDIMENT X
RIPPLES R SAND 0 WATER I
DUNES D SILT s TIME LINE
UPPER PHASE PLANE BED U CLAY AIR BLANK
ANTIDUNES A OVERBANK F

DEPOSITS

PLANIMETRIC FORM OF MEANDER

WAVELENGTH
AMPLITUDE
SINUOSITY
RADIUS OF CURVATURE AT BEND AXIS 
WIDTH OF MEANDER NECK 
CHANNEL LENGTH ALONG MEANDER 
VALLEY SLOPE
LONGITUDINAL WATER SURFACE SLOPE

METRES

1000.000
205.834

1.100
280.638

**********
1099.999

0.00010000
0.00009091

SELECTED GEOMETRIC RATIOS

WAVELENGTH TO RADIUS OF CURVATURE 3.563 
WAVELENGTH TO CHANNEL WIDTH 8.000 
RADIUS OF CURVATURE TO CHANNEL WIDTH 2.245 
AMPLITUDE TO CHANNEL WIDTH 1.647

Table 19*2® Initial data for experiment 4 A and 4b



relative to the plane of the section. Furthermore, in lateral
sections only, the effect of slowing down of bank migration
normal to the mean downvalley direction will be expected to
influence the sedimentary facies patterns.

The experiment consists of three runs of the program using
a lateral section and another three similar runs using a down
valley section. The three separate runs for each type of section
correspond to three different average initial rates of bank
migration normal to the mean downvalley direction as the meander
develops from a sinuosity of 1.1 to a limiting value of 3»0»
The average downvalley migration rate is constant for all runs 
(about 2.3 m./year), as is the selected average depth of scour.
The input data that are different fox* each run are shown in table 
19.1» and these correspond to average initial rates of about 3,9 
and 30 metres per year. All other input parameters, shown in table
19»2 and 19.1, are the same for all runs. Fig. 19•1 shows the
meander movement simulated which are responsible for the sedimen
tary deposits in the forthcoming cross sections. The data deck set
up for all six runs is listed in appendix 3.

In runs 4a and 4b the cross sections were comprised of 200 
by 60 cells. In a disc was used, 78k bytes of core store were 
required, and approximate running times were 7‘2 seconds per time 
increment. In no disc was used, 129k bytes of core store were 
required, and approximate running times were 3 seconds per time
increment. .

Fig. 19.2 shows the variation of hydraulic parameters, at 
a specific station, as the meander develops, for the three 
separate input conditions. The station corresponds to a depth of 
10 metres, or half the maximum unscoured talweg depth. The curves 
for D indicate a general increasing calibre of load followed by a 
more substantial decrease in calibre. The turning point here





MEANDER GEOMETRY
run 4A/b and 4B/b

SCALE-1 INCH TO 131 .73 METRES

Fig, 19,1. - continued.



, MEANDER GEOMETRY
run 4A/c and 4B/c

SCALE-1 INCH TO ,31 .73 METRES

Pi«. 19.1. continued»



FIG. 19.2 VARIATION OF HYDRAULIC PARAMETERS AT A GIVEN DEPTH (10 METRES) FOR A DEVELOPING MEANDER 
WITH THREE DIFFERENT RATES OF AMPLITUDE GROWTH.



3

GAP
a metres

years

a - run 4A/a and 4B/a
b - “ 4A/b " 4B0b
c - 4A/c • 4B/c

* GAP is measured between channel centre lines here

FIG. 1S.3 VARIATION OF GEOMETRIC PARAMETERS FOR DEVELOPING MEANDER WITH THREE DIFFERENT RATES OF 
AMPLITUDE GROWTH.



The curves of* X’ show a systematic decreasing

corresponds to a sinuosity of about 1.3. The curves for D would 
be expected to be influenced slightly by changes in width, depth
at talweg and n,,
trend, and these, being defined for a given depth of 10m., will
remain independent of variation in width, depth at talweg,
friction factors and n1. Curves for 9 show the expected trend 
as they depend on the ratio r^/v (see fig. 19.3). Changes in 
width or n, will influence these curves. The curves of Cd , V
and Fr are all generally decreasing, the ’kinks* being the result
of change in bed form from upper phase plane beds to dunes.
These curves will only be influenced by changes in f.

Fig. 19»3 shows the variation of certain geometric para
meters as the meander develops for the three separate input
conditions. Parameters involving r show the characteristic m
turning point at sinuosity of 1.5« Those involving amplitude 
show the effect of the gradually decreasing rate of amplitude
growth. The width of the meander neck here refers to the distance
between channel centre lines, not adjacent banks.

Runs ^A/a, b and c, figs. 19.^- and 19«5» are downvalley
sections, with the average rate of downvalley migration being 
constant at about 2.3 m./year. The main feature of the grain 
size sections is the .gradual lateral decrease in thickness of
gravel and increase in sand, silt and clay thicknesses, after a 
small initial increase in general calibre (as indicated in fig. 
19.2). The degree of lateral change increases from section 4A/a 
to 4a/c as the initial rates of amplitude growth increase.
Section J+A/c shows a tendency for interfingering to develop. The 
previous channel positions in all sections show the changes in the 
projected channel width in the cross sections as the meander
develops. The relief of the basal scoured surfaces and facies
boundaries were discussed earlier.

The main feature of the sedimentary structure cross sections
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of ^A/ajb and c is the lateral increase of cross bedding at the 
expense of flat bedding. With gradual increase in the amount of
cross bedding there is a transition area of considerable lateral
extent which is a large-scale interfingering of flat beds and
cross beds. The interfingering wedges of flat bedding or cross
bedding break down laterally into lenses. The lateral extent of
the transitional area decreases as the rate of amplitude growth
increases. The smaller scale relief of the flat-bedding-cross
bedding boundary has been discussed elsewhere. It is noteworthy 
that such large scale interfingering produces a cyclical vertical 
sequence of cross-flat-cross-flat bedding continuously for a

considerable lateral extent.
Runs Ub/a,b and c, figs. 19.6 and 19.7, are lateral sections.^

j;
and therefore, by virtue of their definition, the projected channel 'j 
widths are gradually increasing as the meander develops (as 
opposed to runs 4a). The grain size distribution cross sections 
are broadly.similar to runs 4a except the same changes in grain 
size as occurred in have in general occupied a greater lateral
extent. The different rates of channel migration in these sections^ 
have also affected the smaller scale relief of the grain size facies' 
boundaries, as opposed to ^A where channel migration is identical
for each section. In these cases, therefore, the overall thinning;

%-i

or thickening of the various grain-size units may be overshadowed
in field sections by local variation in thickness, the general
trend only appearing over sections with large lateral extent.

Similar comments can be made with regard to the comparison 
of the sedimentary structure cross sections of 4b with 4a. In
particular, the transition involved with the increase in cross
bedding extends laterally for a greater extent, and the different
migration rates have affected the smaller scale relief of the flat- fS

172*.
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Fig. 19.6. 
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20 EXPERIMENT 5 - DEVELOPING MEANDERS

Experiment 5 is designed to illustrate the sedimentation 
patterns associated with aggradation as meanders are developing 
from a sinuosity of 1.1 to a limiting sinuosity. A lateral 
section is used for each of nine runs of the program, which
correspond to all combinations of three different rates of

/ x '2
aggradation (0.001,0.01, and 0,1 metres/year) and three different 
modes of meander migration. In this experiment the downvalley 
migration rates are not constant for all runs. The data which are 4| 

different for each run are shown in table 20.1, and the bank ;
migration parameters correspond to average initial rates of move- jgj
ment normal to the mean downvalley direction, and average down- 3-J
valley migration, of about 3 and 2,2 m./year, 9 and 2.2 m./year, andj 
30 and 7 m./year, respectively, for the three different modes of 1
meander movement. All other input parameters, shown in table 20.2. 
and 20.1, are the same for all nine runs. No scouring and filling 
is assumed, as in experiment 2, in order to simplify examination
of the cross sections. Again, therefore, the sedimentary structure $

• ' 1and grain size cross sections should be viewed bearing in mind all
/jthe simplifications and approximations involved. The data deck
1

set-up for all nine runs is listed in the appendix 3. This
experiment used no disc, the cross sections comprised 200 by 60 
cells, and 129k of core store were required. The approximate
running times were 2 seconds per time increment, j

3
The simulated point-bar deposits, as shown in figs. 20.1 i

4
and 20.2, show essentially the same features as in experiment 4.
The main points are the gradual lateral decrease in the general a.Jcalibre of sediment, after an initial increase, and the lateral 
increase in cross bedding at the expense of flat bedding, with 
a large scale interfingering within a transition zone. The grain 
size and sedimentary-structure facies boundaries and basal erosion 

surfaces are more simplified, however, because of the lack of

1

•S



Run number
Average initial 
migration rate 
normal to mean 
downvalley 
direction 
(metres/year)

5a

3

5b

Average downvalley 
migration rate 
(me tres/year) 2.2

BANK MIGRATION 
PARAMETERS
exponent

Constant O.3E-O6

Constant

Aggradation rate 
(metres/year) 0.001 0.01



Table 20.1

0,5
O.9E-O6 O.3E-O5

0.1E-03 O.3E-O3

0.1 0.001 0.01 0.1 0.001 0.01 0.1
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FLUVIATILE PROCESS SIMULATION EXPERIMENT 5

CROSS SECTION PARAMETERS

WIDTH OF SECTION 
THICKNESS OF SECTION
INITIAL DISTANCE OF INNER CHANNEL BANK FROM L.H.S. OF SECTION 
INITIAL BANKFULL STAGE MEASUREO FROM SECTION BASE 
CELL SIZE IN VERTICALS! DIRECTION
CELL SIZE IN HORIZONTALtZ OR X) DIRECTION

METRES CELLS

1C00.000 2C0
60.000 6C
0.0 0

30.000 30
1.000 *
5.000

CHANNEL PARAMETERS METRES CELLS

TOTAL WIDTH OF CHANNEL!Wj
WIDTH OF FLOW BETWEEN INNER BANK AND TALWEGtHIJ
RATIO OF W1TO W
MAXIMUM FLOW DEPTH MEASURED ABOVE TALWEG
DENSITY OF SEO1MENTARY PARTICLES
FLUIO DENSITY
DARCY-WEISBACH FRICTION COEFFICIENT FOR DUNES AND RIPPLES 
DARCY-WEISBACH FRICTION COEFFICIENT FOR PLANE BEDS AND ANTIDUNES 
EXPONENT N1

125.000
100.000

20.000

25
20

O.SCO

2.650 GH/CM3 
l.CCO GM/CM3 
0.210 
0.150 
l.CCO

SYNTHETIC HYDROLOGY PARAMETERS(UNITS NCT NECESSARY!

MEAN OF ALL DAILY MEAN VALUES 543.500
STANOARD DEVIATION OF DAILY MEAN VALUES 441.000
MEAN OF YT SERIES 0.0
STANDARD DEVIATION OF YT SERIES 1.000
COEFFICIENTS IN AUTOREGRESSIVE MODEL Al= 0.567

HARMONICS 1
A 2=

FROM I TO 6
0.306

FOURIER COEFFICIENTS FOR DAILY MEANS(A) -200.300 145.400 -05.500 58.GC0 -39.800 7.400
(Bl -112.400 185.000 -79.900 65.600 -72.500 27.800

FOURIER COEFFICIENTS FOR DAILY STD DEVIATIONStSA) -123.300 141.600 -66.400 75.700 -47.200 8.600
(SB) -85.600 105.700 -46.2CC 31.700 -43.200 4.300

MAXIMUM VALUE OF QVOL 120000.000

SCOUR AND FILL PARAMETERS
CONSTANT K* 0.0 
EXPONENT N3 0.0 
STANOARD DEVIATION OF ERROR TERM 0.0

CUT-OFF CONTROL PARAMETERS
LIMITING WIDTH OF MEANDER NECK 
EXPONENTS IN NECK CUT-OFF RELATION 
LIMITING SINUOSITY
LIMITING AMPLITUDE
EXPONENTS IN CHUTE CUT OFF RELATION

225.000 METRES 
EN1= 5.000 EN2=

3.000
1185.520 METRES 

EC1= 50.000 EC2=

5.CC0

50.00C

A LATERAL SECTION IS REPRESENTED IN THIS TEST

LEGEND

LOWER PHASE PLANE BED L 
RIPPLES R 
DUNES D 
UPPER PHASE PLANE BED U 
ANTIDUNES A

GRAVEL G OLD SEDIMENT X
SAND C WATER I
SILT s TIME LINE • • • • •
CLAY - AIR BLANK
OVERBANK F
DEPOSITS

PLANIMETRIC FORM OF MEANDER

WAVELENGTH
AMPLITUDE
SINUOSITY
RAOIUS OF CURVATURE AT BEND AXIS 
WIDTH OF MEANDER NECK 
CHANNEL LENGTH ALONG MEANDER 
VALLEY SLOPE
LONGITUDINAL WATER SURFACE SLOPE

METRES

1000.000
205.834

1.100
280.638

***4*4****
1099.999

0.00010000
0.00009091

SELECTED GEOMETRIC RATIOS

WAVELENGTH TO RADIUS OF CURVATURE 3.563 
WAVELENGTH TO CHANNEL WIDTH 8.000 
RADIUS OF CURVATURE TO CHANNEL WIDTH 2.245 
AMPLITUDE TO CHANNEL WIDTH 1.647

Table 20.2 Initial data for experiment 5
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Meander plan forms for experiment
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scouring and filling. .
The overbank deposit wedges and the upward sloping of

facies boundaries and basal erosion surfaces in the direction of
migration are similar to those in experiment 2. The slowing down
of bank migration rates due to the present overbank fines, with
increasing aggradation rate, is enhanced by the slowing down of 
the amplitude groxv’th anyway (see figs. 20.3). Thus the increase 
in slope of the facies boundaries and basal erosion surfaces is
more marked than in experiment 2, as demonstrated particularly in
the sections with an aggradation rate of 0.1 metres per year. In
this simple moving phase situation the greatest thicknesses of
overbank deposits, if preserved, will occur as aggradation rate
increases relative to channel migration, as in experiment 2.

Some of the sections with the more realistic slower S
aggradation rates are not shown because there is not enough
vertical deposition to be visually recorded on the sections. The J: 
maximum accumulated thicknesses of overbank deposit can easily be r 
calculated for the different aggradation rates. Figs. 20.3 show
that, by virtue of the direction of definition of the lateral
sections, the deposits are soon obliterated by the meander limb *
immediately upstream from the bend axis. This is particularly f
marked where the rate of amplitude growth is small, or becomes swali^
relative to the downvalley migration rate. As a result, there is, 
in general, less chance of preservation of deposits in this part 
of the bend than other parts, perhaps leading to a bias in current 
directions represented in preserved deposits, notably lacking in
directions around the mean downvalley direction. The occurrence 
of cut-off will probably increase the preservation of point bar 
and overbank deposits produced in these sections. Some of the 
cross sections in figs. 20.1 and 20,2 are roughly ’edited’ to 
account for truncation by the upstream limb. Unfortunately, the

model cannot do this automatically
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21 GENERAL REMARKS

The computer simulation model yields an abundance of 
information. By matching this output with field observations the 
overall model can be evaluated, and its ability to provide a 
useful analogue to the real system can be judged. The closeness

¥of the model to the real system will inevitably depend on whether 
important processes observed in nature have been accounted for and j 
the adequacy of their treatment in mathematical and logical terms.
The validity of the component mathematical models, and the
approximations made, have been discussed in part 2. Approximations^ 
involving the representation of space in discrete form have been 
discussed in part 3. It is noteworthy that the development of the 
component mathematical models was based on observation, and
subsequent theory, on natural meandering streams and scale model 
experiments. Purely theoretical models are therefore considerably 
subordinate to empirical relationships. Data input is supplied 
bearing in mind the restrictions and mutual compatibilities of the 
system variables as imposed by the overall natural system.

The necessary first step is to compare the output with
information from modern free meandering stream systems, and
subsequently apply the model to the understanding and prediction 
of modern erosion and deposition, and the interpretation of
ancient fluvial systems. There are, however, inherent difficulties
in obtaining data from many geological dynamic systems and, even
if available, data may be sparse or unsuitable in form. The
output from the model is conveniently in the form of laterally 
continuous cross sections showing simulated distribution of grain
size and sedimentary structures. Invariably field data, when
available, are also in the form of sections in a limited number of 
directions and of limited horizontal extent, or alternatively as

a series of discrete sections or boreholes from which a continuous
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section may be built up. It will be seen in the following 
discussion that although a reasonable qualitative comparison
of the simulated sediments with real world observations can be
made, there are many instances where a substantial amount of
data is not available or is of unsuitable form
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22 COMPARISON WITH MODERN FREE MEANDERING STREAM DEPOSITS

22.1 Shape of point bar deposits
The experiments indicate that when bank migration is

fairly rapid, point bar deposits extend along the length of the 
valley, but their extent across the width of the valley is
limited to the width of the meanders. If there were slow bank
migration the deposits would be beaded along the length of the
valley. The edges of the deposits have the shape of a channel
bank. Their thickness remains approximately constant and
corresponds to the depth of the stream measured from bankfull 
stage to the scoured base of the channel, as is the case in 

real streams (e.g. Bernard and Major, 1963)*
Allen (1965a) reports that the shape of a point bar deposit 

complex depends on the extent of channel wandering as controlled
by channel sinuosity. The point bar deposits are broadly sheet 
like with rapid migration and low sinuosity and are long, narrow
beaded belts which are narrow compared to the floodplain when
sinuosity is higher. Presumably the ability to construct a sheet
of point bar' material depends on the movement of the meander belt 
continuously or discontinuously (avulsion etc.). Movement of 
the meander belt cannot be simulated in the model, therefore 
sheet like deposits cannot be produced at this stage.

In the model the extent of channel wandering, for a given
size of stream, is controlled to the extent that the floodplain
sediment calibre is supplied as input. Thus if the meanders have
low limiting sinuosity the floodplain sediment may be assumed to
be sandy in nature. If the meanders have high limiting sinuosity 
the floodplain sediments may be designated as silt and clay, 
perhaps corresponding to fine grained channel fills produced 
with the more frequent cut-off (e.g. Allen, 1965a). The model

will respond to these variations in floodplain sediments in a
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realistic manner.
The geometric nature of point bar and overbank deposits

within a thick aggraded sequence of alluvium is only approximately 
known, and Allen (1965a) has presented some hypothetical alluvial 
facies models describing this. Detailed quantitative study of 
the shape of point bar and overbank deposits in thick sequences
with relation to rates of aggradation and lateral channel move
ments is not at hand, and the processes involved with net vertical
deposition and such large scale channel movements as avulsion are
not fully understood. It has not been possible therefore, to
generate thick sequences of alluvial sediment at this stage,

Although not strictly comparable with any recent examples,
the model has been able to simulate sections through the meander
belt in the mean downvalley direction, and normal to this direction
which show the effects of net aggradation combined with channel
migration. The results show a general slope of facies boundaries
and scoured basal surfaces upwards in the direction of channel
movement, depending on the relative rates of aggradation and
migration, and record the effects of increasing amounts of over
bank deposits. In general, the slopes involved may be so small 
that they would not readily be recognised in an alluvial complex. 
There are some interesting features of the sections in the mean
downvalley direction. With no aggradation or degradation the 
basal scoured surfaces wotild represent the slope of the valley, 
assuming negligible downstream changes in channel depth over
the section represented. If there were slow and continuous 
degradation, the slope of the basal surfaces would be greater than 
the valley slope, and with aggradation the slopes would be less 
than the valley slope and may even dip in the opposite direction. 
Clearly many factors would complicate this naive situation. The 
experiments show a ’stabilisation* effect as thicknesses of fine 

sediment are deposited on the floodplain with aggradation.



181
Stabilisation of meander belts is also effected by cut off* and 
subsequent filling of.abandoned channels with fine sediment 
(e.g. Allen, 1965a); such processes cannot be simulated at 
present, although, as previously indicated, abandoned channel- 
fills can be defined implicitly at the outset. It is noteworthy 
that the stabilisation with aggradation would not be simulated if 
it was assumed that the overbank^deposits were sand or gravel 
grade material.

22.2 Epsilon cross stratification
It is implicit in the model that successive deposits for

a given flood event are bounded by sigmoidal boundaries which mark 
the position of the bar before being filled on falling stages. 
These surfaces must delineate the epsilon-cross-stratification of 
Allen (1963a). An important point here is that the maximum angle 
of the transverse slope of the epsilon-cross stratification must 
represent the scoured shape of the point bar, when scouring and
filling is present. This may go some way to explaining the
relatively steep angles of the few examples of epsilon-cross
stratification found in ancient sediments when compared with 
recent bar surfaces (Allen, 1970t>) • Recent and ancient examples 
may therefore be directly comparable. Allen (l97°b) also notes 
that epsilon-cross-stratification may be very difficult to see
in rocks unless the transverse slope is reasonably large.

Epsilon-cross-stratification is implied in recent point bar 
sediments by virtue of their mode of lateral growth, with the
units being deposited at discrete periods of time and concomitant
with concave bank recession. It would thus appear that the
thickness and regularity of development of the units will depend 
on rate of bank migration, variation in degree of scouring, and 
variation of the shape of the surface on which sediment is being

deposited. In the model the shape of the bar profile is constant
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and only its maximum slope varies with degree of scouring, there
fore the sigmoidal boundaries are very regular, although they may
not be exactly parallel at all levels in the bar. In real
streams, given sufficient bank migration to develop successive
units, a greater degree of irregularity may be expected due to
variation in the shape and slope of the point bar profile on which
sediment is being deposited. This may or may not be associated
with scour and fill. Furthermore, distinct epsilon unit
boundaries may be obscured by small scale scouring over the profile
perhaps in the lee of dunes; this feature is not represented in
the model sections.

Sundborg (1956) records very regular epsilon-cross-stratifi
cation in the point bar deposits of the Klaralven, southern- Sweden, 
at least in the lower parts of the bar. Leopold and Wolraan (i960) 
also note that ’...approximate contact surfaces between materials
of different textures are more or less parallel to past surface
profiles’. Other examples in tidal meandering streams include 
Van Straaten (195^)» Reineck (1958) and Klein (1963).

A final point is that the epsilon-cross-stratification may 
be visible over the total vertical thickness of the point bar.
If this is the case it will represent a vertical thickness
measured from about bankfull stage down to the base of the scoured
channel,

2 2.3 Distribution of grain size and sedimentary structure
Attention may be directed to that part of the model which

predicts the grain size and sedimentary structure over the point- 
bar profile, using the conventional hydraulic equations. There 
are, unfortunately, inadequate experimental observations or data 
from present day river or tidal meandering channels by which to 
test this model. The qualitative features of the deposits produced 
in the model with lateral bar growth (with and without scour and

fill) are however consistent with the general characters of lateral
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deposits formed in comparable tidal systems and streams. In
these deposits grain size generally decreases vertically upwards
and bed forms change from types indicative of large stream power 
upwards to forms denoting a small power (e.g. Allen, 1965a;

Bernard and Major, 1963; Bernard and LeBlanc, 1965; Evans, 1965; 
Fisk, 1944, 19^7; Klein, 1963; Oomkens and Terwindt, i960; •'
Reineck, 1958; Sundborg, 1956; Van Straaten, 1954). It was 
pointed out earlier that the prediction of silt and clay at the tops 
of the bars was not strictly correct. Qualitative justification
is afforded by observations of fine sediment on top of bars to such
an extent that they often cannot be distinguished from the over
lying levee deposit (e.g. Bernard and Major, 1963; Visher, 1965a; 
Wolman and Leopold, 1957)* .

The model does not record the expected variation in size
of dunes with flow characteristics, or the scoured bases to the 
individual cross bedded units. McDowell (i960) describes cross- 
bedded units in recent point-bar deposits which become on average
thinner upwards in the bar. Other structures not simulated »
include convulute lamination and various types of small scale i

scours•
Sundborg (1956) and Leopold and Wolman (i960) note that with 

falling discharge after some flood events, suspended sediment is
deposited on bars over the coarser bed load material, thus leading
to alternate coarse and fine sediment as individual layers are ;
traced laterally and upward. This variation would be in addition
to the general upwards fining in the point bar. Such small scale «,< 
variation cannot be described within the model (l) by virtue of 
the scale of variation involved and, probably more significant,
(2) because only events at bankfull stage are considered and (3) no 
explicit account is taken of fine suspended sediment.

Thus when there is little or no scouring and filling, no

small scale variation can be simulated Some vindication lies
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in the fact that as most sediment is deposited on bars from bed
load at high stage, such fine sediment may be insignificant and
may be scoured during rising stages of the next flood anyway.
Indeed, sometimes the fine sediment is just in the form of mud 
drapes (e.g. Bluck, 1971: McGowen and Garner', 197°)• Fig. 22.1 
illustrates the expected variation in grain size in a single
natural depositional unit compared with the simulated variation,
for the case where no scouring and filling occurs.

When there is no scouring and filling, lateral bar growth
in the model produces no relief in the grain size and sedimentary
structure facies boundaries or the basal scoured surface. When
scouring and filling occurs in conjunction with lateral deposition,
small scale variation in grain size and sedimentary structure both
within and between individual epsilon units can be simulated, in 
addition to the general fining upwards of grain sizes and syste
matic distribution of sedimentary structure. This feature of the 
model gives rise to a relief, over the whole deposit, in the
boundaries separating different grain size classes or sedimentary 
structure, and may take the form of lensing and interfingering. 
Obviously scouring and filling is also associated with a degree 
of relief in the basal erosion surface. The wavelength, amplitude
and shape of such relief, and the nature of lensing and inter
fingering, are important features indicating the amount of
scouring and filling relative to the amount of bank migration.
In this respect it seems necessary to distinguish the large scale 
relief in the basal erosion surfaces, as mentioned above, from 
smaller scale ’within channel’ scours. The former are genetically 
related to processes operating only in meandering streams, whereas 
the latter may also form, for instance, at the base of levee or 
crevasse deposits (Allen, 1970c).

In general, there is not enough quantitative information 

available to test these aspects of the model, but there are many



MODEL CASE

rig. 22.t Schematic variation of grain size within single depositional 
units when no Scour-and- Fill. Expected rea! world and model 
cases.



MODEL CASE

Fig. 22.2 Schematic variation of grain size within single depositional!
units,with Scour-and-Filk Expected real world and model 
cases
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examples in recent deposits of large scale relief in basal scoured 

surfaces and facies boundaries (e.g. Bernard and LeBlanc, 1965;
Fisk, 19^7; Leopold and Wolman, i960). Invariably lensing and J•72
interfingering of particular types of sedimentary structure and 
sediment size classes occur (e.g. Allen, 1965a; Frazier and 
Osanik, 1961; Leopold and Wolman, i960; Sundborg, 1956).

Fig. 22.2 represents a comparison of the nature of variation .1 

in grain size within an individual epsilon unit between the model
and that expected in the real situation. It is easy to see from 
the figure how, for instance, lenses of gravel occur. If there f
is not significant deposition of fines with falling stages in the 7 
real situation or if the fines are subsequently scoured the ’real* J 
example may tend to the simulated situation. |

With changes in the slope and radius of curvature of a
developing meander in the model there were additional very large-
scale variations in grain size and sedimentary structure. In
general, grain size decreased and the amount of lower regime forms
increased at the expense of upper plane beds as sinuosity increased,?
Such changes were not simple and an intertonging transition zone
was involved. To test this aspect of the model in the light of
the assumptions made would require a considerable amount of
information over an extensive continuous section. Such information;
is not forthcoming at present. Furthermore, the variation in all 
the dependent hydraulic variables in developing meanders needs to | 
be examined in considerably more detail in the field before this 
aspect of the mathematical model could be used with confidence.

Recent studies have indicated that different processes are 
acting to give dissimilar sediment deposits in fine and coarse 
grain point bars (Bluck, 1971; McGowen and Garner, 1970). In 
coarse grain point bars strong currents develop over the top of

the bar during high flood stages in conjunction with those acting 
. These currents over the top of the point bar arein the pool
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responsible for localised scouring and deposition of coarse
material as bars in this area. Transverse profiles across the
point bar become complex and variable along the length of the bar.
Sequences produced by bar migration do not always exhibit the 
general fining upwards as in fine grained point bars. Sequences
of sedimentary structures characteristic of particular sub
environments within the bar can be recognised, but may differ from 
fine grained point bar sequences. Differences will also be 
expected to exist in the facies geometry. The present study 
deals essentially with processes operative in fine grained point 
bars, although there are obvious common features. In general, 
however, the present model cannot be thought of as truly
representing the coarse grained point bar deposition as described 
by Bluck (1971) and McGowen and Garner (1970)*

22.4 Times taken to cut off
No specific experiments were run to test this aspect of

the model, although cut-off information is entered in the meander
plan figures where relevant. Observations on some of the
experiments have shown that the times taken from inception of a
meander to cut off is of the order of hundreds of years, which i3
supported by observational data (see section 10.3). To produce
this situation the exponents in the cut off relations must be
fairly large, and a realistic value of Q , must be specified, volmax 1
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23 COMPARISON WITH ANCIENT FLUVIATILE COARSE MEMBERS

Various aspects of the model can also be compared with the 
coarse members of the fluviatile ’fining upwards* cycles, known 
abundantly from ancient sediments, and which are known or strongly
believed to have been accumulated through processes of lateral 
deposition (e.g. Allen, 1963b, 1964, 1965b, c; Allen and Friend, 
1968; Beutner et al., 1967; Moody-Stuart, 1966; McGowen and 
Garner, 197O» Potter, 1967» Visher, 1965a,b). Such interpretat
ion is based on comparison with the textures, sedimentary structures
detailed stratigraphic succession and organic content of recent
channel and overbank deposits.

The coarse units are commonly tabular in shape or broadly 
lens shaped. Epsilon-cross-stratification is only rarely observed, 
there being only three published occurrences to date (i.e. Allen, 
1965b, Beutner e b al., 1967; and Moody-Stuart, 1966), This may 
either be due to lack of preservation, or, as previously mentioned, 
due to difficulties in recognition, The coarse members exhibit the 
characteristic vertical patterning of grain size and sedimentary 
structure, and such vertical patterning has also been recorded from 
tidal upward fining sequences (e.g. Allen and Friend, 1968; Klein, 
1965)• Various other obvious recorded and characteristic features 
which have not been simulated have been the decrease in thickness of
cross bedded units upwards, detailed grain fabric and texture,
convolute lamination, and the presence of oriented and nonoriented 
sole structures (i.e. grooves, flutes, pot holes, load structures, 
etc.) .

Relief in grain size class and sedimentary structure 
boundaries (facies boundaries) is common, although not always 
present. Lensing of particular sedimentary structures or litholo
gies is also recorded frequently. Relief of the basal scoured
surface is common, although it is nob always evident in the

literature, whether the relief is due to local small scale
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scouring, or is genetically related to the processes of scour and 
fill combined with bar migration. In general, only the amplitude 
of this relief is recorded but the shape and wavelength is often 
omitted. The reason for this may be due to lack of exposure, 
especially when the relief has very long wavelength.

A Downtonian coarse member at Ludlow, Shropshire (Allen, x 
1964, p. 170) is of uniform thickness, 3.6-3,7 m., and has an 
essentially flat scoured base, except for scoured hollows with a
maximum relief of 13 cm. It would thus appear that scour-and-fill 
was not prominent in this case. This strongly contrasts with, for 
example, the high amplitude/wavelength basal scoured surface 
described by Beutner et al. (1967) in a Pennsylvanian channel
sand stone•

The detailed organisation of the grain sizes and structures
in the published examples of coarse members is not generally
traced laterally in continuous sections. Thus even reasonable
qualitative comparison with the simulation model deposits becomes
difficult. A rare opportunity to compare the model in detail with >
ancient sediments occurs when epsilon-cross-stratified units are
preserved in extensive outcrops cut perpendicular to the current
direction. These structures are the most obvious indicator of the 
presence of lateral deposition. Allen (1963b) described examples 
from the porth-y-Mor beds on the northeast coast of Anglesey. The 
units average 6’ 3” in thickness and were traced for 30 m. or more
along the shore. Fig. 23.1 shows Allen’s schematic representation 
of the chief features of lithology and sedimentary structure in the 
epsilon cross-stratified units. Many of the sigmoidal bedding 
surfaces are recorded as erosional contacts, indicating scour of 
the previous bar profile. The cross-stratified units are hetero- 
lithic. Although statistically there is an upward decrease of - 
grain sizes with each unit, as well as an upward and lateral 

decrease in coarseness of beds between major bedding surfaces, the
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LITHOLOGIES

MAJOR BEDDING PLANES

SCOURED SURFACE

SILTSTONE

SANDSTONE

INTRAFORMATIONAL
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MAJOR BEDDING PLANES

SCOURED SURFACE

Fig» 23® 1® Schematic block diagrams showing the
characteristics of epsilon-crossestratified 
units in the Old Red Sandstone of Anglesey, 
North Wales, Unit thickness is from three 
feet six inches to nine feet. Major bedding 
surfaces have maximum slopes from four to four 
teen degrees, Vertical scale much exaggerated 
(from Allen, 1965b)®



relationship between lithologies is one of complex intertonging. «
Sedimentary structures also show complicated spatial relation
ships with the development of lensing. The nature of these
deposits is broadly comparable with simulated deposits, but fig.
23.1 shows up the inability of the model to treat deposition over
a range of stages and points to the approximations both in the
mathematical model and the computer program. Probably the
example of epsilon-cross-stratification that best lends itself 
to comparison with the model is cited by Beutner et al. (1967).
This is discussed more fully in the section dealing with the 
application of the model to interpretation of ancient fluvial
sediments.

Allen (1963b, 1964) described two cases where conglomerate 
passes laterally gradually into gravel-free rock, despite the
underlying basal scoured surfaces- persisting laterally for
considerable distances. Detailed data unfortunately are not
available to determine whether these occurrences represent broad
flat lenses of gravel associated with scour and fill of whether 
they are genetically related to a gradual decrease in load carrying
ability of the channel as it moves laterally.

Ancient fluviatile sequences are normally made up of many 
repeated cyclothems, from which it must be concluded that a ,
channel occupied a given site at successively higher levels 
relative to an original datum. Such an occurrence can only be 
attributed to channel migration of continuous or discontinuous 
nature in conjunction with net vertical deposition, which may
also be continuous or discontinuous in nature. The mechanisms 
responsible for net vertical deposition (aggradation) cannot be 
simulated at present, however, irrespective of the causative 
processes involved, a constant rate of aggradation can be simulated 
It is only possible to simulate continuous movement of a channel

189.

within a meander belt, and not channel abandonment with cut off or
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meander belt movement in a continuous way or by avulsion. At 
present therefore it is not possible to simulate repeated channel
and overbank sequences. A complex distribution of channel
sediments would be expected in a thick alluvial succession (e.g. 
Allen, 1965a; Potter, 1967), and details of the three dimensional 
form of the cyclothems would be required before either the controls 
underlying the cyclicity could be solved or comparison with
simulation models is made possible.
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24 PRESERVATION of point bar sediments

The experiments show, despite their limitations, that a
complete sequence of channel sediments capped by overbank sediments 
would rarely be preserved in the moving-phase situation, rather 
that only basal fractions of the total point bar thickness would 
be preserved (c.f. Bluck, 1971)• Clearly the preservation of a 
'complete cyclothem’ becomes more likely as the section lies out
of range of any eroding channel for the sufficient time span.
The channel movement may be continuous or discontinuous, and the
occurrence of avulsion in particular appears to favour preservation
of thick and complete sequences. The experiments suggest that if
the general slope of facies boundaries or basal erosion surfaces
relative to the land surface is not great and complete bar
sequences are preserved, then a process other than purely moving-
phase must be responsible.

Complete vertical sequences are rarely preserved in modern
and ancient coarse-grained point-bar deposits produced in streams
subject to flash floods, because of the rapid channel migration 
(McGowen and Garner, 1970)• Complete vertical sequences are more 
common in ancient fine-grained point-bar successions of the types
described above. Because of the time scales involved in channel
movement associated with discontinuous avulsion and cut-off and
continuous moving phase, many erosion surfaces would be expected 
to exist in the lower parts of coarse members; Bluck (1971 
states ’...many sequences of believed fluvial origin have many
erosion surfaces at their base’. In this respect also, the fills
of the deeper scoured channels have a greater preservation
potential than contemporary shallower ones.
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25 APPLICATION OF THE MODEL TO QUANTITATIVE INTERPRETATION OF

ANCIENT FLUVIATILE COARSE MEMBERS
Allen (1970a) applies his original ’static* grain size and "J

sedimentary structure model to various Devonian coarse members

from Britain and North America, which are strongly believed to
have accumulated through processes of lateral deposition. It 
appears in many cases that the only absolute control on data input 
used is via the density of the sedimentary particles and the
maximum flow depth, which is taken as the thickness of the coarse
member. This maximum flow depth must in reality be the maximum 
scoured flow depth. If scouring and filling has been an important 
process in the formation of such coarse members the application of
this static model invites an additional caution because of the
expected lateral variation in member thickness, grain size and 
bedding geometry. Allen has overcome complications due to major 
erosion surfaces at the bases of these members by choosing simple 
coarse members free of evidence of multi-storey character.

Other parameters defining channel geometry were chosen, 
being consistent with experience of sand-bed rivers, in order to

if'.

give the closest fit with the observed coarse members. Additional.;,.’ 
control may have been forthcoming if epsilon cross-stratified units
could be traced laterally to the extent that the width of the bar 
could be discerned (e.g. Moody-Stuart, 1966). Caution is 
invited here with regard to the definition of the true width when
looking at such units as projected in one cross section.

Where exposure limits examination of sections to any great
lateral extent the application of the present model will 
necessarily follow the same general lines as Allen (1970a), thus 
restricting the use of all aspects of the model. An opportunity 
to apply substantially more interpretive aspects of the model lies | 
in the Pennsylvanian channel sandstone described by Beutner et al. 
(1967), which represents some 700 feet in lateral extent of sandy ;

I
'■1
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point-bar deposits exposed in a section cut approximately normal
to the mean downvalley direction. .Directives for use of the model
in this application, and a comparison of the simulated and actual
section, will follow. ' ' -I

By inspection of the basal scoured surface it seems obvious J
• -iti

that channel scouring and filling was continuing with bar -‘T
migration (see Beutner et al. 1967, p, 913) . The unscoured channel S

'.'fydepth can be inferred by inspection of the relief of the scoured 4
surface and the shape of the epsilon units. A value of 12 metres 4

Viwas chosen, and thus an idea of the amount of scouring below the' V
<4

talweg could be assessed; average about 4 metres. The width of 
flow between the inner bank and talweg was approximately 80 metres, ;
by inspection of the width of epsilon units from the top to the

. • tbottom of the bar. The individual units actually vary in length
and show varying degrees of development, recording variation in
the channel direction cutting the section combined with variable §
scouring. The ratio of partial width to full flow width (at

• ?bankfull stage) was arbitrarily taken as 0.8 thus giving a full 
width of 100 metres. The rate of bar migration can be inferred by 
measuring the horizontal thickness of certain well developed Ji?
epsilon units. Average rates of migration are about 10-12 metres 
per time increment. A value of the exponent n^ was taken as 1.5

amand this provides good agreement with the shape and maximum slope
o 1of the epsilon units (10-20 ). In some runs a straight inner 

bank profile was used. Parameters for use in the scour and fill 4 
and bank migration relations were defined, bearing in mind the -5
required average values of scour and migration required, using an 
arbitrary flow pattern. 3

The remaining parameters required for input were defined, 
being consistent with observations from modern streams, such that 4 
the model could best simulate the main features of the section.

The sands are medium grained on average but fine upwards. In the j



194

basal parts coarse sand and gravel size fragments are found.

Most of the deposit is tabular cross bedded and is attributed
to deposition by transverse bars migrating over the bar surface.
There were a few examples of trough cross-bedding. Occurrences 
of cross lamination may also be seen towards the top of the 
section, and lenses of flat bedding sometimes occur in the
deepest scours.

Figure 25.1 show’s the simulated cross sections which are 
probably the closest obtainable at present. The grain size 
distribution section is made up predominantly of sand.
Inspection of table 25.1, wdiich shows the variation of various
hydraulic parameters over the unscoured bar cross profile for 
the initial sediment deposition, indicates that the mean grain 
size is medium sand. The section fines upwards from fine gravel
and coarse sand at the base to a small thickness of silt and
clay at the top. The correspondence in grain size between 
the simulated and actual sections appear to be very good.

The correspondence between the simulated sedimentary 
structure section and the actual section is not as satisfactory. 
A thick set of cross bedding (due to dunes) is predicted, how
ever, in general, the thicknesses of cross lamination and flat
bedding are overemphasised. Furthermore, no flat bedding is 
predicted in deeper scour hollows. The reason for the dis
crepancy probably lies in the fact that prediction of bed form
was not as readily based on general principles as grain size
prediction, and relied heavily on empirical flume data. Not
until mores rigorous and generalised methods of prediction are
developed, which are applicable to natural streams, will this
situation be remedied. It has already been pointed out that
values of 0 used are probably too low,

C X X v•> *
The shape of the basal scoured surfaces agree well
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Fig. 25.1. Simulated cross sections comparable with ancient fluviatile coarse member shown in Fig. 25.2
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Table 
Variation 

of grain size, 
bed form and

hydraulic parameters over the'unscour
cross profile for simulated deposits,

a <

cr 4 
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4 O

C
co

FLUVIATILE PROCESS SIMULATION EXPERIMENT X TIME INCREMENT 0

IATION OF GRAINSIZE AND BED FORM OVER CHANNEL CROSS PROFILE

DEPTH GRAINSIZE 8ED FORM LOCAL MEAN LOCAL LOCAL STREAM LOCAL BED LOCAL FROUDE
CM) (CM) FLOW VELOCITY DIMENSIONLESS POWER SHEAR STRESS NUMBER

(CM/SEC) SHEAR STRESS (ERGS/CM2/SEC) (DYN/CM2)

0.0002 0.0000 - U 0.6126 10.7323 0.0006 0.0009 0.1309
0.0018 0.0000 - U 1.7329 5.4555 0.0130 0.0075 0.1309
0.0060 0.0000 - U 3.1833 3.6973 0.0806 0.0253 0.1309
0.0143 0.0000 - U 4.9006 2.8176 0.2942 0.0600 0.1309
0.0279 0.0000 - U 6.8475 2.2896 0.8027 0.1172 0.1309
0.0482 0.0001 - U 8.9987 1.9372 1.8217 0.2024 0.1309
0.0764 0.0001 - U 11.3352 1.6850 3.6411 0.3212 0.1309
0.1139 0.0002 - U 13.8417 1.4955 6.6300 0.4790 0.1309
0.1620 0.0003 - U 16.5054 1.3477 11.2414 0.6811 0.1309
0.2218 0.0005 S U 19.3152 1.2289 18.0150 0.9327 0.1309
0.2947 0.0007 S U 22.2608 1.1313 27.5779 1.2389 0.1309
0.3816 0.0009 s u 25.3330 1.0494 40.6444 1.6044 0.1309
0.4838 0.0013 s u 28.5232 0.9796 58.0140 2.0339 0.1309
0.6022 0.0017 s u 31.8226 0.9193 80.5649 2.5317 0.1309
0.7377 0.0022 s u 35.2230 0.8664 109.2499 3.1017 0.1309
0.8913 0.0028 s u 38.7164 0.8196 145.0859 3.7474 0.1309
1.0637 0.0036 s u 42.2943 0.7777 189.1414 4.4720 0.1309
1.2554 0.0044 s u 45.9485 0.7398 242.5242 5.2782 0.1309
1.4671 0.0054 s u 49.6705 0.7053 306.3630 6.1679 0.1309
1.6989 0.0066 0 u 53.4519 0.6737 381.7937 7.1428 0.1309
1.9512 0.0079 □ u 57.2836 0.6443 469.9277 8.2035 0.1309
2.2240 0.0094 0 u 61.1568 0.6170 571.8396 9.3504 0.1309
2.5171 0.0111 0 u 65.0620 0.5914 688.5310 10.5827 0.1309
2.8302 0.0130 0 u 68.9898 0.5671 820.9077 11.8990 0.1309
3.1627 0.0151 0 u 72.9302 0.5441 969.7542 13.2970 0.1309
3.5140 0.0175 0 u 76.8732 0.5220 1135.7026 14.7737 0.1309
3.8829 0.0201 0 R 40.4041 0.5008 659.5916 16.3249 0.0655
4.2684 0.0231 0 R 42.3623 0.4803 760.2202 17.9457 0.0655
4.6691 0.0263 0 R 44.3057 0.4604 869.7217 19.6300 0.0655
5.0831 0.0299 0 D 46.2287 0.4410 987.9524 21.3710 0.0655
5.5088 0.0339 0 D 48.1255 0.4219 1114.6179 23.1607 0.0655
5.9440 0.0383 0 D 49.9902 0.4030 1249.2634 24.9902 0.0655
6.3863 0.0432 0 0 51.8167 0.3844 1391.2673 26.8498 0.0655
6.8332 0.0485 0 D 53.5991 0.3658 1539.8291 28.7287 0.0655
7.2819 0.0545 □ D 55.3310 0.3473 1693.9739 30.6153 0.0655
7.7295 0.0611 0 D 57.0062 0.3288 1852.5410 32.4972 0.0655
8.1729 0.0685 0 D 58.6184 0.3101 2014.1970 34.3612 0.0655
8.6088 0.0768 0 D 60.1611 0.2913 2177.4502 36.1936 0.0655
9.0337 0.0862 0 D 61.6280 0.2722 2340.6377 37.9801 0.0655
9.4441 0.0970 □ D 63.0125 0.2529 2501.9636 39.7058 0.0655
9.8366 0.1096 0 D 64.3083 0.2332 2659.5139 41.3557 0.0655

10.2073 0.1245 0 D 65.5090 0.2130 2811.2822 42.9144 0.0655
10 . 5528 0.1425 0 D 66.6084 0.1924 2955.1968 44.3668 0.0655
10.8693 0.1650 0 D 67.5999 0.1711 3089.1436 45.6975 0.0655
11.1534 0.1940 0 D 68.4776 0.1493 3211.0422 46.8919 0.0655
11.4016 0.2337 G D 69.2354 0.1267 3318.8376 47.9355 0.0655
11.6108 0.2918 G D 69.8676 0.1034 3410.5774 48.8149 0.0655
11.7778 0.3867 G D 70.3684 0.0791 3484.4385 49.5171 0.0655
11.8999 0.5738 G D 70.7323 0.0539 3538.7820 50.0306 0.0655
11.9747 1.1298 G D 70.9542 0.0275 3572.1873 50.3450 0.0655



FLUVIATILE PROCESS SIMULATION EXPERIMENT X

CROSS SECTION PARAMETERS METRES CELLS

WIDTH OF SECTION 3*0.000
THICKNESS OF SECTION 30.000
INITIAL DISTANCE OF INNER CHANNEL BANK FROM L.H.S. OF SECTION 0.0
INITIAL BANKFULL STAGE MEASURED FROM SECTION BASE 20.000
CELL SIZE IN VERTICAL(Y) DIRECTION 0.500
CELL SIZE IN HORIZONTALIZ OR X) DIRECTION 1.700

200
60

0
*0

CHANNEL PARAMETERS METRES CELLS

TOTAL WIDTH OF CHANNEL(W)
WIDTH OF FLOW BETWEEN INNER BANK AND TALWEGtWl)
RATIO OF W1 TO W
MAXIMUM FLOW DEPTH MEASURED ABOVE TALWEG
DENSITY OF SEDIMENTARY PARTICLES
FLUID DENSITY
DARCY-WEIS8ACH FRICTION COEFFICIENT FOR DUNES AND RIPPLES 
DARCY-WEISBACH FRICTION COEFFICIENT FOR PLANE BEDS AND ANTIDUNES 
EXPONENT Ml

100.000 
BO.000

12.000

58
*7

0.600

2.650 GMZCM3 
1.000 GM/CM3 

•0.060 
0.020 
1.500

SYNTHETIC HYDROLOGY PARAMETERS!UNITS NOT NECESSARY!

MEAN OF ALL DAILY MEAN VALUES 
STANDARD DEVIATION OF DAILY MEAN VALUES 
MEAN OF YT SERIES
STANDARD DEVIATION OF YT SERIES 
COEFFICIENTS IN AUTOREGRESSIVE MODEL

FOURIER COEFFICIENTS FOR DAILY MEANS(A)
IB)

FOURIER COEFFICIENTS FOR DAILY STD DEVI AT IONS(SA) 
(SB)

MAXIMUM VALUE OF QVOL

5*3.500
**1.000

0.0
1.000

‘ 0.567 A 2“ 0.306
HARMONICS 1FROM 1 TO 6

-200.300 1*5.*00 -85.500 58.000 -39.800
-112.*00 185.000 -79.900 65.600 -72.500
-123.300 1*1.600 -66.*00 75.700 -*7.200
-85.600 105.700 -*6.200 31.700 -*3.200

110000.000

7. *00 
27.800
B.600 
*.300

BANK MIGRATION PARAMETERS 
EXPONENT N2
VALUE OF CONSTANT IN LATERAL MIGRATION RELATION 
VALUE OF CONSTANT IN DOWNVALLEY MIGRATION RELATION 
LIMITING PERCENTAGE OF GRAVEL ALLOWABLE IN OUTER BANK

K2-
0.500

0.200E-05
K3» 0.500E-03

30.000

SCOUR AND FILL PARAMETERS 
CONSTANT K*
EXPONENT N3
STANDARD DEVIATION OF ERROR TERM

CUT-OFF CONTROL PARAMETERS
LIMITING WIDTH OF MEANDER NECK 
EXPONENTS IN NECK CUT-OFF RELATION 
LIMITING SINUOSITY
LIMITING AMPLITUDE
EXPONENTS IN CHUTE CUT OFF RELATION

0.500E-0* 
1.000 
1.000

200.000 METRES
EN1- 5.000

3.000
EN2- 5.000

829.870 METRES
ECl= 20.000 EC 2- 20.000

A DOWNVALLEY SECTION IS REPRESENTED IN THIS TEST
DISTANCE OF LINE OF SECTION FROM POINT OF INFLECTION OF LOOP IS 0.0 METRES

Table 25«2<, Initial data used for simulation,,



FLUVIATILE PROCESS SIMULATION EXPERIMENT X

PLANIMETRIC FORM OF MEANDER

WAVELENGTH
AMPLITUDE
SINUOSITY
RADIUS OF CURVATURE AT BEND AXIS 
WIDTH OF MEANDER NECK 
CHANNEL LENGTH ALONG MEANDER 
VALLEY SLOPE
LONGITUDINAL WATER SURFACE SLOPE

SELECTED GEOMETRIC RATIOS

WAVELENGTH TO RADIUS OF CURVATURE 
WAVELENGTH TO CHANNEL WIDTH 
RADIUS OF CURVATURE TO CHANNEL WIDTH 
AMPLITUDE TO CHANNEL WIDTH

FLUVIATILE PROCESS SIMULATION EXPERIMENT X

PLANIMETRIC FORM OF MEANDER

WAVELENGTH
AMPLITUDE
SINUOSITY
RADIUS OF CURVATURE AT BEND AXIS 
WIDTH OF MEANDER NECK 
CHANNEL LENGTH ALONG MEANDER 
VALLEY SLOPE
LONGITUDINAL WATER SURFACE SLOPE

SELECTED GEOMETRIC RATIOS

WAVELENGTH TO RADIUS OF CURVATURE 
WAVELENGTH TO CHANNEL WIDTH 
RADIUS OF CURVATURE TO CHANNEL WIDTH 
AMPLITUDE TO CHANNEL WIDTH

Table 25.3, Various geometric variab 
simulation „



TIME INCREMENT 0

METRES

700.000
308.311

1.400
141.032

980.000
0.00006000
0.00004286

4.963
7.000
1.410
3.083

TIME INCREMENT 10

METRES

700.000
501.700

1.907
148.890

**********
1334.817

0.00006000
0.00003146

4.701
7.000
1.489
5.017

Les at the beginning and end of the

-Ift



MEANDER GEOMETRY

SCALE-1 INCH TO 92.21 METRES
Fig* 25*3 Simulated meander plan forms,,
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qualitatively with the observed sequence (c.f. fig. 25.2), which 
indicates that the amounts of bank migration and scour and fill
used in the model are appropriate, Where possible approximate
outlines of epsilon unit boundaries have been added.

Table 25.2 shows the input data used and various other
initial data. Table 25.3 shows various geometric variables at 
the beginning and end of the simulation, and fig. 25.3 shows the 
meander movement in plan which produced the deposits. The low 
valley slope and high sinuosity indicate that the stream was very 
close to its base level. An estimate of the bankfull discharge 
can be obtained fairly easily by assuming a realistic value of 
the friction coefficient for the outer bank; computed values of
velocity and the cross sectional area of the channel will then
give the discharge. Various other hydrological parameters may 
be estimated using, for instance, the regression equations 
developed by Schumm (1972).
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26 CONCLUDING REMARKS
As far as the model can be tested against nature it appears

to operate realistically. In view of the many simplifications 
made in its development, the results and implications are encourag 
ing, although no pretence is made to quantitative exactness.
Unfortunately the model has not been able to be tested rigorously, 
and comparison of real examples with solutions produced with the
simulation model do not involve any form of optimisation or
statistical measure of closeness.

The development of the mathematical model and subsequent 
experimentation with the computerised version has led to some
significant conclusions helpful in the understanding and inter
pretation of the lateral deposits attributable to meandering 
streams. The computer simulation model permits, in a matter of
minutes computing time, the exploration of the behaviour of the 
system under a wide variety of physical conditions and over long 
periods of time. Such data are not easily obtainable from the
natural situation by virtue of the time scale involved or the
prohibitive costs of field surveys. Scale physical model
experiments also have severe limitations on time and often have
stringent scaling qualifications.

The model may be used qualitatively as a guide to the
recognition of ancient fluviatile sediments which were deposited
under conditions of lateral sedimentation on the inside of meander 
bends, A quantitative picture of certain aspects of the physical 
environment respsonsible for such deposits may then be built up 
by comparison with simulated deposits. However, until the model 
has been tested more rigorously and further developed, any • 
quantitative interpretation must be treated with caution. There 
are a sufficient number of input variables to provide several

solutions in any specific example, and thus any one overall answer
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cannot always be assumed to be correct in its entirety. Further
more, at the level of the present study, any ’quantitative*
results must be thought of* as broad guidelines demarcating a
likely physical situation.

Doth the mathematical model and computer program provide
a framework for the construction of further simulation models of
more quantitative validity and embodying more complex and
generalised fluvial systems. Obvious improvements would be the
development of adequate mathematical models for erosion and
deposition over a range of river stages within the channel and over
the floodplain. The reasonable treatment of the sequence of
events involved with channel abandonment and relocation (cut-off 
and avulsion) would clearly be valuable. The model is very 
restrictive in its range of application; riffle deposits, over
bank deposits, etc. require attention, and the deposits of coarse
grained point bars and braided riverd must surely merit consider
ation. Many of the mathematical relationships used in the model 
are empirical in nature; theoretical relationships will be more 
desirable in future because of their greater versatility.

As computer simulation models are developed and become more
complex, core store requirements may be expected to rise.
Fortunately there does not appear to be a problem here in view of
the recent advances in computer technology. Associated with
further development of such mathematical models will also come a
deeper understanding of the processes involved in the natural 
system. As well as being parasitic on the vast amount of field, 
laboratory and theoretical information that exists, the models 
also direct research to areas that are inadequately explored.
It should be realised that to test a model adequately, a large 
amount of data of the appropriate form must be available. The 
interpretive and predictive potential of computer simulation

warrants such further work.
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LIST OF SYMBOLS USED IN MATHEMATICAL MODEL

Symbol Description *Dimensional S'?
formula

2 %
a Cross sectional area of stream. L

al * a2 Coefficients in autoregressive synthetic
hydrology model. -

a(t) Amplitude of bed wave. L
A Meander amplitude. L
A(t) Amplitude of surface wave. L •5

Ak Fourier coefficients for cosine terms in
harmonic representation of daily mean flows. -

sAk Fourier coefficients for cosine terms in
harmonic representation of daily standard
deviations about daily means.

Bk Fourier coefficients for sine terms in $

harmonic representation of daily mean flows. -
sBk Fourier coefficients for sine terms in

harmonic representation of daily standard S
deviations about means.

C1* °2’ * * Any constants. -
C Chezy C. L^T*"1

C Dimensionless parameter from Hayashi (1970).

Cs Weight concentration of sediment. -
d Mean depth of flow. L
D Diameter of sedimentary particle. L
DSCR Depth of scour at the talweg. L
e Base of naperian logarithms. -
er ' Error term in scour and fill relation. L
ecpec£ Exponents in chute cut-off relation. -
en^,en^ Exponents in neck cut-off relation. -

*M = Mass, L=Length, T=Time
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F

F
Pi*
Fr.
Fr,
Fr
Fr
Fri

Fr.

g*
G
GAP
GSI
h

a
m
u

Darcy-Keisbach friction coefficient,
Darcy-Weisbach friction coefficient for
ripples and dunes in a straight channel.
Darcy-Veisbach friction coefficient for
plane beds and antidunes in a straight
channel,
Part of Darcy-Veisbach friction coefficient
representing form losses due to addition
of a bend.
Darcy-Veisbach friction coefficient in the
straight channel that is comparable with a
given bend.
Upslope component of fluid force on a point
bar.
Width-depth ratio.
Froude number.
Maximum Fr for formation of dunes.
Maximum Fr for formation of antidunes.
Minimum Fr for formation of antidunes.
Upper stability limit for 2-D bed waves.
Fr at change from transition to upper flow 
regime.
Fr at change from lower flow regime to
transition.
Gravitational acceleration.
Body force component acting on a particle.
Width of meander neck.
Grain size index.
Maximum unscoured flow depth measured above 
talweg.

Sediment transport rate (immersed weight 
per unit width).

MLT

LT-2

MLT
L

-2

ml~1t'
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j Kennedy j factor.
k Wave number (=2 7T /l) •

Ratio of full width to partial width of
channel.

k^»k„ Dimensional constants in bank migration 
relations.

k^ Dimensional constant in scour and fill
relation•

1 Meander wavelength,
L . Wavelength of sinusoidal bed waves.
m Dimensional coefficient from Hayashi’s

(1970) sediment transport relation.
m^ Mean daily flow for day Z', 7'-l,365»
in^ Mean of all the •
m^. Continuous representation of m^ using

Fourier analysis.
M Weighted mean percentage of silt and clay

in channel perimeter.
M Total path length in a meander wavelength
n Exponent in Kennedy's (1963, 19^9) transport

rate equation,
n^ Exponent in transverse profile shape equation
tig Exponent in bank migration relations,
n^ Exponent in scour and fill relation.

lV1
l3t“

L
L

L

N An exponent, -
-2NS Average net scour at a channel cross section. ML

P A probability. -
p(c) Probability of chute cut-off, -
p(n) Probability of neck cut-off, -
Q Discharge.
Q _ Flood period volume. L^vol

3 -1Qm Mean annual discharge, L T
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Qt

R
RMIG

RLMIG

RDMIG

3

an
stdvn
S

s

r

rm

Total sediment load that is sand or bed
load at mean annual discharge.
Factor by which f tnay have to be multiplied 
to account for change in relative roughness 
(arising from bed features) due to change 
in hydraulic radius with meandering,
Radius of curvature measured to channel
centre lines.
Local radius of curvature.
Lth order serial correlation coefficient 
of sample Z^
Hydraulic radius (= hydraulic mean depth). 
Bank migration rate in specific cross
section.

Bank migration rate normal to mean downvalley
direction.
Bank migration rate in mean downvalley
direction*
Distance along meander path.
Standard deviation of daily flow for day T'. 
Mean of all s^.
Standard deviation of Y series.
Continuous representation of s^ using
Fourier analysis.
Sinuosity.
Standard deviation in error term.
Longitudinal slope of water surface.
Distance of channel at bend axis from an 
assumed equilibrium position (i.e. position 
of limiting amplitude) - measured normal to

L
L

L

1LT~

L

mean downvalley direction L
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s o Initial distance from equilibrium position

above. L

sb Longitudinal bed slope. -
t Time. T
tan Dynamic solid friction coefficient, -

T Constant value of t in scour and fill

T
analysis. T
Net forward sediment transport rate for

V

whole stream.
Mean fluid flow velocity for whole stream LT~^

V c Critical velocity for initiation of
— 1sediment motion. LT

Vb Bed form velocity. LT~^

v* Shear velocity. LT*"'*'

V*crit Critical shear velocity. LT*"'*'

w Full width of flow between inner and outer
banks. L

W1 Width of flow between inner bank and talweg, L
ws Channel width projected in a specific cross

W
section. L
Meander width. L

X Downchannel distance measured parallel to
channel centre line. L

X Coordinate of reference axis in downvalley
direction.

Xt Time series. -

y Flow depth measured positively downward -from
water surface at any transverse distance z
across channel, L

Yt Standardised fitted series or Fitted series. -
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Y Mean of Y^. -
z Perpendicular transverse distance across

the water surface measured from edge of
water at inner bank. L

Z Coordinate for reference axis normal to

Zt

X axis in horizontal plane. -
Standardised series. -

Zsect Normal distance of line of section from
line joining points of inflection of loop. L

o< Angle on bed between channel centre line

c<
and tangent to a skin-friction line. -
Angle that line of section makes with normal

P

r

to mean downvalley direction. -
Slope in degrees of channel cross profile. -
Expression in Hayashi’s (1970) analysis. -

s Lag distance. L

A s Elemental distance along path of a meander

A^
i.e. small change in s. L
Small change in /. -
Independent residual series. -
Standardised independent stochastic variable

Q

(primary variable) «
Dimensionless shear stress. -

^crit Critical dimensionless shear stress. -
2 -1Kinematic viscosity, L T

7T Pi, radians. -

Z9 Fluid density (including suspended sediment).

P w Fluid density of water. ML‘“J

Pl, Lth order serial correlation coefficient
of the population from which Z. is drawn. -



<^3

X

r
s

0

6U

Cu

Density of sediment particle in bed load.
Density of suspended sediment.
Component of bed shear stress parallel to
channel centre line.
Bed shear stress parallel to skin friction

line •
Deviation angle of meander path from mean
downvalley direction.
Maximum value of 0,
Stream power.
Critical stream power

205
-3ML

ML"^

MT
-3MT J
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APPENDIX 1 MATHEMATICAL METHODS

>'v

Al.1 Newton-Raphson iterative formula
This method is used to find approximate values of the real 

roots of equations. It can be applied to polynomials of any 
degree and also to nonpolynomial equations. The iterative formula
is as follows

"r+1
f (x

(ai.i)= x r )
f(x )

Here xr is the approximate root of function f(x)=O. f(xr) is the
value of the function f(x) for x=x^ and f ’ (x^
derivative of f(x) for x = x • \ / T Then x

is the first
is a closer approximationf'r+1

to the real root. The formula is the basis fox’ an iterative
process that lends itself to use on a computer. The iterative
process is continued until the difference between successive
estimates is less than a specified amount. Although the process 
has the advantage of converging rapidly, an initial estimate is 1
required and sometimes, under exceptional circumstances, convergencei 
may not occur. Difficulties also occur if the equation has two .1 

or more nearly equal roots.
The development, geometrical interpretation and reasons i

for failure of the method can be obtained from any standard text 
on numerical analysis. "¥

A 1.2 Simpson’s rule .

This is a numerical method for evaluating definite 4
integrals when they cannot be evaluated exactly. The formula is ?•
as follows

a
f(x)dx^~ (yo+^y1+2y2+4y3+ — + 2yn-2+4yn-l+yn^

(A1.2)



A2
The formula is obtained by dividing the curve y=f(x) into n equal 
parts between x=a and x=b, of length h = (b-a)/n, where n is always 
an even integer. Each separate piece of curve, covering an x-
subinterval of width 2h is then approximated by an arc of a para
bola through its ends and its mid point. These points correspond 
to values of y=f(x) of y , y^, y^, then y^, y^ , yand so on up 
to y , y , , y • The areas under each parabolic arc are then
added to give the expression above.

On geometrical grounds the smaller the value of h taken, 
the greater will be the accuracy of the approximation. Thus 
Simpson’s rule may be applied successively, halving the interval
on each application, until the difference between successive
estimates is less than an arbitrary specified amount,

Al. 3 Generation of random samples from specified theoretical
distributions

This is usually done by generating uniformly distributed 
pseudorandom numbers and using these to draw random samples from 
the specified frequency distribution. This is known as Monte Carlo 

simulation (Harbaugh and Bonham-Carter, 1970)•
The inverse transformation method can sometimes be used to

transform the uniform distribution into a specified non-uniform
distribution. A random number is simply equated with the cumulat
ive frequency distribution, expressed either discretely or continu
ously, and a corresponding value from the specified distribution is 
obtained (see Harbaugh and Bonham-Carter, 1970)• The initial 
step is to define the cumulative frequency distribution, obtained 
from the specified distribution either by summing over each dis
crete class (for empirical distributions), or by integration of a 
continuous distribution, if necessary dividing by the total to scale 
the range from 0.0 to 1.0.

The normal probability density function cannot be directly



integrated to give the cumulative distribution, unless by numerical 
methods, and so the inverse transformation method cannot be easily 
used. A much easier way of generating normally distributed random
variables is to use the formula derivable from the central limit
theorem,

k
y = r. - (k/2)

-------- (A1.3)
/k/12

where y is a random variable with standard normal distribution with 
meanssO, standard deviation - 1; r. is the ith element of a sequenc 
of random numbers from a uniform distribution in the range 0.0 to 
1.0} k is the number of values of r^ to be used. As k. tends to 
oo, y approaches a true normal distribution, but for most applicat
ions k=12 is adequate. Thus to generate a normally distributed 
random variable, x, with mean yu. and standard deviation sum 12 
random numbers in the range 0.0 to 1.0, subtract 6, and apply the 
following formula

x = ycr + ja _ (A1.4)
In the mathematical model samples are required to be generated in 
standardised form, as in equation (A1.3).

For a lognormally distributed random variable we perform 
the same process but replace the last equation by

x = exp(y<5~ + ja) (A1.5)
where ya and <5~" are the mean and standard deviation of logx. Log
normally distributed random variables generated directly from
standardised normal distributions, with mean of logarithms of x
zero and standard deviation of logarithms of x equal to unity, 
have an actual mean of I.65 and standard deviation of 2.^15. In 
order to transform such a variable x into a standardised form xs

A3.

the following transformation is necessary



a4.

X = X - 1,65 (ai.6)
s 2.15

A normal standardised deviate, y, can be transformed to
be distributed approximately as gamma using the following equation

x = | jl + _ i|{3 _ 2 (AI.7)

where x is approximately gamma distributed with zero mean, standard 
deviation unity and skewness equal to (Matalas, 1967).
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APPENDIX 2 - STATISTICAL CURVE AND SURFACE FITTING-

A 2.1 Polynomial regression
The following tables show the relevant results from

polynomial regression analyses. Table A2.1 is for the regression
of the ratio A/l on sn, as discussed in section 2.2. Table 

3 2A2.2 refers to the regression of the parameter gD-/^ on V^D/z? as 
discussed in section 5.5*4. Tables A2.3 and A2.4 are for the 
regression of Kennedy’s j factor on Fr discussed in section 5.5*5.

A2.2 Polynomial surface fitting
The accompanying diagram, fig. A2.1, and table A2.5 show

the results of fitting polynomial surfaces of degree 1,2 and 3» 
by least squares, to the solution to the integral given in 
equation (4.2). The independent variables were sn and 0, and 
594 points were used.



POLYNOMIAL REGRESSION S 005

NUMBER OF OBSERVATIONS 36

POLYNOMIAL REGRESSION OF DEGREE 1

INTERCEPT 0.6529037E 00

REGRESSION COEFFICIENTS 
0.2186882E 01

ANALYSIS OF VARIANCE FOR I DEGREE POLYNOMIAL

SOURCE OF VARIATION DEGREE OF SUM OF MEAN F
FREEDOM SQUARES SQUARE VALUE

DUE TO REGRESSION 1 38.33066 38.33066 2510.68682
DEVIATION ABOUT REGRESSION 36 0.51912 0.01527

TOTAL 35 38.86976

IMPROVEMENT IN TERMS 
OF SUH OF SQUARES

38.33066

POLYNOMIAL REGRESSION OF DEGREE 2

INTERCEPT 0.8033228E 00

REGRESSION COEFFICIENTS
0.1260696E 01 0.6695866E 00

ANALYSIS OF VARIANCE FOR 2 DEGREE POLYNOMIAL

SOURCE OF VARIATION DEGREE OF SUM OF MEAN F
FREEDOM SQUARES SQUARE VALUE

DUE TO REGRESSION 2 38.1*536 19.37268 6126.60625
DEVIATION ABOUT REGRESSION 33 0.10639 0.00316

TOTAL 35 30.86976

IMPROVEMENT IN TERMS 
OF SUM OF SQUARES

0.61673

POLYNOMIAL REGRESSION OF DEGREE 3

INTERCEPT 0.9636151E 00

REGRESSION COEFFICIENTS
0.3370860E 00 0.1676662F 01 -0.6301562E 00

ANALYSIS OF VARIANCE FOR 1 DEGREE POLYNOMIAL

SOURCE OF VARIATION DEGREE OF SUM OF MEAN F
FREEOuM SQUARES SQUARE VALUE

DUE TO REGRESSION 3 3R.82F50 12.96252 18667.62570
DEVIATION ABOUT REGRESSION 32 0.02219 0.00069

TOTAL 35 38.0*976

IMPROVEMENT IN TERMS 
OF SUM OF SQUARES

0.0B220

POLYNOMIAL REGRESSION OF DEGREE 6

NO IMPROVEMENT

Table A.2 „ 1

Results of polynomial regression



POLYNOMIAL REGRESSION. RIPDUN

NUMBER OF OBSERVATIONS 49

POLYNOMIAL REGRESSION OF OEGREE 1

INTERCEPT 0,62335106 01

REGRESSION COEFFICIENTS 
0.2563132E-C1

ANALYSIS CF VARIANCE FOR 1 DEGREE POLYNOMIAL

SOURCE OF VARIATION DEGREE CF SUM OF MEAN F IMPROVEMENT IN TERMS
FREECCM SQUARES SQUARE VALUE OF SUM^OF SQUARES

DUE TO REGRESSION 1 5069*39062 5069.39062 455.90696 5069.39062
DEVIATION ABOUT REGRESSION 47 522.60937 11.11939

TOTAL 48 5592.00000

POLYNOMIAL REGRESSION OF DEGREE 2

INTERCEPT 0.4549340E 01

REGRESSION COEFFICIENTS
0.416796IE-C1 -0.1201998E-04

ANALYSIS CF VARIANCE FOR 2 CE6R6E POLYNOMIAL

SOURCE OF VARIATION DEGREE CF SUM CF MEAN F IMPROVEMENT IN TERMS
FREECCM SQUARES SQUARE VALUE OF SUM OF SQUARES

DUE TO REGRESSICN 2 5379.03906 2689.51953 580.94165 309.64644
DEVIATION ABOUT REGRESSICN 46 212.96094 4.62959

TOTAL 48 5592.00000

POLYNOMIAL REGRESSION OF DEGREE 3

INTERCEPT 0.3577861E 01

REGRESSION COEFFICIENTS
G.6022805E-CI -0.4778238E-04 0.1520497E-07

ANALYSIS CF VARIANCE FOR 3 DEGREE POLYNOMIAL

SOURCE OF VARIATION DEGREE CF SUM OF MEAN F IMPROVEMENT IN TERMS
FREECCM SQUARES SQUARE VALUE OF SUM CF SQUARES

DUE TO REGRESSION 3 5451.61719 1817.20557 282.50903 72.57812
DEVIATION ABOUT REGRESSION 45 140.38281 3.11962

TOTAL 48 5592.00000

POLYNOMIAL REGRESSICN CF DEGREE 4

INTERCEPT 0«3l29055E 01

REGRESSION COEFFICIENTS
0.7277495E-01 ~0.9190920E-04 0.6242391E-07 “0.15C1976E—1C

ANALYSIS CF VARIANCE FOR 4 OEGREE POLYNOMIAL

SOURCE GF VARIATION DEGREE OF SUM OF MEAN F IMPROVEMENT IN TERMS
FREECCM SQUARES SQUARE VALUE OF SUP CF SQUARES

DUE TO REGRESSICN 4 5462.06641 1365.51660 462.41113 10.44922
DEVIATION ABOUT REGRESSION 44 129.93359 2.95304

TOTAL 48 5592.00000

POLYNOMIAL REGRESSION CF DEGREE 5 

NO IMPROVEMENT

Table A2,2.

Results of polynomial regression



NUMBER OF OBSERVATIONS 13

POLYNOMIAL REGRESSION............KENDY1

POLYNOMIAL REGRESSION OF DEGREE I

INTERCEPT 0.8485743E CO

REGRESSION COEFFICIENTS 
0.Z577252E-C1

ANALYSIS OF VARIANCE FOR 1 DEGREE POLYNOMIAL

SOURCE OF VARIATION DEGREE CF SUM CF MEAN F IMPROVEMENT IN TERMS
FREEDOM SQUARES SQUARE VALUE OF SUM OF SQUARES

DUE TO REGRESSION 1 0.03022 0.03022 178.87331 0.03022
DEVIATION ABOUT REGRESSION 11 0.00186 0.00017

TOTAL 12 0.03208

POLYNOMIAL REGRESSION OF DEGREE 2

INTERCEPT 0.8304257E 00

REGRESSION COEFFICIENTS
0.4557114E-C1 -0.3299772E-02

ANALYSIS CF VARIANCE FOR 2 DEGREE POLYNOMIAL

SOURCE OF VARIATION DEGREE CF 
FREEDCM

SUM CF 
SQUARES

MEAN
SQUARE

F
VALUE

IMPROVEMENT IN TERMS 
OF SUM OF SQUARES

DUE TO REGRESSION 2 0.03158 0.01579 318.28906 C.00136
DEVIATION ABOUT REGRESSION 10 0.00050 0.00005

TOTAL 12 0.03208

POLYNOMIAL REGRESSION OF DEGREE 3

INTERCEPT 0.8377432E CO

REGRESSION COEFFICIENTS
0.2720344E-C1 0.4665561E-02 -0.8851467E-03

ANALYSIS OF VARIANCE FOR 3 DEGREE POLYNOMIAL

SOURCE OF VARIATION DEGREE OF SUM OF MEAN F IMPROVEMENT IN TERMS
FREEDOM SQUARES SQUARE VALUE OF SUM CF SQUARES

DUE TO REGRESSION 3 0.03183 0.01061 379.40259 0.0CC24
DEVIATION ABOUT REGRESSION 9 0.00025 0.00003

TOTAL 12 0.03208

POLYNOMIAL REGRESSION OF DEGREE 4

NO IMPROVEMENT

Table A.2 * 3 Results of polynomial regression*



POLYNOMIAL REGRESSION., KENDY2

NUMBER OF OBSERVATIONS 13

POLYNOMIAL REGRESSION OF DEGREE 1

INTERCEPT C.332577OE CO

REGRESSION COEFFICIENTS 
0.1197C75E 00

ANALYSIS CF VARIANCE F'.R I CEGREE POLYNOMIAL

SOURCE OF VARIATION DEGREE OF SUM OF MEAN F
FREEDOM SQUARES SQUARE VALUE

DUE TO REGRESSION I 0.65201 0.65201 31.535C6
DEVIATION ABOUT REGRESSION 11 0.22743 0.02068

TOTAL 12 0.87944

POLYNOMIAL REGRESSION OF DEGREE 2

INTERCEPT 0.1245201E CO

IMPROVEMENT IN TERMS 
OF SUM OF SQUARES

0.652C1

REGRESSION COEFFICIENTS
0.3466788E CO -C.3702854E-O1

ANALYSIS CF VARIANCE FOR 2 CEGREE POLYNOMIAL

SOURCE OF VARIATION DEGREE OF SUM OF MEAN F
FREEDOM SQUARES SQUARE VALUE

DUE TO REGRESSION 2 0.83106 0.41553 05.88647
DEVIATION ABOUT REGRESSION 10 0.04838 0.00484

TOTAL 12 0.87944

IMPROVEMENT IN TERMS 
OF SUM OF SQUARES

C.17905

POLYNOMIAL REGRESSION OF DEGREE 3

INTERCEPT C.31443C0E-01

REGRESSION COEFFICIENTS
0.5809163E CC -0.1394290E 00 0. 1128839E-01

ANALYSIS OF VARIANCE FCR 3 CEGREE POLYNOMIAL

SOURCE OF VARIATION 1DEGREE CF SUM CF MEAN F
FREEDOM SQUARES SQUARE VALUE

OUE TO REGRESSION 3 0.87193 0.29064 347.96606
DEVIATION ABOUT REGRESSION 9 0.00752 0.00084

TOTAL 12 0.87944

IMPROVEMENT IN TERMS 
OF SUM OF SQUARES

C.04C86

POLYNOMIAL REGRESSION OF DEGREE 4

INTERCEPT 0.49C2363E-C2

REGRESSION COEFFICIENTS
0.7150575E CC -0.2493903E 00 0.4049132E-01 -0.2431653E-02

ANALYSIS OF VARIANCE FOR 4 DEGREE POLYNOMIAL

SOURCE OF VARIATION 1DEGREE CF SUM CF MEAN F
FREEDOM SQUARES SQUARE VALUE

DUE TO REGRESSION 4 0.87817 0.21954 1384.06030
DEVIATION ABOUT REGRESSION 8 0.00127 0.00016

TOTAL 12 0.87944

IMPROVEMENT IN TERMS 
OF SUM OF SQUARES

0.0C625

POLYNOMIAL REGRESSION OF DEGREE 5

NO IMPROVEMENT

Table A2„4 Results of polynomial regression.



TABLE A2.5 Global fit data. -7^
'W

plane quadratic cubic ♦<•<$

COEFFICIENTS

03 - - 0.2804

0^sn - - -0.1713 1

0sn2 - - 0.1139
( '• si

SIT - - . -0.0292

02 - 0.4433 0.2244 1
 .

0sn - -0.1348 -0.5520 r/U

1
2sn

/
0.0419 0.2123 1

•■SI

0 0.6371 0.2269 0.8895 I
■ d 

1

sn -0.0505 -0.1993 -0.4651 1
"1

rl

Intercept -0.0692 0.2281 0.2668 j
*1

PERCE]^TAGE FIT1
87.114 96.782 98.568

1

1
-1

1
'id5?
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APPENDIX 3 DATA DECK SET UP FOR EXPERIMENTS



FLUVIATILE FRCCESS SIMULATION EXPERIMENT 1 612*1913 *
50 10 in 10

2C0 60 50 HIX 16OAI)
10C0.0 60.J 0.0 60.0 0.0 0.0

2.0 1000.0 0.0001 2CCC.0
0.000001 0 .0001 0.5 3C.C

50.0 50.0 10.0 10.0 C.C
100.0 20.0 1.0 0.8 0.21 C.15 2.65 1.0

GOS-ULAROXI. F
* 90000.0 1.0
1*1.2 23*.2 1.0 0.92855 -0.15132
-133.0 -*05.0 62.* -1*.3 -7.1 O.C
-135.1 125.3 -9.0 -29.5 1.0 7.*
-*9.5 -61.5 9.9 2.8 2.9 1.8
-*7.6 81.1 *.9 -31.* -10.2 5.7
1 0.00001 1.0 0.13
CCCCCCCCCCCCCCCGCCCOOCCCCCCCCCCGQOCCCCOOGGGGGQOGQCGQOOGCCOSS

FLUVIATILE PROCESS SIMULATION EXPERIMENT 1 812*1913 *
50 10 10 10

200 60 50 l(lXt60Al)
lOCC.O 60.0 0.0 60.0 0.0 0.0

2.0 1000.0 0.0001 2C00.0
0.000001 0.0001 0.5 3C.0

50.0 50.0 1G.0 1G.C 0.0
100.0 20.0 1.0 0.8 0.21 0.15 2.65 1.0

GCS-ULARDXI. F
* 90000.0 1.0
1*1.2 23*.2 1.0 0.92855 -0.15132
-133.0 -*85.0 62.* -1*.3 -7.1 0.0
-135.1 125.3 -9.8 -29.5 1.0 7.*
-*9.5 -61.5 9.9 2.8 2.9 1.8
-*7.6 81.1 *.9 -31.* -10.2 5.7
1 0.0001 1.0 1.03
CCCCCCCCCCCCOCCCCCCCCOCCCOCCOCOOOOOOOOOOGGGGGOOOOOOOOOOOOOSS

FLUVIATILE PROCESS SIMULATION EXPERIMENT 1 812*1913 *
50

2C0
1000.

10 , 10
60 50

0 60

10
i(ix,60A;)

.0 0.0 60.0 0.0 0.0
2.0 1000.0 0.0001 2CCC.0

0.000001 o.oooi C.5 3C.0
50.0 50.0 10.0 1C.C C.C

CO.O 20.0 1.0 0.8 0.21 C.15 2.65
GCS-ULAROXI. F
* 9COOO.O 1.0
1*1.2 23*.2 1.0 0.92855 -0.15132
-133.0 -*85.0 62.* -1*.3 -7.1 0.0
-135.1 125.3 -9.8 -29.5 1.0 7.*
-*9.5 -61.5 9.9 2.8 2.9 1.8
-*7.6 81.1 *.9 -31.* -10.2 5.7
1 0.0002 1.0 2.03
CCCCCCCCCCCCCCCCCCCCCCCCCCCGCOOOOOOOOOOOGGGGGOOOOOOOOOOOOOSS

FLLVIATILE PROCESS SIMULATION EXPERIMENT 1 812*1913 *
30 10 10 10

200 60 50 H1X.60A1)
1000.0 60.0 0.0 60.0 0.0 0.0

2.0 1000.0 0.0001 2CG0.0
0.000005 0.0005 C.5 30.0

50.0 50.0 10.0 10.0 0.0 2.0
100.0 20.0 1.0 0.8 0.21 C.1S 2.65 1.0

GCS-ULARDXI. F
* 90000.0 1.0
1*1.2 23*.2 1.0 C.92655 -0.15132
-133.0 -*85.0 62.* -1*.3 -7.1 0.0
-135.1 125.3 -9.8 -29.5 1.0 7.*
-*9.5 -61.5 9.9 2.8 2.9 1.8
-*7.6 81.1 *.9 -31.* -10.2 5.7
1 0.00001 1.0 0.13
CCCCCCCCOOCCOCCCCCCCCCCCCCCCOCOOOGCOOCOOGGGGGOOOOOOaOOOOOOSS

FLUVIATILE PROCESS SIMULATION EXPERIMENT 1 812*1913 *
30 10 10 10

200 60 50 HlXt60Al)
10C0.0 60.0 0.0 60.0 0.0 0.0

2.0 1000.0 0.0001 2CCC.C
0.000005 O.^OOS 0.5 3C.0

50.0 50.0 10.0 1C.0 C.G
100.0 20.0 1.0 0.8 0.21 0.15 2.6,5 1.0

GCS-ULARDXI. F
* 90000.0 1.0



AS

141.2 234. 1.0 C.928S5 -C.15132
-133.0 -4C».O 62.4 -14.3 -7.1 C.O
-135.1 Ui.3 -9.8 -29.5 1.0 7.4
-49.5 -61.3 9.9 2.8 2.9 1.8
-47.6 81.1 4.9 -31.4 -10.2 5.7
I O.UOUl 1.0 1.03
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCQCOCCCCCOOGGGGGQCOOCGOCOOCCOSS

FLUVIATILE PROCESS SIMULATION 
30 10 10 10

EXPERIMENT 1 81241913 4

2C0 60 50 1(1X ,6Pftl)
10C0.0 60.0 0.0 60.0 0.0 c.e

2.0 1000.0 0.0001 2CCC.0
0.000005 0 ,0005 0.5 30.0

50.0 50.u 10.0 1C.C C.O 2.0
100.0 20.0 1.0 0 •8 0.21 C-, 15 2.65 1.0

GCS-ULARCXI. F
4 90000.0 1.0
141.2 234.2 1.0 0.92855 -0.15132
-133.0 -485.0 62.4 -14.3 -7.1 0.6
-135.1 125.3 -9.8 -29.5 1.0 7.4
-49.5 -61.5 9.9 2.8 2.9 1.8
-47.6 81.1 4.9 -31.4 -10.2 5.7
1 0.0002 1.0 2.03
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGUQGCCCCOOGGGGGOOOOCOCGGQCCOSS

FLCVIATILE PROCESS SIMULATION EXPERIMENT 1 81241913 4
10 5 5 5

2C0 60 50 1(1X ,6OA1>
1CC0.0 60.0 0.0 60.0 0.0 0.6

2.0 1000.0 0.00C1 2CCC.C
0.00002 0 .002 C.5 3C.0

20.0 10.0 10.C 1C.C c.o
100.0 20.0 1.0 0.8 0.21 C.15 2.65 1.0

GCS-ULARCXI. F
4 90000.0 1.0
141.2 234.2 1.0 C.92055 -0.15132
-133.0 -483.0 62.4 -14.3 -7.1 O.C
-135.1 125.3 -9.8 -29.5 1.0 7.4
-49.5 -61.5 9.9 2.8 2.9 1.8
-47.6 81.1 4.9 -31.4 -10.2 5.7
1 O.OOOul 1.0 C.13
CCCCCCCCCCCCCCCCCCCCCOCUCCCCOCOOOOOCOOOOGGGGGOOOOOOOOOOCOOSS

FLCVIATILE PROCESS SIMULATION EXPERIMENT 1 81241913 4
10 5 5 5

2C0 60 50 HIX »6OA1>
IOC').9 60.0 0.0 60.C C.O 0.0

2.0 l>00.0 O.OOCl 2CCC.C
0.0OO02 0 .002 C.5 3C.C

20.0 10.0 10.c 1C.C C.O
100.0 20.0 1.0 0.8 0.21 0.15 2.65 l.C

GCS-ULARCXI. F
4 90000.0 1.0
141.2 234.2 1.0 0.92855 -0.15132
-133.0 -485.0 62.4 -14.3 -7.1 O.C
-135.1 125.3 -9.8 -29.5 1.0 7.4
-49.5 -61.5 9.9 2.8 2.9 1.8
-47.6 81.1 4.9 -31.4 -10.2 5.7
1 0.0001 1.0 1.C3
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCOeCCaOOGGGCGOOQOOCaOOQCOOSS

FLUVIATILE PROCESS SIMULATION EXPERIMENT 1 81241913 4
10 5 5 5

2Cu 60 50 HIX ,6OA1)
1000.0 60.0 0.0 60.0 0.0 O.C

2.0 1000.0 O.OOCl 2CCC.C
0.00002 0 .002 0.5 3C.0

20.0 10.0 10.C 1C.0 C.C
100.0 20.0 1.0 0.8 0.21 C.15 2.65 1.0

GCS-ULARCXI. F
4 90000.0 1.0
141.2 234.2 1.0 0.92855 -0.15132
-133.0 -485.0 62.4 -14.3 -7.1 0.0
-135.1 125.3 -9.8 -29.5 1.0 7.4
-49.5 -61.5 9.9 2.8 2.9 1.8
-47.6 81.1' 4.9 -31.4 -10.2 5.7
1 0.0002 1.0 2.03
COCCCCCOCCGCCCCCCCCCCCCCCCCCOCOCOOCOOOOOGGGGGOOOOOOOOOOCOOSS



A 9

FLUVIATILE PROCESS SIMULATION EXPERIMENT 2 81241913
11C 20 20 20
350 60 2 1750.0 60.0 0.0 30 •0 0.001 I1X.60A1)

2.0 1CCC.0 0.0001 2000.0
0.C0CCG1 0 • CCC1 0.5 30.0

100.0 10C.0 10.0 10.0 0.0 2,
100.0 20.0 1.0 0. 8 0.21 0.15 2.65 1.0

GOS-ULARDXI. F
4 13CCC0.0 1.0
543.5 441.0 1.0 0.56671 0.30560
-2CC.3 145.4 -85.5 58.0 -39.8 7.4
-112.4 185.0 -79.9 65.6 -72.5 27.8
-123.3 141.6 -66.4 75.7 -47.2 8.6
-85.6 105.7 -46.2 31.7 -43.2 4.3

eGccaecoocjxcoccccccccccccccss

FLUVIATILE PROCESS SIMULATION EXPERIMENT 2 81241913
12C 20 20 20
350 60 2 1750 .0 60.0 0.0 3C .0 0.01 (1X.6CA1)

2.0 1COO.O 0 .0001 2000.0
O.COCCOl 0 .0001 0.5 30.0

1C0.0 100.0 10.0 10.0 O.Q 2
100.0 20.0 1.0 0. 8 0.21 0.15 2.65 1.0

GOS-ULARDXI. F
4 13C00C.0 1.0
543.5 441.0 1.0 0.56671 0.30560
-2CC.3 145.4 -85.5 58.0 -39.8 7.4
-112.4 185.C -79.9 65.6 -72.5 27.8
-123.3 141.6 -66.4 75.7 -47.2 8.6
-85.6 105.7 -46.2 31.7 -43.2 4.3

ooccooooccgcoooooocooccccccoss

FLUVIATILE Process simulation EXPERIMENT 2 81241913
ICO 20 20 20
35C 60 2 175C.0 60.0 0.0 30.0 0.1 (1X»6OA1)

2.0 1CC0.0 0 .0001 2C00.0
O.COOOOl 0.C001 0.5 30.0

1C0.0 1CC.0 10.0 10.0 0.0 2.0
1C0.0 20.0 l.C 0. 8 0.21 0.15 2.65 1.0

GOS-ULARDXI. F
4 I3CCC0.0 1.0
543.5 441.0
-2CC.3 14 5.4 -85.5
-112.4 185.C -79.9
-123.3 141.6 -66.4
-85.6 105.7 -46.2

OOCCGCCCCOCGCCCCCCCCCCCCCCCCSS

1.0 0.56671 0.30560
58.0 -39.8 7.4
65.6 -72.5 27.8
75.7 -47.2 8.6
31.7 -43.2 4.3

FLUVIATILE PROCESS SIMULATION EXPERIMENT 2 
110 20 20 20

1750.0 60.0 0.0
1C00.C 0.0001

0.0005 0.5
100.C 10.0

.0 l.C 0.8

350 60 2 
2.0 

0.C00C05 
100.0 

100.0 20.
GOS-ULARDXI. F 
4 130000.0

l.C

1.0

0.21

30.0 0.C01
2000.0 

30.0 
10.0 
0.15 2.65

81241913

(IX.60A1)

0.0 2.0
1.0

543.5
-2C0.3
-112.4
-123.3
-85.6

441.0
145.4
185.0
141.6
105.7

-85.5
-79.9
-66.4
-46.2

1.0
58.0
65.6
75.7
31.7

0.56671
-39.8
-72.5
-47.2
-43.2

0.30560
7.4
27.8
e.6
4.3

OOOOGOCOOOOOOOOOCQCOQOGCCCCOSS

FLUVIATILE PROCESS SIMULATICN EXPERIMENT 2 81241913
110 20 20 20
35C 60 2 1750. 0 60.0 0.0 30 .0 0.01 (1X.60A1)

2.0 1CG0.0 0 .0001 20C0.0
O.C00005 0. 0005 0.5 30.0

1C0.0 100.0 10.0 10.0 0.0 2
100.0 20.0 1.0 0. 8 0.21 0.15 2.65 1.0

GOS-ULARDXI. F
4 1300CO.O 1.0
543.5 441.0 1.0 0.56671 0.30560
-2CC.3 145.4 -85. 5 58.0 -39.0 7.4
-112.4 185.0 -79. 9 65.6 -72.5 27.8
-123.3 141.6 -66.4 75.7 -47.2 8.6
-85.6 105.7 2 31.7 -43.2 4.3



•A10

OOCCCOCOOnOCGCCCCCOOCCCCCCCCSS

FLUVIATILE PROCESS SIMULATION EXPERIMENT 2 
110 20 20 20
350 60 2 1750.0 60.0 0.0

2,0 10C0.0 0.0001
0.000005 0.0005 0.5

1CO.O 1CC.C 10.0
ICC.O 20.0 1.0 0.8 0.21

30.0 
2000.0 

30.0 
10.0 
0.15

0.1

2.65
GCS-ULARDXI. F 
4 130000.0 1.0

81241913

UXsfiOAl)

0.0
1.0

2.0

543.5
-2C0.3
-112.4
-123.3
-85.6

441.0
145.4
165.0
141.6
105.7

-85.5
-79.9
-66.4
-46.2

1.0
58.0
65.6
75.7
31.7

0.56671
-39.8
-72.5
-47.2
-43.2

0.30560
7.4
27.8
8.6
4.3

OOCQOOOOOOCCOCOCQCOCOCCCCCCOSS

FLUVIATILE PROCESS SIMULATION EXPERIMENT 2 
11C 20 20 20
350 60 2 1750.0 60.0 0.0 30.0 0.C01

2.0 1CCC.C 0.0001 2000.0
0.00002 C.C02 0.5 30.0

1CC.C ICC.O 10.0 10.0
ICC.O 20.0 l.C 0.8 0.21 0.15

GOS-ULAROXI. F
4 13CCCO.0

81241913

<lX,60Ali

l.C

2.65
0.0

1.0
2.0

543.5
-2CC.3
-112.4
-123.3
-85.6

441.C 
145.4 
185.C 
141.6 
1C5.7

-85.5 
-79.9 
-66 04 
-46o2

1.0
58.0
65.6
75.7
31.7

0.56671
-39.8
-72.5
-47.2
-43.2

0.3056C
7.4
27.8
8.6
4.3

OCCCCCCOOCCOCCCCCCCCCCCCCCCCSS

FLLVIATILE PROCESS SIMULATION 
11C 20 2C 2C 
35C 60 2 175C.C 60.0

1CCC.C

EXPERIMENT 2

60 2 
2.C

0.CCCO2 C.CC2

0.0
0.0001

0.5

30.0 0.01
2COO.O

30.0

81241913

81X.60AI)

1CG40
10C.0 2C.C 

GOS-LLARPXI. F 
4 ISCCCOoO

10C.C
l.C

1.0

0.8
10.0

0.21
10.0
0.15

C © 0
2.65 l.C

2» C

543.5
-2CC.3
-112.4
-123.3
-85.6

441.C 
145.4 
185.C 
141.6 
105. 7

-05.5
-79.9
-66.4
-46.2

1.0
58.0
65.6
75.7
31.7

0.56671
-39.0
-72.5
-47.2
-43.2

0©3056C
7.4
27.8
8.6
4.3

coccoccccccccocccccrccccceccss

FLLVIATILE PROCESS SIMULATION EXPERIMENT 2 
11C 2C 20 2C

175C.0 6C.0 0.0
1CCC.C 0.0001

C.C02 0.5
ICC.O 10.0

20.C l.C 0.8

35C 60 2
2.0

0.CCCC2 
1CC.C 

ICC.O
COS-LLARDXI. F 
4 13CCC0.0

l.C

1.0

0.21

30.0 
2CC0.0 

30.0 
10.0 
0.15

0.1

2.65

81241913

UX.60A15

0.0
1.0

2.0

543.5 
-2CC.3 
-112.4 
-123.3 
-85.6

441.0 
145.4 
185.C 
141.6 
105. 7

’85.5 
*79.9 
•66.4 
•46 « 2

1.0
58.0
65.6
75.7
31.7

0.56671
-39.8
-72.5
-47.2
-43.2

0.3056C
7.4
27.8
8.6
4.3

OCCCCOCCOCOOOCCCCCCCCCCCCCCCSS



All

FLUVIATILE PROCESS SIMULATION EXPERIMENT 4A
ICO 10 10 10
2C0 60 50 1(1X,6OA;>

10C0.0 60.0 0.0 60.C C.O C.C
1.1 1000.0 O.OCCl 2CCC.0

0.000003 0.0001 0.5 3C.C
20.0 20.0 5.C 5.0 1CC.0

100.0 20.0 1.0 0.8 0.21 C.15 2.65 l.C
GCS-ULARCXI. F

81241913 4

3.0

4 110000.0
543.5 441.0

1.0
1.0 C.56671 C.3C56C

-2C0.3 145.4 -85.5 58.C -39.8 7.4
-112.4 185.0 -79.9 65.6 -72.5 27.8
-123.3 141.6 -66.4 75.7 -47.2 8.6
-85.6 105.7 -46.2 31.7 -43.2 4.3
1 O.OOOl 1.0 1.C3
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCOOOQGGGGGOOOOCOOOOOCCOSS

FLUVIATILE PROCESS SIMULATION
ICO 10 10 10
200 60 50 1(1X,6OA1)

10C0.0 60.0 0.0

EXPERIMENT 4A 81241913 4

60.0 0.0 C.C
1.1 1000.0 O.CCCl 2CCC.C

0.0000003 0.0001 0.5 3C.C
20.0 20.0 5.0 5.0 1CC.C 3.0

100.0 20.0 1.0 0.8 0.21 C.15 2.65 l.C
GCS-ULARCXI. F
4 110000.0 1.0
543.5 441.0 1.0 C.56671 C.3056C
-2C0.3 145.4 -85.5 58.0 -39.8 7.4
-112.4 185.0 -79.9 6 5.6 -72.5 27.8
-123.3 141.6 -66.4 75.7 -47.2 8.6
-85.6 105.7 -46.2 31.7 -43.2 4.3
1 0.0001 1.0 1.C3
CCCCCCCCCCCCCCCCCCCCCCCCCCCGQCOOCCCCOOOOGGGGGCCOOOOOOOOCOOSS

FLUVIATILE
ICC 10 10
2C0 60 50

10C0.0
1.1

60 . o

PROCESS SIMULATION 
10
1(1X»6OA1)

EXPERIMENT 4A 81241913 4

1000.0
0.0

O.OOCl
60.C c.o C.C

2CCC.C

C.0C000O9 C.0001 0.5 3C.C
20.0 20.0 5.0 5.0 ICC. C

ICO. 0 20.0 1.0 0.8 C.21 C.15 2.65 l.C
GCS-ULARCXI. F
4 110000.0 1.0
543.5 441.0 1.0 C.56671 C.3C56C
-2C0.3 145.4 -85.5 58.0 -39.8 7.4
-112.4 185.0 -79.9 65.6 -72.5 27.8
-123.3 141.6 -66.4 75.7 -47.2 8.6
-85.6 105.7 -46.2 31.7 -43.2 4.3
1 0.0001 1.0 1.03
CCCCCCCCCCCCCCCCCCCCCOCCOCCCCCOOOCQOQQOQGGGGGOOOOCOOOOQQOQSS



A12

FLUVIATILE PROCESS SIMULATION 
100 10 10 10 

1000.0 60.0 
1000.0

0 
1.1

0.000003
20.0

100.0 20.0 
GOS-ULARDXIa F 
4 110000.0

200 60

0.0001
20.0

1.0

1.0

EXPERIMENT 4B

0.0
0.0001

0.5
5.0

0.8 0.21

60.0 
2000.0 

30.0 
5.0 

0.15

0.0

81241913

0.0« l>e,60An

100.0
2.65 1.0

3.0

543.5
-200.3
-112.4
-123.3
-85.6
1

441.0
145.4
185.0
141.6
105.7 

0.0001

-85.5
-79.9
-66.4
-46.2

1.0

1.0
58.0
65.6
75.7
31.7 

1.03

0.56671
-39.8
-72.5
-47.2
-43.2

0.30560
7.4
27.8
8.6
4.3

OOOOOOOOOOOOGOGOOOOOOOOOOOOOOOOOOOOOOOOOGGGGGOOOOOOOOOOOOOSS

FLUVIATILE PROCESS SIMULATION 
100 10 10 10 

1000.0 60.0

EXPERIMENT 4B

200 60 0
1.1

0.0000003
20.0

100.0 20 
GOS-ULARDXI. F 
4 110000.0
543.5
-200.3

1000.0
0.0001

20.0
1.0

1.0

0.0
0.0001

0.5
5.0

0.8 0.21

60.0 
2000.0 

30.0 
5.0 

0.15

OoO

81241913

0.01IX,6OAU

100,
65

3.0
1.0

-112.4
-123.3
-85.6
1

441.0
145.4
185.0
141.6
105.7 

0.0001

-85.5
-79.9
-66.4
-46.2

1.0

1.0
58.0
65.6
75.7
31.7 

1.03

0.56671
-39.8
-72.5
-47.2
-43.2

0.30560
7.4
27.8
8.6
4.3

OOOOOOOQOOOOOOOQQOOOOOQOOOOOOOOOOQOQOOOOGGGGGOOOOOOOOOOOOOSS

FLUVIATILE PROCESS SIMULATION EXPERIMENT 4B
100 10 10 
200 60 0

10
1000 .0 60.0 0.0 60.0

1.1 1000.0 0.0001 2000.0
0.0000009 0.0001 0.5 30.0

20.0 20.0 5.0 5.0
100.0 20• 0 1.0 0.8 0. 21 0.15

81241913

0.0 O.O(1X,6OA1I

100.0 3.0
2.65 1.0

GOS-ULARDXI. F
4 110000.0 1.0
543.5 441.0 1.0 0.56671 0.30560
-200.3 145.4 -85.5 58.0 -39.8 7.4
-112.4 185.0 -79.9 65.6 -72.5 27.8
-123.3 141.6 -66.4 75.7 -47.2 8.6
-85.6 105.7 -46.2 31.7 -43.2 4.3
1 0.0001 1.0 1.03
OOOOOOOOOOOOOOOOOOOOOOOGOGCOOQOOOOOOOOOOGGGGGOOOOOOOOOOOOOSS



A13

FLUVIATILE PROCESS SIMULATION EXPERIMENT 5 81241913
200 20 20 20
200 60 0 1000. 0 60.0 0.0 30 .0 0.001 (1X;60A1)

1.1 1000.0 0 .0001 2000.0
0.0000003 0 .0001 0.5 30.0

50.0 50.0 5.0 5.0 100 .0 3.0
100.0 20.0 1.0 0. 8 0.21 0.15 2.65 1.0

GOS-ULARDXI. F
4 120000. 0 1.0
543.5 441.0 1.0 0.56671 0.30560
-200.3 145.4 -85.5 58.0 -39.8 7.4
-112.4 185.0 -79.9 65.6 -72.5 27.8
-123.3 141.6 -66.4 75.7 -47.2 8.6
-85.6 105.7 -46.2 31.7 -43. 2 4.3

ooooooooooooooooooooooooooooss

FLUVIATILE PROCESS SIMULATION
200 20 20 20
200 60 0 1000.0 60.0

1.1 1000.0
0. 0000003 0.0001

50.0 50.0

EXPERIMENT 5

0.0 30.0
0.0001 2000.0

0.5 30.0
5.0 5.0

81241913

0.01 (1X/60A1)

100.0 20.0 
GOS-ULARDXI. F 
4 120000.0
503.5 441.0
-200.3 145.4
-112.4 185.0
-123.3 141.6
-85.6 105.7

0.21 0.15
100.0 3.0

2.65 1.01.0 0.8

1.0

-85.5
-79.9
-66.4
-46.2

1.0
58.0
65.6
75.7
31.7

0.56671 
-39.8 
-72. 5 
-47.2 
-43. 2

0.30560
7.4
27.8
8.6
4.3

OOOOOOOOOOOOOOOOOOOOOCOCOOOOSS

FLUVIATILE PROCESS SIMULATION EXPERIMENT 5
200
200

20 20 
60 0

1.1
0.0000003

50.0
100.0

20
1000.0 60.0 

1000.0 
0.0001 

50.0 
1.020.0

0.0
0.0001

0.5
5.0

0.8 0.21

30.0 
2000.0 

30.0 
5.0 

0.15

81241913

0.1 (1X,60A1)

100.0 3.0
2.65 1.0

GOS-ULARDXI. F
4 120000.0 1.0
543.5 441.0 1.0 0.56671 0.30560
-200.3 145.4 -85.5 58.0 -39.8 7.4
-112.4 185.0 -79.9 65.6 -72. 5 27.8
-123.3 141.6 -66.4 75.7 -47.2 8.6
-85.6 105.7 -46.2 31.7 -43.2 4.3

000000000000000000000000000035

FLUVIATILE PROCESS SIMULATION 
200 20 20 20 

1000.0 60.0 
1000.0

EXPERIMENT 5 81241913

200 60 0
1.1

0.0000009
50.0

100.0 20.0 
GOS-ULARDXI. F 
4 120000.0
543.5
-200.3
-112.4
-123.3
-85.6

441.0 
145. 4 
185.0
141.6
105.7

0.0001
50.0

1.0

1.0

0.0
0.0001

0.5
5.0

0.8

-85.5
-79.9
-66.4
-46.2

0.21

30.0 0.001
2000.0 

30.0 
5.0 

0.15

(1X,60A1)

100.0
2.65 1.0

3.0

1.0
58.0
65.6
75.7
31.7

0.56671
-39.8
-72.5
-47.2
-43.2

0.30560
7.4
27.8
8.6
4.3

OOOOOOOOOOOOOOOOOOOOOOOOOOOOSS

FLUVIATILE PROCESS 
200 20 20 20 
200 60 0

1.1
0.0000009 

50.0
100.0 20.0 

GOS-ULARDXI. F 
4 120000.0

SIMULATION EXPERIMENT 5

1000.0 60. 
1000.0 
0.0001 

50.0 
1.0

0.0
0.0001

0.5
5.0

0.8 0.21

30.0 
2000.0 

30.0 
5.0 

0.15

0.01

100.
2.65

0

81241913

(1X»60A1)

1.0
3.0

543.5
-200.3
-112,4
-123.3
-85.6

1.0
441.0
145.4
185.0
141.6
105.7

-85.5
-79.9
-66.4
-46.2

1.0
58.0
65.6
75.7
31.7

0.56671
-39.8
-72.5
-47.2
-43.2

0.30560
7.4
27.8
8.6
4.3



A I'loooooooooooooooooocoooooooooss

FLUVIATILE PROCESS SIMULATION EXPERIMENT 5 
200 20 20 20 

1000.0 60.0 
1000.0 0

200 60 0
1.1

0.0000009
50.0

100.0 20 
GOS-ULAEDXI. F 

120000.0
4 3.5

-200.3

0
tn

 xr
0.0001

50.0
1.0

1.0

0.8

0.0
0001

0.5
5.0

0.21

30.0 
2000.0 

30.0 
5.0 

0.15

0.1

81241913

(1X,60A1)

100.0
2.65 1.0

-112.4 
-123. 3 
-85.6

441.0 
145. 4 
185.0
141.6
105.7

-85. 5 
-79.9 
-66.4 
-46.2

1.0
58.0
65.6
75.7
31.7

0.56671 
-39.8 
-72. 5 
-47.2 
-43. 2

0.30560 
7.4 
27. 8 
8.6 
4.3

3.0

ooooooooooooooooooooooocccooss

FLUVIATILE PROCESS SIMULATION 
200 20 20 20 

1000.0 60.0 
1000.0

200 60 0
1 . 1

0.000003 
50.G

100.0 20.0 
GOS-ULAEDXI. F 
4 120000.0

0.0003
50.0

1.0

1.0

EXPERIMENT 5 812419 13

543.5 
-200.3 
-112.4 
-123.3 
-85.6

441.0 
145. 4 
185.0
141.6
105.7

0.0
0.0001

0.5
5.0

0.8

-85.5
-79.9
-66.4
-46.2

oooooooooooooooooocccococcooss

FLUVIATILE PROCESS SIMULATION 
200 20 20 20 ■
200 60 0 1000.0 60.0 

1000.0
60 0

1.1
0.000003 0.0003

30.0

0.21

1.0
58.0
65.6
75.7
31.7

2000.0
30.0
5.0

0.15

0.001 (1X,60A1)

100.0
2.65

0.56671 
-39.8 
-72.5 
-47.2 
-43. 2

3.0
1.0

0.30560
7.4
27.8
8.6
4.3

EXPERIMENT
0.0

0.0001
0.5

30.0
2000.0

30.0

0.01

812419 1 3

(1X,60A1)

50.0
100.0

GOS-ULAFDXI. 
4 120000.
54 3.5 
-200.3 
-112.4 
-123. 3 
-85.6

50.0 5.0 5.0 100.0
20.0' 1.0 0.8 0.21 0.15 2.65 1.0

F
0 1.0
441.0 1.0 0.56671 0.30560
145. 4 -85.5 58.0 -39.8 7.4
105.0 -79.9 65.6 -72. 5 27.8
141.6 -66.4 - 75.7 -47.2 8.6
105.7 -46. 2 31.7 -43. 2 4.3

OOOOOOOOOOOOOOOOOOOOOOCOCCOOS!

FLUVIATILE PROCESS SIMULATION 
200 20 20 20 

1000.0 60.0 
1000.0

200 60 0
1.1

0.000003
50.0

100.0 20 
GOS-ULARDXI. F 
4 120000.0
543.5

0

0.0003
50.0

1.0

1.0

3.0

EXPERIMENT 5 812419 13

-200.3 
-112.4 
-123. 3 
-85.6

441.0 
145. 4 
185.0
141.6
105.7

0.0
0.0001

0.5
5.0

0.8

-85. 5 
-79.9 
-66. 4 
-46.2

ooooooooooooooooooooooooooooss

0.21

30.0
2000.0

30.0
5.0

0.15

1.0
58.0
65.6
75.7
31.7

0.1

2

(1X,60A1)

100.0
65

0.56671 
-39.8 
-72. 5 
-47.2 
-43. 2

3.0
1.0

0.30560
7.4
27.8
8.6
4.3


