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Vapor-liquid equilibria of different quadrupolar linear Kihara fluids have been studied, by using the 
Gibbs ensemble Monte Carlo technique. Coexistence curves for fluids with elongations 

L* = L/(+=0.3, 0.6, and 0.8 and different quadrupoles are given. We analyze the effect of 
quadrupole moment on critical properties. Quadrupole moment increases the critical temperature, 
pressure, and density. The magnitude of the increase depends on both anisotropy and quadrupole 
moment. A new way of reducing the quadrupole is proposed, so that the variation of critical 
properties due to the quadrupole follows a universal behavior. Quadrupole provokes deviations from 
the principle of corresponding states. A broadening of the coexistence curve is observed due to the 
quadrupole. The quadrupole moment increases the slope of the vapor pressure curve vs temperature 
inverse. Simulation data are used to describe vapor-liquid equilibria of carbon dioxide. Good 
agreement between simulation and experiment is achieved. 

I. INTRODUCTION 

Among the most important and useful concepts in the 
development of thermophysical property correlations is the 
principle of corresponding states, enunciated by van der 
Waals in 1873. According to this principle, all fluids obeying 
an equation of state with two parameters should follow the 
same equation when reduced by their critical magnitudes. 
The molecular ground for this principle was established by 
Pitzer’ and Guggenheim.’ Although this principle was a very 
useful tool to describe the behavior of nearly spherical sub- 
stances with not too low molecular-weight, substantial devia- 
tions from this principle were observed for some types of 
Huids.3 

been developed since then, which have accounted for the 
role of shape or/and polarity on departures from the principle 
of corresponding states. The effect of a dipole or quadrupole 
moment on the behavior of a spherical fluid is well known 
due to the studies made by Pople, Gubbins et aZ., and Stell 
et al. using perturbation theory and conventional computer 
simulation experiments.“-‘4 Recent Gibbs ensemble com- 
puter simulations made by Stapleton et al.t5 and Smit and 
co-workers’6-18 completed that study. 

For low molecular weight fluids, quantum corrections 
are important in the description of their properties, as is the 
case of helium. More commonly, deviations from the prin- 
ciple of corresponding states arise from nonspherical forces 
as, for instance, short-range repulsive forces arising from 
molecular shape or long-range attractive forces arising from 
multipole moments. 

There have been many empirical attempts to account for 
such deviations by including a third parameter that is a mea- 
sure of the molecular anisotropy. The most widely used is the 
so-called acentric factor, first introduced by Pitzer et aL4 

These attempts have been very useful in providing an em- 
pirical description of the behavior of fluids, but a molecular 
understanding of deviations from the principle of corre- 
sponding states is still needed. 

More recently, the effect of molecular shape upon devia- 
tions from the principle of corresponding states has been 
studied. Perturbation theories developed for two-center 
Lennard-Jones fluids by Monson and co-workers’9v20 and 
Fischer et al.,*’ and the improved perturbation theory pro- 
posed by Vega and Lago2” for Kihara fluids have given a 
clear picture of how the molecular shape modifies the coex- 
istence ‘properties of a fluid. Furthermore, studies of the 
vapor-liquid equilibria by using computer simulation in the 
Gibbs ensemble carried out by de Miguel et aZ.23s24 for the 
Gay-Beme model and by ourselves for linear Kihara fluids25 
have completed the study of the influence of molecular an- 
isotropy upon deviations from the principle of corresponding 
states. 

An early theoretical attempt to study the intluence of 
molecular anisotropy and multipolar forces of simple fluids 
upon deviations from the principle of corresponding states 
was made by Cook and Rowlinson.5 Several theories have 

However, little effort has been dedicated to study the 
role of both shape and polarity onto departures from the prin- 
ciple of corresponding states. Lupkowski and Monson26 have 
studied the effect of dipole moment on vapor-liquid equilib- 
ria of linear molecules using a perturbation theory for site- 
site fluids. Their results have been recently confirmed by 
Gibbs ensemble simulations made by Dubey et al..” How- 
ever, the effect of a quadrupole moment upon the vapor- 
liquid equilibria (VLE), critical properties, and departures 
from the principle of corresponding states of a molecular 
fluid remains unknown. 

‘)Author to whom correspondence should be addressed. The goal of this work is to study the effect of quadrupole 
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moment on the vapor-liquid equilibria, critical properties, 
and deviations from the principle of corresponding states of a 
linear molecular fluid. We have studied fluids consisting of 
linear molecules interacting with a Kihara potential having 
an embedded point quadrupole. Such a fluid provides a 
simple model for such important fluids as NZ, Cl,, and C02. 
Moreover, the phase diagram of this model when no quadru- 
pole is present is already known from a previous work.X 
Conclusions of this study concerning the influence of the 
quadrupole moment on the phase diagram can be probably 
extended to any linear molecular fluid model, as the two- 
center Lennard-Jones. In fact, both nonpolar linear Kihara 
and nonpolar two-center Lennard-Jones models present the 
same departures from the principle of corresponding states 
due to the molecular shape.“5X27 We expect this to be still true 
when multipolar forces are present. 

We have used the Gibbs ensemble simulation technique 
to obtain the coexistence curve of a quadrupolar linear Ki- 
hara iiuid, for three different values of molecular elongation 
and two different values of quadrupole for each elongation. 
To our knowledge, these are the first simulation data of the 
vapor-liquid equilibria of quadrupolar molecular fluids. 
These results may be useful to check some recently devel- 
oped theories for multipolar molecular fluids, as the pertur- 
bation theory proposed by Boublik for dipolar and quadru- 
polar Kihara Auids.“8-30 

The scheme of the paper is as follows. In Sec. II we 
describe the molecular model and simulation method. In Sec. 
III we present and discuss the obtained results, the influence 
of the quadrupole upon the coexistence curve, critical prop- 
erties and vapor pressures, as well as the universal behavior 
of critical properties with the quadrupole as a new way of 
reducing the quadrupole moment is used. Application of 
simulation data to the thermodynamic description of a real 
fluid is also shown. Conclusions are shown in Sec. IV. 

Il. SIMULATION METHOD 

We consider a quadrupolar linear fluid consisting of rods 
of length L with an embedded point quadrupole Q, interact- 
ing through a potential given by 

U(r,W1,W2)=UK(r,01r02)+.aQ(r 0 0 ) 9 19 29 (1) 

where r is the distance between the centers of mass of the 
molecules and oi’{ 8,, (pi} stands for the polar angles of 
molecule i with respect to a reference frame having its polar 
axis aligned along the center of mass separation vector, r-UK 
is the Kihara potential,” given by 

uX(ryw17w2)=4e[[ p(r,l ,w2)]12w[ p(r,~,w,)16J 

(2) 

and ueQ is the quadrupole-quadrupole potential, given by 

2 

uQQ(r,wI ,w2)=$ [1-5(c:+cz+3c:cZ) 

+2(S$2C12-4C$2)2]. (3) 

In Eq. (2), p(r,wl ,02) is the shortest distance between 
the molecular cores (see Fig. I), E is an energetic parameter 

Garz6n et a/.: Vapor-liquid equilibria 4167 

FIG. 1. Shortest distance p between two linear rods of length L. 

and (+ a size parameter. In Eq. (3), Q is the quadrupole mo- 
ment, ci=cos Bi, si=sin 19,) and c~~=cos(&-#~). 

The Kihara potential is a reliable model for describing 
thermodynamic behavior of fluids. Second virial coefficient 
can be determined analitically for this potential,32 so that 
vapor properties can be easily described. Kihara used this 
potential successfully in the study of solid structures.33 Its 
application to the study of liquid phase has been made by 
using thermodynamic perturbation theories,34-37 and it has 
been shown that it constitutes a good effective pair potential 
for real substances.38*3g When L= 0 and Q = 0, the potential 
function given by Eqs. (l)-(3) reduces to the well-known 
Lennard-Jones potential. 

Evaluation of the Kihara potential requires the calcula- 
tion of the shortest distance between two linear rods. This 
seems to be a very time consuming task, but very efficient 
algorithms for its determination are available,39-42 so that the 
computer time expended in the evaluation of the Kihara po- 
tential between two linear rods is similar to the time required 
to evaluate the two-center Lennard-Jones interaction between 
two molecules. 

To determine the VLE of quadrupolar linear Kihara mol- 
ecules we shall use the Gibbs ensemble Monte Carlo 
(GEMC) simulation technique. This method, developed by 
Panagiotopoulos,43 allows the direct determination of’the co- 
existence curve, simulating simultaneously both phases. This 
technique involves three steps. In the first one, a conven- 
tional IVVT MC simulation step is performed in the vapor and 
in the liquid. The second step consists in an attempt of 
changing the volume of one of the simulation boxes by AV 
and by -AV in the other. The acceptance of this move is 
taken from the NPT MC method assuming equal pressures 
for both phases. In the last step, in order to keep the same 
chemical potential in both phases, a number of particle ex- 
changes between the boxes is attempted, with a probability 
given by pVT MC simulation. A more detailed description 
of this method can be found in the original papers.43p4 
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We have obtained VLE of linear quadrupolar Kihara flu- 
ids of reduced length L* = Lla= 0.3,0.6, and 0.8 using the 
Gibbs ensemble technique. From a previous work,25 we 
know the coexistence curve of these systems for Q = 0. We 
used 512 molecules. At temperatures close to the critical 
point, the initial configuration was taken from an a--N, lat- 
tice, with 256 molecules in each box. At lower temperatures, 
final configurations from previous runs were used. The inter- 
action was truncated at p=3a and long range corrections 
were applied by assuming uniform fluid beyond the cutoff. 
Formulas for the evaluation of long-range contribution to the 
internal energy and pressure of a Kihara fluid can be found in 
Ref. 45. Additional formula for the chemical potential can be 
easily derived. By assuming uniform fluid beyond the cutoff, 
the contribution of the quadrupole to the long range correc- 
tions vanishes.46*47 To obtain a point of the coexistence 
curve, we performed 3000-5000 steps for equilibration plus 
4000-8000 steps for averages. A step consists of an attempt 
of moving each particle in both phases, followed by an at- 
tempt of changing the volume and N,, attempts of exchang- 
ing particles between the simulation boxes. Acceptance ratio 
was kept in the range 30%-60% and N, was chosen to get 
an exchange ratio of 1%3%. We obtained VLE for 
Tao.75 T,. We’ were not able to obtain phase equilibria 
when TC0.75 T, . This is because at low temperatures the 
density of a liquid in equilibrium with its vapor is very high, 
and the acceptance probability in the particle exchange step 
becomes extremely low. This seems to be a general problem 
when the GEMC method is applied to molecular fluids. To 
obtain a point of the coexistence curve, we need about 15 h 
of cpu time on a Silicon Graphics workstation. 

The critical temperature, T,* , density, nr , and pressure, 
P,* were estimated by fitting the simmation data to the ex- 
pressions 

fZ:+n* 
g =a+bT*, 

2 (4) 

(5) 

In P*=d+G, (6) 

where n: and n,* are the liquid and vapor reduced densities 
(n* = nu3, with n being the number density), T” = kT1.s is 
the reduced temperature, and P* = Pa31 E is the reduced va- 
por pressure. Equation (4) is the rectilinear diameters law.2 In 
Eq. (5), we assumed a critical exponent P=l/3, close to the 
universal value given by the Group Renormalization 
Theory.48 Equation (6) is the Clausius-Clapeyron equation 
for the vapor pressure.4g 

The three studied elongations (L*=O.3, 0.6, 0.8) corre- 
spond approximately to the molecular anisotropy presented 
by N,, Cl,, and CO,, respectively. These substances show a 
nonzero quadrupole moment. For L* =0 the molecular 
model reduces to a quadrupolar Lennard-Jones potential for 
which GEMC data are available.‘5*16 
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111. RESULTS AND DISCUSSION 

We have obtained the coexistence curve of linear Kihara 
fluids at the mentioned elongations and for two different val- 
ues of the reduced quadrupole for each elongation. The re- 
duced quadrupole, Q*‘, is defined as 

Q&5. 17) 

Studied systems are L*=O.3 and Q*2=0.75, 1.5; 
L*=O.6 and Q*2=1.18, 2.35; and L*=O.8 and Q*2 
= 1.5, 3.0. 

In Tables I-III the results of simulations are presented. 
Reduced temperatures, vapor and liquid densities and pres- 
sures on the coexistence curve are given. The estimated er- 
rors were obtained from the standard deviations over blocks 
of 100 steps. For some temperatures, several independent 
runs were performed. 

In Figs. 2, 3, and 4 we compare the rest&s of this work 
for L* = 0.3, 0.6, and 0.8, respectively, with the previous 
data obtained by ourselves for the nonpolar Kihara model. 
Table IV shows the critical properties (temperature, density, 
pressure, packing fraction, and compressibility factor) as es- 
timated from the simulation results making use of Eqs. (4)- 
(6). Results for quadrupolar Leonard-Jones fluids from Refs. 
15 and 16 are also presented, as well as Lennard-Jones criti- 
cal properties from Ref. 50. 

These results show that the critical temperature increases 
significantly as the reduced quadrupole Q*2 increases. This 
connects with the idea often discussed in General Chemistry 
textbooks that for two molecules with similar van der WaaIs 
forces the presence of a multipole moment in one of them 
increases substantially the boiling temperature.51’52 This is a 
consequence of the increase of the critical temperature due to 
the quadrupole moment. The effect of quadrupole upon the 
critical density is the same, but less significant. The critical 
pressure also increases with the quadrupole moment. No sig- 
nificant effect of quadrupole moment on the critical com- 
pressibility factor is observed, due to the statistical errors. A 
similar behavior of critical properties was observed for the 
quadrupolar Lennard-Jones fluid. From Figs. 2-4 we can 
also affirm that, for a given temperature, orthobaric densities 
are greater as reduced quadrupole increases. This is in part a 
consequence of the increase of the critical temperature. 

In Fig. 5 we show the variation of the reduced critical 
temperature, AT; , defined as 

ATr=T;(Q*)-T;(Q*=O) @I 

and critical packing fraction, vc, 

)7c=ncVm (9) 

with the reduced quadrupole moment, at different values of 
L*. In Eq. (8), T,*( Q*) is the reduced critical temperature of 
the system with reduced quadrupole moment Q* and 
T,* (Q * = 0) stands for the reduced critical temperature of 
the nonpolar system with the same elongation. In Eq. (9), V, 
is the molecular volume 

vm=f as(l+ 1.5L”). (10) 
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TABLE I. Results for phase coexistence properties of linear quadrupolar Kihara fluids of L* = Lla=0.3 and 
Q**=Q2/(ed)=0.75 and 1.5. All thermodynamic properties are given in reduced units. The number in 
parentheses indicate the uncertainty in units of the last decimal digit; 0.472(10) means 0.47240.010. 

T* * 
% pa* @ p: 

0.85 
0.875 
0.9 

0.925 

0.95 
0.975 

1.025 

1.05 

1.075 

1.1 

1.11 

1.12 

1.13 

1.14 

1.05 0.021 O(21) 
1.05 0.025 l(16) 
1.1 0.032 l(15) 
1.1 0.038 55(34) 
1.125 0.038 4(27) 
1.15 0.043 41(36) 
1.175 0.052 8(69) 
1.2 0.058 0(85) 
1.2 0.062 3(99) 
1.225 0.077(14) 

1.23 0.078 4(79) 
1.235 0.098 8(65) 
1.25 0.105 5(17) 
1.26 0.108 l(84) 

1.27 0.123 4(59) : 
1.275 0.136(21) 
1.28 0.115(24) 

0.014 36(37) 
0.018 31(44) 

0.018 lO(72) 

0.025 75(66) 

0.025 4(21) 
0.033 2(U) 

0.039 (23) 

0.044 5(19) 

0.054 6(60) 

0.068 8(26) 

0.085 l(62) 

0.089 4(79) 

0.087 9(74) 

0.104(11) 
0.105 l(70) 

Q*‘=O.75 

0.001 6(55) 

0.003 9(32) 
0.019 O(20) 

0.010 43(66) 

0.017 3(31) 
0.025 45(55) 
0.029 4( 15) 

0.033 5( 12) 

0.039 7(27) 

0.048 2(19) 
0.053 4(18) 

0.057 5(36) 

0.058 6(36) 

0.063 7(45) 

0.066 4(42) 

Q*‘= 1.5 
0.015 8(48) 

0.016 7(63) 

0.024 9(67) 

0.032 0(24) 
0.032 7(17) 
0.037 4(26) 

0.043 5(38) 

0.047 O(5 1) 
0.049 5(55) 

0.059 3(65) 

0.060 7(55) 
0.067 8(58) 

0.070 4(85) 

0.072 5(58) 

0.077 9(59) 
0.075 0(85) 
0.077 6(85) 

0.533 8(89) 0.07(H) 

0.518 7(72) 0.050(76) 
0.509 4(74) 0.036(83) 

0.503 0(81) 0.007(90) 

0.479 4(93) 0.009(51) 
0.472( 10) 0.026(27) 
0.455(12) 0.032(29) 

0.432(18) 0.030(45) 

0.420(21) 0.036(27) 
0.412(19) 0.045(3 1) 

0.389(21) 0.056(26) 

0.348(48) 0.056(22) 

0.353(24) 0.055(75) 
0.344(45) 0.063(24) 
0.348(32) 0.068(27) 

0.511(10) -0.010(78) 
0.5 19 O(80) 0.024(78) 
0.488 8(80) 0.025(26) 

0.498 2(89) 0.059(35) 
0.470 5(92) 0.029 6(3 1) 
0.457 3(82) 0.038(39) 

0.439(14) 0.031(33) 

0.415(18) 0.044(3 1) 
0.420(12) 0.045(31) 
0.407(17) 0.062(30) 

0.408(13) 0.063(21) 
0.396(22) 0.069(U) 
0.386(19) 0.067(27) 

0.380(19) 0.072(26) 

0.363(28) 0.071(32) 
0.337(21) 0.070(21) 
0.295(47) 0.073(14) 

From Fig. 5 it may be concluded that the effect of the 
same value of reduced quadrupole on critical properties is 
greater as elongation of molecules is lower. This corresponds 
to the intuitive idea that the effect of a given quadrupole on 
the phase diagram of a fluid increases as the molecule turns 
to be more spherical. However, to compare the influence of 
quadrupole moment onto coexistence properties between 
molecular fluids of different elongations and quadrupoles it 
seems to be necessary to define corresponding states that 
would take into account the anisotropy. Thus, Bohn et al.46 
have defined approximate corresponding states for quadru- 
polar diatomic fluids by using pseudocritical properties that 
implicitly include the effect of elongation. Kihara and 
Koide33 have also defined corresponding states between flu- 
ids of different anisotropy reducing the quadrupole moment 
with the critical volume and temperature of the fluid. For 
quadrupolar spherical fluids, the usual way of reducing the 
quadrupole moment is made with the definition of Eq. (7), 
that is, by using the diameter of the molecule, a, as the factor 
that takes into account the shape of the molecule. In fact, we 

can rewrite Eq. (7) as 

Q2 

Q*2=e[Vml(7r/6)]5’3 = 00 

When molecules have a nonspherical shape, instead of using 
the diameter of the molecule to reduce the quadrupole, we 
could use the volume of the molecule as the factor that 
would appear in the definition of reduced quadrupole. 

In this work, we suggest a different choice of reducing 
the quadrupole moment for molecules with different elonga- 
tion. Following the form of Eq. (ll), we shall define a re- 
duced density of quadrupole as 

12” 
Q”‘F. 

m 
(12) 

Usefulness of Q2 will depend on whether Eq. (12) allows a 
principle of corresponding states (even in an approximate 
way) between quadrupolar tluids of different anisotropy; that 
is, whether a fluid of L* = 0.3 and Q** = I .5 (Q2=2.4) may 
be compared with a fluid ofL*=0.8 and Q**=3 (Qp2=2.4), 
since their reduced density of quadrupole is the same. In 

Table IV, values of Q” are given for all systems. 
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TABLE II. Results for phase coexistence properties of linear quadrupolar Kihara fluids of L* = L/o= 0.6 and 
Q**=Q*/(&‘)= 1.18 and 2.35. 

__T? n; 

0.825 0.014 56(35) 

0.85 0.016 7(13) 
0.875 0.020 4(13) 

0.9 0.027 9(31) 
0.925 0.029 3(12) 

0.95 0.035 9(26) 
I 0.056 4(32) 
1.015 0.069 l(32) 

1.025 0.063 l(47) 
1.04 0.081 2(73) 

0.95 0.014 41(29) 

1 0.022 l(10) 
1.05 0.03 1 2(28) 
1.1 0.054 6C43) 

1.125 0.066 7(41) 
1.15 0.065 l(45) 

1.165 0.075 9(77) 
1.175 0.090(12) 

P; nT pr* 

Q*‘=1.18 -0.000 44(62) 0.392 3(55) 0.016(62) 

0.011 78(81) 0.377 4(79) 0.009(28) 
0.014 43(73) 0.369 2(66) O.Oll(24) 

0.018 9j19) 0.355 O(68) 0.018(23) 
0.020 49(77) 0.342( 12) 0.015(32) 

0.024 6(14) 0.328(11) 0.023(30) 
0.035 5(19) 0.294(20) 0.028(29) 
0.040 3(25) 0.288(25) 0.031(28) 

0.039 5(25). 0.270(21) 0.039(13) 
0.046 O(32) 0.243(34) 0.044(15) 

Q**=2.35 
0.015 5(29) 0.402 4(46) 0.02(11) 

0.017 68(88) 0.384 0(92) 0.021(33) 
0.024 4(20) 0.355 5(87) 0.020(33) 
0.037 6(U) .0.337 6(66) 0.036(66) 

0.043 l(30) 0.314(15) 0.047(23) 
0.045 2(28) 0.289(19) 0,045(19) 

0.049 4(38) 0.256(25) 0.047(21) 
0.053 3(48) 0.250(36) 0.049(25) 

Figure 6 shows that the raise of critical temperature and diagram of a fluid increases as the molecule turns to be more 
packing fraction with increasing Q2 follow now a universal spherical must be more carefully considered. Now, we can 
curve regardless of the value of L*. Thus, the common idea affirm that the role of molecular elongation in the increase of 
quoted above that the effect of the quadrupole on the phase critical properties is secondary, at least in the studied range 

TABLE III. Results for phase coexistence properties of linear quadrupolar Kihara fluids of L* =Llu=O.8 and 
Q**=Q’/(E~)= I.5 and 3. 

T* * 
np PB* n: p!* 

0.775 
0.8 
0.825 
0.85 

0.85 
0.875 
0.9 
0.9 
0.925 

0.95 
0.965 
0.975 
0.985 

1.01 

0.925 
0.95 

0.975 

1.025 
1.05 
1.075 
1.1 
1.125 
1.127 5 
1.135 
1.145 

0.009 75(17) 
0.015 l(13) 
0.014 7(11) 
0.016 8(17) 

0.018 39(76) 
0.027 O(10) 

0.033 I(65) 
0.036 2(31) 
0.038 4(32) 
0.053 6(59) 
0.052 6(49) 
0.058 2(59) 
0.068(11) 
0.089(13) 
0.091(13) 

0.013 Ol(39) 
0.018 8(24) 

0.020 2(10) 

0.021 78(94) 
0.029 5(20) 

0.041 8(5 1) 
0.039 7(33) 
0.054 l(37) 
0.070 6(40) 
0.083 9(49) 
0.075 l(55) 
0.087 5(46) 

Q*“=1.5 

0.005 4(35) 
O.O014(21) 
0.010 2(17) 
0.012 8(22) 

0.012 47(53) 
0.016 2(35) 
0.020 5(29) 
0.021 7(16) 
0.023 7(14) 

0.030 l(33) 
0.030 9(28) 
0.032 8(22) 
0.035 O(42) 
0.039 9(47) 
0.041 6(45) 

~**=3 

-0.001(10) 
0.014 O(15) 

0.015 51(86) 
0.016 78(84) 

0.021 7(14) 
0.027 5(27) 
0.028 3(18x 
0.035 3(22) 
0.042 7(42) 
0.044 9(47) 
0.044 2(37) 
0.046 6(44) 

0.345 2(56) 0.033(79) 

0.338 2(33) 0.034(49) 
0.323 0(46) 0.005(33) 
0.308 9(55) 0.002(23) 

0.313 7(56) 0.006(24) 
0.304 5(94) 0.015(26) 
0.296 O(67) 0.024(28) 
0.295 2(63) 0.025(19) * 

0.277 9(90) 0.024(16) 

0.267 l(75) 0.029( 13) 
0.250 9(99) 0.031(13) 

0.236(14) 0.031(14) 
0.232(16) 0.033(14) 
0.227(17) 0.042(13) 
0.205(29) 0.042(H) 

0.347 l(48) 0.037(90) 
0.337 3(43) 0.19(21) 

0.326 4(75) 0.015(25) 

0.3 116(56) 0.014(24) 

0.304 7(97) 0.021(22) 

0.297 6(87) 0.028(23) 
0.272(11) 0.026(17) 
0.260(10) 0.034(20) 

0.246(17) 0.044(20) 
0.239(11) 0.045(20) 
0.227(19) 0.047(18) 
0.232(17) 0.051(15) 
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L’= 0.3 
1 

00000 Q’S 1.5 

DDDDII Q'L 0.75 
. . ..I\ Q’*= 0 

n 

FIG. 2. Vapor-liquid coexistence densities for quadrupolar Kihara fluids of 
L*=L/c=O.3. The results are given in reduced units, T*=kT/e and 
n*=~~d. Data corresponding to a reduced quadrupole 
Q**=Q*/(&)= 1.5 are plotted with circles. Squares correspond to 
Q**=O.75. Triangles represent data for the nonpolar system of Ref. 25. 

of elongations. Moreover, we cannot say in Fig. 6 whether 
points corresponding to L* = 0 are above or below points of 
L* = 0.8, due to the unaccuracy of data. The universality of 
the curve of Fig. 6 supports our choice of Q2 for comparing 
fluids with different L* and Q*. This universality occurs 
when AT, is reduced with Elk. 

The consequences of the universality shown in Fig. 6 are 
quite interesting. For instance, if the critical temperature for 
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a linear Kihara fluid with elongation L* and Q* = 0 is 
known, T, may be predicted for any value of Q*’ (Q”), by 
reading AT, in Fig. 6 and adding that to the critical tempera- 
ture of the nonpolar fluid. 

In Fig. 7 we show the coexistence curve, when the tem- 
perature and density are reduced by their corresponding criti- 
cal parameters, for the three values of L*. Although the re- 
sults shown in Fig. 7 are quite sensitive to errors in the 
determination of critical properties, so that caution is needed, 
we observe that the trend is a broadening of the VLE coex- 
istence curve due to the quadrupole moment. This effect is 
moderate. Results of Refs. 15 and 16 show the same trend 
for a Lennard-Jones fluid. GEMC simulations of Stockmayer 
fluids also show departures from the principle of correspond- 
ing states.‘7”8 Monson and co-workers26P show a similar 
broadening of the coexistence curve for a dipolar two-center 

TABLE IV. Critical properties of simulated systems. 

L” Q** Q* T,* * 
nc PT rlc 2, 

0 0 0 1.310” 0.314a 0.126" 0.164” 0.306' 
0.40 1.2 1.4Ob 0.33b o.14b 0.17b 0.30b 
0.81 2.4 1.54b 0.34b 0.16b O.lgb 0.31b 

01 ,o 0 1.114(12) 0.219(6) 0.073(10) 0.166(5) 0.30(4) 

0.75 1.2 1.163(27) 0.220(16) 0.078(21) 0.167(12) 0.31(8) 
1.5 2.4 1.296(34) 0.23 l(3 1) 0.089(27) 0.175(24) 0.30(9) 

0.6 0 0 1.000(12) 0.161(5) 0.051(10) 0.160(5) 0.32(6) 
1.18 1.2 1.061(22) 0.164(13) 0.050(12) 0.164(13) 0.29(7) 
2.35 2.4 1.192(19) 0.179(31) 0.058(25) 0.178(31) 0.27(12) 

0.8 0 0 0.952(11) 0.140(3) 0.038(8) 0.161(4) 0.29(6) 
1.5 1.2 1.014(13) 0.147(14) 0.044(12) 0.169(X) 0.30(8) 
3 2.4 1.157(27) 0.152(16) 0.049(20) 0.175(18) 0.28(11) 

aResult obtained by using the data of Ref. 50. 

bResults obtained by interpolation of data from Refs. 15 and 16. 
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Lennard-Jones fluid when the dipole moment is increased. In 
conclusion, it seems that multipoles provoke a broadening of 
VLE coexistence densities, when plotted in terms of critical 
units. 

The effect of quadrupole moment on the vapor pressure 
is shown in Fig. 8, at two values of L*. The quadrupoie 
moment decreases the vapor pressure at a given temperature. 
The same effect is observed for the quadrupolar Lennard- 
Jones fluid. 15*16 According to the Clausius-Clapeyron equa- 
tion, which becomes accurate at low temperatures, the slope 
of a In P* vs l/T* plot is related with the vaporization en- 

thaJpy by 
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in Fig. 8 the logarithm of the reduced vapor pressure is 
represented vs inverse of reduced temperature, at two differ- 
ent elongations, and different reduced quadrupoles. We can 
concfude that since the slope of the lines is almost constant 
that implies, from Eq. (13), that at low temperatures AH,* is 
relatively constant. We see from Fig. 8 that AH: increases as 
the quadrupole is increased. This confirms the idea (widely 
quoted on text books of Chemistry) that vaporization en- 
thalpy increases when molecules have a multipole 
moment.s”52 
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FIG. 7. Reduced coexistence densities, n/n,, as a function of the reduced 
temperature, TIT, at two different eIongations. (a) L*=O.3 and Q*‘=O 
(solid line), Q”‘~0.75 (long-dashed line) and Q*‘= 1.5 (short-dashed 
line). (b) L*=O.6 and Q*‘=O (solid line), Q*2= 1.18 (long-dashed line) 
and Q*2=2.36 (short-dashed line). (c) L*=O.X and Q*2=0 (solid line), 
Q*2= 1.5 (long-dashed line) and Qx2=3 (short-dashed line). 

Departures from the principle of corresponding states in 
the vapor pressure due to the yuadrupole are illustrated by 
plots of In(PIP,) vs TJT. This is represented in Fig. 9 for 
L" =0.3 and 0.8. We have also represented the vapor pres- 
sure of a Lennard-Jones fluid, taken from Ref. 50. Thus, it 
can be observed the effect that both shape and quadrupole 
exert upon deviations from corresponding states for vapor 
pressure. The slope (in absolute value) of the In( P/P,) curve 
increases with the molecular anisotropy (i.e., compare 
L*=0,Q*2=0 with L*=0.3,Q*2=0) aswellaswiththe 
quadrupole moment (k, compare.L*=0.3, Q*2=0 with 
L* = 0.3, Q *2 = 1.5). Although these results should be taken 
with care due to difficulties in determining accurately critical 
magnitudes, we believe this trend to be correct. 

In Chemical Engineering a measure of deviations upon 
corresponding states is given by the acentric factor, w, de- 
fined as4 

1-D \ 

cd=-log k 
i J 

-1 (14) 
= T=0.7Tc 

related with the slope of the ln(PIP,) vs TJT plot. Calcu- 
lated acentric factors for simulated systems are shown in 
Table V. Results are affected by a considerable statistical 
error, due to errors made in the determination of critical pres- 
sure and temperature and vapor pressures at. T= 0.7 T, . 
Nevertheless, we can conclude that both anisotropy and 
quadrupole increase the magnitude of the acentric factor. 
Table V illustrates the variation of the,acentric factor with Q2 
for fixed L*. We may suggest that this variation follows a 
universal behavior, when plotted vs Q2 for different L*, but 
this effect is screened by the statistical error in o. Therefore, 

no conclusion about this point is possible at this moment. It 
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seems that the GEMC method cannot give values of w with 
the accuracy that is obtained from experimental measure- 
ments. 

Until now, we have applied GEMC simulations to calcu- 
late VLE of a model fluid. It is possible to calculate the 
coexistence curve of a real fluid if adequate parameters of the 
Kihara potential are taken. Boublik has recently studied ther- 
modynamic properties of carbon dioxide by using perturba- 
tion theory for quadrupolar Kihara fluids.‘* He considered 
C02asalinearrodofL*=0.8118 andQ*2=2.6.Agood 
description of VLE of CO2 can also be obtained by using the 
GEMC data of the system with L” = 0.8 and Q *‘= 3. Criti- 
cal temperature and density obtained from simulations were 
fit to the experimental critical temperature and density of 
carbon dioxide,s3 as 

n,*lO 000 1 
Ii3 

a(A) = 
nFP(mol/l)6.023 ’ 

(15) 

-2 

Wp/pJ 
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FIG. 9. Reduced vapor pressures as a function of the inverse of reduced 
temperature for L*=O, 0.3, and 0.8. (a) Results for (from top to bottom) 
L*=O and Q*‘=O, and L*=O.3 with Q**=O, 0.75, and 1.5. (b) Results 
for (from the top to the bottom) L*=O and Q*‘=O, and L*=O.8 with 
Q*‘=O, 1.5, and 3. 

T”,“‘(K) 
dk(K)=- 

T,* ’ 
(16) 

Quadrupolar Kihara parameters calculated in this way 
are dk=262.93 K and a=2.878 A. The quadrupole mo- 8 

TABLE V. Acentric factors for the simulated systems. 

B L*=o L"=O.3 L*=O.6 L*=O.S 

0 0.02” O.OO( 12) 0.15( 16) 0.11(12) 

1.2 0.07b 0.17(20) 0.11(18) 0.19(20) 

2.4 O.llb 0.30(24) 0.13(30) 0.22(28) 

“Result obtained by using formulas of Ref. 50. 
bResults obtained by interpolation of data from Refs. 15 and 16. 
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$0 

ther thermodynamic perturbation theory or integral equations 
would be desirable. Unfortunately, further work on this area 
is still needed, although some recent progress has been 
reported.20,22,26,28-30,55 

We can estimate from our simulations the critical prop- 
erties of a hypothetical fluid that would have the same mo- 
lecular elongation than carbon dioxide, but a quadrupole mo- 
ment Q = 0. Its critical temperature, density and pressure 
would be T,=250.31 K, n,=9.75 molll, and P,=57.86 
bar. By comparing these values with the actual critical prop- 
erties of CO,, we can affirm that quadrupolar interactions 
increase the critical temperature of real carbon dioxide by 
about 60 K, the critical density 0.7 mol/l, and the critical 
pressure about 16 bar. This illustrates what can be learned 
from computer simulations of fluids models. On the other 
hand, statistical errors make unclear the influence of molecu- 
lar elongation and quadrupole on critical compressibility fac- 
tor. 

60 
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FIG. 10. (a) Vapor-liquid coexistence densities of CO*. (b) Vapor pressures 
of COz. Solid lines are fittings of experimental data itaken from Ref. 53). 
Symbols correspond to the simulation data of L*=O.8 and Q*2=3, with 
the parameters obtained as described in the text. 

ment obtained from this set of parameters is Q 
=4.64X 1 O-26 esu cm’, which in fair agreement with the 
experimental value,” Qexp=4.3X 10mz6 esu cm2. 

Experimental and simulation coexistence curve and va- 
por pressures of CO2 are shown in Fig. 10. We have obtained 
a very good description of coexistence properties of this fluid 
by using a simple model for its interaction energy. Therefore, 
we can conclude that the interaction potential of Eqs. (l)-(3) 
is a good effective pair potential for the thermodynamic de- 
scription of a quadrupolar fluid, as carbon dioxide. Moller 
has also given a good description of thermodynamic and 
coexistence properties of CO, with computer simulations of 
a quadrupolar two-center Leonard-Jones mode1.54 This sug- 
gests the possibility of obtaining VLE of any real substance 
by using the GEMC simulation method. However, this tech- 
nique is very time consuming. For practical applications, ei- 

We have presented simulations results of vapor-liquid 
coexistence curves for quadrupolar linear Kihara fluids. To 
determine VLE, we used the Gibbs ensemble simulation 
technique. In a previous work,= we obtained data of vapor- 
liquid equilibria for the nonpolar Kihara fluid, and the effect 
of molecular anisotropy on the coexistence properties was 
studied, as well as its influence on the departures from the 
principle of corresponding states. 

&Iere we have shown that the quadrupole moment sig- 
nificantly raises the critical temperature of a molecular fluid. 
Critical density is raised too, but the increase is smaller. 
Critical pressure is also increased. Vapor pressure at a given 
temperature of a linear fluid is decreased by the quadrupole. 

We suggest that a more adequate way of reducing the 
quadrupole moment may be achieved by using the molecular 
volume. Thus, comparison between properties of quadrupo- 
lar fluids of different anisotropy could be easier. We have 
shown the “universal” behavior of the increase on critical 
temperature and packing fraction with the quadrupole mo- 
ment when the reduced density of quadrupole is used. The 
use of this reduced density of quadrupole allows us to predict 
the increase of critical properties by the quadrupole moment 
and allows an approximate extension of the principle of cor- 
responding states for quadrupolar molecular fluids. 

In terms of corresponding states, we have seen that co- 
existence curve is slightly broadened by the presence of the 
quadrupole. Same effect was previously found for quadrupo- 
lar Lennard-Jones fluids.‘5*‘6 Simulation results indicate that 
the vapor enthalpy, related with the slope of a ln P vs l/T 
plot, is increased by the quadrupole moment. 

Intluence of shape and quadrupole upon deviations from 
the principle of corresponding states has also been shown by 
using plots of ln PIP, vs TJT. The slope of this plot is 
related with the acentric factor, which has been calculated 
for all the simulated systems. We found that both shape and 
quadrupole increase the value of w. 

Finally, we have made use of one of the coexistence 
curves obtained with GEMC to describe the VLE of carbon 
dioxide, just by fitting the potential parameters to the critical 
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temperature and density of real COZ. We have obtained very 
good agreement between experiment and simulation data for 
densities and vapor pressures. This confirms the fact that the 
quadrupolar Kihara potential constitutes a reliable effective 
pair potential for real fluids. As a bonus, we have learned the 
magnitude of the contribution of Q to the critical properties 
of CO*. We have illustrated how to use Gibbs ensemble re- 
sults to determine potential parameters of real substances. 

These simulation results can be very useful to test theo- 
ries of polar molecular tluids, as the perturbation theory pre- 
sented recently by Boubhk.28-30 

A similar study of linear dipolar Kihara fluids is in 
progress. 
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