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We report on the results of extensive computer simulation of the effect of deformation on

the morphology of a porous medium and its fluid flow properties. The porous medium is

represented by packings of spherical particles. Both random and regular, as well as dense and

nondense packings are used. A quasi-static model based on Hertz’s contact theory is used

to model the mechanical deformation of the packings, while the evolution of the permeability

with the deformation is computed by the lattice-Boltzmann approach. The evolution of the

pore-size and pore-length distributions, the porosity, particles’ contacts, the permeability, and

the distribution of the stresses that the fluid exerts in the pore space are all studied in detail.

The distribution of the pores’ lengths, the porosity, and the particles’ connectivity change

strongly with the application of an external strain to the porous media, whereas the pore-size

distribution is not affected as strongly. The permeability of the porous media strongly reduces

even when the applied strain is small. When the permeabilities and porosities of the random

packings are normalized with respect to their pre-deformation values, they all collapse onto

a single curve, independent of the particle-size distribution. The porosity reduces as a power

law with the external strain. The fluid stresses in the pore space follow roughly a log-normal

distribution, both before and after deformation.
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I. INTRODUCTION

An important class of porous materials includes those that are deformed by, for example, a

large external pressure or shear, or by absorbing liquids that cause swelling. Important examples

of such porous materials include consolidating clays [1], biopolymers, cell membranes, food stuff,

and hydrogels [2,3], snow [4,5], paper [6,7], diapers [8,9], cakes of particles that are formed on

the external surface of a filter [10], aggregates that are formed by flocculation [11], articular

cartilage, a soft biomaterial swollen by water [12], foams [13-16], materials for drug delivery [17],

and soil and rock at large depths where the pressure is large [1,18-20]. An important practical

example of current interest is sequestration of carbon dioxide in geological formations. When

CO2 is injected into a porous formation and enters the pore space, together with the brine in

the pore space it causes deformation in the structure of the solid matrix through its interaction

with the pores’ walls and the saline water that already exists in the pores.

Over the past two decades, several theoretical studies of deformable porous media have been

undertaken. Such studies may be divided into three major classes. In one class are macroscopic

theories that are based on volume [21] or ensemble averaging [22] of the continuum equations

of transport. One writes down the conservation laws at the microscale, supplements them with

constitutive relations that are empirical or semi-empirical, and then averages the equations at

the macroscale in order to derive the governing equations at that scale.

Mixture theories constitute the second class of models of deformable porous media. They

are based on the macroscale conservation laws, coupled with the second law of thermodynamics

and entropy inequality. But, as pointed out by Hassanizadeh and Gray [23-25], since entropy

inequality is not included in averaging at the microscale to arrive at the macroscale equations,

one cannot obtain relationships that link macroscopic thermodynamic variables. In addition,

such mixture theories do not utilize any information at the microscale.

The third class of models of deformable porous media represents a combination of the first

two, which we refer to as the hybrid mixture theories (HMTs) [23-25]. Originally developed

by Hassanizadeh and Gray [23,24], the HMTs begin with the microscopic conservation laws,

average them to derive the macroscopic equations, and then invoke the entropy inequality

in order to derive the constitutive equations, such as the generalized Darcy’s law for slow

flow of fluids through a macroscopic deformable porous medium, or Fick’s law of diffusion.
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This approach has been developed by Cushman and co-workers; see Weinstein et al. [26] and

references therein, as well as Eringen [27], Schrefler [28], and Zhu et al. [29].

None of the aforementioned three classes of models can take into account the effect of the

microstructure of a porous medium as it undergoes deformation. Flow and transport processes

in any porous medium, deformable or not, are controlled by its morphology that consists of

the pore-size distribution and pore connectivity [1,30]. For macroscopic flow and transport

processes to occur, there has to be a sample-spanning cluster of connected pores, which exists

only if the porosity φ of the pore space is larger than a critical porosity, or the percolation

threshold. As a porous medium is deformed, its pore space undergoes significant changes. The

question is then, does the pore space become better connected or loses its connectivity as the

solid matrix deforms?

The question has given rise to a fourth class of models, those that can take into account the

effect of the microstructure of a porous medium on its deformation and, hence fluid flow and

transport. Thus, there have been some efforts to develop such models and approaches. Zhu and

Wang [31] modeled porous media by a simple-cubic network to study fluid flow and dilatancy

in a network of microscracks, represented by the network’s bonds. Boutt and McPherson [32]

used the discrete-element method (see below) to study cracking of rock samples, but did not

study fluid flow. Masoud and Alexeev [33] used a random network of filaments in a polymeric

matrix, similar to percolation networks with stretching and angle-changing bonds that were

studied extensively in the 1980s and 1990s [34,35] (for a comprehensive review see Sahimi [36])

to study the diffusion coefficient and permeance of a deformed polymer network. Jasinski et al.

[37] studied, both experimentally and by numerical simulations, flow and transport properties

of Bentheim sandstones, extending the earlier works of Dautriat et al. [38] and Thovert and

Adler [39], and similar to the work of Arns et al. [40,41]. They [37] discretized the linear

elasticity equation and solved it numerically. To do so, the material, represented by a cubic

simulation cell, was partitioned into a number of elementary cubes that represented either the

solid matrix or the pores. The geometry of the sample was provided by an image obtained

through computed microtomography. Each elementary cube was discretized by tetrahedra.

The results of the simulations were then compared with the experimental data. Jivkov et al.

[42] used a three-dimensional (3D) network with a coordination number of up to 14 to study

the permeability of samples of rock, but the effect of deformation was not studied.
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The focus of this paper is on studying the effect of deformation on fluid flow through a

particular class of porous materials, namely, a packing of particles that represent unconsoli-

dated porous media. The advantage of a packing of particles is that much is known about its

microstructure [36,43]. Both regular and random packings are studied, and the deformation of

the particles is assumed to be small, so that the linear theory of elasticity can be utilized. We

use a quasi-static model based on Hertz’s contact theory [44] in order to describe the interaction

between the particles, report on the various morphological properties of the pore space, as well

as its effective permeability as functions of the applied strain and other relevant parameters,

and discuss their implications. Our study represents a step toward gaining better understand-

ing of the effect of deformation, caused by a variety of factors, on flow and transport properties

of porous media modeled by a packing of particles.

The rest of this paper is organized as follows. In Sec. II we describe an algorithm for

generating the granular porous media that we use in the simulations. Section III describes

the equation of motion of the particles and numerical simulations of the deformation. In Sec.

IV we describe briefly the lattice-Boltzmann method that is used for computing the effective

permeability of the deforming pore space. The results are presented and discussed in Sec. V,

while the paper is summarized in Sec. VI.

II. GENERATION OF RANDOM PACKINGS

We study deformation and flow in two regular packings, the simple-cubic (SC) and face-

centered cubic (FCC) packings, as well as random packings of spherical particles. To generate

the random packings, the particles were distributed randomly in a cubic simulation cell. The

particles’ size followed a Gaussian distribution, and three particle-size distributions were utilized

(see below). The boundaries in all the directions were rigid. Initially, there may be overlaps

between the particles in the random packing. To eliminate them, the following rearrangement

procedure was used. An overlap rate between two particle was defined by [45], R = (ri + rj −
dij)/(ri + rj), where dij is the center-to-center distance between particles i and j so that for

overlapping particles, dij < (ri + rj). For each particle i a search was conducted to identify

those that may have overlap with i. Then, for each overlapping particle j centered at Rj a new

position was calculated by

R
(n)
j = R

(o)
j +

(

ri + rj
dij

)

(R
(o)
i −R

(o)
j ) , (1)
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where Ri and Rj are, respectively, the position vectors of particles i and j along the ray that

connects their centers to the origin of the coordinates, and superscripts n and o indicate the

new and old vectors. If particle i overlaps with ni other particles, then Eq. (1) provides ni

positions, and the actual new position of particle i is given by

Ri =
1

ni

ni
∑

j=1

R
(n)
j , (2)

where R
(n)
i is calculated by Eq. (1). The relaxation process was applied to every overlapped

particle. If a particle neither overlaps nor contacts others, it is moved to contact its nearest

neighbor. By iterating the process, the overlap rate R decreases gradually. To avoid any bias,

the sequence of the particle rearrangements is randomized after each iteration. The overlap

rate R eventually drops below a preset threshold, which we took it to be 10−3. Typically, it

took about 1500 iterations to remove practically all the overlaps.

In addition to a dense random packing that has a porosity φ ≈ 0.32, we also generated

a loose random packing with a porosity of 0.54. The generation of the regular FCC and SC

packings is trivial and needs no explanation.

III. EQUATIONs OF MOTION AND SIMULATION OF DEFORMATION

The model that we use for the mechanics of the packings is similar to the discrete-element

method [46], except that we assume the quasi-static condition in which the displacement field

throughout the packing is calculated particle by particle. Under equilibrium condition the

governing equation for a particle with Nc contacts is given by

Fext −
Nc
∑

c=1

Fc = 0 , (3)

where Fext and Fc are, respectively, the external and contact forces. The contact force is given

by

Fc = Fxci + Fycj+ Fzck = (Fneix)i+ (Fneiy)j+ (Fneiz)k , (4)

with eix, eiy and eiz being the component of the unit vector ei, pointing from the center of

a particle i at the spatial position Xi and pointing toward the center of a particle j with its

center’s position at Xj, ei = (Xi −Xj)/dij. Here, Fn is the magnitude of the normal contact

force between two particles that, according to Hertz’s theory, is given by [44]

Fn =
4

3
Ye

√

Rδ3n , (5)
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where δn is the overlap between two particles in contact, given by

δn = ri + rj − dij , (6)

1

Ye
=

1− ν2
i

Yi
+

1− ν2
j

Yj
, (7)

1

R
=

1

ri
+

1

rj
. (8)

Here, R is the relative curvature, Yi and Yj are the Young’s moduli of the two particles and

νi and νj their Poisson’s ratios (if the two particles are made of different materials), and ri

and rj are the radii of the particles in contact. The normal contact force is first considered,

after which the contribution of the tangential (shear) force Fs or the friction force is taken into

account. According to the Coulomb’s law, one must have

Fs ≤ µFn , (9)

where µ is the friction coefficient. All the particles in the packing must satisfy inequality (9).

The shear or tangential force is usually written as, Fs = ksδs, with ks and δs being, respectively,

the tangential stiffness and displacement.

Computing ks that enables one to calculate the contribution of the shear force is not straight-

forward, because it depends, in general, on the history of deformation and sliding of one particle

on another. On the other hand, such contributions to the deviatoric stress tensor are believed

to be small [47] and, therefore, the normal forces contribute most to the tensor. Under such

conditions, ks is computed by [48,49]

ks =
2µ

2/3
e [6(1− νe)RFn]

1/3

2− νe
, (10)

where µe and νe are, respectively, the effective shear modulus and Poisson’s ratio, given by,

1

µe
=

2− νi
µi

+
2− νj
µj

, (11)

2

νe
=

1

νi
+

1

νj
, (12)

with µi being the shear modulus of particle i. Due to the different shear forces exerted on the

particles, ks varies from particle to particle and from one direction to another.

Equation (5) expresses a nonlinear relation between the normal contact force Fn and δn,

based on which kn is calculated. To simplify the problem, a linear relationship is assumed
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[49] to approximate the nonlinear relation (5), namely, Fn = knδn, with kn selected so as to

minimize the difference between the assumed linear relation and Eq. (5). Thus, we determine

[47] the minimum of the quantity,

I2 =

∫ δ∗

0

(

4

3
Ye

√

Rδ3n − knδn

)2

dδn , (13)

where δ∗ is the average of all particles’ overlap. Then, kn is determined by, ∂I2/∂kn = 0,

yielding

kn =
8

7
Ye

√

Rδf . (14)

Note that the normal stiffness kn is not only a function of a particle’s properties, but also the

particles’ overlaps. One does not have to linearize Hertz’ theory and can instead solve the

complete nonlinear problem iteratively. Our preliminary simulations with the full nonlinear

problem indicated that for small displacements (which is assumed in this work) the linearization

provides good approximation to the actual nonlinear problem with the error being on the order

of a few percent.

We assume that the force-displacement relation follows the Hooke’s law [47]. Under the

external force applied to the packing, the particles are displaced and deformed. The incremental

displacement δux in the x direction is then given by

δux =















∑

c Fxc

kn + ks
if ks

kn+ks
|∑c Fxc| < µ

√

(
∑

c |Fyc|)2 + (
∑

c |Fzc|)2 ,
∑

c Fxc ± µ
√

(
∑

c |Fyc|)2+(
∑

c |Fzc|)2
kn

otherwise .

(15)

The sums are over all the contact points. The ± sign must be selected in such a way that the

frictional and active forces are in the directions opposite of each other. In a similar manner,

the incremental displacements in the y and z directions are given by

δuy =



















∑

c Fyc

kn + ks
if ks

kn+ks
|∑c Fyc| < µ

√

(
∑

c |Fxc|)2 + (
∑

c |Fzc|)2 ,
∑

c Fyc ± µ
√

(
∑

c |Fxc|)2 + (
∑

c |Fzc|)2

kn
otherwise ,

(16)
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and

δuz =



















∑

c Fzc

kn + ks
if ks

kn+ks
|∑c Fzc| < µ

√

(
∑

c |Fxc|)2 + (
∑

c |Fyc|)2 ,
∑

c Fzc ± µ
√

(
∑

c |Fyc|)2 + (
∑

c |Fxc|)2

kn
otherwise .

(17)

It is clear that the displacement of the neighboring contacting particles generates a new nonequi-

librium state for a given particle. Thus, the calculations utilized an iterative process in which

the forces exerted on a given particle were gradually released until the net force on each particle

in the packing was smaller than a threshold. Typically, 150-250 iterations were needed to reach

the equilibrium state.

Oedometric compression tests were simulated with both dense and loose packings by impos-

ing various modes of vertical compressive strain on the top boundary. During each compression

cycle the bottom face and the lateral boundaries of the system were held fixed. For each strain

mode, simulations were carried out to determine the final configuration of the packing. The

applied strain was increased up to 3 and 30 percent for the dense and nondense packings, re-

spectively. Once the particles reached their equilibrium state under compression, fluid flow was

simulated in the deformed pore space in order to compute the effective permeability and other

properties of the pore space as functions of the applied strain. The effective permeability was

calculated by the lattice-Boltzmann method, which we describe briefly in the next section.

IV. CALCULATION OF THE EFFECTIVE PERMEABILITY

The effective permeabilities of the three types of packings were calculated using a single-

relaxation time lattice-Boltzmann (LB) simulator to simulate fluid flow in the pore space, and

invoking Darcy’s law to compute the permeability. The flow was assumed to be in the x direction

(see Fig. 2 below). The no-slip boundary condition was imposed on the fluid-solid interface,

as well as the rigid outer walls of the system (in the y and z directions) by using the standard

bounce-back method, and a constant pressure gradient was applied in the flow direction. The

computational domain for the flow calculations consisted of N×N×N grid points, which must

be resolved enough that the effective permeability would not change if a more resolved grid is

used. Thus, we carried out a series of preliminary simulations with N = 100, 150, 200, 225

and 250 in order to determine an adequate resolution for the computational grid. The results
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are shown in Fig. 1, where the relative error is defined by, error = |KN −K250|/K250, with KN

being the effective permeability computed with a grid of size N3, and K250 representing the

calculated permeability with the most resolved grid of linear size N = 250. Figure 1 indicates

that the relative error between the results for N = 200 and N = 250 is essentially zero. Thus,

all the results presented below were obtained with a grid of size 2003.

The LB simulator uses an iterative sequence of propagations and collisions of fictitious

particles at the grid points of the discretized domain. The mass density of each grid point that

does not belong to the solid matrix is defined by a set of scalar particle distribution functions

f(x, t), each of which is related to a lattice velocity unit vector. At each time step, the particle

distribution functions are shifted to neighboring grid points according to their unit velocity

vector through the propagation step, also called streaming. Following each streaming step, a

collision operation is carried out to update each distribution. The simplest form of the collision

operator is based on the Bhatnagar-Gross-Krook (BGK) approximation [50]. The streaming

and collision of the fictitious particles are described by the following equation for the particle

distribution function fi [51]:

fi(x+ ei△t, t+△t)− fi(x, t) = − 1

τR
[fi(x, t)− f eq

i (x, t)] , (18)

where ∆t represents the time step in lattice units, τR is the dimensionless relaxation time, and

ei are the velocity basis vectors. The left side of Eq. (18) represents the streaming step by

which the particle distribution functions are shifted based on the velocities, while the right side

describes the collision operation. The equilibrium distribution f eq
i is given by [52],

f eq
i = ρωi

[

1 +
3

c2
(ei · v) +

9

2c4
(ei · v)2 −

3

2
v2
]

, (19)

where c = ∆x/∆t is the lattice speed, ∆x is the grid spacing, v is the velocity field, ρ the

fluid’s density, and ωi are the weight coefficients. We use the standard D3Q19 LB model for

3D modeling [52], for which ωi = 1/18 for i = 1, 2, · · · , 6, ωi = 1/36 for i = 7, 8, · · · , 18 and

ωi = 1/3 for i = 19. The fluid density is given by [53], ρ =
∑

i fi, the velocity by, ρv =
∑

i eifi,

and pressure by, P = ρc2s, where cs denotes the speed of sound in lattice units (equal to c/
√
3).

The kinematic viscosity ν is the given by, ν = (τR − 0.5)c2s. Low-Mach number Ma flow is

simulated with Ma = v/cs ≪ 1. We used a relaxation parameter τR = 1. Stewart et al. [54]

showed that if the relaxation parameter deviates from unity, the resulting permeabilities are

not accurate.
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Thus, after the porous medium attained its equilibrium state for any given strain, the LB

model of fluid flow was used in combination with the Darcy’s law

〈v〉 = −K

η
∇P = −K

η

∂P

∂x
, (20)

in order to calculate the effective permeability K of the deformed porous medium for the

corresponding strain, where 〈v〉 denotes the volume-averaged flow velocity, and η is the fluid’s

dynamic viscosity. As the Darcy’s law is accurate only for creeping flows, all the simulations

were carried out for Reynolds numbers Re < 1.

We carried out extensive simulations for packings made of two types of particles, soft and

hard. The Young’s modulus, shear modulus and Poisson’s ratio of the soft particles were 2.7

GPa, 0.97 GPa and 0.42, whereas those for the hard particles were 110 GPa, 44 GPa and

0.24. These are in the range of properties reported for clay particles. Typically, we simulated

a packing with about 1500 - 2000 particles. The cubic domain of the packings had dimensions

of 8.5 cm, 7.5 cm, 8.14 cm and 8 cm for nondense random packing, dense random packing,

and SC and FCC packings, respectively. The sizes of the particles in the random packing were

not equal, but followed a Gaussian distribution. Three particle-size distributions were utilized

with an average of 3.7 mm and standard deviations of 0.2 mm, 0.3 mm and 0.5 mm. The size

of the particles in the regular packings was 3.7 mm. Figure 2 presents the three particle-size

distributions that we utilized in the simulations of the random packings, along with a typical

configuration of a deformed packing. In the figures described and discussed below, we refer to

the three particle-size distributions as PSD1, PSD2, and PSD3. Unless specified otherwise, in

all cases the friction factor was assumed to be 0.03.

V. Results and Discussion

In a dense regular packing of particles with equal sizes, the particles move only in the

loading direction under the oedometric compression. As a result, the strain field in the packing

is almost uniform everywhere. The entire porous medium deforms as a continuous homogeneous

material. In addition, the identical spheres rearrange themselves in a crystallike formation when

an external force is applied to the packing. In other words, the particles move homogeneously

due to the application of the external force. Consequently, the deformation of the regular

packing of equal-size particles is due mainly to the local deformation at the particle contact

points, rather than being due to particles’ relocation.
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In the case of random packings, however, the particles move in various directions when an

external force is applied. The strain field is not uniform even if the external force is, as in the

oedometric compression that we simulate. This effect is particularly significant for particles

that are located close to the system’s boundary. Thus, the deformation of the particles in the

random packing is due to their rearrangement, as well as the local deformation at the contact

points. In what follows we present the results and discuss their implications.

A. Distributions of the pores’ size and length

One of the most interesting properties of the packings of particles as they undergo defor-

mation is the change in their pore-size distribution (PSD) and pore-length distribution (PLD),

which directly affect their effective permeability and porosity. Thus, we first calculated the

PSD and PLD of the pore space of the random packings. To do so, a well-known result [55] was

used to map the pore space between the particles onto an equivalent 3D Voronoi network in

which the bonds of the network, representing the flow channels between the particles, are the

edges of the Voronoi polyhedra. To carry out the mapping, we first used [56,57] the Delaunay

tessellation to divide the packing into cells of four nearest neighbor particles, with each cell

being a tetrahedron with its four vertices located at the particles’ centers in the cell. Access

to this void region is through any of the four surfaces that are created by three particles in

the cell. Since the vertices of the tetrahedron are the same as the particles’ centers, the void

projected onto each of the four faces indicates the smallest cross section perpendicular to the

flow field that would be accessible for fluid flow into the central void space of the cell. Due to

the random structure of the packing, the sizes and shapes of such cross sections vary in space.

Delaunay tessellation is the geometric dual of the Voronoi tessellation [58]. The Voronoi

cells are polyhedra, each of which contains exactly one particle of the packing, such that any

point within every polyhedron is closer to that particle’s center than the center of any other

particle in the packing. Hence, the Delaunay tessellation is used to construct a network that

represents the solid phase of the random packing, whereas the Voronoi tessellation is utilized

for constructing the pore network equivalent of the void space. The vertices of the Voronoi

polyhedra are connected by the edges of the polyhedra that represent the pore space.

To construct the Voronoi network, the positions of network’s vertices are identified and,

given the four particles that surround each vertex, the way the vertices are connected to each

11



other are determined. For each particle, referred to as the main particle, all the possible nearest-

neighbor groups of particles are considered. Then, for each group a point is located that has the

same distance from the four particles’ centers, which will be a vertex of the Voronoi network if

and only if its distance from the center of the main particle is equal to, or less than, its distance

from the other particles’ centers in the packing. Otherwise, such a group of four particles

cannot generate a Delaunay cell, and that point cannot be a vertex in the Voronoi network.

The procedure is repeated for all the particles in the packing, so that the spatial coordinates of

all the Voronoi vertices around each main particle, as well as the groups of four particles that

generate each Delaunay cell, are determined.

After constructing the Voronoi network, we determined the effective length and radius of

each bond (pore throat) in the network. As pointed out earlier, the cross sections of the void

space representing the flow channels vary along their length. The length of each bond of the

Voronoi network was calculated by using the spatial coordination of its two end sites. To

calculate the effective radius of each pore throat, we define a hydraulic diameter Dh for each

bond by the classical relation,

Dh = 2
flow cross section

wetted perimeter
.

Simple geometrical analysis, together with the spatial coordinates of the particles’ centers in

the random yield the flow cross sections and the wetted perimeters.

In what follows when we refer to the PSDs and the PLDs after deformation, we mean

those at the maximum applied strain. Figure 3 presents the calculated PSDs of the three

dense packings of hard particles for which the particle-size distributions are shown in Fig. 2.

The results are for before and after deformation. Only the packing with the broadest particle-

size distribution, the PSD3, exhibits some change in its pore-size distribution after deformation.

This is understandable as the particles are hard, and the packings are dense. Figure 4 shows the

corresponding PLDs. In this case the differences in the PLDs before and after deformation are

relatively significant, since the hard particles may not deform much, but can move significantly

under compression.

Figure 5 shows the computed PSDs of the three dense packings of soft particles, before

and after deformation, with the particle-size distributions shown in Fig. 2. Once again, only

the packing with the broadest particle-size distribution exhibits some change in its PSD after
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deformation. This indicates that it is the high density of the particles, rather than the rigidity

of the particles, that is responsible for the changes in the PSDs. The corresponding PLDs are

presented in Fig. 6. The magnitude of the differences in the PLDs before and after deformation

is comparable to those for the packings of the hard particles, hence confirming our assertion

that it is the particle density that plays the most important role in the deformation process

that we have simulated.

Next, we present the results for a random packing with a porosity of 0.54. Figure 7 depicts

the computed PSDs of the three random packings of hard particles, before and after defor-

mation. Relative to the dense packings, the changes in the PSDs are more pronounced. The

changes in the PLDs are even clearer; see Fig. 8. This is understandable because the higher

porosity of the packings allows the particles to move farther after the external strain is applied.

Similarly, if the random packings with a porosity of 0.54 consist of soft particles, then, the

changes in their PSDs and PLDs are even larger after deformation, as shown, respectively,

in Figs. 9 and 10. Note that in all the cases, the deformation gives rise to a larger number

of shorter pore throats than those in the packings before the deformation. The significant

changes in the distribution of the pore lengths also affect the permeability of the packings after

deformation. This will be discussed shortly.

B. Porosity

The effect of deformation on the porosity is also important. The change in the porosity does

depend, of course, on the stiffness of the particles and their size distribution. Figure 11 presents

the fluctuations in the porosities of the dense random packings with the particle-size distribution

PSD3 in two directions, namely, in the flow direction x, and in the z direction along which the

external strain was applied. They represent the porosities in the planes perpendicular to the

given directions, and indicate that the deformation propagates well throughout the packings.

Similar results were obtained for other types of packings.

Figure 12 presents the strain-dependence of the porosity of the dense packings with the two

types of particles, soft and hard, and their three size distributions shown in Fig. 2. In this figure

and in the following the porosity is normalized with respect to its value before deformation. In

the case of a narrow particle-size distribution the porosity is reduced by only about 5 percent

at the maximum strain applied, with the change being even smaller if the particles are hard.
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The reduction in the porosity rises to about 7 percent with the widest particle-size distribution

(PSD3 in the figure). As expected, the change in the porosity is larger when the particles are

soft. Similar behavior is obtained if we use regular packings of particles.

The reduction in the porosity is, however, significantly higher in a random packing with an

initial porosity of 0.54. Figure 13 presents the results for the two types of particles and the

three particle-size distribution of Fig. 2. Even in the packing of the hard particles the porosity

at the maximum strain has been reduced by as much as 20 percent. The reduction in the

porosity is even larger in the case of regular packings; see Fig. 14 where we show the results for

the SC and FCC lattices. This is perhaps expected as the regular arrangement of the particles

is more amenable to deformation and rearrangement than those of a random packing of the

particles.

We find that in the case of nondense packing, as well as the regular ones, the changes in

the porosity follow a power law in the applied strain S,

φ

φ0

− 1 = −nSm , (21)

where φ0 is the initial porosity before deformation. Estimates of n and m are listed in Table

I. Figures 13 and 14 also show the fits. The coefficient n is, of course, nonuniversal. For loose

random packings of hard particles, m ≈ 1.9± 0.1, whereas with soft particles, m ≈ 1.5± 0.07,

for the SC packings, m ≈ 1.23 ± 0.05, and m ≈ 1.54 and 1.35 for the FCC packings with

hard and soft particles, respectively. Thus, the exponent m is also nonuniversal among the

various types of packings. In the case of the dense packings the porosity decreases with the

strain essentially linearly, so that, m = 1. Estimates of the coefficient n for the various dense

packings are also listed in Table I, while Figs. 12 also show the fits.

C. Number of contacts between particles

The mean number of contacts C, defined as the number of spheres that any particle touches,

is an important characteristic of a deforming packing. Figure 15 presents the results for the

dense packing of soft particles, as well as the packing with a porosity of 0.54. As the external

strain increases, so also does the number of contacts. For identical strains the increases are

smaller in the case of the nondense random packing due to the larger void space in the system.

During the initial stages of compressing the loose packings, the particles are mostly displaced

in the large void space of the packings. So, the number of the contacts between the particles
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does not change rapidly, giving rise to the concave dependence of the contact on the strain seen

in Fig. 15. The slope of the plot is also higher at higher strain modes. In other word, the

rate of increase of the contact number is higher at larger strains. The dense packing produces

the convex dependence of the dependence of the contact number on the strain. At the initial

stages of compression, the contact number increase rapidly because the packing is dense and

the particles come into contact easily. When the strain takes on higher values, the packing

becomes very compact, leaving not enough void space for the particles to move freely and,

thus, the rate of the increase of the contact number is lower at higher strain modes.

D. Fluid stress distribution and deformation

An important characteristic of fluid flow through a deforming porous medium is the dis-

tribution of the stresses that are exerted by the fluid inside the pore space and its evolution

with the deformation. As long as the morphology of the porous medium, the flow regime,

and the type of the fluid (Newtonian versus non-Newtonian) do not change, the shape of the

distribution would remain the same. But, because deformation changes the morphology, any

change in the stress distribution would also be a reflection of the deformation. To calculate

the stress distribution, we computed the second-rank stress tensor induced by fluid flow in the

pore space, before and after deformation. The stress tensor τ is given by

τ =
1

2
η
[

∇v + (∇v)T
]

, (22)

where the notation is the same as before, and superscript T denotes the transpose operation.

The eigenvalues of the tensor were then computed, with the largest one being the most impor-

tant flow-induced stress [59,60]. We then calculated the distribution of the largest eigenvalues.

Since we wish to construct a probability distribution function (PDF) for the calculated

stresses that is hopefully applicable to other types of porous media, we normalize the stresses,

τ ∗ = (τ − 〈τ〉)/σ, where 〈τ〉 is the mean stress, and σ is the standard deviation. Figure 16

presents the stress distribution in the dense packings of soft particles before deformation and

after the maximum strain was applied. The particles’ sizes were distributed according to the

three distributions shown in Fig. 2. The shape of the distribution suggests that it may be fit

to a log-normal distribution. Suppose that the mean and standard deviation of the PDF of

the un-normalized ln(stress) are, respectively, m and σ, so that we denote the distribution by
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lnN (m, σ). Then, the PDF of τ ∗ is a three-parameter distribution lnN (γ∗, m∗, σ) given by

[60]

h(τ ∗) =
1√

2σπ(τ ∗ − γ∗)
exp

{

−1

2

[

ln(τ ∗ − γ∗)−m∗

σ

]2
}

, (23)

where m∗ = m − ln στ , and γ∗ = −〈τ〉/σ, with στ = exp(m + σ2/2)
√

exp(σ2)− 1. Note that

γ∗ represents the minimum value of the normalized stress. As Fig. 16 indicates, Eq. (23)

provides reasonably accurate representation of the numerical data. Given the dense structure

of the packings, the stress distribution changes somewhat more significantly only in the pore

space with the widest particle-size distribution.

Figure 17 presents the same, but for the random packings with an initial porosity of 0.54.

Due to the larger void space in the packings and, therefore, more significant deformation of

the particles, the changes in the PDF of the stresses are much larger than those in the dense

packings. Note also that the range of the stresses exerted on the pore space with the wider

particle-size distribution is broader in the loose packings than the dense ones. In addition, in

both types of the packings the stress distributions in the undeformed state are more sharply

peaked. This is, of course, due to pore closure or significant reduction in the pore sizes, on the

one hand, and opening up other pores, on the other hand, both caused by deformation.

In Fig. 18 we present the corresponding results for the FCC and SC packings. In these cases

the distributions are no longer as sharply peaked as those in the random packings. The reason

is that the regular structure of the FCC and SC packings gives rise to broader distribution of

the local flow velocities and, therefore, broader distribution of the stresses. Although the fit of

the numerical results to the long-normal distribution is not as accurate as those for the random

packings, Eq. (23) does provide a reasonable description of the stresses.

The fact that in all the cases the stress distribution can be accurately represented by a

log-normal PDF is significant. The long tail of the distribution implies that there is a small

but significant fraction of the pore space in which very large stresses exist. This, of course, has

direct implications for the solid phase as well, because if the stress in the fluid in the vicinity

of the solid surface is large, it directly affects the surface. On the other hand, the sharp and

narrow peaks of the distributions imply that a large fraction of the pore space experience small

stresses, implying that the internal solid surface in that part of the pore space also experiences

small stress. Another characteristic of log-normal distribution is their variance, which means
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that there are wide fluctuations in the stresses.

E. Effective permeability

Figure 19 presents the strain-dependence of the permeabilities of the dense packings with the

two types of particles, soft and hard, in which the size of the particles is distributed according

to the particle-size distributions of Fig. 2. The permeabilities are normalized with respect to

their values before deformation. The results indicate several important features:

(i) The reduction in the permeabilities is not a strong function of the elastic moduli of the

particles.

(ii) Even though the final applied strain is only 0.03, the reductions in the permeabilities

are very significant, whereas as Figs. 12 and 13 indicate, the corresponding reductions in the

porosities are much smaller.

(iii) The change in the permeabilities is also not a strong function of the particle-size dis-

tribution.

These features are due to the dense structure of the packings. As a result of applying an

external strain to the top surface of the system, the deformation propagates significantly toward

the lower part of the packings, resulting in the reduction in the permeability.

Figure 20 presents the dependence of the normalized permeabilities on the porosities for

the dense packings. If we replot the normalized permeability data shown in Fig. 20 versus the

normalized porosities, all the three curves collapse onto each other. This is shown in Fig. 21.

The results for the strain-dependent permeability of the random loose packings with a

porosity of 0.54 are presented in Fig. 22. Note that the final applied strain to the packings

is ten times larger than that in the dense packings. In this case the differences between the

permeabilities of the packings with hard and soft particles are larger at larger strains, because

the larger void space of the packings allows larger deformation of the soft particles. Given that

the initial porosity is large, the reduction in the permeability is even larger than the dense

counterpart. Figure 23 depicts the corresponding porosity-dependent permeabilities. Once

again, the numerical data collapse onto a single curve, if the normalized permeability is plotted

versus the normalized porosity. This is shown in Fig. 24. The data collapse implies that the

relative reduction of the permeability is a universal function of the relative reduction in the

porosity, independent of the particle-size distribution.
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The results for the SC and FCC packings, shown in Fig. 25, indicate even larger reduction

in the permeabilities. Due to their dense structure, the changes in the permeability of both

regular packings are not sensitive to the elastic modulus of the particles.

The conclusions are that, (i) in all the case the reduction in the permeabilities vary es-

sentially linearly with the applied strain; (ii) while the change in the permeability is not a

strong function of the hardness of the particles, it depends strongly on the initial morphology

of the pore space, and (iii) the normalized permeability is a universal function of the normalized

porosity, independent of the particle-size distribution.

F. Effect of the friction coefficient

As already pointed out, larger friction between the particles leads to smaller deformation

in them. Thus, we expect greater reduction in the permeability when the friction coefficient is

smaller. This is borne out by the results shown in Fig. 26, which presents the results for the

permeability and porosity for two friction coefficients in a loose packing.

VI. Summary

Extensive numerical simulations were carried out to study the effect of deformation on the

morphological and flow properties of packed beds of spherical particles, when they are under

mechanical compaction. Both random and regular packings of particles were studied. The

deformation leads to the closure of some pores and opening up of others and, therefore, the

resulting reduction in the permeability varies from relatively small to large, depending on the

morphology of the initial pore space. The distribution of the pores’ lengths, the porosity of

the pore space, and the pore-size distribution also evolve under an external strain. It is of

course the changes in the morphology of the pore space that lead to the strong reduction of the

permeability.

The Kozeny-Carman (KC) equation [61,62],

K =
〈D〉2
36CKC

φ3

T 2(1− φ)2
(24)

is often used to correlate the permeability of packed beds of particles with their porosity φ,

where 〈D〉 is the mean particle diameter, T is the volume-averaged tortuosity, and CKC is the

Kozeny-Carman shape factor that depends on the materials that the particles are made of,
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and accounts for the variations in the permeability of porous media having the same porosity,

but distinct microstructures. CKC is usually taken to be 2.5 for packings of spherical particles.

The tortuosity can be defined in a variety of ways [63,64]. We find, however, that if the KC

equation is to be used to correlate the permeability with the porosity φ of the deforming pore

space, CKC must depend on φ. This will, however, be purely empirical, as a result of which the

equation loses its predictive power.
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Table I. Numerical values of the exponent m and the prefactor n [see Eq. (21)] for various

types of packings, particle-size distributions, and type of particles (soft and hard).

Loose random and regular

Packing m n

PSD1-hard 2.00 2.24

PSD2-hard 1.89 2.00

PSD3-hard 1.83 1.90

PSD1-soft 1.57 1.45

PSD2-soft 1.47 1.40

PSD3-soft 1.43 1.39

SC-hard 1.28 1.13

SC-soft 1.18 1.12

FCC-hard 1.54 5.92

FCC-soft 1.35 4.96

Dense

PSD1-hard 1.0 1.56

PSD2-hard 1.0 1.60

PSD3-hard 1.0 1.61

PSD1-soft 1.0 1.89

PSD2-soft 1.0 2.10

PSD3-soft 1.0 2.18
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Dubois (Wiley, Hoboken, 2011).

[47] Z. Lu, M. Abdou, and A. Ying, 3D micromechanical modeling of packed beds, J.

Nuclear Mater. 299, 101 (2001).

[48] R.D. Mindlin, Compliance of elastic bodies in contact, J. Appl. Mech. 16, 259

(1949).

[49] R.D. Mindlin and H. Deresiewicz, Elastic spheres in contact under varying oblique

forces, J. Appl. Mech. 20, 327 (1953).

[50] P.L. Bhatnagar, E.P. Gross, and M. Krook, A model for collision processes in gases.

I. Small amplitude processes in charged and neutral one-component systems, Phys.

Rev. 94 511 (1954).

[51] Z. Guo, B. Shi, and N. Wang, Lattice BGK model for incompressible Navier-Stokes

equation, J. Comput. Phys. 165, 288 (2000).

[52] Y.H. Qian, D. d’Humieres, and P. Lallemand, Lattice BGKmodels for Navier-Stokes

equation, Europhys. Lett. 17, 479 (1992).

[53] S. Chen and G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev.

Fluid Mech. 30, 329 (2003).

[54] M.L. Stewart, A.L. Ward, and D.R. Rector, A study of pore geometry effects on

anisotropy in hydraulic permeability using the lattice-Boltzmann method, Adv. Wa-

ter Resour. 29, 1328 (2006).

[55] A.R. Kerstein, Equivalence of the void percolation problem for overlapping spheres

and a network problem, J. Phys. A 16, 3071 (1983).

[56] S.L. Bryant, P.R. King, and D.W. Mellor, Network model evaluation of permeability

and spatial correlation in real random sphere packing, Transp. Porous Media 11,

53 (1993).

25



[57] M. Dadvar and M. Sahimi, Pore network model of deactivation of immobilized

glucose isomerase in packed-bed reactors. III: Multiscale modeling, Chem. Eng.

Sci. 58, 4935 (2003).

[58] D.F. Watson, Computing the n-dimensional Delaunay tessellation with application

to Voronoi polytopes, Comp. J. 24, 167 (1981).

[59] B. Porter, R. Zauel, H. Stockman, R. Guldberg, and D. Fyhrie, 3-D computational

modeling of media flow through scaffolds in a perfusion bioreactor, J. Biomech. 38,

543 (2005).

[60] N.H. Pham, R.S. Voronov, N.R. Tummala, and D.V. Papavassiliou, Bulk stress

distributions in the pore space of sphere-packed beds under Darcy flow conditions,

Phys. Rev. E 89, 033016 (2014).

[61] J. Kozeny, Ueber kapillare Leitung des Wassers im Boden, Sitzungsber Akad. Wiss.

Wien 136, 271 (1927).

[62] P.C. Carman, Fluid flow through granular beds, Trans. Inst. Chem. Eng. London

15, 150 (1937).

[63] B. Ghanbarian, A.G. Hunt, R.P. Ewing, and M. Sahimi, Tortuosity in porous media:

A critical review, Soil Sci. Soc. Am. J. 77, 1461 (2013).

[64] B. Ghanbarian, A.G. Hunt, M. Sahimi, R.P. Ewing, and T.E. Skinner, Percola-

tion theory generates a physically based description of tortuosity in saturated and

unsaturated porous media, Soil Sci. Soc. Am. J. 77, 1920 (2013).

26



50 100 150 200 250 300
0

10

20

30

40

50

60

Grid Size N

E
rr

o
r 

(%
)

50 100 150 200 250 300
0

5

10

15

20

25

30

Grid Size N

E
rr

o
r 

(%
)

Dense Non−Dense 

Figure 1: The error, |KN −K250|/K250 in calculating the effective permeability KN of a grid of

size N ×N ×N relative to K for N = 250.
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Figure 2: The three particle-size distribution (PSD) used in the for random packings, along

with an example of a random packing before and after compression.
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Figure 3: The computed pore-size distributions of the dense packings of hard particles with the

three particle-size distributions shown in Fig. 2.
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Figure 4: The computed pore-length distributions of the dense packings of hard particles with

the three particle-size distributions shown in Fig. 2.
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Figure 5: The computed pore-size distributions for the dense packings of soft particles and the

three particle-size distributions shown in Fig. 2.
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Figure 6: The computed pore-length distributions for the dense packings of soft particles and

the three particle-size distributions shown in Fig. 2.
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Figure 7: The computed pore-size distributions of random packings of hard particles with an

initial porosity 0.54 and the three particle-size distributions shown in Fig. 2.
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Figure 8: The computed pore-length distributions of the random packings of hard particles

with an initial porosity 0.54 and the three particle-size distributions shown in Fig. 2.
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Figure 9: Same as in Fig. 7, but for random packings of soft particles.
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Figure 10: Same as in Fig. 8, but for random packings of soft particles.
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Figure 11: Fluctuations ∆φ in the porosity in the strain (z) and flow (x) directions.
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Figure 12: Dependence of porosity of the dense packings on the external strain. The particle-

size distributions are shown in Fig. 2, and the porosities have been normalized by their initial

values before deformation.
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Figure 13: Same as in Fig. 12, but for loose packing with an initial porosity of 0.54. The insets

show the logarithmic plots of the same.
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Figure 14: Same as in Fig. 12, but for the regular packings. The insets show the logarithmic

plots of the same.

40



0 0.005 0.01 0.015 0.02 0.025 0.03
6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Strain

C

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3
2

2.5

3

3.5

4

4.5

5

5.5

Strain

C

 

 

PSD3

PSD2

PSD1

PSD3

PSD2

PSD1

Non−Dense PackingDense Packing

Figure 15: Dependence of the average number of contacts C on the external strain in random

packings of soft particles and the particle-size distributions shown in Fig. 2.
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Figure 16: The distributions of the computed normalized stresses, exerted by the fluid in the

pore space of the dense random packings of soft particles. The curves represent fit of the

numerical data to the log-normal distribution, Eq. (23).
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Figure 17: The distribution of the computed normalized stresses, exerted by the fluid in the

pore space of a loose packing of soft particles with an initial porosity of 0.54. The curve show

the fit of the numerical data to Eq. (23).
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Figure 18: The distribution of the computed normalized stresses, exerted by the fluid in the

pore space of regular packings of soft equal-size particles. (a) Simple-cubic (SC) packing at an

external strain of 0.2, and (b) face-centered cubic (FCC) packing at an external strain of 0.2.

44



0 0.005 0.01 0.015 0.02 0.025 0.03
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Strain

N
o

rm
a

li
z
e

d
 P

e
rm

e
a

b
il
it

y

 

 

0 0.005 0.01 0.015 0.02 0.025 0.03
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Strain

N
o

rm
a

li
z
e

d
 P

e
rm

e
a

b
il
it

y

 

 

0 0.005 0.01 0.015 0.02 0.025 0.03
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Strain

N
o

rm
a

li
z
e

d
 P

e
rm

e
a

b
il
it

y
 

 

Soft

Hard

Soft

Hard

Soft

Hard

PSD3PSD1 PSD2

Figure 19: Dependence of the permeability of dense random packings on the external strain.

The particle-size distributions are those shown in Fig. 2. The permeabilities are normalized by

their values before deformation.
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Figure 20: Dependence of the permeability of dense random packings on the porosity. The

particle-size distributions are those shown in Fig. 2. The permeabilities are normalized by

their values before deformation.
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Figure 21: Collapse of the permeability-porosity data of Fig. 20 onto a universal curve.
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Figure 22: Same as in Fig. 19, but for random loose packings with an initial porosity of 0.54.
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Figure 23: Dependence of the permeability of the random loose packings on the porosity.

The initial porosity was 0.54. The particle-size distributions are those shown in Fig. 2. The

permeabilities are normalized by their values before deformation.
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Figure 24: Collapse of the permeability-porosity data of Fig. 23 onto a universal curve.
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Figure 25: Dependence on the external strain of the permeability of the simple-cubic (SC) and

face-centered cubic (FCC) packings of particles. The permeabilities are normalized by their

values before deformation.
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Figure 26: Dependence on the friction coefficient µ of the permeability and porosity of a random

packing of soft particles with an initial porosity of 0.54. The particle-size distribution is PSD3,

shown in Fig. 2.
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