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Monte Carlo computer simulation techniques are used to study the formation of 
bipolarons on a lattice. The transition between the three possible states, extended, two- 
polaron, and bipolaron is studied. The phase diagram as a function of the strengths of 
the electron-phonon coupling and repulsive interaction is determined. 

I. Introduction 

The notion of a polaron, i.e. an electron trapped by 
the lattice distortion it creates, is relevant for the 
explanation of wide range of phenomena, found in 
condensed-matter physics [1]. The ultimate goal of 
studying polarons is undoubtedly the complete 
understanding of the many-polaron system. A first 
and important step towards this ambitious goal is 
the investigation of bipolaron formation. The crea- 
tion of bipolarons is in itself an interesting problem 
as in many theoretical explanations of experiments, 
the notion of bipolarons is invoked [2-13]. Using a 
generalization of the method introduced by Emin 
and Holstein in their study of polaron formation in 
the adiabatic limit in continuum space, the creation 
of small-bipolarons has been investigated by Cohen, 
Economou, and Soukoulis [14~. Another recent 
study of bipolaron formation has been performed by 
Hiromoto and Toyozawa [-15]. In the latter case the 
variational approach of Feynman has been extended 
to include the bipolaron states. An interesting aspect 
of the work of Hiromoto and Toyozawa is the in- 
clusion of non-adiabaticity. The dynamical proper- 
ties of bipolarons have been examined by Alexan- 
drov and Ranninger [16], and Kuroda and Mills 
1-177. In Ref. 14 as well as in Ref. 15, space is 
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basically treated as a continuum. It has been shown 
that in polaron models, introduction of a lattice cut- 
off may seriously influence the outcome [18]. Fur- 
thermore results for these continuum-space models 
are in several case different from those of discrete 
lattice models [191. There is no doubt that if in 
solid-state physics, the lattice version of a model 
behaves differently compared to the continuous- 
space version, the lattice equivalent is the most ob- 
vious to study. 

Computer simulation is probably the most 
powerful and reliable method known today to study 
polaron formation on a lattice. Since a polaron is a 
quantum object, the possibility of large-scale com- 
puter simulations of polaron models had to wait for 
the development of general methods for computer 
simulation of quantum systems. One of the most 
versatile ways to perform simulations of quantum 
systems is through the use of path-integral and path- 
summation concepts. Interesting in this case is that 
while these concepts are applicable to many prob- 
lems they are most ideally suited to study polaron 
formation. The reason is, of course, that in a path 
integral formulation it is possible to integrate out 
the (infinite number ot) phonon coordinates analyti- 
cally, as has been shown by Feynman for the 
FriShlich polaron [201. 

In this paper we will discuss the formation of 
bipolarons on a lattice, using computer simulations. 
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In our opinion, this "brute-force" numerical experi- 
ments are necessary because they provide unbiased 
information on the model behavior, and there is no 
need to rely on additional assumptions. As a matter 
of fact we have to introduce one, and only one 
approximation which is founded on mathematical 
theorems concerning exponential operators and is 
such that all sources of systematic errors due to the 
approximation are understood and under control. 
As this is the first computer simulation study of 
bipolarons on a lattice, it is not wise to examine all 
possible models and interactions. We have chosen to 
study a generic three-dimensional model in the adia- 
batic limit. In addition we have opted for two char- 
acteristic and very different forms of the direct elec- 
tron-electron interaction, viz. a short range and a 
long range coupling. Our simulations are not re- 
stricted to this limit and without any principal diffi- 
culty, the method can be extended to include the 
non-adiabatic regime. 

The outline of the paper is as follows. In Sect. 2 
we present the theory on which the simulation is 
based. The inherent quantum mechanical nature of 
the problem forces us to introduce one (and only) 
approximation. In Sect. 3 we discuss the simulation 
technique. We argue that errors on the final results 
for the relevant physical properties are not deter- 
mined by the systematic errors resulting from the 
approximation made, but rather by the limited sta- 
tistical accuracy that can be achieved by Monte 
Carlo simulation techniques. The results of our cal- 
culations and the conclusions can be found in Sect. 
4. 

II. Theory 

II.1. Model Hamihonian 

The generic Hamiltonian of the lattice model reads 

H =  Z ~:(k) Ck+sCk, s-1-2 r ( k )  j0k j0 k 
k,s k 

+ ~  Q(k)(a+_k+ak)Pk+~ oJ(k) a~- a k. (2.1) 
k k 

+ (annihilate) phonon The operators a k (at) create a 
excitation of wave vector k, + c~, s (Ck.s) create (anni- 
hilate) an electron with spin s and Pk is the Fourier 
transformed electron density. In this paper we will, 
for the sake of simplicity, assume a simple cubic 
lattice. Hence the electron kinetic energy in (2.1) is 

d 
given by e(k)= - 2 t  ~ cosk, ,  where t is the transfer 

p = l  
energy associated with nearest-neighbor hopping, d 
=3 is the dimensionality of the lattice, and 

k---(k 1 .. . .  ,kd) denotes the wave vector. In general it 
is difficult to specify the precise form of the electron- 
electron interaction V(k) since this clearly depends 
very strongly on the detailed structure of the solid. 
It is therefore of interest to examine two extremes. 
We will examine the model for the case of an on-site 
repulsive interaction between electrons with opposite 
spins, and as the most common long-range interaction 
is of the form 1/r where r is the distance between the 
two electrons on the lattice, we will also study this type 
of interaction with our method. Of course we will 
have to supplement the latter coupling with an on- 
site cut-off value. The phonon frequencies co(k) and 
the electron-phonon interactions Q(k) will be speci- 
fied later on. 

In studying bipolaron formation we will, as in 
recent theoretical studies of this problem [-14, 15] ,  
assume that it is sufficient to study the properties of 
model (2.1) for the case where one electron has spin 
up and the other has spin down. Then the electrons 
may be considered as being distinguishable. In the 
following the coordinates of the particles will be 
denoted by y(~)-(y(U) . . . . .  y~)), where p =  1 2 is the 
label of a particle. 

11.2. Path-Sum Representation 

tt is well-known that the path-integral formalism is 
a very powerful tool for calculating properties of 
continuum polaron models such as the Fr/fhlich po- 
laron model 1-20]. Modifying the path-integral ex- 
pression of the continuum model by introducing a 
cut-off is not always a safe procedure since it has 
been shown that the lattice model exhibits some 
features that be explained by the corresponding con- 
tinuum model 1,18, 19], the reason being that in 
lattice models the kinetic energy is bounded whereas 
in a continuum model it is not. Although there is no 
classical Lagragian for lattice model (2.1) there is no 
fundamental problem in setting up a path-integral- 
like framework if the generalized Trotter formula 
[21] is invoked. Writing H 1 for the electron kinetic 
energy, H 2 for the electron-electron interaction, and 
H 3 for the electron-phonon interaction plus free- 
phonon terms, it follows [-21] that the approximant 
Z m defined by 

Z,, = T r  [exp ( @ )  exp ( ~ )  exp ( @ ) ]  m 

(2.2) 

will converge to the exact partition function, 
Z = T r  e - P n =  lira Z m, and similar results concerning 

m--e~ 
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the convergence can be proven for any expectation 
value of interest. In practical applications it will, in 
general, not be possible to take the limit rn~oo. 
Keeping m finite is the only approximation that we 
will make in this work. Of course, it is then neces- 
sary to know how the physical properties change 
with m. Theoretically this problem has been studied 
extensively and powerful, general theorems on the 
convergence of approximants such as (2.2) have been 
proven /21]. in practice, we simply calculate the 
physical quantities for different values of m and use 
the general theory [21] to examine the convergence. 

To obtain an explicit expression for (2.2) we use 
the fact that each exponential in (2.2) can be diagon- 
alized separately. Writing each exponent in its diag- 
onal representation, working out the resulting ma- 
trix elements and exploiting the fact that, because 
(2.1) is a quadratic form in the phonon operators, 
the trace over all phonon coordinates can be carried 
out analytically, we find that (2.2) can be written as 
[22] 

= , . , i , j  Y l , j +  1 
{y},} j=~ u=l i= 

" exp (-- ~; V(y}"-  y~2))) 

�9 ' (~) (t~') �9 exp ~ F ( j - j , y )  - y j ,  , (2.3a) 
j, 1 # , u ' =  1 

�9 T(#) ~--_ (~,(t~) ~(u) where the sum over jj  -ty~,j, . .-,ya,jJ runs over all 
lattice sites, Z e is the free-phonon partition function 
and 

l(z, ) = ~ , = t c o s ~ - e x p  z c o s +  , (2.3b) 

is the Fourier transform of the imaginary-time lat- 
tice propagator of a free particle on a ring of length 
L. As lz(z ) = lim I(z, 1), I(z, l) has very similar proper- 

L ~ c o  

ties as the modified Bessel functions I~(z) if l~L.  The 
effective electron-electron interaction due to the cou- 
pling with the phonons is given by 

F(J', x) =~m2 ~k Q2(k) 

exp ( j f l ~ ( k ) )  +exp ( ( m - j ~ c o ( k ) )  

�9 e i k ' x  ( 2 . 3  c )  
1 - exp ( - fi co (k)) 

For most applications, it is sufficient to consider the 
model in the adiabatic limit only. This is tan- 
tamount to the assumption that the energy scale 
related to the motion of the electron(s) is much 
larger that typical phonon energies. Then the elec- 

trons adjust instantaneously (on the time scale of the 
phonon excitations) to the motion of the oscillators. 
In the present case this implies that in the calcu- 
lation that lead to (2.3), all contributions of the 
momentum operators of the phonons should be re- 
moved. This changes the trivial prefactor Z P and the 
effective interaction F(j,x). Operationally this is 
equivalent to taking in (2.3c), the limit co(k)--,0 and 
(2.3 c) simplifies to 

Q2 (k) elk. x (2.4) F(J, x) = 5~-m~ ~ - g ~  ~ - �9 

This is an important result because it shows that the 
phonon-mediated interaction is determined by a par- 
ticular combination of Q(k) and co(k). In other 
words, in the adiabatic limit models with different 
Q(k) and co(k) can have the same effective interac- 
tion F(]',x). For instance taking dispersionless pho- 
nons and an on-site electron-phonon coupling, i.e. 
taking Q(k) and co(k) wave vector independent, or 
choosing acoustic phonons and a deformation type 
interaction, i.e. Q(k)~lk[ 1/2 and co(k)~Lkl for small 
k, leads to essentially the same effective interaction. 

In this paper we will confine ourselves to the 
case where QZ(R)/co(R) does not depend on k. Then 
(2.4) reduces to 

~ c  
F(j, x) = ~5- (ix. o, (2.5) 

where C is a collection of constants. It is a nice 
feature of the assumptions concerning the phonon 
frequencies and electron-phonon coupling, that in 
the final expression for Z,, the strength of the elec- 
tron-phonon interaction is determined by only one 
parameter C. We still have to specify V(k) or 
equivalently its Fourier transform V(x) entering 
(2.3a). As mentioned previously we will study two 
extremes, namely short-range Coulomb repulsion 

V(x) = U 3x, 0, (2.6 a) 

and a long-range repulsion 

V(x)= f U  if x - 0 ;  (2.6b) 
U/L x l otherwise. 

From theoretical point of view, introduction of the 
cut-off in (2.6b) may seem to be somewhat ad hoc 
but it is quite reasonable if one realizes that for real 
materials the effective electron-electron potential is 
obtained by taking into account the atomic (or mo- 
lecular) wave functions. Our motivation for choosing 
(2.6b) is to examine the effect of the range of the 
repulsive interaction on the formation of the bipo- 
laron. The computational technique that we will use 
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is certainly not restricted to the model potentials 
(2.6). 

11.3. Physical Quantities 

The function Zm/Z P itself is not of direct interest. 
More relevant are derivatives of the electron free 
energy F~--(1 / f l )  ln(Z,ffZ e) with respect to the 
transfer energy t, the electron-phonon coupling C, 
and the electron-electron potential strength U. To 
simplify the notation it is convenient to introduce 
the function 

P({YS")})-= 1~ I~ l~I I (2n~ v'~)' ''(u) ) v~ , j - -Y i ,  j+ 1 
j=l /*=I i=1  

" exp ( - ~  V(y}l)-y}2))) 

(j,~__ ~ YS")--Y5 '~'))) (2.7, .exp F ( j - j ' ,  , 
j, 1 g ,# '=  1 

and to denote the m-th approximant to the expec- 
tation value of a quantity A by 

((A>)m = Z P({Y}U)})A({Y~ "~)})/ Z p({y}U)}). (2.8) 
{ya(~')} {y}")} 

All interesting electron properties can be expressed 
in terms of these double bracket expectation values. 
For instance the kinetic energy of the electrons is 
given by 

~Frff t ~-~ 2 d 

~t  m j= l  #=1 i=1 

([{2fi t  ,(,0__,(u) + l~ + I [2fit ,,(,),,{,! __1)11 
m ,yi,: :i,:+i ] ~ m ,yi,a y,,j+l 

�9 \ -]]o' 
I ~ m :i,a . , , s + l  I 

(2.9 a) 
and the electron-phonon coupling energy reads 

8 f f  C ~, 2 
V2ee_= _ C -= ~ ~ ((6rj,,,rF,,})~, (2.9b) 

~ C  m2 j , j ' = l  n,~'=l 

and a similar result holds for the potential energy. 
Since we expect that at least one of these quantities 
will change rapidly if the system changes from one 
type of behavior to another one, it is also useful to 
compute second derivatives of the free energy, i.e. 
static Kubo susceptibilities. In particular the second 
derivative o f / : d  with respect to C, i.e. the coupling 
energy susceptibility, 

2 E [ ~ (  j ~  2 (5y5~), ya(,~,))2 ) )  m e _  a F ~ _ f i  
)~m = 8 C 2 m 4 j, 1 ~t,#" = 1 

( (  j,~_ ~ 16r,~,, r~,,,))s (2.10) 
j, 1 # ,# '=  

turns out to be very useful in detecting a transition 
[22]. When a bipolaron is formed, the distance be- 
tween the two particles will be less than when no 
bipolaron is present. Consequently it is worthwhile 
to investigate the behavior of quantities which are 
sensitive to a change in relative distance. Following 
Ref. 15, we will compute 

D a) 2 2 1) 2 2 
m ~ - -  - 07 

j= 
(2.11a) 

where 
+ 1 

aj : //o - ~  12 ' (2.11b) 

is the mean square relative distance of two free 
particles moving on a d-dimensional hypercube of 
linear size L subject to periodic boundary con- 
ditions, and serves as a normalization factor. 

II.4. Polarons and Bipolarons 

Within the context of the path-sum description given 
above, it is easy to visualize what a polaron or 
bipolaron state is. Let us first "turn-off" those in- 
teractions that will cause the formation of the bipo- 
laron. This means that in the sums over /.t and /~' 
appearing in (2.7-10) we put all contributions with 
/~=t=p' equal to zero. The resulting path-sum then 
describes two particles, interacting with their self- 
generated phonon cloud but not with that of the 
other, and feeling each other through the potential 
V(x). If also V(x)=0, (2.7) represents two completely 
independent particles with a self-interaction�9 In such 
a system, two independent polarons are formed if C 
is larger than some value Ceo I. Then the self-in- 
teraction dominates the kinetic energy and the sys- 
tem changes its state from extended- to polaron-like. 
In the strong coupling limit, C--+ oe two polarons are 
formed and from (2.7) it follows that the configu- 
ration of y}") that yields the largest contribution to 
Zm/Z e is y(1)=y~), y(2)~y}2) for j=l , . . . ,m.  Note 
that such a configuration does not break trans- 
lational invariance, as can be cerified directly by 
looking at (2.3a). Using this ansatz we recover the 
correct binding energy l i m F f = - 2 C  of the two 

m--+ oo 
polarons. Thus in the path-sum approach, a some- 
what crude characterizations of a polaron would be 
to say that a polaron is formed if y(U)~yJU) for all j, 
and numerical evidence [-19] also demonstrates that 
this is indeed what happens. It is now easy to con- 
ceive what can happen if we turn on the interaction 
terms with /~+g'. If we already have two polarons 
they can either keep their identity or they can form 
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a bipolaron. In the strong coupling limit a bipolaron 
v( l~-v C2) for all j. Again state corresponds to y = j j  - j j  

such a state is translationally invariant. We have not 
yet touched upon the role of the Coulomb repulsion 
which works against the formation of the bipolaron. 
For  the case of the on-site repulsion (2.6a) and in 
the strong coupling limit it is easy to find out which 
of the two states, bipolaron or two independent po- 
larons, is realized. Putting y (~) =y)(~) a n d  y(2)=yJ2) for 
j = 1 . . . . .  m we obtain 

lim E_ F~ - - 2  C + ( U - 2  C) @1,.,~2,, (2.12a) 
m ---roo 

so that in this limit the bipolaron state is preferred if 

U<2C.  (2.12b) 

To summarize, having an extended state is, in the 
path-sum representation equivalent to having large 
deviations of the coordinates y}U) from their average 
value. If the system is in the two-polaron state we 
expect that ~ (~ y ~y)  for all j. If a bipolaron is 
formed we have in addition y ~ y}U) for all j and #. 

III. Numerical Experiments 

Calculating numerical values for the physical quan- 
tities (2.9-11) for a wide range of values of the 
parameters C, U, and fl (from now on we work in 
units such that t = 1) is clearly a non-trivial problem. 
Disregarding the fact that we are studying a quan- 
tum system for a moment, we may interpret (2.8) as 
the usual expression of an expectation value of a 
quantity A, the unnormalized density function being 
given by p({y}U)}). In this sense (2.7) describes a 
"classical" system of 2m particles interacting 
through nearest-neighbor couplings determined by 
the functions I(z,l), the potential V(x) and a long- 
range interaction F(j,x). The quantum mechanical 
nature of the problem shows up in the strange de- 
pendencies of the various couplings on the "size" m 
of the equivalent classical system. 

The proven method that can deal with this com- 
plex problem is the Metropolis Monte Carlo tech- 
nique [23-25]. In the present case, implementation 
of this technique is not difficult because in contrast 
to for instance quantum spin systems, no additional 
fundamental problems related to the quantum na- 
ture have to be solved [22]. On the other hand the 
physics of the problem demands that the model 
properties are studied at sufficiently low temperature 
and this imposes some computational constraints. 
Ideally one would like to know the ground-state 
properties but if results can only be obtained via 
simulation this is definitely out of reach. Remember 

that the Trotter-Suzuki formula (2.2), upon which 
the present study is based, requires that one takes 
the limit m ~ o o  first before one lets ]3~oo. As the 
computation time is of the order rn 2 (essentially the 
time required to move each particle multiplied by 
the time to compute the change in the self-interac- 
tion energy) for large m, it is clear that in practical 
applications there is a limit, both to m and ft. 

Comparison with perturbation calculations and 
experience with similar calculations for the polaron 
model [19] suggest that fl = 5 is sufficiently low tem- 
perature, as far as the properties related to the ex- 
tended-polaron, extended-bipolaron and polaron- 
bipolaron transition are concerned. To determine 
the minimum value of m necessary for bringing the 
systematic error due to the Trotter-Suzuki formula 
down to an acceptable level, the relevant quantities 
are computed for several values of m and the con- 
vergence as a function of m is examined. For  suf- 
ficiently large m, the systematic errors diappear in 
the statistical noise which is always present in Mon- 
te Carlo simulations and it then makes no sense to 
increase m further. The data shown in this paper are 
obtained from calculations with m=64,  100. After 
making these lengthy calculations it is worthwhile to 
consider the question whether it is possible to get 
most of the relevant information with much shorter 
simulation runs. Of course we do not mean that one 
should reduce the number Monte Carlo steps per 
degree of freedom or the number of measurements 
(11,000, resp. 10,000 for all data presented in this 
paper) but are referring to performing simulations for 
smaller m. Indeed it turns out that in order to con- 
struct the phase diagram with good confidence it is 
sufficient to take m = 32. 

The Metropolis Monte Carlo algorithm [23-25] 
consists of changing the 2m degrees of freedom y}") 
and calculating the corresponding change in 
p({y}")}). We use two different schemes to moves 
through the phase space ~,,(~)~ The simplest one is L.rk, jJ. 
of the most local type: the triple (#, k,j) is generated 
randomly and the new coordinate is obtained by 
adding + 1 or - l t o  y(") each with probability 1/2. k,j  
Such a move corresponds to flipping one spin in the 
Ising spin model [25]. In principle, moves of this 
type are sufficient in order to reach any point in 
phase space starting from any other. Thus the Mar- 
kov chain of states produced by the Metropolis 
Monte Carlo algorithm is irreducible (also called "er- 
godic") with a unique limit distribution specified by 
p({y~")}) [24]. For  obvious practical reasons it is 
necessary that the important region of phase space is 
covered in a sufficiently short time. To speed-up 
relaxation to the equilibrium state a second type of 
move has been added which makes more global 
steps through phase space: a pair (/~,k) is selected 
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randomly and the new trial coordinate is given by 
y(U) 4-1, j = l ,  . . ,m the + sign being chosen with k,j~'  
probability 1/2. In Ising-spin language, such moves 
would correspond to a multi-spin flip procedure 
with conservation of total magnetization. Not  in- 
corporating this class a moves would make the ob- 
servation of a polaron-bipolaron transition un- 
likely if the lattice is large and computer time is 
limited. We want to emphasize that having this sec- 
ond type  of move build into the simulation algo- 
rithm is a trick to reduce the computer time re- 
quired to obtain reliable results, and does not 
change the physical properties of the system that is 
being simulated. All simulations reported in this pa- 
per have been done with cubes of linear size L = 3 2  
which for the our purposes is large enough because 
the linear size L only enters our formalism via Z F 
and the function I(z , l )  (see (2.3b)). In our case z 
= 2 ~ t / m  is small and from the properties of I(z , l)  
(or I~(z)) it then follows that L does not play an 
important  role in determining the physical proper- 
ties of the system. 

To close this section we give some information 
about the computat ional  resources used in this 
work. All computations have been done on a C R A Y  
1S or 2 pipe-line CYBER 205. Because of the non- 
local interactions, each Monte Carlo step requires a 
lot of arithmetic operations if rn is large enough (m 
< 100 for the data presented in this paper). T h i s  
makes it worthwhile to vectorize the code. For  a m 
= 100 system, a speedup factor of 7 (12) in CPU-t ime 
on the C R A Y  1S (CYBER205) has been obtained 
by vectorization. Typically, a simulation of a m = 100 
system with 11,000 steps per degree of freedom and 
10,000 samples takes about 25 (14) rain on a C R A Y  
1S (CYBER 205). 

IV. Simulation Results 

As discussed previously, simulation of two com- 
pletely independent particles interacting with the 
phonons requires that all contributions with p + #' in 
the sums over # and #' appearing in (2.7-10) are set 
equal to zero, and this special case is easily in- 
corporated in the simulation program. This is a 
good test because in this case one is simulating 
simultaneously two independent systems, each sys- 
tem describing one electron coupled to the lattice, 
and the results of extensive calculations for these 
polaron systems have been reported elsewhere [19]. 
The new simulation program reproduces the results 
of previous simulations within the statistical errors. 

Simulation results for the special case discussed 
above, obtained by using the newly developed simu- 

0.5 

U=O, m=64, p=5 

~ ~  K~/IO 
Dr. 

~F~  
40C 

0 I I 
0 5 C 10 

Fig. 1. Monte Carlo results for the kinetic energy (triangles), the 
distance between the two electrons (dots), and the coupling energy 
(squares) as a function of the electron-phonon coupling C for the 
case where all interactions between the two electrons have been 
turned off. Lines are guide to the eyes only 

lation program, are shown in Fig. 1. For  4.5 < C < 5 
the kinetic energy and the coupling energy change 
rapidly but smoothly. Since all interactions, direct as 
well as indirect, between the two particles have been 
turned off the normalized RMS distance D m fluc- 
tuates around 1. Remark that 0 ~ / ~  C approaches 2 
if C increases, which according to the primitive pic- 
ture of a polaron sketched in Sect. 2.4 is what we 
expect to happen. The coupling-energy susceptibility 
Z~ (not shown, see Ref. 22 for examples) exhibits a 
pronounced peak at C~4.5.  Exact T = 0  results for 
the two-site problem show that Z~ is discontinuous as 
a function of C [261. A variational calculation, re- 
producing the exact two-site results and being in 
excellent agreement with simulation data, has shown 
that the number of sites, as well as the dimensio- 
nality of the lattice is not important  as far as the 
qualitative features of the extended-polaron tran- 
sition are concerned [19]. Therefore we believe it is 
justified to interpret a sharp peak in Z~ as a signal 
for a transition from one state to another. Of  course, 
the question whether or not there is a continuous 
transition cannot be answered by means of simula- 
tion. To summarize, Fig. 1 suggests that two inde- 
pendent polarons are formed if C>Cpo I where 
Cpo 1 ~ 4.5. 

If the electron-phonon mediated interaction be- 
tween the electrons is switched on, the same quan- 
tities as those shown in Fig. 1 behave differently, as 
demonstrated in Fig. 2. First we note that the RMS 
distance D m jumps from its free-particle value 1 to 
almost zero if C > C B j  p. This already signals the 
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U = 0, m=100,~3=5 
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Fig. 2. Monte Carlo results for the kinetic energy (triangles), the 
distance between the electrons (dots), and the coupling energy 
(squares) as a function of the electron-phonon coupling C for the 
case where the repulsive interaction between the two electrons is 
zero. A bipolaron is formed if C>2.5. Lines are guide to the eyes 
only 

format ion of a bipolaron. F r o m  Fig. 2 we estimate 
that  CBip~2.5. Addit ional  confirmation regarding 
the format ion of  a b ipolaron can be obtained by 
noting that  for a b ipolaron state, one expects that  
for increasing C, 8F~/8C approaches 4 and, as 
shown in Fig. 2, this is indeed the case. On  a more  
qualitative level we observe that  the transit ion from 
extended to b ipolaron state is much more  abrupt  
than the ex tended-pola ron  transition, as can for 
instance be seen by compar ing  slopes of the kinetic 
energy K~ in the transit ion regime. 

Up  to now the repulsive interaction between the 
particles has not  been included. As explained above, 
one expects that  by increasing the strength of the 
repulsive interaction, it should be possible for the 
system to form, in addit ion to the extended- or 
b ipolaron state already observed, a two-polaron 
state, depending on the strength of the electron- 
phonon  coupl ing C. For  a long range potential  of  
the type (2.6b) and U = 5 0  the simulation results are 
given in Fig. 3. The value of U was chosen such that  
the three different situations, extended, two-polaron,  
and bipolaron are clearly visible. The value of 
Ceo1~4.5 does not  change with U, at least not  with- 
in the statistical accuracy. In the regime Ceo ~< C < 6 
all quantities change smoothly.  For  6 <  C < 7  the 
coupling energy and D m change drastically. [f C >  7, 
8F~/8 C has reached its s trong coupling value 4 and 
D m is essentially zero. F r o m  Fig. 3 we estimate that  
CBip~6.7 if U = 5 0 .  By repeating the analysis for 
different U, it is s traightforward to map  out the 
phase diagram. The U - C  phase diagram for the 
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Fig. 3. Simulation results for the kinetic energy (triangles), the 
distance between the electrons (dots), and the coupling energy 
(squares) as a function of the electron-phonon coupling C for a 
long-range interaction of the form (2.6b) and U=50. The tran- 
sition flom extended to polaron state occurs at C~4.7, the bipo- 
laron is formed if C > 6.5. Lines are guide to the eyes only 
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Fig. 4, U - C  phase diagram for a long-range interaction of the 
form (2.6b) and U = 50. Lines are guide to the eyes only 

case of the long-range potential  (2.6b) is depicted in 
Fig. 4. Within  the accuracy of the simulations, the 
separatrix between extended and two-polaron  regime 
is vertical. This is to be expected since in both  
regimes there is no po la ron-pola ron  correlation. We 
want to emphasize that  the extended - two-polaron  
transit ion is a smooth  one [19], certainly not  as 
abrupt  as the transit ion to a b ipolaron state. 



50 H. De Raedt and A. Lagendijk: Bipolaron Formation 

U = 1 5  , m = l O 0  , p = 5  
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Fig. & Simulation results for the kinetic energy (triangles), the 
distance between the electrons (dots), and the coupling energy 
(squares as a function of the electron-phonon coupling C for an 
on-site Coulomb repulsion U=  15. The transition from extended 
to polaron state occurs at C~4.5, the bipolaron is formed if 
C>8.5. Lines are guide to the eyes only 

Exactly the same procedure as the one outline 
above has been followed to analyze the simulation 
data for the case of the on-site repulsive interaction 
(2.6a). Qualitatively, the results are very similar and 
therefore it is not necessary to display all results. 
The simulation results for the same quantities as 
those depicted in Figs. 1, 3, as obtained from simu- 
lations with an on-site repulsive interaction of 
strength U =  15, are shown in Fig. 5. It is clear that 
as the coupling strength C increases, the system 
undergoes two successive transitions. In Fig. 6, data 
tbr the coupling-energy susceptibility Z~ for U = 15 is 
given (for the long-range potential, the correspond- 
ing plot looks similar). The maximum at C~4.5 
signals the transition from extended to two-polaron 
state. The value of C at which the maximum occurs 
(C~,o~), is the same as the value determined by single 
polaron simulations [-19]. As the coupling to the 
phonons is the driving field for the formation of 
both the polaron(s) and the bipolaron, and X~ is the 
corresponding fluctuation of this interaction energy, 
one expects to see a second maximum in Z~ if a 
bipolaron is formed. As shown by Fig. 6, this second 
peak is indeed observed. This gives supports to our 
believe that X~ e is indeed a convenient quantity for 
detecting transitions of this kind. 

Applying the same analysis as the one used 
above to the data of the other physical quantities it 
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1 - -  

0 
0 2.5 5 7.5 10 C 

Fig. 6. Simulation results for the electron-phonon coupling en- 
ergy susceptibility as a function of C for an on-site Coulomb 
repulsion U= 15. The peak at C~4.5 signals the formation of two 
polarons, the peak at C~8.5 indicates the formation of the bipo- 
laron. For a qualitative picture of the behavior of other quantities 
see Figs. 2, 3. Lines are guide to the eyes only. 
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Fig. 7. U - C  phase diagram for an on-site Coulomb interaction. 
The dashed line is the prediction of simple strong-coupling theory 
for the two-polarons-bipolaron transition. Solid lines are guide to 
the eyes only 

follows unambiguously that the bipolaron is formed 
if C>  CBip~8.5 (for the case U=15). The complete 
U - C  phase diagram is shown in Fig. 7. The slope 
of the two-polaron-bipolaron separatrix is approx- 
imately equal to 2, in good agreement with the ele- 
mentary theoretical argument given in Sect. 2.4 (see 
2.12b) but the estimate for the critical coupling for 
bipolaron formation C~i p is wrong by about 10 %. 

As pointed out in Ref. 15, it is of interest to 
compare the unnormalized RMS distance with the 
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lattice spacing (which was taken to be 1 throughout 
this work). When the bipolaron is formed, our re- 
sults for the unnormalized RMS distance are always 
much less than the lattice spacing, indicating that in 
this state the two particles are almost always on the 
same site. This situation is changed when formation 
of the bipolaron is due to an electron-phonon in- 
teraction of the Fr6hlich type [15]. Although some 
aspects of polaron formation depend whether or not 
the continuum limit of the lattice model is consid- 
ered [18, 19], for the three dimensional lattice model 
studied in this paper, the general features of the 
phase diagrams are quite similar. 
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