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We show how relatively standard Monte Carlo techniques can be used to probe the free-energy 
barrier that separates the crystalline phase from the supercooled liquid. As an ilIustration, we 

apply our approach to a system of soft, repulsive spheres [ LI( Y) = E(C/Y) 12]. This system is 
known to have a stable Face-centered-cubic (fee) crystal structure up to the melting 
temprrat.ure. However, in our simulations, we find that there is a surprisingly low free-energy 
barrier for the formation of body-centered-cubic (bee) crystallites from the melt. In contrast, 
there appears to be no ‘easy’ path from the melt to the (stable) fee phase. These observations 
shed new light on the results of previous simulations that studied the dynamics of crystal 

nucleation in the r- ” 1 system. We argue that the techniques developed in this paper can be 
used to gain insight in the process of homogeneous nucleation under conditions where direct, 
dynamical simulations are inconclusive or prohibitively expensive. 

I. INTRODUCTION 

Computer simulation studies have contributed consid- 
erably to our understanding of the freezing transition. In 
1357, Alder and Wainwright’ and Wood and Jacobson” 
showed that a system of purely repulsive hard spheres can 
undergo a first-order transition from the fluid to the crystal- 
line state. Some 10 years later, Hoover and Ree showed how 
computer simulations can be used to locate the freezing 
point of an arbitrary ‘atomic’ fluid.” Subsequently, simula- 
tions have been used to determine both the freezing point 
and the structure of the solid at freezing for a wide range of 
interatomic potentials (see, e.g., Refs. 66). In particular, 
Hoover et aZ.? investigated the stability of different crystal- 
line phases for a class of model systems with repulsive pair 
interactions of the form c(r) = e(rr/r)“. This study showed 
that for ~27, the stable crystal structure at melting is face 
centered cubic (fee), whereas at lower values of n, the solid 
melts from the body-centered-cubic (bee) phase. In other 
words, ‘hard’ repulsive interactions favor fee solids, while 
bee occurs for ‘soft’ interactions. 

In the mid-scventics, computer simulations were first. 
used to study the ctyrzarCcsofcrystallization, rather than the 
thermodynantics. Starting with the work of Mandell et al.,’ 
a large number of numerical simulations of the homoge- 
neous nucleation process have been rcported.d.“-‘” For a re- 
view, see! e.g., Refs. 25 and 26. 

Computer studies of the dynamics of homogeneous 
crystallization arc much less straightforward than the nu- 
merical determination of the fluid-solid coexistence point. 
R&w, we list some of the factors that make computer-simu- 
lations studies of crystallization time consuming and, in 
many casts, difficult to intcrprct. 

Let us first briefly recall the usual approach to study 
crystallization in a computer ‘experiment. In such a molec- 
ular dynamics (MD 1 Qmulation, the system is first prepared 
in a stable, well-equilibrated fluid phase. The temperature of 

this fluid is then rapidly quenched to a value well below the 
freezing point ( Tf) (often as low as 0.5T,, or even lower). 
The system is then allowed to evolve. During this time evolu- 
tion one monitors a number of dynamical observables (e.g., 
the pressure, or the structure factor) that can be used to 
detect the onset of homogeneous nucleation. 

This procedure has a number of practical drawbacks. 
First of all, the system size appears to have a large etfect on 
the rate of nucleation. The size of the critical nucleus and the 
time of formation of a critical nucleus are smaller in a small 
system than in a large system.‘3,27 Recently, Swope and An- 
dersen have reported a simulation study of homogeneous 
nucleation in a very large system ( 10’ particles). This study 
indicates that system-size effects become unimportant only 
for model systems containing more than IO3 particles. Such a 
system size is a factor lo-50 larger than what is typically 
needed to study equilibrium properties of dense fluids. As a 
consequence, nucleation studies tend to be computationally 
expensive. 

This problem is compounded by the fact that it may take 
a long time (and therefore a lot of computer time) before a 
nucleation event is observed, unless the fluid is strongly su- 
percooled. How much supercooling is needed to achieve a 
reasonable rate of nucleation (on the time scale of a comput- 
er ‘experiment’), depends strongly on the harshness of the 
interatomic potential. Mountain et nl.‘” have performed 
simulation studies of crystal nucleation in two soft-sphere 
systems [L)(T) .-Y-“, with n = 7 and II = 121 and in a Len- 
nard-Jones system. They observed that nucleation and 
growth take place more easily as the interaction between 
particles becomes softer. A similar conclusion was reached 
by Robbins et ~1.” who studied crystal nucleation in a 
Yukawa fluid. The strong dependence of the nucleation rate 
on the harshness of the short-range repulsion between atoms 
can be understood intuitively by noting that soft spheres will 
slip more easily into a new position than densely packed hard 
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spheres. Experimentally, the same correlation between nu- 
cleation rate and the softness of the intermolecular potential 
has been observed in a study of the formation of colloidal 
crystals.” 

In order to see homogeneous crystal nucleation in a 
computer simulation, the initial fluid phase must be super- 
cooled to a temperature that is far below the equilibrium 
freezing temperature. This is true for fluids with a ‘soft’ in- 
tcrtnolecular potential, but even more so for the more harsh- 
ly repulsive systems (i.e., those systems that tend to form 
stable fee crystals). Unfortunately, it is not known a priori if 
crystal nucleation at such extreme supercooling proceeds in 
the same way as crystallization close to the freezing tempera- 
ture. This fact severely limits the use of MD studies to inves- 
tigate whether nucleation proceeds directly into the thermo- 
dynamically stable phase or that a metastable solid phase is 
formed first, in accordance with Ostwald’s ‘step rule’.‘” The 
latter rule states that the crystal structure that is nucleated 
from the melt does not correspond to the most stable phase, 
but to the phase that is nearest (in free energy j to the fluid 
phase. A closely related rule is the one due Stranski and 
Totomanow,“” who argue that the crystal phase that forms 
first is the one with the lowest free energy barrier for nuclea- 
tion. One of the aims of the early work of Mandell et al.‘? was 
precisely to test whether Ostwald’s rule applied to the homo- 
geneous crystallization of the Lennard-Jones fluid. In Ref. 9 
evidence was presented that indicated the formation of bee 
nuclei in a small, strongly supercooled Lennard-Jones (LJ) 
system. However, all other studies of the same system found 
evidence for the formation of fee nuclei,‘0,8.‘4 In particular, 
the recent numerical study by Swope and Andersen16 of 
crystal nucleation in a system of 10’ LJ particles, shows con- 
vincingly that, although both bee and fee nuclei can form 
under conditions of strong supercooling, only the fee nuclei 
(i.e., the ones that correspond to the thermodynamically sta- 
ble phase) grow to form larger crystal&s. In contrast, nu- 
merical studies of homogeneous nucleation in (considerably 
smaller) r ‘“-‘soft-sphere’ systems’831” indicate that, al- 
though fee is the thermodynamically stable crystal phase, 
bee crystallites tend to form even at large supercooling. This 
observation is in qualitative agreement with the theoretical 
predictions of -4lexander and McTague”’ who argue that, at 
least for small supercooling, nucleation of bee crystallites 
should be favored in all simple fluids that have a ‘weak’ first- 
order freezing transition. A recent theoretical study by Klein 
and Leyvraz”’ supports the idea that a metastable bee phase 
should nucleate relatively easily from the melt. Experimen- 
tally, nucleation of a met&able bee phase has been observed 
in rapidly cooled metal melts.“3 

nucleation can therefore be considered as the product of two 
terms, namely, ( 1) the probability to find the system at the 
top of the free-energy barrier to nucleation and (2) the rate 
at which this ‘activated’ state transforms into a stable crys- 
tallite. Below, we show how relatively simple computer-sim- 
ulation techniques can be used to gain information about the 
free-energy barrier to nucleation. We shall not discuss the 
second factor, although we stress that the techniques de- 
scribed in the present paper could be used to prepare a slight- 
ly supercooled fluid at the top of the free-energy barrier. The 
standard techniques to compute chemical reaction con- 
stants33.“5 could then be used to compute the actual rate of 
nucleation. 

The central problem in determining the nucleation bar- 
rier is that the ‘reaction coordinate’ from fluid to crystal is 
not known apriori. Moreover, we do not wish to impose any 
specific reaction path (e.g., one leading from the fluid to 
only one of all the possible crystal phases). Rather, we wish 
to use as our reaction coordinate any order parameter 9 that 
is sensitive to the overall degree of crystallinity in the system 
but much less sensitive to the differences between the possi- 
ble crystal structures. Below we show that it is indeed possi- 
ble to define such an ‘unbiased’ reaction coordinate. 

The Helmholtz free energy of the system, F, is a function 
of this order parameter. In fact, it follows from equilibrium 
statistical mechanics3” that 

f;‘(a) = constant - k,Tln{P(@)), (1) 

where P(Q) is the probability per unit interval to fmd the 
order parameter around a given value of <p. We expect that 
above the freezing temperature, P(a) will be strongly 
peaked at a low (liquidlike) value of a. Close to coexistence, 
P(Q) should develop a double-peaked structure. The second 
peak corresponds to a solidlike value of 9. In bet.ween these 
two peaks, P( Q,) will be very small, but finite. From Eq. ( 1) 
we obtain our estimate for the barrier to nucleation from the 
minimum value of P(Q) between the solidlike and the li- 
quidlike peak. 

Clearly, it would be desirable to have a numerical tech- 
nique that allows us to study crystal nucleation at tempera- 
tures closer to the coexistence point. The straightforward 
MD approach will not work under those conditions because 
the rat.e of nucleation depends exponentially on the degree of 
supercooling. A mildly supercooled fluid will never crystal- 
lize during a molecular dynamics simulation. In the present 
paper we do not attempt to solve the full problem of crystal 
nucleation close to coexistence. Rather, we exploit the fact 
that nucleation is an activated process and that the rate of 

As P( a,) is an equilibrium property of the system under 
consideration, it can, in principle, be probed both by Monte 
Carlo and by molecular dynamics simulations. However, in 
an ordinary simulation, the system will spend almost all its 
time in either theliquid or the solid state and it will therefore 
be impossible to obtain good statistics on P(a) for interme- 
diate values of the order parameter. We circumvent this 
problem by using a non=Boltzmann Monte Carlo sampling 
scheme, namely, the ‘umbrella sampling’ t.echnique of Torrie 
and ValleauX7 Using this technique, we are able to measure 
F(Q) as a function of the crystallinity G. Moreover, we ob- 
tain information about the structure of the solid phase at the 
other side of the barrier. Below we show that., at least for the 
r “system, the solid phase that is reached from the fluid by 
crossing the lowest free-energy barrier is, in fact, not the 
equilibrium fee phase but the bee phase. 

The rest of this paper is organized as follows. In Sec. II 
we briefly summarize the umbrella sampling technique. In 
Sec. III, we discuss our choice for t.he crystallinity order 
parameter. The computational details are summarized in 
Sec. IV. Section V contains our results for the nucleation 
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barriers in the I’m ” system and in Sec. VI we discuss some of 
the implications of the present work. 

II. UMBRELLA SAMPLING 

As indicated in the previous section, special numerical 
techniques are required to sample the equilibrium distribu- 
tion function P(9). There exist two closely related tech- 
niques to measure such distribution functions. One is based 
on a dynamical determination of the force conjugate to the 
‘reaction coordinate’ +.” Such a calculation requires a se- 
ries of MD simulations at different fixed values of @. In our 
case, where the order parameter happens to be defined as a 
discontinuous function of the atomic coordinates (see Sec. 
III), this ‘constraint’ method is less attractive. We have 
therefore used the umbrella-sampling t.echnique of Torrie 
and Valleau-‘7 to measure P(G). The basic idea behind this 
method is to bias the Monte Carlo sampling of configuration 
space in such a way that points high on the free-energy bar- 
rier are sampled frequently. In order to compute P( ‘P), we 
must correct for our sampling bias. Below, we briefly sum- 
marize how this is achieved in practice. 

Consider a Monte Carla simulation in the canonical 
(&IY) ensemble. The average of a quantity A which de- 
pends on the atomic coordinates qN is given by 

(-4 )rvpT I 
s 

&Y4(qN)exp( -/W‘(q”)) 

I @exp( -/3T(q”)), (2) 

where ?“(q”) is the potential energy function and 
/&G I/k, T. The umbrella sampling scheme was devised to 
handle situations where important contributions to (A ) 
come from configurations for which the Boltzmann factor 
exp ( - pa “) is small, in which case Eq. (2) yields poor 
s.tatistics. The umbrella sampling scheme is based on the fact 
that Eq. (2) can be rewritten as 

(*4 jNkmr = 
s 

dqNur ‘(@)A(@)exp( -BW’(qN))dqN) 

a 

I 

&f~ut- *(q”)eap( -fl~Y‘(q”))~(q”), (3) 

where 10 is an, as yet unspecified weight function. Rather 
than perform a Monte Carlo sampling of the original (Boltz- 
maml) distribution function, we now consider configura- 
tional averages obtained by sampling according to the biased 
distribution function exp( - fl7’)u-r. We Iabel averages in 
the original and biased ‘ensembles’ with the subscripts 0 and 
w, respectively, 

(,4 ),, = ‘:” /““c’ = (A /w),(w)o. 

The right-hand side of Eq. (4) shows that, in order to obtain 
good statistics for {A jo, the biased distribution function 
exp ( - p”z ‘O) ICI should overlap with A /w, while w itself must 
overlap with esp( - PS’.). This ‘bridging’ nature of w ex- 
plains the name ‘umbrella ssmpling.’ 

(4) 
the first window to estimate w for the next (partially over- 
lapping) window, and so on. Actually, for our purpose it is 
not essential that consecutive windows actually overlap. We 
wish to determine the variation of F‘(a) with Q, [see Eq. 
( 1) 1. If both F( @) and its derivative are smoothly varying 
functions of @, we can proceed as follows. We measure 

an@) _ _ k T&In p(a) 

aa 
H aa Finally, we have to decide on a suitable form for U. In 

general, this choice will depend on the region in configura- 

tion space that contributes most to the desired average (A ). 
In the present case (A > corresponds to the probability distri- 
bution function P( Cp) of some order parameter @: 

P(a) = (a(@ - Qi(q”))). (5) 

We are interested in the free-energy barrier F(Ca> [see Eq. 
( 1) 1. The minima of this free energy occur at values of Q, 
that correspond to homogeneous phases. When the system 
moves from one phase to another, Fwill go through a maxi- 
mum. Clearly, we should construct a biasing function uy that 
allows us to probe P( @) over the entire free-energy barrier. 

The optimum choice for w would be 
w = exp( + fiF( a>) ), because in that case the biased distri- 
bution function would be flat, i.e., all values of 9 are sampled 
with the same frequency. However, this choice of w requires 
the final answer of the calculation as input. In practice, we 
first perform a simulation without any weighting function. 
This yields a local estimate for F( Q,). Next, the simulation is 
repeated using the current estimate for F(a) to construct 
the biasing function wzexp(@). At first sight, it might 
seem advantageous to refine the computation of w in such a 
way that allrelevant Q values can be sampled in one run. We 
have not attempted to do so. Rather, we have performed a 
number of umbrella sampling in (partially overlapping) <P 
kindows.’ The reason for doing so is the following. Let us 
assume that we sample an interval (P,,, - (P,,i,, =A@ in n 
umbrella-sampling simulations. The optimum choice of n is 
clearly the one that samples the complete @ interval in the 
minimum computing time. In order to estimate this time, let 
us assume that the system performs a random walk in Cp 
space within the window A+/rt. Associated with the ran- 
dom walk in Cp space is a ‘diffusion constant’ D,, . The char- 
acteristic time needed to sample one interval A+/n is 

(ha/it) ’ 
7, = 

Da . 

Clearly, the total time to sample all n windows is 

The important point to note is that the computing time de- 
creases with increasing n. It would, however, be incorrect to 
assume that n should be chosen as large as possible. The 
actual equilibration time of a run in one of the d> windows 
also depends on the rate at which all coordinates ‘orthogo- 
nal’ to Q, are sampled. Let us denote this time by TV. Clearly, 
once rl becomes appreciably larger than T,,, the total com- 
putation will scale as n >( TV. This suggests that the optimum 
choice of n is the one for which ‘I;, ~=7~. 

In our simulations, we used the results of a simulation of 

in a finite number of (nonoverlapping) windows. We then fit 
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an analytic function (e.g., a polynomial in Cp) to these values 
of the free-energy derivative. Once we have an analytic 
expression for [ c?~(@)/&@], we can integrate it to compute, 
for example, the height of the free-energy barrier. Although 
this version of umbrella sampling is not common, its molecu- 
lar-dynamics equivalent is: In a ‘constrained’ MD simula- 
tion at fixed Qt, one measures the conjugate force 
[JF(S)/a(a] and uses this information to reconstruct 

F(Q). 
For simulations on small systems, there is no great ad- 

vantage in the use of nonoverlapping windows. However, for 
large systems, it can be quite expensive to work with overlup- 
ping windows. In contrast, the nonoverlapping window ap- 
proach will work equally well for small and for large sys- 
tems. 

III. ORDER PARAMETERS 

In order to compute the free-energy barrier that sepa- 
rates the isotropic liquid from the crystalline state, we must 
first specify an order parameter that measures the degree of 
crystallinity in the system. It is important that this order 
parameter be chosen such that it does not favor one crystal 
structure over all others. This implies that our order param- 
eter should be large for ali crystalline phases and small for 
the isotropic fluid. Moreover, the value of the order param- 

eter should be insensitive to the orientation of the crystal in 
space. And finally, it should be relatively easy to compute. 
As we shall see below, these requirements severely limit the 
number of useful order parameters. 

A three-dimensional crystal is characterized by two dis- 
tinct types of order that do not exist in an isotropic fluid, 
namely, translational order and orientational order. Trans- 
lational order is commonly considered to be most character- 
istic feature of a crystal: The particle positions are repeated 
periodically in three independent directions. A quantitative 
measure of this translational order is the magnitude of the 
structure factor, S(k), where the wave vector k is a basis 
vector (Bragg vector) in the reciprocal lattice correspond- 
ing to the crystal lattice under consideration. In simulations 
of a finite, periodic system, k should also be commensurate 
with the periodic boundary conditions of the system. It is 
easy to see that S(k) does not satisfy the criteria for a ‘good 
order parameter that we have specified above. First of all, 
different lattices have digerent Bragg vectors. Hence, a 
choice of k that leads to a large value of S( k) for one kind of 
lattice, may yield a small S(k) for another lattice. In addi- 
tion, the fact that k must be commensurate with the periodic 
box makes that a crystallite that is aligned with the periodic 
box, will appear to have a much larger degree of crystallinity 
than an identical crystallite that happens to be rotated with 
respect to the box edges. 

There are, however, other measures of the order in a 
system that are rotationally invariant. For example, one can 
obtain detailed information about the locai order in a many- 
body system by analyzing the Voronoi tessellation of space 
(see, e.g., Ref. 18). The Voronoi polyhedron associated with 
a given particle is defined as the set of points that are closer to 
that particle than to any other particle in the system. Clearly, 
the Voronoi polyhedra are convex and fill all space. One way 
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to characterize a configuration of N atoms, is to count the 
number of triangular, square, pentagonal, etc. faces of the 
Voronoi polyhedron. It is customary to define the signature 
of a Voronoi polyhedron as a string of numbers that denote, 
successively, the number of triangular, square, pentagonal, 
etc. faces of the polyhedron. For example, the signature of a 
Voronoi polyhedron around a particle in a perfect bee envi- 
ronment is (0608): its surface consists of 0 triangles, 6 
squares, 0 pentagons, and 8 hexagons. In general, the instan- 
taneous surroundings of a particle in a fluid or even solid will 
differ from those in a perfect crystal lattice. As a conse- 
quence, a given structure will be characterized by a distribu- 
tion of Voronoi signatures, rather than a single one. Still, it is 
possible to use the Voronoi analysis to distinguish different 
crystal structures. However, the Voronoi signature does not 
provide a convenient orderparameter to measure ‘crystallin- 
ity.’ The reason is that different crystal structures have very 
different Voronoi signatures, whereas, in the present study, 
we need an order parameter that is large for all crystal struc- 
tures, while it should vanish (at least in the thermodynamic 
limit) for a disordered phase. 

Another, rotationally invariant, measure of the crystal- 
linity of a 30 system is provided by the bond order of the 
system. Orientational order, or bond order, is always present 
in three-dimensional crystals: The positional ordering of the 
particles implies that any particle is surrounded by other 
particles in certain preferred directions. As we shall see be- 
low, there exist quantitative measures of this bond order that 
are large for all crystal structures of interest and that are, 
moreover, invariant under rotation of the crystallite. For 
this reason, we shall use the degree of bond order in the 
system under study to quantify the degree of crystallinity in 
our simulations. As we shall show below, bond order is rea- 
sonably easy to calculate, and permits a neat differentiation 
to be made between isotropic and ordered states. 

The bond-order parameters that we have used were in- 
troduced by Steinhardt et ~1.‘~ and have been used by other 
authors to analyze the structure of a nucleating system.20*‘” 
The analysis starts with a definition of the neighbors of a 
particle (for instance, using the Voronoi construction). The 
vectors rjoining neighbors are called bonds. Associated with 
every bond is a set of numbers 

CL (r) = Yfm (Q(r),&-) 1, (6) 

where Y, CS,$? are spherical harmonics and 8(r) and #(r) 
are the polar and azimuthal angles of vector r with respect to 
an arbitrary reference frame. Only even-l spherical harmon- 
ics are considered, because the permutation of a pair of 
(identical) particles ought not affect the bond-order param- 
eter. The Q,,,, ( r ) defined in Eq. ( 6 ) are still local order pa- 
rameters. We now define a global orientational order param- 
eter Qlm as 

where the sum runs over all ni, bonds in the system. These 
e, still depend on the choice of reference frame. However, 
from the &, rotationally invariant combinations can be 
constructed: 

?%,, -$x Q!,,, 01, 
b 

J. Chem. Phys., Vol. 96, No. 6,15 March 1992 

Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



W[I 2 
1>1,,l,l>,n13 ( 

I 1 1 

ml 4 
m3 *Qbn,Qlm,Dlm,. (9) 

> 
811) * m> “5. “$ 0 

Q, and jV, are called second-order and third-order invar- 
iants, respectively. The term in brackets in Eq, (9) is a 
Wigner-3jsymbol (see, e.g., Kef. 39). The order parameters 
Q, and P-ti, still depend on the definition of neighbors that is 
used. In general, this is not a particularly serious problem. In 
“2%~ event, it is possible to define a reduced order parmeter 
IV thdt is hardly sensitive to the precise definition of the 
nearest neighbors of‘s particle: 

(10) 6; zs Wj(z lQbn ,,)? 

These g7! provide a convenient quantitative measure for the 
prevalent crystal st.ructure of the system under study. In Ta- 
ble I, some low-Z order parameters are given for simple clus- 
ter geometries. Of these only the icosahedral geometry can- 
not be repeated periodically to fill all space. For symmetry 
re<asons the first nonzero values occur for I = 4 in clusters 
with cubic symmetry and for I = 6 in clusters with icosahe- 
dral symmetry. Inspection of Table I shows that knowledge 
of all four order parameters listed allows us to distinguish the 
most common structural units of simple atotnic systems. All 
order parameters listed in Table I vanish in the isotropic 
fluid phase, at least in the thermodynamic limit. As can be 
seen from Table I, the order parameter Q6 is of the same 
order of magnitude for all crystal structures of interest. This 
makes rZ, less useful to distinguish different crystal struc- 
tures, but very useful to act as a generic measure of crystal- 
linity. For this mason, we have selected Q6 to play the role of 
& crystalline order parameter in all our simulations. The 
‘reaction coordinate’ from isotropic liquid to crystal there- 
fore corresponds to a path of increasing Q6. The other order 
parameters that were discussed in the present section have 
been used to analyze the nature of the crystalline structures 
formed in our simulations. 

IV. COMPUTER SIMULATIONS 

A. Introduction 

As an illustration of the techniques described in the pre- 
vious sections, we have performed a series of computer simu- 

TABLE 1. I3o~d oricntationnl order parameters [see Eqs. (8) and (1011 for 
a number of simple cluster geometries. fee: face-centered-cubic structure, 
hcp: hrxagomil close-packed structure, hcc: body-centered-cubic structure, 
and SC: simple cubic structure. 

Geometry 
> 

Q4 Q, %; 

Icasahedt-al 0 0.663 32 0 - 0.169 754 
fee 0.190 94 0.574 52 ~= 0.159 317 - 0.013 161 
hcp 0,OY 7 22 0.484 76 0.134 097 - 0,012 442 
bee 0.036 37 0.510 69 0.159 317 0.013 161 
SC 0.763 76 0.353 55 0.159 317 0.013 161 
C, liquid) 0 0 0 0 
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lations to measure the variation of the free energy of a simple 
atomic system with the ‘crystallinity’ order parameter Q6. 
We selected a model about which much is known from other 
simulations, namely, a system of particles interacting 

through an r “-soft-sphere potential, 

u(r) = E(c7/r)‘2. (11) 

The model parameters E and (T can be used to construct di- 

mensionless expressions for the density (p* =pd), the tem- 

perature ( T * - k, T/E) and the pressure (P * = Pd./e). In 
fact, the thermodynamic state of this model system can be 
completely specified by a single dimensionless parameter> 
namely, the reduced density 

/jqg (d-/k, T) 
i/4 =p*(T*) l/4. (12) 

However, in order to facilitate comparison with other model 
systems we prefer to specify T * and P * separately. 

In view of the exploratory nature of the present work, 
most calculations were performed on quite small periodic 
systems containing 125 or 128 particles. The former system 
size is a ‘magic number’ for a bee crystal, while the latter 
number is optimal for an fee crystal. We cannot hope to 
extract quantitative estimates on nucleation barriers from 
simulations of such small systems. However, as simulations 
of such small systems are relatively cheap, we can easily 
study a number of different supercoolings and different ini- 
tial conditions. This allows us to discuss most ofthe practical 
aspects of the simulation technique. In our simulations of 
these small systems, we found that the free-energy barrier 
separating the fluid from the (stable) fee phase was, invaria- 
bly, much higher than the barrier between the fluid and a bee 
crystal. In order to test whether this trend is an artifact of the 
small system size, we performed one simulation for a larger 
system (N= 1000) at 20% supercooling, This simulation 
confirmed that it is relatively easy to go from the fluid to the 
bee phase, yet it also showed that the magnitude of the free- 
energy barrier is quite sensitive to the system size. However, 
the simulation of the lOOO-particle system also demonstrates 
that the techniques that we employ are not limited to small 
systems. Hence, the fact that relatively large systems must be 
studied in order to arrive at a quantitative estimate of the 
nucleation barrier does not constitute a serious problem. 

B. Computational details 

All simulations were carried out at constant pressure, 
using the Mont.e Carlo sc.heme described in Ref. 40. The 
reason to carry out simulations at constant pressure, rather 
than at constant volume is that former condition corre- 
sponds more closely to the experimental situation. This is of 
particular importance near coexistence. Using a constant 
pressure simulation it is possible, at least in principle, to 
transform one phase, at constant temperature and pressure, 
into the other phase with which it coexists. This is not possi- 
ble in constant NVTsimulations. If we measure the distribu- 
tion function P(Q, ) at constant pressure, rather than at con- 
stant volume, we obtain information about the Gibbs 
free-energy barrier between the solid and the liquid phase. 
Eq. ( 1) is consequently replaced by 
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G(Q6) = - k7Yn P(Q, ), (131 

where we have included the constant term in G( Q6 ). In our 
simulations, we have used truncated octahedral periodic 
boundary conditions.4’ The choice of such an almost spheri- 
cal box shape should minimize the effect of the periodic 
boundary conditions on the preferred crystal structure of the 
system. The r- I2 -soft-sphere potential was truncated at a 
distance t$=r,/a. The long-range contribution to the po- 
tential was computed under the assumption that the density 
is constant for r* > e. For r- “-soft spheres, the potential 
energy scales with volume as Y- V -n/3. This property 
makes it easy to perform volume changes in a constant NPT 
simulation of such a system, provided that all cutoff radii are 
scaled with the linear dimensions of the simulation box. In 
our simulations, the cutoff distance for the intermolecular 

interact.ions was chosen such that l;r = 2.0 at a density 
p* = 1.2 17, which corresponds to the density of an fee crys- 
tal at coexistence [P* = 24.21, T* = 1.0 (Ref. 42)]. 

that varied smoothly as a function of Q,. In these tits, the 
coefficients Q,, Q i ,... were kept the same for a pair of neigh- 
boring windows, while the constant term was adjusted to 
provide a smooth match. Once P( Q, ) in all consecutive win- 
dows has thus been connected, we are left with a single, nor- 
malized distribution function from which we can derive the 
free-energy barrier with help of Eq. ( 13 ). 

Most of the techniques to analyze the structural proper- 
ties of the system have already been discussed above. We 
only should add that Voronoi tessellation of space was calcu- 
lated using a standard algorithm,“’ while the structure fac- 
tors were calculated by fast Fourier transform of the particle 
densities along the three principal axes of the simulation 
box.W 

V. RESULTS AND DISCUSSION 

As discussed in Sec. III, we measure bond-orientational 
order parameters to monitor the crystallinity of the system. 
In order to evaluate these order parameters, we must specify 
the nearest neighbor of a particle. The precise numerical val- 
ues obtained for Q, will depznd somewhat on the definition 
of nearest neighbors (the W, are expected to be less sensi- 
tive). However, any reasonable definition of nearest neigh- 
bors will lead to the same qualitative behavior.3x Hence, it is 
reasonable to choose the definition that is computationally 
most convenient.” In our simulations, we used the follow- 
ing ‘recipe’: all particles within a certain cutoff radius $ 
from a given particle were considered to be its neighbors. 
The cutoff distance was chosen to be I$ = 1.30, which corre- 
sponds to the first minimum ofg(r) in an fee crystal at coex- 
istence. A neighbor list (see, e.g., Ref. 43) with a range 
p? = 2.5 was used to speed up the calculation. 

Each MC step consisted either of a trial displacement of 
a particle or a trial volume change. The choice between trial 
displacements and volume changes was made at random, 
with 8% probability for the latter. We tried to maintain the 
acceptance ratio of MC trial moves at approximately 50%. 
A simulation started with an equilibration period of lOOO- 
1500 cycles followed by a production run of 10 000-15 00 
cycles (during one cycle we perform, on average, one test 
displacement per particle). 

All simulations were started either from a crystalline 
state or from a liquid configuration, obtained by melting a 
crystal at low pressure. The first run in a series of umbrella 
samplings was performed without any weight function. The 
resulting G( Q6 ) was extrapolated by fitting to a polynomial 

in Q6 

G’(Q~!,)=a,,+a,Q~+ua,Q~+*.., (14) 

A successive simulation was then performed on an interval 
in Q, bordering the range of Q6 spanned by the previous run, 
with a weight function LLJ( Q6 > = expffiG’( Q, ) 1. Every in- 
dividual simulation yields only part of the (as yet, unnorma- 
lized) distribution func.tion P(Q, ). In order to construct a 
single, normalized probability distribution function, a simul- 
taneous polynomial tit of the function In P( Q6 ) in consecu- 
tive windows was performed to construct a single function 

As discussed in Sec. I, previous molecular dynamics 
simulations of homogeneous nucleation could only be per- 
formed in strongly supercooled (or overcompressed) sys- 
tems. In contrast, the present approach makes it possible, at 
least in principle, to study the free-energy barrier between 
two phases at an arbitrary temperature. We therefore started 
our study at the coexistence temperature, prec.isely because 
this represents a worst case for conventional nucleation stud- 
ies. We stress, however, that the free-energy barrier between 
solid and liquid at (or close to) coexistence is completely 
dominated by finite-size effects and is not related to the free- 
energy barrier for homogeneous nucleation in a bulk fluid. 
In fact, in the thermodynamic limit, homogeneous nuclea- 
tion at the coexistence temperature is impossible, since the 
critical nucleus would be infinitely large. But in a finite, peri- 
diodic system, the free-energy barrier between solid and liq- 
uid is finite. It corresponds to the reversible work needed to 
create the interface between the coexisting liquid and solid. 
A macroscopic estimate suggests that this barrier should be 
ofthe order AG = 2Yrolid-liq”idL ‘, where ~.601,d..l,q,,id k the sur- 
face free-energy density of the solid-liquid interface, while 1, 
denotes the diameter of the simulation box. It should, how- 
ever, be pointed out that the surface free energy ysL in a 
finite, periodic system will, in general, differ from this ‘mac- 
roscopic’ estimate if the system size is not much larger than 
the interface thickness. 45 Clearly, such finite-size effects are 
most serious in the vicinity of a critical point, where this 
width diverges. But, even though the present simulations 
were not performed near a critical point, we should expect 
finite-size effects to be important in a 30 system with 
8 ( 102) particles. Hence, the height that we compute for the 
free-energy barrier between the coexisting solid and fluid 
will not provide a reliable estimate of the bulk solid-liquid 
surface free energy. Anyway, as it was not our purpose to 
compute the latter quantity, we have not attempted to mea- 
sure the height of the solid-liquid free-energy barrier in larg- 
er systems, although this is certainly feasible. 

Subsequently, we discuss simulations of the free-energy 
barrier between the solid and a supercooled liquid. In this 
case, the height of the free-energy barrier in the thermody- 
namic limit corresponds to the barrier to homogeneous crys- 
tal nucleation. Again, finite-size effects can be important: 
both the width of the solid-fluid interface and the size of the 
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T.4BLE II. Literature data on the location of the solid-liquid coexistence 
point of r.- ‘“-soft spheres. 

P* Pitpld P?rys:,,,, Ref. 

22.55 * 0.4 1.150 1.194 46 
94 ,I 1.173 1.217 ‘ii 

critical nucleus itself should be much smaller than the diam- 
eter ofthe simulation box. Again, we do not expect this con- 

dition to be fulhilled for systems of d ( 10’) particles. We 
have therefore included one simulation on a much larger 

system i lo” particles) in order to show that the qualitative 
trends that we observe in small systems is not an artefact of 
the small system size. 

A. Simulations at coexistence 

Table II contains the available dam about the melting 

point of r ” -soft spheres. We have used the more recent 
data of Ggura et (~1.“’ to estimate the location of the melting 
point. 

We first, studied a system consisting of 128 particles, 

starting both from a perfect fee crystal and from a well- 
equilibrated fluid. The results of these simulations are dis- 
cussed most easily with the help of Fig. 1. In this figure, the 
free energy is plotted as a function of Q6. Three separate 
branches are visible, each corresponding to the results of 
several individual simulations. When Q, is lowered, starting 
from the fcu: crystal, the free energy increases by 18 k,T, 

after which the crystal suddenly melts to the liquid state. As 

the transition from solid to liquid occurs irreversibly, we 

30 

I- 

.~^...“--~~~-_ ---s__rII 

i Defective 
: BCC 

From Fig. 1 it is clear that the weighted sampling 
scheme permits the free energy G( Qh ) to be determined in a 
regime that is never probed in an unbiased sampling scheme. 
Clearly, the present approach in which only one order pa- 
rameter is used as a control variable does not constrain the 
system to move along a single trajectory in configuration 
space: Some hysteresis does occur and the system can sud- 
denly jump to another state. This fact creates a problem, 
because we can only compute free-energy differences be- 
tween states that are connected by a reversible path. How- 
ever, we can bracket the relative Gibbs free energy of the 
fluid and bee-like branches by observing that the hysteresis 
between them is quite small. Using the fact that the irrevers- 
ible transition from one branch to another can only occur if 
this results in a lowering of the Gibbs free energy of the 
system, we can estimate the relative Gibbs free energy of the 
liquid and bee branches to within 1 k, T. This is surprisingly 
accurate, if one bears in mind that 1 k, T is the error in the 
total Gibbs free energy. The error in the Gibbs free energy 
per particle is of the order 0.0 1 k, T. Such an accuracy is only 
marginally worse than what is obtained with ‘standard free- 
energy calculations for the solid-liquid transition. 

The formation of bee crystals from the liquid will be 
examined in some detail below. First, however, we discuss 
the behavior of the order parameters during the simulati*s. 
Figuz 2 shows a correlation plot of the parameters Q,, IV4, 
and IV, as a function of Q, . 
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cannot construct a single free-energy curve from these simu- 
lations. However, as Ref. 42 indicates that the fee solid 
should coexist with the liquid at this temperature and pres- 
sure, we have drawn Fig. 1 such that P(Q) in the liquid 
state is normalized to the same value as P(Q) in the fee 
solid. In other words, the Gibbs free energy of the liquid state 
and the fee crystal are equal. We shall come back to this 
point later. 

Next consider what happens if we start our series of 
simulations from the liquid side. In this case we find that, as 
Qh is increased, the Gibbs free energy rises slightly (some 
Sk, T 1, and then goes down again. Subsequent analysis, in- 
cluding visual inspection of the atomic configurations, re- 
vealed that a bee-like structure (with some defects) had 
formed. The occurrence of such defects is not surprising as 
the simulation box cannot accommodate a perfect bee crys- 
tal with 123 particles. 

FIG. I. Gibbs free energy near coexistence (P * = 24.2 1 at~d T* A 1 J for a 
128~particle r- ‘.’ system as a function of Q,. The three different branches 

c~~rresptond t<> the liquid, the defect-rich bee crystal that has formed from 
the liquid and the kc cr_vstal. In drawing this figure, we have assumed that _ 
the liquid and fee phases are in equilibrium I Ref. 42) and therefore have the 
same Gibbs free energy. The Gibbs free energy of the defect-rich bee state is 
estimated in the way indicated in the text. 

During the simulations the values of these parameters 
were calculated at regular intervals (for example, every ten 
cycles). Each one of these measurements corresponds to a 
dot in the figure. The vertical streaks in the figure are caused 
by the fact that several simulations, each for another. interval 
of Q, , are combined in one plot. For comparison, the values 
for perfect clusters are shown in the same figure. In addition, 
we have computed the equilibrium values of all order pardm- 
eters in the fee, bee, and liquid state, at the same temperature 
and pressure. These are indicated in the figure by single, 
boldFace letters (F, B, and L, respectively). The fact that the 
order parameters are nonzero in the liquid state is a fin’te- 
size effect. Note that these finite-size effects are much lar k or 
iz Q., and Q, which are, by construction, positive than in ‘he 

f 
IV,. What is particularly noteworthy in Fig. 2 is that the 
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FIG, 4. Snapshots of the atomic coordinates in two crystalline phases of an 
r - ” fluid near coexistence (P* =: 24.21 and T* = I ). For the sake ofclar- 
ity we have drawn all periodic images of particles that lie within the cube 
enclosing the truncatedoctahedralsimulation box. Thecontoursof the sim- 
ulation box are indicated in the figure. (a) fee crystal with 12X particles and 
(b) strained bee crystal with 125 particles, prepared by increasing the crys- 
tallinity (Q, ) of the liquid. 
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order parameter distributions for the fee state are clearly 
different from those of the liquid and the bee phase. The 
latter two can, in fact, not be distinguished in this figure and 
none of the order-parameter distributions plotted in this flg- 
ure shows any hint of a sharp transition between these two 
states. Apparently the bond-order fluctuations in the liquid 
are rather bee-like and very different from the corresponding 
fluctuations in the fee phase. Evidence for bee-like ordering 
in the liquid state has also been reported by Robbins er (11.“’ 
for the Yukawa fluid. 

Another point to note is that the second-order invar- 
iants Q, and Q, are considerably smaller in the ‘warm’ equi- 
librium crygal than in the perfect clusters. For the reduyd 
invariants W, this effect is expected to be we$ker. For W6 
this is indeed found to be the case. However, W, in the bee 
phase is found to flutztuate wildly (as wildly, in fact, as in the 
liquid state) and ( W, ) bears no resemblance t,” the value 
found for the ideal cluster. This indicates that ( W, > is not a 
convenient measure ofbcc-like order. In order to investigate 
the transformation between fluid and bee crystal more care- 
fully, we repeated the above calculations with 125 particles. 
The corresponding free energy curves are shown in Fig. 3. 
The perfect bee. crystal behaves much like the perfect fee 
crystal before. It melts after climbing a free-energy barrier of 
about 16k, T. Starting from the liquid, a barrier of about 
4k;T was found to separate the liquid from a imperfect bee 
state that, again, formed spontaneously as Q6 was increased. 
However, this time, the crystal that formed contained far 
fewer defects than the one formed in the 12%particle system. 
In fact, the particles were found to be located in regular lat- 
tice positions, but the lattice as a whole was rotated with 
respect to the simulation box (see Fig. 4). Other authors 
have observed very similar rotated crystallites in numerical 
studies of crystal nucleation.‘” 

Figure 5 shows 5’( k,,, ) as a function of (Q,j ). The k,,,;,, 
correspond to the maxima of S( k) along the X, y, and z direc- 
tions. As expected, S( k,,,, ) is large in the ordered crystals 

gti 

FIG. 2. Correlation plot for order parameters QJ, W,? and W,, as a function 

of Qh , for the r ” systemnearcoexistence (P* = 24.21 and T* = l).The 

number of particles in the system is either 125 or 128. The values for perfect 
cluster geometries listed in Table I are indicated by their abbreviations. The 
letters L, 1;: and B refer to the equilibrium averages for the liquid phase, the 
fee crystal and the bee crystal, respectively. 
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FIG. 3. Gibbs free energy as a function of Q, for the r ” ” system with 125 

particles near coexistence (P * = 24.21 .and T* = 1). The three different 
branches correspond to the liquid, the strained bee crystal formed from the 
liquid and the bee crystal. The offsets for the liquid and the strained bee 
state with respect to the bee crystal are estimated azi indicated in the text. 
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tures. The fee crystal has a pronounced (0446) signature 
but, unlike the bee phase, it has no (0608) signature. The 

0 Voronoi signature of the 12%particle defect-rich bee phase is 
very similar to that of the perfect crystal. This is a good 
indication that the structure really is bee-like. Somewhat 

0 
surprisingly, the 125particle strained bee phase shows a 

l stronger (0608) signal. We shall come back to this point 

later. 0 

* 

i; p 
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FIG. 5. Maximum value of the structure factor S(k), averaged along the 
thr-ee edges of the simulation box, as a function of the average Q, . The liquid 

is indicated with circles, the fee crystal with squares, the bcr crystal with 
stars, and the imperfect bee crystal with triangles. Open symbols: N = 128, 
filled symbols: N I^ 125. 

but small in the liquid phase. However, this figure also shows 
why S(k,,,*,, ) is mt a good generic order parameter for crys- 
tallinity: the ma&~um of S(k) for the imperfect bee phase 
of the 12Sparticlc system is even lower than that of the liq- 
uid. In other words, the maximum value of the structure 
factor is strongly affected by the presence of crystal defects 
and by the rotation of the crystallite. Note also that S( k,,,, > 
is still liquidlike at the Q, value that corresponds to the max- 
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In this section we describe the results of simulations in 
which we measured the free-energy barrier to crystal forma- 
tion at finite supercooling. In our calculations, we chose to 
use moderate supercoolings, T* = 0.8 and 1” = 0.6, respec- 

0 20 tively (the pressure was maintained at P * = 24.2 I). It 
(d) should be stressed that this degree of supercooling is less 

than what is typically imposed during molecular-dynamics 
studies of homogeneous nucleation. First, we performed 
simulations on small systems (N= 125 and N= 125) at 
T* = 0.8and T* = 0.6. Next, werepeatedthesimulationsat 
T* = 0.8 with a much larger system (N= lOOO), inorder to 
test for finite-size effects. In all the simulations reported be- 

FIG. 6. Hirtograms of the most prevalent Voronoi signatures for the r ... ” 
system near coesistcnce. The relative :%bundance ofthe most important sig- 
xmtures is indi6atrd in the figure. N = 128 is) liquid, (bj fee crystal, and 
icj d&&-rich hcc crystal formed from the fluid, N= 125 (d j bee crystal 
cmd (ej bee crystal formed from the fluid, These histograms are based on 
avcmgcs over lij-30 Ncnnic contigur&ms that were analyzed during the 
simulations. 
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imum in the free-energy barrier between the liquid and the 
bee phase. 

The results of the Voronoi analysis are given in Fig. 6. 
The liquid state shows a broad distribution of different signa- 

One feature of Fig. 3 is rather unexpected, namely, that 
the bee phase appears to have a lower Gibbs free energy than 
the liquid state. As the simulations were performed at the 
melting temperature and pressure estimated by Ogura et 
al.,“2 we would expect the liquid to have the same Gibbs free 
energy as the fee phase. According to the work of Hoover et 
al.,’ the bee phase should then be less stable than the fee 
phase. Hence, we would have expected to find that the bee 
phase would have a higher Gibbs free energy than the fluid. 
However, as Fig. 3 shows, the Gibbs free energy of the im- 
perfect bee state (which can be reached from the fluid with- 
out much hysteresis) is some 7 k, T lower than that of the 
liquid. According to Ref. 7, the Gibbs free energy of the fee 
state should be still lower. This suggests that the pressure at 
which we have performed our simulations is, in fact, higher 
than the coexistence pressure for this system. As mentioned 
above, we used the coexistence pressure reported by Ogura et 
al.‘” (see Table II). This pressure is higher than the one 
reported by Hoover”’ (AP* = 1.7). Using the Gibbs-Du- 
hem relation, we can estimate how much the Gibbs free- 
energy difference between solid and liquid would change if 
we lowered the pressure to the value proposed by Hoover. 
Using 

(F) = NAcf) 

and the solid and liquid densities given in Table II we find 
that A ( AG *) z 3.9AP *. If we insert AP * = 1.7, we obtain 
A(AG*)-6.7. This accounts for a large fraction of the 
Gibbs free-energy difference between the solid and the liquid 
phase shown in Fig. 3. In any case, there is no reason to 
expect coexistence in a finite system to be located at exactly 
the same pressure as in the infinite system. 

B. Simulations in supercooled systems 

(b) (c) 
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low we find that a bee phase forms as the ‘crystallinity’ of the 
fluid phase is increased. For the small systems, this observa- 
tion did not depend on whether the number of particles cor- 
responds to a ‘magic number’ for a perfect fee or bee lattice 
(N = 128 and N = 125, respectively). In what follows, we 
therefore do not describe the simulations of the 12%particle 
system, as these provided the same information as obtained 
in simulations of the 125particle system. 

C. 12%particle system 

The (Gibbs) free-energy curves of the 125particle sys- 
tem at T* = 0.8 are shown in Fig. 7. The crystalline struc- 
ture that is formed from the fluid phase is characterized by 
values of the various order parameters and by a Voronoi 
histogram that are typical ofa (defect-rich) bee phase. How- 
ever, inspection of the atomic coordinates of this structure 
(see Fig. 8) shows that the particles are certainly not ar- 
ranged on the lattice positions of a well-aligned bee crystal. 
As can be seen from Fig. 7, the resulting structure has a 
Gibbs free energy that is about lOk,T higher than that of 
the perfect bee crystal. The most important thing to note in 
Fig. 7 is that there is, in Fact, no trace of a free-energy barrier 
for the formation of a bee crystallite! Our simulations indi- 
cate that, even at this moderate degree of supercooling, the 
isotropic liquid phase is absolutely unstable. The same obser- 
vation applies, a fortiori to the system at a reduced tempera- 
ture T* = 0.6 (see Fig. 9). In this case, the structure that 
happened to form from the liquid phase was rather similar to 
that observed at T* = 1.0: All particles were regularly 
placed in a distorted bee structure that was rotated with 
respect to the simulation box (see Fig. 8). As the liquid 
phase at T* = 0.6 and T* = 0.8 is not even metastable, we 
can only make a rough estimate of the Gibbs free-energy 
difference between the fluid and the bee solid. For T* = 0.8 
we estimate that the Gibbs free-energy difference between 
liquid and bee crystal is about 30k, T (i.e., 0.24k, T per 
particle)) while for T * = 0.6, this difference amounts to ap- 
proximately 60k, T (0.48 k, T per particle). Our simula- 
tions of a lOOO-particle system (see beIow) show that, at 
least at T * = O.S, the complete disappearance of a free-ener- 

0.6 l-A...---, 1.--L I &U-.,-L-_1 
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)(: + y,/‘7 
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FIG. 7. Free energy as a function ofQo for 125 r ” particles at T* = 0.8 

and P* = 24.21. 

gy barrier between the supercooled fluid and the bee phase is 
a finite-size effect. However, also for the larger system, we 
find that the free-energy barrier between liquid and bee crys- 
taI is quite low. 

Figure 10 shows the order-parameter distributions for 
the phase that formed from the fluid at T* = 0.6. Compari- 
son of this figure with the corresponding plots in Fig. 2 con- 
firms the bee nature of the crystalline phase that has formed. 

The Voronoi analysis of the ordered and imperfect crys- 
talline structures at T * = 0.8 and T * = 0.6 are shown in Fig. 
11. What is remarkable is that the ordered bee crystal, al- 
though dominated by the (0608) signature, shows many 
other signatures as well, while the strained structures show a 
very strong (0608) signal. The same trend is already appar- 
ent at T* = 1.0 (Fig. 6). 

Table III contains a summary of the average density and 
bond-order parameter for all liquid, crystalline, and ‘nuclea- 
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FIG. 8. Snapshots of the atomic configuration in a 
125-particle r ” system at P* = 24.21. For the 
sake ofclarity we have drawn all periodic images of 
particles that lie within the cube enclosing the trun- 
cated octahedral simulation box. The structures 
that are shown were formed from the liquid by in- 
creasing Q,. (a) T* = 0.8. Projection on the plane 

X- 7y --z=O. (b) T* = 0.6. Projection on the 
planey = 0. The contours of the simulation box are 
indicated in the figure. 
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The vsIues for the perfect cluster geometries listed in Table I are indicated 
by the c<wrrsponding abbreviations. The letter B refers to the equilibrium 
average for the bee crystal. 
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FIG. 11. Histograms ofthe most prevalent Voronoi signatures for the r- ” 
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based on averages over 10 atomic configurations that were andlyzed during 
thesimulations. (a) bcccrystalat T* = 0.8and (b) bcccrystalat T* = 0.6; 
(c) defect-richbccstateat 7’* = 0.8,and (d) strainedbccstateat T* = 0.6. 

ted’ phases that we have studied. The table clearly shows 
how both p* and (Q6) increase with decreasing tempera- 
ture. When we compare the bee crystallites formed from the 
liquid with the corresponding perfect crystal structures, we 
find that the latter has a slightly higher density. However, 
(Q,) is, if anything, lower for the ordered crystal than for 
the phase that formed from the fluid. As with the Voronoi 
signatures, the strained, imperfect state appears to have 
more local order than the perfect crystalline state. At this 
stage we have no simple explanation for this observation. 

D. 1 OOO-particle system 

We performed two sets of simulations of a lOOO-particle 
system at T* = 0.8: In the first, the system was prepared in 
the fluid phase. Subsequently, the crystallinity was slowly 
increased. The curves Fig. 12 have been constructed using 
data of umbrella-sampling simulations in a number of adja- 
cent Q6 windows. Note, however, that there are a several 
gaps in these sets of data points. Nevertheless, we can con- 
struct the desired free-energy curves, even though we have 
not collected statistics on P(Q, ) over the entire Q, range of 
interest. This illustrates the remarks about umbrella sam- 
pling of large systems, made at the end of Sec. II. In contrast 
to what is observed in the 12%particle system, we find that 
the Gibbs free energy increases initially. It goes through a 
maximum at a value of Q b zz 0.13 and then goes down again 
(see Fig. 12). The height of the free-energy barrier is quite 
small ( G /li, Tz 25). As before, we find that the crystalline 
structure that forms from the isotropic liquid is an imperfect 
bee phase. This is illustrated by Fig. 13 which shows the 
Voronoi signature of the crystal phase that is formed from 
the fluid by increasing the crystallinity. In the same figure, 
we also show the Voronoi signature of the fluid and of a 
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TABLE III. Average valuesp* and (Q, ) in the dXerent metastable states at of the I - ‘* system at coexistence 

and at moderate supercooling. In all eases, the reduced pressure equals P * = 24.2 I. These data were collected 
in normal (unbiased) Monte Carlo simulations. No data aregiven for the low-temperature liquid, as this phase 
was not even metastable (see text). 

T* 

1.0 

0.8 

0.6 

N 

125 

128 

125 

128 

125 

128 

<p*> 

Mb,) 

(p*) 
(8) 
@*) 

(Qe) 
{P*) 

CQ,> 
w 

CQ,) 

Liquid ‘Nucleated’ solid bee crystal fee crystal 

1.178 1.206 1.209 . . . 

0.110 0.371 0.360 
1.177 1.190 ..f 1.217 
0.102 0.273 0.436 

... 1.220 1.230 . . . 

0.381 0.391 
*.* 1.216 . . . . . . 

0.335 
... 1.247 1.249 . . . 

0.435 0.414 
.I. 1.237 . . . ..f 

0.377 

system that was prepared and equilibrated in the bee phase. 
We used the latter system as the initial configuration for a 
series of runs in which the crystallinity was decreased. As 
can be seen in Fig. 12, there is little evidence of hysteresis 
around the peak of the Gibbs free-energy barrier. This is 
encouraging, because it indicates that the nucleation barrier 
in a large system can, in fact, be computed with reasonable 
accuracy. Still, we should be careful in interpreting the bar- 
rier of 25k, T as the barrier for homogeneous nucleation. At 
a supercooling of only 20%, we should expect to have quite a 
large critical nucleus. Hence, the condition that this nucleus 
is much smaller than the system size may not be satisfied. A 
nice feature of the present approach is that it allows us to 
make a snapshot of the critical nucleus. Figure 14 shows the 
atomic configuration of the lOOO-particle system, at the top 

() ii’ 
7 1 

\” 

FIG. 12. Gibbs free energy of a IOOO-particle Y ” system as a function of 
Q, at T* : 0.8 and P * = 24.21. 

of the free-energy barrier. For the sake of clarity, the snap- 
shot has been periodically repeated over several simulation 
boxes. It is important to note that the crystallinity is not 
distributed homogeneously over the system. In other words, 
the free-energy barrier that we measure is indeed associated 
with the formation of a localized crystal nucleus. However, 
as can be seen in Fig. 14, the size of the crystalline region is 
not small compared to the dimensions of the simulation box. 
Hence, we may expect to find some interaction between the 
periodic images of the critical nucleus. This could affect the 
apparent height of the nucleation barrier. In order to elimi- 
nate this effect, we would have to go to still larger systems or, 
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were stored during the simulations. 
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FIG. 14. Snapshot of the atomic configuration at the top af the Gibbs free- 
energy barrier in a 1000~particle r “system at P* = 24.21 and T* = 0.8. 
For the sake of clarity we have drawn 16 periodic images of the original 
simulation box. The crystallite that is shown was formed from the liquid by 
increasing Qc f 

alternatively, study the same system at larger supercooling 
where the critical nucleus is expected to be smaller. We have 
not attempted to study larger system sizes. Although such a 
study might yield a slightly different quantitative estimate of 
the nucleation barrier, we do not believe that it would affect 

our qualitative conclusion that for the r - I2 system, the fluid 

at moderate supercooling is separated by a much lower 
Gibbs free-energy energy barrier from the metastable bee 
solid than from the stable fee solid. 

VI. CONCLUSION 

In this paper we have shown how Monte Carlo simula- 
tions can provide information about the height of the Gibbs 
free-energy barrier that separates the liquid and crystalline 
phase in an atomic system. In order to measure such a free- 
energy barrier, we had to select a convenient ‘reaction coor- 
dinate’ that connects the liquid to the crystalline phase. We 
fmd that the bond-orientational order parameter Q, {Eq. 
f 8) ] is a suitable reaction coordinate, as it satisfies the fol- 
lowing criteria: 

( 1) It is invariant under any global rotation of an isolat- 
ed crystallite with respect to the simulation box. 

(2) It is large for aZZcryst.alline structures of interest and 
vanishes in the isotropic fluid phase (at least, in the thermo- 
dynamic limit). 

(3) It is relatively cheap to compute. 
Utnbrella sampling”? is used to measure the Gibbs free-ener- 
gy barrier as a function of Q6. The structure of the resulting 
phases is analyzed using a number of different techniques. 

As an illustration, we applied the method to study the transi- 
tion region between crystal and liquid in a simple model 

system, namely, an assembly of r ‘“-soft spheres. We find 
that at, or near, the point where the fluid phase is known to 
coexist with the (stable) fee solid, a gradual increase of Qh 
leads to the formation of an imperfect bee phase. The trans- 
formation from liquid to bee crystal is found to proceed with 
little hysteresis. In contrast, the transformation of an fee 
crystal to the isotropic fluid requires a much higher activa- 
tion energy and then proceeds irreversibly. We have never 
been able to transform the liquid into an fee crystal. Our 
analysis of a number of different order parameters in bot.h 
the liquid and the crystalline state, suggests that bee-like 
fluctuations are already present in the liquid phase. This ob- 
servation is in agreement with the results of previous molec- 
ular dynamics simulations of the same syst.em.18.1q 

We have also performed simulations of the same system 
at moderate supercooling. In that case we find that the free- 
energy barrier towards the formation of bee crystallites has 
disappeared altogether in small systems (N= 125) and is 
quite small in a larger system (N = 1000). As before, fee 
crystallites are never formed from the liquid. This suggests 
that the free-energy barrier between the liquid and the latter 
crystal phase remains appreciable. 

One of the most striking observations in this study of the 
free-energy barrier to crystal formation is that, although fee 
is presumably the stable solid phase, the metastable bee 
phase is the one that can be reached without crossing a high 
free-energy barrier. Of course, our simulations only provide 
information about the statics of crystal nucleation. We can- 
not rule out the possibility that the ‘reactive flux’ over the 
high barrier to the fee phase is larger than that over the low 
barrier to the bee phase. However, as was discussed in the 
Sec. I, computer-simulation studies of the dynamics of crys- 
tal nucleation in the r’- ‘*-soft-sphere system”*‘* reveal that 
the (metastable) bee phase forms more readily than the fee 
phase, even at large supercooling. Tanemura et al.‘” have 
suggested that the effect of the periodic boundary condition 
is to exert a stress on growing nuclei that eventually trans- 
forms fee crystallites into a bee form. If this explanation 
were correct, we would expect to see no bee crystallites in 
homogeneous nucleation studies of large model systems. 
However, as shown in a simulat.ion by Cape et ~1.‘” on a 

4000-particle r - ” system, bee nuclei still form and grow in a 
relatively large system. On basis of the present simulations, it 
seems more likely that bee crystallites nucleate more easily, 
simply because the free-energy barrier for nucleation of this 
phase is low. In this context it is worth pointing out that the 
original Alexander-McTague theory”’ in which it is argued 
that bee nuclei should be favored in weakly first-order phase 
transitions, is also based on static, rat.her t.han dynamic con- 
siderations. 

We stress once more that the free-energy barriers mea- 
sured in simulations of small, periodic systems may differ 
from the ‘true’ barriers for homogeneous nucleation. In or- 
der to measure the true free energy barriers for crystal nu- 
cleation, we would have to perform simulations on much 
larger systems [ d ( 10’) ] particles, at finite supercooling. In 
the present study we have not attempted to estimat.e the 
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height of the nucleation barriers in systems of more than 10” 
particles. However, none of the techniques described above 
are limited to small systems. In any event, we think that our 
consistent observation of a low free-energy barrier bet ween 
the liquid and the bee phase is meaningful, even if the abso- 
lute barrier height is not. 

It would be interesting to apply the method that we have 

presented to systems containing 8( 10”) particles. This 
would provide an opportunity to study the formation ofsep- 
arate crystal nuclei at moderate supercooling, in a controlled 
manner. One obvious model system to study in such a large- 
scale simulation would be the Lennard-Jones system. in that 
case there is overwhelming evidence that crystallization at 
large supercooling starts with the formation of fee nuclei.” 
It would be very interesting to see if the relative height of the 
barriers to nucleate fee and bee crystallites changes as the 
degree of supercooling is reduced. This would make it possi- 
ble to test the Alexander-McTague conjecture-” in the tem- 
perature range where it is supposed to apply. We recall that 
direct simulation of crystal nucleation at moderate super- 
cooling is extremely time consuming. 

Finally, we note that the present scheme can be used as a 
starting point to compute the rate of crystal nucleation, us- 
ing the approach described in Ref. 34. 
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