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Computer simulation study of gas–liquid nucleation
in a Lennard-Jones system

Pieter Rein ten Wolde and Daan Frenkel
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 12 June 1998; accepted 1 September 1998!

We report a computer-simulation study of homogeneous gas–liquid nucleation in a Lennard-Jones
system. Using umbrella sampling, we compute the free energy of a cluster as a function of its size.
A thermodynamic integration scheme is employed to determine the height of the nucleation barrier
as a function of supersaturation. Our simulations illustrate that the mechanical and the
thermodynamical surfaces of tension and surface tension differ significantly. In particular, we show
that the mechanical definition of the surface tension cannot be used to compute this barrier height.
We find that the relations recently proposed by McGraw and Laaksonen@J. Chem. Phys.106, 5284
~1997!# for the height of the barrier and for the size of the critical nucleus are obeyed. ©1998
American Institute of Physics.@S0021-9606~98!50946-4#
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I. INTRODUCTION

The spontaneous formation of liquid droplets in a sup
saturated vapor is probably the best known example of
mogeneous nucleation. In view of its great practical imp
tance, a large number of experimental studies of gas–liq
nucleation has been reported and the earliest theoretica
scription dates back to the 1920s.1,2

In recent years, research on gas–liquid nucleation
received a new impetus. This is partly due to the emerge
of sophisticated experimental techniques that make it p
sible to measure nucleation rates with unpreceden
accuracy.3,4 The so-called nucleation theorem3,5–7 makes it
possible to deduce, from the experimental data on the nu
ation rate, detailed information about the size and comp
tion of the critical nucleus.3,8–10 In parallel, modifications
and extensions of the classical nucleation theory have b
proposed11–15and novel theoretical tools16 have made it pos-
sible to go beyond the essentially macroscopic descrip
that lies at the basis of classical nucleation theory. In part
lar, expressions for the height of the barrier and the size
the critical nucleus have been proposed that could provid
possible explanation for the systematic discrepancies
tween classical nucleation theory~CNT! and experiment.17,18

Furthermore, much theoretical progress has been mad
calculating the Tolman length,19 which is an important quan
tity in nucleation as it describes how the surface free ene
changes with droplet size.

However, despite the fact that nucleation rate meas
ments have become increasingly accurate, many of the
oretical predictions are difficult to test directly in an expe
ment as they are concerned with the microscopic structur
the critical nucleus. Computer simulation is a natural too
study the details of the nucleation process, because it yi
essentially exact microscopic information about the mo
studied.

Liquid clusters in vapor have been studied in detail
computer simulation.20–27 Most of these simulations wer
done in the canonical ensemble, that is, at constant num
of particlesN, constant temperatureT, and constant volume
9900021-9606/98/109(22)/9901/18/$15.00

Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
-
o-
-
id
e-

as
ce
s-
d

le-
i-

en

n
-

of
a

e-

in

y

e-
e-

of
o
ds
l

er

V. A simple analysis22,25 of the change in Helmholtz free
energy when a liquid droplet is formed from the vapor sho
that a liquid cluster can be in equilibrium with the vapor in
constant volume simulation. However, in most nucleat
experiments the pressure or, equivalently, the chemical
tential of the vapor, is held constant. Classical nucleat
theory also usually considers the nucleation of a liquid d
from the vapor at constant chemical potential, i.e., at c
stant pressure of the vapor. Therefore, one would like
perform a simulation at constant pressure rather than at
stant volume. At constant pressure a liquid cluster can b
equilibrium with the vapor at the top of the nucleation ba
rier. However, this equilibrium is unstable. If a cluster, d
to spontaneous fluctuations, becomes larger than the cri
size, it will grow, because in that way it can minimize i
excess free energy. On the other hand, if a cluster by cha
becomes smaller than this critical size, it will shrink, aga
because in that way it can lower its excess free energy.

Hence, in a standardNPT simulation it is virtually im-
possible to study a critical cluster. However, using t
umbrella-sampling scheme28 it is possible to stabilize the
critical cluster at constant pressure. But, more importantly
also makes it possible to stabilize the precritical~and post-
critical! nuclei, thus allowing us to compute the excess fr
energy of a cluster as a function of its size at constant p
sure. Hence, with the umbrella-sampling technique we ob
not only structural information about the precritical and cri
cal nuclei, but also about the height of the nucleation barr
Moreover, the umbrella sampling technique can be combi
with a thermodynamic integration scheme, which enables
efficient computation of the height of the barrier as a fun
tion of supercooling.

This integration scheme is not only efficient, but al
very accurate and allows us to test several theoretical pre
tions. First, we examine to what extent the nuclei behave
small droplets of bulk liquid, which is one of the main a
sumptions of classical nucleation theory. We then comp
the size of the critical nuclei and the height of the nucleat
barrier with the corresponding predictions of classical nuc
1 © 1998 American Institute of Physics
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ation theory. Furthermore, we have investigated whether
deviations from classical nucleation theory can be accoun
for by a curvature correction to the surface tension, as p
posed by McGraw and Laaksonen.17,18

We have also computed the Tolman length,29 which de-
scribes the lowest-order correction to the surface tension
will be discussed in more detail below, the Tolman length
defined as the difference in position between the equim
dividing surface and the thermodynamically defined surf
of tension. It is possible to give both a mechanical definit
and a thermodynamic definition of the surface tension
surface of tension of a liquid droplet~see Refs. 30, 31!. How-
ever, we find that both definitions are not equivalent, wh
means that we cannot obtain the Tolman length from
mechanical description of the droplet. More importantly, t
also implies that we cannot use a simple ‘‘mechanical’’ e
pression to compute the height of the nucleation barrier.
simulations illustrate the fact that the thermodynamic a
mechanical definitions cannot be used interchangeably,
that any attempt to do so leads to an incorrect estimate o
height of the nucleation barrier.

We have performed our simulations for a Lennard-Jo
system. The choice for this system was motivated by sev
factors. First, the phase behavior of this system is know32

Second, gas–liquid nucleation in this system has also b
studied extensively with density functional theory.33–35 Fi-
nally, the Tolman length has been computed both num
cally and theoretically for the Lennard-Jones system.19,26,36

The rest of the paper is organized as follows. In the n
section, we give relations for the cluster-size distributions
terms of the free energy of the clusters. We then describe
numerical techniques to calculate the cluster-size distr
tions and the nucleation barriers. In Sec. IV we discuss h
we can obtain the mechanically and thermodynamically
fined surface tension and surface of tension. We then g
the computational details of the simulations in Sec. V, and
Sec. VI we discuss the results.

II. CLUSTER-SIZE DISTRIBUTION

In order to perform a numerical study of the formation
a liquid-like droplet from the vapor phase, we need an
ambiguous definition of an incipient liquid-like cluster. I
the following, we use an approach that is quite similar,
not quite identical, to the one introduced more than 30 ye
ago by Stillinger.37 Consider a vapor in a constant volumeV,
at constant temperatureT, and at constant chemical potenti
m. In gas–liquid nucleation, the density of liquid-like clu
ters is usually so low that the interactions between them
be neglected. Furthermore, let us assume that we have a
terion that enables us to define which particles make u
liquid cluster. As shown in Appendix A, the average numb
Nn of clusters of sizen is then given by

^Nn&5Zn exp@bmn#. ~1!

Here, b[1/kBT is the reciprocal temperature,kB is Boltz-
mann’s constant, andZn is the partition function of then-
mer. It is given by
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Zn5
Vn3

L3nn! E dr8n21 exp@2bWn~r 8n21;m!#. ~2!

Here, L[h/A2pmkBT is the thermal De Broglie wave
length,r 8n21 denotes the coordinates with the prime indic
ing that the coordinates are taken with respect to the cen
of-mass of the cluster, andW is the potential of mean force
The potential of mean force is obtained by carrying out
integration over the coordinates of the vapor particles. T
is, all possible configurations of the vapor particles will co
tribute to W; it is the average potential the particles in th
liquid clusters feel, due to all interactions with the ‘‘solvent
particles. As shown in Appendix A, our cluster criterion
absorbed into the definition of the potential of mean for
All configurations of the particles in the cluster that do n
satisfy the cluster criterion will not contribute to the partitio
function. To illustrate this, let us consider a cluster of no
interacting particles. The partition function of such ann-mer
is

Zn5
Vn3

L3nn! E dr8n21 w~r n21!, ~3!

where the functionw(r n21) is defined to be one, if its argu
ments satisfy the cluster criterion, and zero otherwise. N
that the volume of this ‘‘ideal-gas cluster’’ is well define
and that the cluster criterion provides a natural volume sc
for the cluster.38

If we define the free-energy of ann-mer as

Fn[2kBT ln Zn , ~4!

Eq. ~1! can be rewritten as

^Nn&5exp@2b~Fn2nm!#5exp@2bDF#. ~5!

An expression very similar to the one above has been
tained by Reisset al.27,39–43The only difference is that we
make fewer assumptions; Reisset al. assumed that the sur
rounding gas is ideal and that there is no interaction betw
molecules that are inside the cluster and those outside
stead, we have carried out the integration over the coo
nates of the noncluster~solvent! particles, and the effect o
the surrounding phase is adsorbed into the effective inte
tions between the particles that make up the cluster. N
also that, in the present description, we need not introd
the concept of a ‘‘shell-molecule’’ to arrive at an uniqu
definition of the clusters27,40–43—whether or not a molecule
belongs to a cluster is uniquely defined by our cluster cr
rion. In particular, the present approach allows for mon
meric clusters. Of course, we still have to specify the clus
criterion. Our choice for this function is described in detail
Sec. V. Here, it suffices to say that it enables us to iden
which particles in the system have a liquid-like density;
liquid-like particles that are connected make up a cluster.
added advantage is that the present approach does not s
from the problem of redundant counting of configurati
space.38–40 Furthermore, the present scheme can easily
used to study crystal nucleation.44,45In crystal nucleation, the
density difference between the crystallite and the surrou
ing liquid is usually so low that the interactions between t
cluster and the surrounding medium cannot be ignored.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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In practice, it is useful to express the number of clust
of size n ~which is extensive! in terms of a probability
~which is intensive!

Pn[
Nn

N
, ~6!

whereN is the total number of particles in the system. Th
in turn, defines an intensive Gibbs free-energy of the clu
~where the reference state is the homogeneous phase!:

DGn[2kBT ln@Pn#. ~7!

The average number of clusters of sizen is then given by

^Nn&5N exp~2bDGn!.

III. NUCLEATION BARRIER

A. The free-energy barrier as a function of droplet
size

The probability distribution functionP(n), as defined in
Eq. ~6!, is an equilibrium property and can be measured b
by Monte Carlo~MC! and molecular dynamics~MD!. How-
ever, at experimentally accessible degrees of supersatura
the brute force approach, in which we would simulate
supersaturated vapor, either by MC or MD, and simply co
the liquid clusters that spontaneously appear, would ne
yield an accurate measure of the nucleation barrier. In
periments, the height of the nucleation barrier is typically
the order of 75kBT. This means that the probability of find
ing a cluster that has the critical size is extremely small,
the order of 10230. Hence, the numerical accuracy of an
direct simulation will be very poor. To obtain good statisti
for all values ofn, we therefore use the umbrella samplin
scheme of Torrie and Valleau.28 The basic idea of this
scheme is to bias the sampling of configuration space
correct for the bias afterward.

We can bias the sampling by adding a fictitious poten
to the true potential of our original system. In a previo
study46,47 on crystal nucleation in a Lennard-Jones syste
we used a biasing potential that was a function of a glo
order parameter,Q6 . This order parameter measured t
overall degree of crystallinity in the system and served a
reaction coordinate from the liquid to the solid. By using t
biasing potential, we could move the system along the re
tion coordinate from the liquid to the solid, and vice versa.
the same spirit, we could now apply a biasing potential t
depends on an order parameter which is sensitive to the
number of liquid particles in the supersaturated vapor.
increasing the value of this order parameter, using the b
ing potential, we could then cross the nucleation barrier
force the system to condense.

However, as explained in detail in Ref. 44, the use o
global order parameter has some serious drawbacks fro
computational point of view. The reason is the following:
we use the total amount of the new phase as a reaction
ordinate, then the value of this reaction coordinate tells
how much of the new phase~say, liquid! we have, but not
how it is distributed in space. In particular, the new pha
need not be concentrated in one cluster. In fact, in a su
ciently large volume it is always entropically favorable for
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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cluster to break up in smaller fragments. However, for
nucleation process, we are interested in the properties o
largest connected cluster.

Rather than using a global order parameter, we there
use a local order parameter. We define the order paramet
be the size,n, of the largest liquid cluster present in th
system. The advantage of this scheme is that by usin
biasing potential which is a function of this order paramet
we can directly control the size of one cluster and sample
sizes of this cluster with equal accuracy. The functional fo
of the biasing potentialW was taken to be harmonic,

W@n~rN!#5 1
2kn@n~rN!2n0#2, ~8!

whererN denotes the atomic coordinates. The result of a
ing this potential to the true potential of our model system
that, in every run, a ‘‘window’’ of cluster sizes will be
sampled. The width and ‘‘location’’ of this window depen
on kn andn0 . By increasingn0 we can increase the size o
the cluster.

B. The free-energy barrier as a function of
supersaturation

In principle, one could compute the height of the fre
energy barrier for every degree of supersaturation by
scheme discussed in the previous section. However, calc
ing the free-energy curve all the way up to the top of t
barrier is rather time consuming because a lot of windo
have to be simulated.

We therefore followed a different approach. Only f
one pressure did we compute the full nucleation barrier
the umbrella-sampling technique as outlined in the previ
section. This free-energy barrier is then used as a refere
for the calculation of the height of the free-energy barrier
other supersaturations. The main idea is that for every p
sure we only have to perform two simulations: one in t
metastable vapor phase and one at the top of the barrier
both states we can determine the variation of the free ene
with pressure, from which we obtain how the height of t
nucleation barrier changes with pressure. By linking t
variation of the barrier height with the height of the barrier
the reference pressure, we then obtain the height of
nucleation barrier as a function of total pressure.

To make this more explicit, consider the~Landau! Gibbs
free-energyG, which is a function of the number of particle
N, the pressureP, the temperatureT, and the size of the
clustern. The first differential of the Gibbs free-energy is

dG~N,P,T,n!

5m~n!dN1V~n!dP2S~n!dT1
]G

]nU
N,P,T

dn, ~9!

wherem is the chemical potential,V is the volume, andS is
the entropy of the system. At a constant total number
particles and temperature, Eq.~9! reduces to

dG~N,P,T,n!5V~n!dP1
]G

]nU
N,P,T

dn. ~10!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Using the above equation, we can now compute the cha
in free-energy when the pressure is varied. When we alter
pressure, the position of the top of the barrier, denoted
n* , can change. However, at the top of the barrier, the pa
derivative of the free-energyG with respect to sizen,
]G/]n, is zero, so the last term in Eq.~10! drops out. In the
metastable vapor,n50 and remains zero, so for the vap
phase the last term is also zero. So we have for the top o
barrier

dG~n* !5V~n* !dP, ~11!

and, similarly, for the vapor phase,

dG~0!5V~0!dP, ~12!

from which we obtain for the variation of the barrier heig
DG* with pressure

dDG* 5d@G~n* !2G~0!#5@V~n* !2V~0!#dP. ~13!

The height of the free-energy barrier at a pressureP can now
be obtained by taking the height of the barrier at the re
ence pressurePref , as obtained by the umbrella-samplin
technique, and by integrating Eq.~13!:

DG* ~P!5DG* ~Pref!1E
Pref

P

@V~n* !2V~0!#dP8. ~14!

In order to obtain a good measure for the volume at
top of the barrier, we have to determine the top of the bar
with a high accuracy, as the volume of the system stron
depends on the value of the order parameter, i.e., the siz
the largest cluster. We therefore performed, for every p
sure, not one but three simulations near the top of the bar
one at the estimated top, and one at each side. The clu
size probability distribution functions of these three simu
tions were fitted to a polynomial to get the relative fre
energies@via Eq.~7!# of the droplets in the vicinity of the top
of the barrier. From this we could then deduce the position
the top of the barrier. Finally, to obtain the volume at the t
of the barrier, the value of the critical droplet size was
serted into the expression for the volume as a function
droplet size, which was obtained by fitting the volume his
grams to a polynomial.

IV. TOLMAN LENGTH AND SURFACE OF TENSION

The surface of a droplet in the vapor is not sharp. Rath
it is a transition layer of physical inhomogeneity in which t
properties of the fluid change smoothly. However, it is co
venient to treat the actual droplet in the vapor as being u
form up to an imaginary surface of zero thickness, the
called dividing surface, which separates the droplet from
~uniform! vapor.

The position of this dividing surface can be obtained
a thermodynamic route and via a mechanical route. Ho
ever, both approaches are not equivalent. Below, we indi
how we have computed both the thermodynamically and
chanically defined surface tensions and surfaces of tens
In Sec. VI E we show that the mechanical route cannot
used to compute the height of the nucleation barrier.
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A. Thermodynamic description

In the thermodynamic approach, introduced by Gibbs48

one can derive the generalized Laplace equation,30,31 which
relates the pressure difference over the dropDp to the loca-
tion, R, of the dividing surface, and to the surface tensiong:

Dp5
2g~R!

R
1

]g~R!

]R
. ~15!

Here,Dp5pl2pv , with pl andpv the pressure in the liquid
and vapor region, respectively. Of course, the pressure in
vapor is always well defined and is equal to the pressure
homogeneous~bulk! vapor phase with the same density
the density in the vapor region far away from the drop. Wh
the droplet is large enough, the pressure inside the dro
then also well defined and equal to that of a bulk liquid pha
with a density which equals that of the density in the core
the drop. However, for smaller droplets the pressure in
core may differ from the bulk liquid pressure. Yet it is im
portant to realize that the generalized Laplace relation is
rived from the hypothetical model system, in which the a
tual droplet is replaced by a droplet that has bulk propert
i.e., it is uniform in density and pressure up to the dividi
surface. Therefore, the pressurepl in the drop is that of a
hypothetical bulk liquid phase which has a chemical pot
tial m l(pl ,T) equal to the chemical potentialmv(pv ,T) of
the ~bulk! vapor phase at pressurepv .

The thermodynamically defined surface of tension is
surface for which the second term on the right-hand side
Eq. ~15! vanishes. Another natural choice for the dividin
surface is the so-called equimolar dividing surface, which
defined as the surface for which the excess number of
ticles at the surface is zero. The Tolman length29 dT is usu-
ally defined as the differenced between these two dividing
surfaces in the planar limit

dT[ lim
Re ,Rs→`

d5 lim
Re ,Rs→`

~Re2Rs!, ~16!

whereRe is the radius of the equimolar dividing surface a
Rs is the radius of the surface of tension.

For any choice of the dividing surface, the~Gibbs! free-
energy of a droplet with radiusR is given by30

DG* 52 4
3pR3Dp14pR2g~R!, ~17!

whereDp is given by the generalized Laplace equation, i.
Eq. ~15!. If we take for the dividing surface the surface
tension, then Eq.~17! reduces to

DG* 5 4
3pRs

2gs , ~18!

or, equivalently,

DG* 5 2
3pDpRs

3. ~19!

We have used the above equation, withDG* and Dp ob-
tained from the simulations, to compute the thermodyna
cal surface tension and surface of tension.

B. Mechanical description

The thermodynamic description of droplets is mac
scopic in nature. In order to establish a link with molecu
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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properties, it would seem more natural to use a mechan
picture. This approach would allow one to relate the surf
tension and surface of tension of a droplet to microsco
quantities, such as the pressure tensor. However, the
chanical and thermodynamic definitions are not equivale
As a result, the surface tension and dividing surface that
computed mechanically cannot be used to predict the he
of the nucleation barrier. In fact, our simulations show th
the mechanical route may lead to unphysical results. Be
we discuss the mechanical description.

By considering the force and moment acting on a hy
thetical strip cutting the surface of the drop, Buff show
that is possible to obtain a mechanical definition of the s
face tension.30,31,49The position,Rs,m , of the surface of ten-
sion is given by

Rs,m5
*0

`@plv~r ;Rs,m!2pT~r !#r 2 dr

*0
`@plv~r ;Rs,m!2pT~r !#r dr

, ~20!

and the surface tension,gs,m , acting on the surface of ten
sion is given by

gs,m5
1

Rs,m
E

0

`

@plv~r ;Rs,m!2pT~r !#r dr ~21!

and also by

gs,m5
1

Rs,m
2 E

0

`

@plv~r ;Rs,m!2pT~r !#r 2 dr. ~22!

In the above equations,pT(r ) is the tangential pressure an
plv is a step function, such thatplv(r ;Rs,m)5pl8 for r
,Rs,m and plv(r ;Rs,m)5pv for r .Rs,m . The subscriptm
indicates that we consider the mechanical surface of tens
There are two logical choices forpl8 : the first is the one
introduced below Eq.~15!, namely the pressure of the bu
liquid at the chemical potential of the vapor. The second
the actual, local pressure in the core of the droplet. For so
of the relations that we will employ, we can choose eith
definition. However, as we indicate below, in some equati
the choice is not free—only the second definition can
used.

From the hydrostatic equilibrium condition¹•p50 we
obtain30,31

r v
npN~r v!2r l

npN~r l !5E
r l

r v
@~n22!pN~r !12pT~r !#r n21 dr,

~23!

wherepN(r ) is the normal component of the pressure tens
r v denotes a position far away from the drop in the vap
andr l is a position in the drop. Integrating the step-functi
plv(r ;R* ) yields

E
r l

r v
plv~r ;R* !nrn21 dr5r v

npv2r l
npl81R* n~pl82pv!.

~24!
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al
e
ic
e-
t.
re
ht
t
w

-

r-

n.

s
e

r
s
e

r,
r,

Far away from the drop the local pressure is equal to
vapor pressure, i.e.,pN(r v)5pT(r v)5pv . Furthermore, if
we taker l at the center of the drop, i.e.,r l50, then Eq.~23!
can be subtracted from Eq.~24! to give

pl82pv5
1

R* n E
0

r v
$n@plv~r ;R* !2pN~r !#

12@pN~r !2pT~r !#%r n21 dr. ~25!

The actual value ofpN(r l) drops out of the above equatio
provided thatr l50 andnÞ0. Under those conditions we ar
free to choose our definition ofpl8 . However, forn50 the
choice ofpl8 is no longer free. In that case, we must takepl8
equal to the normal component of the local pressure in
center of the droplet, i.e.,pl85pN(0). Note that with this
choice for pl8 , we need not chooser l50 to arrive at Eq.
~25!. In the following, we therefore takepl8 to be the local
pressure in the center of the droplet. We stress that, ex
for very large droplets, this definition differs from the the
modynamic one.

For n52 Eq. ~25! reduces to

pl82pv5
2

R* 2 E
0

`

@plv~r ;R* !2pT~r !#r dr . ~26!

This relation is valid for any position of the dividing surfac
If we position the dividing surface at thethermodynamic
surface of tension with radiusRs , we obtain

pl82pv5
2

Rs
2 E

0

`

@plv~r ;Rs!2pT~r !#r dr . ~27!

If the core of the droplet behaves as a bulk liquid, that is
the actual pressurepl8 in the droplet is equal to the pressu
pl of a bulk liquid with a chemical potential that is equal
that of the vapor phase, then we can combine the ab
equation with the Laplace equation, Eq.~15!, to arrive at

gs5
1

Rs
E

0

`

@plv~r ;Rs!2pT~r !#r dr . ~28!

This equation has the same structure as Eq.~21!. However,
this does not imply that the thermodynamic and mechan
surface tensions and surfaces of tensions are equal. In
Blokhuis et al.19 have shown that the positions of the su
faces can differ significantly, and our simulations show th
in fact they do.

It is possible to relateRs,m and gs,m to pl82pv in an
expression, which, to increase the confusion, looks like
Laplace relation. We takeR* 5Rs,m in Eq. ~26! and combine
the resulting expression with Eq.~21!, to arrive at

pl82pv5
2gs,m

Rs,m
. ~29!

So also for the mechanically defined surface tension and
face of tension, a Laplace-type relation is fulfilled. We c
now exploit this relation to expressRs,m andgs,m in terms of
pN(r )2pv , from which we can compute the mechanica
defined surface tension and surface of tension. We star
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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combining the above equation and Eq.~25! with n53 and
with R* 5Rs,m , and subtract the resulting expression fro
Eq. ~22!, to obtain

E
0

r v
@plv~r ;Rs,m!2pN~r !#r 2 dr50. ~30!

This equation can be combined with Eq.~22! to yield

gs,m5
1

Rs,m
2 E

0

`

@pN~r !2pT~r !#r 2dr. ~31!

In Refs. 30 and 31 it is suggested that a similar express
can be derived for the thermodynamically defined surf
tension by combining the expression following from E
~25!, with n53 and R5Rs , and the generalized Laplac
equation@Eq. ~15!# with Eq. ~22!. However, in order to ar-
rive at this result, one has to make the assumption that
mechanical and thermodynamic descriptions are equival

We do not make the identification between the therm
dynamic and mechanical descriptions. Instead, we make
of the fact that for the mechanically defined surface of t
sion a Laplace-type relation also holds, and use the relat
that follow from the hydrostatic equilibrium condition fo
this dividing surface. For instance, it is possible to obt
another expression for the mechanically defined surface
sion by combining Eq.~29! with Eq. ~25! for n50 andR*
5Rs,m

gs,m5Rs,mE
0

`

@pN~r !2pT~r !#r 21 dr. ~32!

We can obtain the position of the mechanical surface of t
sion by combining the above equation with Eq.~31!

Rs,m
3 5

*0
`@pN~r !2pT~r !#r 2 dr

*0
`@pN~r !2pT~r !#r 21 dr

. ~33!

The above three equations can be rewritten using

pT~r !5pN~r !1
r

2

dpN~r !

dr
, ~34!

which follows from the condition of hydrodynamic equilib
rium, ¹•p50. We then obtain

Rs,m
3 5

3

Dp E
0

`

@pN~r !2pv#r 2 dr, ~35!

gs,m
3 5

3

8
Dp2E

0

`

@pN~r !2pv#r 2 dr, ~36!

whereDp5pl82pv . We have used these equations to co
pute the mechanically defined surface tensions and surf
of tension.

In the thermodynamicmodel, the height of the barrier i
given by Eq.~19!. It is clear that if the mechanical and the
modynamic descriptions were equivalent, combining E
~19! with Eq. ~35! would yield amicroscopicexpression for
the height of the barrier@Eq. ~37!, see Refs. 17 and 50#.
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However, as the mechanical and thermodynamic pictu
cannot be mixed, the height of the barrier cannot be
pressed in terms of an integral of the pressure profile,

DG* Þ2pE
0

`

@pN~r !2pv#r 2 dr. ~37!

Figure 5 illustrates the kind of errors that may result if t
mechanical and thermodynamic pictures are confused.

We stress that the distinction between mechanical
thermodynamic expression for the surface tension should
be confused with the ambiguity in the definition of the m
croscopic stress tensor. Schofield and Henderson51 have pro-
posed a general expression for the stress tensor. This ex
sion reflects the freedom that we have in defining
momentum flux density in a fluid. The commonly use
Irving–Kirkwood pressure tensor,52 and the Harasima pres
sure tensor,24,51,53,54 are special cases of the Schofield
Henderson expression. Both from simulations54 and from
theory,51 these expressions are known to give the same
face tension for a planar interface, as the surface tensio
related to the zeroth moment ofpN(r )2pT(r ). However, the
position of the mechanical surface of tension, which is
lated to the first moment, is not insensitive to the choice
the pressure tensor. The Irving–Kirkwood expression
pears to be the most natural choice, as the contour join
two interacting particles, which determines where the fo
is acting, corresponds to a straight line. Furthermo
Blokhuis et al.19 showed that the Irving–Kirkwood pressur
tensor, in contrast to the Harasima pressure tensor, lead
expressions for the pressure difference, the surface ten
and the Tolman length, that agree with expressions fo
using microscopic sum rules. We have therefore used
Irving–Kirkwood expression for the pressure tensor to co
pute the pressure profiles.

V. COMPUTATIONAL DETAILS

We have studied homogeneous gas–liquid nucleatio
a Lennard-Jones system in which the interaction poten
was truncated and shifted at a cutoff radiusr c52.5s, where
s is the particle diameter. We made no long-range corr
tions and applied cubic periodic boundary conditions. In
following, we use reduced units, such that the Lennard-Jo
well depthe is the unit of energy, while the Lennard-Jon
diameters is the unit of length.

In most experimental studies of homogeneous nuc
ation, the volume is fixed and nucleation of liquid drople
from the vapor phase leads to a decrease of the vapor p
sure. However, as the concentration of nuclei is very sm
the drop in vapor pressure is negligible and the pressure
chemical potential effectively remain constant during t
nucleation process. In principle, we could simulate the
perimental situation by performing aNVT simulation. A
large excess number of vapor particles would then be nee
in order to keep the vapor pressure constant, which can
achieved by simulating a very large system. However, t
would make the simulations unnecessarily expensive. I
much more natural to work in theNPT or in the mVT55

ensemble. In theNPTensemble, as the droplet is formed, t
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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volume is adjusted such that the pressure~and the chemica
potential! in the vapor will remain constant. In this ensemb
it is therefore not necessary to simulate a large numbe
vapor particles. The same holds for themVT ensemble.
However, in this approach insertions and removals of p
ticles from the system are required, which can be ineffici
or even impossible at high densities. We have chosen
work in theNPT ensemble.

In our simulations, we need an operational definition
liquid-like clusters. We do this by making a distinction b
tween particles that have a liquid-like and a vapor-like en
ronment. Liquid-like particles are particles that experienc
local density that is significantly higher than that of the v
por. There is no unique definition of the local density s
rounding a particle. In the following, we use the number
particles within a spherical shell of radiusqc as a measure o
the local density. The distribution functions of the number
neighbors per particle in the liquid and in the vapor a
shown in Fig. 1. Note that the distribution functions hard
overlap. We have therefore adopted the criterion that all p
ticles which have more than four neighbors are considere
be liquid-like.

After we have identified which particles in the syste
are liquid-like, we can determine the liquid-like clusters. W
have applied the criterion that any two liquid-like particl
which have a distance less thanqc51.5 ~which corresponds
to the first minimum in the radial distribution function of th
liquid! belong to the same liquid cluster. Note that our de
nition of a cluster is close to the one used by Stillinger,37 but
not quite equivalent. Stillinger adopted the criterion thatany
two particles that are within a certain cutoff distance belo
to the same cluster. So even particles that, in our defini
are considered to be vapor particles, can be part of a liq
cluster according to Stillinger’s criterion.

The nucleation barrier can be measured both by MC
MD. The advantage of MD is that it gives faster equilibrati
of pressure gradients through collective particle motio
However, with MD the diffusion of the system through th
order-parameter window in the umbrella-sampling simu
tions is rather slow. The density in the vapor is very low a

FIG. 1. Distributions of the number of neighbors per particle, denoted
NCP, in a Lennard-Jones system for a thermally equilibrated liquid a
vapor, at coexistence (T50.741,P50.007 83). Two particles are consid
ered to be neighbors if they are separated by a distance less thanqc51.5.
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in MD both the liquid and vapor particles move on the sa
time scale. Therefore, in MD the fluctuations in the size
the largest cluster, i.e., the order parameter, are limited
the influx of particles from the vapor.

The advantage of MC is that it is particularly suited f
the umbrella-sampling scheme as, in contrast to MD,
forces associated with the biasing potential do not have to
calculated. Furthermore, one can perform tricks to facilit
the sampling of configuration space. In order to speed up
diffusion of particles in the vapor, the particles in the vap
phase are given a different maximum displacement from
particles in the liquid phase. Of course, this introduces a b
which needs to be corrected in order to satisfy detailed b
ance. This is described in Appendix B.

We have tested both MD and MC by determining t
‘‘diffusion constant’’ of the order parameter at the top of th
barrier. It was found that per MD timestep or per MC cyc
~in which, on average, every particle is given one trial d
placement!

A^Dn2&MC

^Dn2&MD
'7 – 8. ~38!

However, the number of cycles performed per unit of CP
time was three times higher for MD, so that the effecti
diffusion constant for MC was about two to three times th
of MD. We did use MD to speed up the equilibration, b
most of the actual simulations were performed using M
sampling.

In the umbrella-sampling scheme, the system sho
sample configuration space according to the potential

Ui~rN!5U0~rN!1W@n~rN!#, ~39!

whereU0(rN) is the potential of the original model syste
andW@n(rN)# is the biasing potential as defined in Eq.~8!.
In principle, we could recompute the size of the largest cl
ter and the biasing potential after every MD or MC cycle,
even after every particle displacement in the MC simu
tions. However, this would be far too time consuming. W
therefore adopted a staged scheme. In the first stage, a s
of MD or MC cycles is performed without the biasing po
tential. In the second stage, after the unbiased trajectory
size of the cluster and the biasing potential are recalcula
To ensure that configuration space will be sampled in acc
dance with the potential in Eq.~39!, the trajectory is then
accepted with a probability which is determined b
exp@2bDW@n(rN)##, whereDW@n(rN)# is the difference in
biasing potential before and after the trajectory.

In the MC simulations, each trial move consisted eith
of an attempted particle displacement or a trial volum
change. The choice between trial particle moves and t
volume moves was made at random. As we used a fi
cutoff in real coordinates for the intermolecular interaction
the potential energy did not scale with a volume move, a
we had to recalculate the total potential energy from scra
after every trial volume move. Therefore, an MC cycle co
sisted on average of only one trial volume move and one t
displacement per particle. The acceptance ratio for b
types of MC moves was kept at 50% by adjusting the ma

y
d
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mum size of the move. The maximum displacements for
liquid and vapor particles were tuned independently.

The length of the trajectories depends on the comp
tional cost of evaluating the order parameter and the ave
probability with which the trajectories are accepted. To
more precise, the efficiencyn is proportional to

n}
Pacc~ l !

a1b/ l
. ~40!

Here,l is the length of the trajectories anda andb denote the
computational costs of performing an MD/MC cycle and
cluster analysis, respectively.Pacc( l ) is the acceptance prob
ability of the trajectories, which depends on the trajecto
length and on the force constant of the biasing potential~as
well as on the steepness of the underlying free-energy
rier!. Typically, for kn50.01– 0.02, a trajectory length of 5
MC cycles was optimal. To speed up the simulations,
used both a linked list and a neighbor list for the calculat
of the energies and the identification of the clusters.56

The number of umbrella windows for the free-ener
barrier was 15. A typical simulation in a window consist
of an equilibration period of 100 000–250 000 MD step
followed by a production run of 250 000 MC cycles. Th
individual probability distribution functionsP(n) obtained
in the different runs were fitted simultaneously to a polyn
mial. We used a polynomial fit rather than the self-consist
scheme of Ferrenberg and Swendsen,57 because not all adja
cent histograms overlapped.

VI. RESULTS AND DISCUSSION

We studied the nucleation of liquid droplets from th
vapor as a function of supersaturation. All simulations w
performed for one temperature,T50.741, which is 32% be-
low the critical temperature (Tc51.085).58 At this tempera-
ture, the pressure and densities of the coexisting phase
known.58 Furthermore, in order to make a comparison w
nucleation theories, we have to know the surface tens
The temperature of our simulations is in the range of te
peratures for which Chapelaet al.59 and, more recently, Hol-
comb et al.60 computed surface tensions for planar ga
liquid interfaces.

The number of particles wasN5864. As the size of the
largest critical nucleus obtained in the simulations is arou
300 particles, corresponding to the smallest degree of su
saturation, and, more importantly, the density in the s
rounding vapor is very low, with this number of particles t
size of the simulation box was always large enough co
pared to the size of the critical droplets for system-size
fects not to be present.

A. The nucleation barrier

We first computed the full nucleation barrier with th
umbrella-sampling technique for a reference pressure. T
reference pressure was chosen to beP50.012 02, which cor-
responds to a supersaturationS5P/Pcoex51.53. Figure 2
shows the nucleation barrier for this degree of supersat
tion.
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In our simulations we are able to study not only critic
droplets, but also pre- and postcritical droplets. Visual
spection revealed that precritical droplets consisting of o
10–25 particles are already quite spherical. We theref
computed the density as a function ofr, the distance to the
center-of-mass of the cluster. Figure 3 shows the radial d
sity profiles for several precritical and critical clusters. F
the smallest droplets, the density already approaches a
liquid density in the core. We stress that this is not due to
choice of the cluster definition, which requires that a clus
particle should have at least five neighbors. A radial pro
of the number of connections per particle shows that, in
core of the liquid droplet, the number of connections p
particle is much larger than the threshold value of our clus
definition. In fact, it also approaches a bulk liquid value, i.
around 12 neighbors per particle. Hence, our results are
very sensitive to the choice of the threshold value.

Figure 3 also shows that the density in the core har
increases when the cluster grows to its critical sizen*
5280. Furthermore, the density profiles show that the wi

FIG. 2. The Gibbs free-energy barrier as a function of the size of a clus
denoted byn, at a supersaturation ofS51.53 (T50.741,P50.012 02).

FIG. 3. Density as a function ofr, the distance to the center-of-mass of th
clusters, for several precritical and critical nuclei at a supersaturationS
51.53 (T50.741, P50.012 02). The thin horizontal dashed line denot
the density in the vapor, and the thin horizontal solid line denotes the d
sity in the bulk liquid, which has a chemical potential equal to that of
vapor phase.
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of the interface remains essentially constant at approxima
3.5s.

Using the Irving–Kirkwood expression for the pressu
tensor,52 we also computed the pressure profiles for the p
critical and critical nuclei. In Fig. 4, we show the radi
profiles of the normal component of the pressure tensor.
seen that all pressure profiles smoothly go to a bulk va
value for large values ofr, i.e., far away from the center o
the droplet. In the center of the droplet, the statistical ac
racy with which the pressure can be determined is low, as
volume is small. Nevertheless, the data suggests that, ex
for the smallest droplets, the pressure profiles approac
plateau value in the core. In fact, the pressure in the core
well as the density~see Fig. 3!, approaches that of a hypo
thetical bulk liquid at a chemical potential that is equal to t
chemical potential in the vapor phase. This indicates that
interior of the droplets shows bulk liquid-like behavior.

From the normal component of the pressure tensor
can also obtain the transverse component of the pressure
sor using Eq.~34!. This equation shows that, when the d
rivative of the normal component of the pressure tensor w
respect to the radius is positive, the transverse compone
larger than the normal component of the pressure ten
Under these conditions the surface would be under comp
sion, rather than under tension. When the normal compo
is larger than the transverse component, the surface is u
tension.

Figure 4 shows that most of the surface of the droplet
under tension. However, at the vapor side of the interface
normal pressure becomes smaller than the vapor pressur
the profile subsequently approaches the bulk vapor valu
is clear that there is a small region in which the derivative
the normal-pressure profile is positive. In this region the
terface is under compression, rather than under tension.
behavior is also found in theoretical calculations, for diffe
ent potentials,61–63as well as in a computer-simulation stud
of liquid droplets by Thompsonet al.,24 and in the computer
simulations of a flat interface by Waltonet al.54

FIG. 4. Radial profiles of the normal component of the pressure ten
pN(r ), for several precritical and critical nuclei at a supersaturation oS
51.53 (T50.741, P50.012 02). The thin horizontal dashed line deno
the pressure in the bulk vapor, and the thin horizontal solid line denotes
pressure in the bulk liquid, which has a chemical potential equal to tha
the vapor phase.
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B. Dependence on supersaturation

Using the method described in Sec. III B, we comput
the height of the nucleation barrier as a function of sup
saturation. Figure 5 shows the free-energy barrier as a fu
tion of supersaturation. We could not continue our simu
tions beyondS52.2, because at this point the height of t
barrier is so low that spontaneous nucleation of additio
droplets occurs in the vapor. But, before we discuss
height of the nucleation barrier as a function of supersatu
tion in more detail, let us first describe qualitatively how t
critical nucleus changes as the supersaturation is increa

In Figs. 6 and 7 we show, respectively, the density a
pressure profiles for three critical nucleus sizes. In the l
ends, we have also indicated the excess number of part
defined as

Dn54pE
0

`

@r~r !2rv#r 2 dr, ~41!

r,

he
f

FIG. 5. The height of the nucleation barrier as a function of supersatura
S for T50.741. The solid line is obtained via a thermodynamic integrat
technique, see Eq.~14!. The dashed line is obtained by integrating the pre
sure profile, see Eq.~37!. It is seen that the mechanical route to the nuc
ation barrier~dashed line! does not give the correct height of the free-ener
barrier.

FIG. 6. Radial density profiles for different critical nuclei, at different s
persaturationsS (T50.741). In the legends, the excess number of partic
Dn* , is also indicated. The thin horizontal lines indicate, for the differe
supersaturations, the density in the bulk liquid that has the same chem
potential as the vapor phase.
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where rv is the density in the vapor~far away from the
droplet!. Because of the diffuse nature of the interface,
size of the critical nucleus is ambiguous and depends on
position of the dividing surface. However, the excess num
of particles is independent of the position of the dividi
surface and is therefore a more meaningful quantity.

Figures 6 and 7 show that as the supersaturation is
creased, the density and pressure in the core slowly decr
This indicates that the droplet already starts to lose b
behavior in the core. If the core of the droplet showed b
liquid behavior, then, in order for the chemical potential
the bulk liquid core to be equal to the chemical potential
the vapor, the density and pressure in the core of the dro
would have to increase when the pressure in the vapor
creased. Indeed, this behavior has been observed by Th
sonet al.24 and Nijmeijeret al.26 in their simulations of liq-
uid droplets. However, the droplets for which this behav
was seen were much larger~larger than 2000 particles! than
the droplets studied here. In fact, in the simulations
Thompsonet al.,24 a clear crossover in behavior was seen
smaller droplets. In line with the present results, they fou
that once the droplets are smaller than a certain size,
density and pressure in the core of the droplets decrease
increasing vapor pressure. This loss of bulk behavior is a
found in several molecular theories.16,61–63

Figures 6 and 7 suggest that the width of the interfa
remains constant over the range of droplet sizes stud
Note that when the droplets become smaller, the region
which the normal pressure is smaller than the vapor pres
increases. Moreover, the region for whichpT.pN increases
as well; that is, the interface is progressively under m
compression. In fact, for the smallest droplets studied, m
of the interface is under compression rather than tens
This trend has also been observed by Fallset al.61

C. The nucleation theorem

The nucleation theorem is a powerful tool to analy
experimental data on homogeneous nucleation.3,8–10 The
nucleation theorem states that the excess number of

FIG. 7. Radial profiles of the normal component of the pressure tenso
critical nuclei, at different supersaturationsS (T50.741). The excess num
ber of particlesDn* is also given. The thin horizontal lines indicate, for th
different supersaturations, the pressure in the bulk liquid that has the s
chemical potential as the vapor phase.
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ecules of a given component in the critical nucleus can
obtained from the variation of the height of the barrier w
the chemical potential,mv,i , of that component in the vapo
phase:

]DG*

]mv,i
52Dni* , ~42!

whereDni* is defined as in Eq.~41! above.
As nucleation is a rare event, it is impossible to meas

the size and composition of critical nuclei directly in an e
periment. However, if one assumes that the prefactor in
expression for the nucleation rate depends only weakly
supersaturation, the nucleation theorem makes it possib
determine the size and composition of the critical nuclei a
function of the activities of the components in the vap
phase.

Several derivations of the nucleation theorem have b
presented in the literature. The original derivation
Kashchiev5 and a later one by Viisanenet al.9 were based on
a thermodynamic model in which the reversible work of fo
mation of a cluster is written as the sum of a bulk term a
an excess free-energy term, which includes contributi
from the surface free-energy. The nucleation theorem w
obtained by assuming that the variation of the excess f
energy of the cluster depends only weakly on the chem
potential. However, in the approach of Refs. 5 and 9,
variation of the barrier height with the gas phase activit
yields the total number of particles in the cluster, and not
excess number of particles in the cluster. Also, an anal
based on classical nucleation theory by Streyet al.8 suggests
that, from the variation of the height of the barrier with th
chemical potential in the vapor phase, the total number
particles, rather than the excess number of particles, is
tained. However, Oxtoby and Kashchiev,6 who also used a
thermodynamic approach, showed that the variation of
surface free-energy with the chemical potential in the va
phase is related to the surface density of the molecules,
that the nucleation theorem gives the excess number of
ticles and not the total number of particles in the critic
cluster. All these derivations are based on thermodyna
models. It is conceivable that such an approach fails for v
small droplets. However, Ford7 gave a derivation, using
small system thermodynamics, which confirmed that the
cess number of particles in the cluster is obtained from
variation of the height of the barrier with the gas phase
tivities. Moreover, the same result was obtained from a s
tistical mechanical analysis by Viisanen, Strey and Reiss.3 In
Appendix C, we give a compact derivation which is al
based on statistical mechanics. Furthermore, this deriva
also shows that the variation of the height of the Gibbs fr
energy barrier with the pressure is related to the excess
ume of the system at the top of the barrier, and that
variation of the barrier height~both in the grand-canonica
and in the isothermal–isobaric ensemble! with T andb gives
the excess entropy and excess internal energy, respectiv

In our simulations, we compute the barrier height as
function of pressure. However, for comparison with t
nucleation theorem, we need to know the variation of

or
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barrier height with the chemical potential of the vapor pha
The variation of the chemical potential with pressure is giv
by the Gibbs–Duhem relation:dm/dPuT51/rv , whererv is
the density in the vapor. In Fig. 8 we show the excess nu
ber of particles in the cluster obtained via the nucleat
theorem and by directly integrating the density profiles. I
seen that for all droplets sizes studied the agreement is
cellent. This indicates that the method to measure the he
of the barrier as a function of supersaturation described
Sec. III B is not only efficient, but also very accurate.

D. Deviations from classical nucleation theory

Recent experiments on gas–liquid nucleation indic
that the sizes of the critical nuclei are accurately predicted
classical nucleation theory.3,10,64However, the rate of nucle
ation was found to be consistently higher than that predic
by classical nucleation theory. In fact, it was observed t
the ratio of the experimentally determined nucleation r
and the nucleation rate as predicted by CNT, although
pending on temperature, was nearly independent of
supersaturation.64 In two recent papers, McGraw and Laa
sonen derived relations for the height of the barrier and
size of the critical nucleus that could provide an explanat
for these observations.17,18 In their first paper,17 they gave a
derivation which was based on the nucleation theorem. In
second paper, they gave a derivation which was based on
nonuniform spherical droplet model.18 They showed that if
the nucleus has an incompressible core with a density e
to that of the bulk phase and the number of particles wit
the equimolar dividing surface is correctly predicted
CNT, then the difference between the actual barrier he
and the height of the barrier as predicted by CNT is indep
dent of the supersaturation and depends only on tempera
Using the techniques discussed in Sec. III B, we are abl
test these predictions directly.

In classical nucleation theory, the size of the critic
droplet is given by

FIG. 8. The excess number of particlesDn* in the critical nuclei as a
function of the supersaturationS (T50.741), as obtained from the variatio
of the height of the barrier with the chemical potential in the vapor pha
and as obtained by integrating the density profiles. According to the nu
ation theorem they should give the same results.
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n* 5
32pg`

3

3r l
2Dm3 , ~43!

whereg` is the surface free-energy of the planar interfa
andr l is the density of the bulk liquid at coexistence.Dm is
the difference between the chemical potentialmv in the va-
por phase and the chemical potentialm l in the bulk liquid
phase, both at the pressureP in the vapor phase, i.e.,

Dm~P!5mv~P!2m l~P!. ~44!

In classical nucleation theory, the height of the nucleat
barrier is given by

DG* 5
16pg`

3

3r l
2Dm2 . ~45!

As the cube of the surface free-energy enters the exp
sions for the height of the barrier and for the critical nucle
size, we need an accurate estimate for the surface f
energy. Chapelaet al.59 and Holcombet al.60 have calcu-
lated surface free-energies for a Lennard-Jones system
the same potential cutoff used in our simulations, and fo
range of temperatures that encompasses our temperatu
order to obtain the surface free-energy at our temperature
made a polynomial fit to their data and foundg`50.494.

The chemical-potential differenceDm(P) was computed
by integrating the difference in the inverse density betwe
the liquid and vapor phase from the coexistence pressur65

Dm~P!5E
Pcoex

P F 1

rv~P8!
2

1

r l~P8!GdP8. ~46!

Here,Pcoex is the coexisting pressure andrv andr l are the
densities of the bulk vapor and bulk liquid phase, resp
tively. As the chemical potential of the vapor phase depe
very strongly on pressure, the difference in chemical pot
tial is very sensitive to the exact location of the coexisten
point. We found that the data of Smit58 was not accurate
enough for our purpose, and we therefore performed a m
extensive Gibbs ensemble simulation66 to calculate the coex-
istence point. We found that the coexistence pressurePcoex

50.007 83, and that the density of the liquid at coexisten
r l50.766.

Figure 9 shows the number of particles in the critic
nucleus as a function of 1/Dm2. In the figure, we compare
the predictions of CNT and the numerical results forne* , the
number of particles within the equimolar dividing surface

ne* 5
4pr~0!

r~0!2rv
E

0

`

@r~r !2rv#r 2 dr. ~47!

Here,rv is the density in the vapor, andr~0! is the density in
the core of the droplet. The statistical error inr~0!, the den-
sity in the core, is relatively large. However, asrv!r(0),
this inaccuracy has little effect on the value ofne* . For the
same reason,ne* is nearly equal to the better defined quant
Dn* , which is shown in Fig. 9. But more importantly, it i
seen that, for all droplet sizes studied, CNT gives a go
estimate for the number of particles in the critical clust

,
e-
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Surprisingly, the predictions of CNT are excellent down
the smallest droplets, which consist almost exclusively
interface.

In Fig. 10, we show that the simulation results supp
the McGraw–Laaksonen predictions for the height of
barrier: the barrier height found in the simulations differs
a constant offset from the value predicted by CNT. T
result appears to hold even for critical nuclei consisting
only 50–100 particles. Again, this finding is surprising b
cause, as discussed in Sec. VI B, the cores of these nucl
not show bulk behavior. In fact, McGraw and Laakson
gave two derivations of their expressions for the height
the nucleation barrier and for the critical nucleus size: o
made use of the assumption that the nucleus had an inc
pressible core,18 the other did not.17 Our simulations sugges

FIG. 9. The number of particles in the critical nuclei as a function of 1/Dm3,
as predicted by classical nucleation theory and as obtained from the s
lations. The number of particles predicted by classical nucleation theo
indicated bynCNT* , and the number of particles within the equimolar divi
ing surface, as obtained from the simulations, is indicated byne* . For com-
parison, we have also shown the excess number of particles, denote
Dn* , as obtained from the simulations. According to the relations propo
by McGraw and Laaksonen~Refs. 17, 18!, ne* is given by classical nucle-
ation theory (nCNT* ).

FIG. 10. The height of the barrier as predicted by classical nucleation th
and as obtained from the simulations, as a function of 1/Dm2. The relations
proposed by McGraw and Laaksonen~Refs. 17, 18! predict a constant offse
between the actual barrier height and the height of the barrier as pred
by classical nucleation theory. The dashed curve is a guide to the eye;
the same slope as the curve of the classical nucleation theory predictio
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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that the relations proposed in Refs. 17 and 18 are quite
bust. If we have the right theoretical tools to predict t
offset, a better agreement between experiment and~ex-
tended! CNT can be obtained.67

McGraw and Laaksonen18 showed that, within their non-
uniform droplet model, the offsetD(T) is related to the ri-
gidity coefficientks :

DGCNT* 2DG* 5D~T!524pks , ~48!

where ks /R2 is the elastic curvature free-energy per u
area! From our simulations we estimateks520.31e
520.42kBT. This is smaller than the value that McGra
and Laaksonen obtained in their density function
calculations.18 However, the discrepancy could well be du
to the fact that we used a truncated Lennard-Jones poten
whereas in the density functional calculations, the f
Lennard-Jones potential was used.

E. Tolman length

We computed the thermodynamically defined surfa
tension and surface of tension using Eqs.~18! and ~19!. As
explained in Sec. IV A,Dp is the difference between th
pressure in the vapor and the pressure in a hypothetical
liquid with a chemical potential equal to that of the vap
phase. We therefore performed a series of simulations of
bulk liquid to obtain the chemical potential of the liquid as
function of P. In Figs. 11 and 12, we show the thermod
namic surface tension and the location of the surface of
sion, respectively. For small droplets, the surface tension
creases rapidly with droplet size, and then smoot
approaches its planar limit. Such behavior has also b
found in theoretical studies.35,61,62

For the sake of comparison, we have also calculated
mechanical surface tension and surface of tension using
~35! and ~36!. The results are shown in Figs. 11 and 1
respectively. The figures show that both the surface tens
and the surface of tension become negative for clus
smaller than 100 particles. The reason for this can be un
stood from Fig. 7. As can be seen from this figure, sm

u-
is

by
d

ry

ed
as

.

FIG. 11. The thermodynamically defined surface tensiongs and the me-
chanically defined surface tensiongs,m ~acting at the respective surface o
tensions!, as well as the surface tension at the equimolar dividing surfa
denoted byge , as a function of the excess number of particles in the criti
nuclei.
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droplets have a progressively larger region where the p
sure is lower than the vapor pressure. As discussed in
VI B, this implies that the surface of small droplets is i
creasingly under compression. For clusters smaller than
particles, compression dominates and the integral in E
~35! and ~36! becomes negative. For a cluster size of ab
100, the integral in Eqs.~35! and ~36! vanishes, and both
Rs,m andgs,m cross zero.

Figure 12 also shows that the mechanically defined s
face of tension and thermodynamically defined surface
tension are shifted with respect to one another. If we ign
the smallest droplets for which the radius of the mechan
surface tension becomes negative, the displacement is fo
to be constant over the range of droplet sizes studied,
equals approximately 1s. It is thus clear that the two sur
faces cannot be identified with each other. This was fi
pointed out by Blokhuis and Bedeaux,19 and later also found
by Haye and Bruin36 in their computer simulation study of
planar interface. Haye and Bruin36 observed the displace
ment to be strongly depending on temperature, but foT
50.75, which is quite close to the temperature of the pres
simulations, they also found a displacement close to 1s, i.e.,
0.92s.

Figure 11 shows that not only the position of the surfa
of tension is different for the two definitions, but also th
magnitude of the surface tension. In the planar limit the s
face tensions should become equal,30,31but for smaller drop-
lets the difference becomes quite significant. In Fig. 11,
also show the surface tension at the equimolar dividing s
face. McGraw and Laaksonen18 showed that within their
nonuniform droplet model, the surface tension at the equim
lar dividing surface can be obtained from the offset betwe
the actual barrier height and the height of the barrier as
dicted by CNT:

DGCNT* 2DG54pRe
2~g`2ge!. ~49!

Here, ge is the surface tension at the equimolar dividi
surface andRe is the radius of the equimolar dividing su
face, which is given by

FIG. 12. The radii of the equimolar dividing surface,Re , of the thermody-
namically defined surface of tension,Rs and of the mechanically define
surface of tension,Rs,m , as a function of the excess number of particles
the critical nuclei.
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r~0!2rv
E @r~r !2rv#r 2 dr. ~50!

The thermodynamically defined surface of tension is the s
face for which the surface tension is at its minimum;30,31

hence,gs should be smaller thange . For the larger droplet
sizes, the~Tolman! length d[Re2Rs becomes small com
pared to the radius of the droplet. In that limit, we shou
expect the surface tensions to approach each other, as
surface tension varies quadratically withR2Rs .30,31We find
that ge andgs are equal to within the accuracy of our sim
lations.

In Fig. 13, we have plottedd as a function of the size o
the droplets. It is seen thatd is a strong function of the size
of the droplet. In fact, our results are in fair agreement w
the density functional calculations of Talanquer a
Oxtoby.35 We can obtain the Tolman length by fittingd to a
polynomial and extrapolating the result to the planar lim
We find thatdT is zero to within the accuracy of our simu
lations (20.2,dT,0.8). Haye and Bruin36 have computed
the Tolman length for a range of temperatures by molecu
dynamics simulations. Within the error bars, the Tolm
length was found to be independent of temperature and e
to dT50.1660.04, which is compatible with the earlier nu
merical calculations by Nijmeijeret al.,26 who found that
udTu,0.7 for T50.9. Recently, Kalikmanov formulated
semiphenomenological cluster theory of the Tolman len
based on the Fisher cluster model of condensation13 com-
bined with a Tolman-like ansatz for the microscopic surfa
tension of a cluster.68 Kalikmanov performed calculations fo
a variety of nonpolar substances,68 which show that, not too
close to the critical temperature (u(T2Tc)/Tcu.0.1), the
Tolman length is positive and about 0.2s. Considering the
small droplet sizes that we have studied, our results ar
fair agreement with the previous results.

The Helfrich expression for the surface free-energy
powers of the inverse radius of curvature is19

FIG. 13. The differenced5Re2Rs between the equimolar dividing surfac
and the surface of tension as a function of the excess number of part
Dn* 21/3, in the critical nuclei. The solid curve is a fit of the data to
function of the form f (Dn* 21/3)5c1Dn* 21/31c2Dn* 22/3. This corre-
sponds to zero spontaneous curvature for the planar interface and to a
man lengthdT5 limDn* 21/3→0 d50.0, as~implicitly ! assumed in the nonuni-
form droplet model of McGraw and Laaksonen~Ref. 18!. Clearly, our
simulations do not rule out this possibility.
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g~Re!5g`12kC0

1

Re
1~2k1 k̄!S 1

Re
D 2

. ~51!

Here,C0 is the spontaneous curvature,k is the bending ri-
gidity associated with the principal curvature, andk̄ is the
bending rigidity constant associated with Gaussian curvat
From the above expression it can be derived that the Tolm
length is given by19

dT52
kC0

g`
. ~52!

In the model of McGraw and Laaksonen,18 the surface free-
energy is given by

g~Re!5g`1
ks

Re
2 . ~53!

A comparison of the above equations shows that in
model of McGraw and Laaksonen, it is implicitly assum
that kC0 , and hence the Tolman length is zero. Our simu
tions suggest that, for the Lennard-Jones system, this
reasonable assumption.

Comparing Eqs.~51! and ~53! shows thatks52k1 k̄.
We stress thatks can be negative. The condition that must
fulfilled is that g(Re) is positive. If g was not positive, it
would be energetically favorable for a cluster to break
into smaller clusters. For vesicles,g` is close to zero, andks

must be positive, which implies22k, k̄,0. For the liquid
Lennard-Jones droplets, however,g` is positive, andks can
be negative. We note that the Helfrich expansion to sec
order, and the relation of McGraw and Laaksonen, br
down if g(Re) becomes negative. Then, higher-order ter
in the expansion of the surface free-energy in the inve
radii have to be taken into account. However, in the pres
case this only occurs for droplets containing fewer than fi
to ten particles.

VII. CONCLUSIONS

In our simulations, we have studied the structure a
thermodynamics of the~pre! critical nuclei that play a role in
the homogeneous nucleation of the liquid phase from
vapor. We found that the dependence of the size of the c
cal nucleus on the degree of supersaturation is in exce
agreement with the nucleation theorem. Furthermore,
simulations show that liquid-like clusters larger than 2
particles show bulk behavior in the core. That is, the press
and the density in the core of the droplets are those of a b
fluid with a chemical potential equal to that of the vap
phase. However, smaller droplets start to lose this bulk
havior. Nevertheless, the critical-nucleus sizes are still c
rectly predicted by classical nucleation theory. The simu
tion results for the height of the nucleation barrier differ by
constant amount from the prediction of classical nucleat
theory, not only for large droplets, but even for quite sm
droplets. This constant offset can be accounted for by ass
ing that the surface tension depends quadratically
1/R.17,18
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For the range of droplet sizes studied here, we find
significant discrepancy between the thermodynamic and
chanical descriptions of the surface tension. Of course,
could argue that the thermodynamic description should
for very small droplets. But even for larger droplets, whi
do show bulk liquid behavior in the core, we find that th
respective surfaces of tension cannot be identified with e
other, and that the surface tensions that follow from the d
ferent definitions are different. This implies that the height
the nucleation barrier cannot be obtained from Eq.~37!. The
failure of this equation is clearly illustrated by Fig. 5. Th
discrepancy between the free-energy barriers obtained by
thermodynamic and mechanical approaches is quite la
around 10– 40kBT. In fact, as this figure shows, the mechan
cal route leads to an estimate for the height of the barrier
even becomes negative—this is due to the fact that the i
gral of the pressure profile in Eq.~37! becomes negative
Hence, at present, there seems to be no ‘‘cheap’’ numer
alternative to the direct~umbrella-sampling! approach to
compute nucleation barriers.
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APPENDIX A: CLUSTER SIZE DISTRIBUTION

Consider a system in a volumeV, at temperatureT and
at constant chemical potentialm ~i.e., a system in the grand–
canonical ensemble!. The partition function is given by

J~m,V,T![ (
N50

`

exp~bmN!Q~N,V,T!, ~A1!

whereN is the number of particles,b[1/kBT is the recipro-
cal temperature,kB is Boltzmann’s constant, andQ(N,V,T)
is the canonical partition function:

Q~N,V,T!5
1

L3NN! E drN exp@2bU~r N!#. ~A2!

Here,U(r N) is the potential energy of the configuration wi
the coordinatesr N, andL[h/A2pmkBT is the thermal De
Broglie wavelength.

Now we will assume that we have a criterion that e
ables us to define which particles make up a liquid clus
The total number of particles in a liquid-like environme
will be denoted byNl , and the remaining particles in th
vapor will be denoted byNv ; hence,N5Nl1Nv . Clearly,
the potential energyU depends onr Nv and r Nl, i.e., U
5U(r Nl;r Nv), and we rewrite the grand–canonical partitio
function as
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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J~m,V,T!5 (
Nl50

`

exp~bmNl ! (
Nv50

`

exp~bmNv!

3
1

L3NvNv!

1

L3NlNl !

3E drNvE drNl W ~r Nl;r Nv!

3exp@2bU~r Nl;r Nv!#, ~A3!

where we have used the fact that there areN!/(Nl !Nv!)
ways to selectNl liquid-like andNv vapor-like particles from
a total number ofNl1Nv particles. In the above equation
we have introduced a weight functionW which is defined
such that it equals one when the number of particles tha
liquid-like according to our definition equalsNl , and zero
an
r
a
c

e

n-
s
e
-
a
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otherwise. It should be stressed that we do not assume
there is only a single liquid-like cluster in the system. Hen
we have to consider later the number of ways in which
can distributeNl particles over the total number of liqui
clusters. In fact,W contains products of single-cluste
weight functions. If we label the clusters by their sizen and
by j n51,...,Nn , whereNn is the number of clusters of sizen,
it can be written as

W Nl
5( )

n
)
j n51

Nn

wj n
~r n!,

where( indicates that we consider all cluster distributio
andwj n

equals one if its arguments satisfy the criterion fo
single j n-particle cluster, and zero otherwise. With the
definitions, we can rewrite Eq.~A3! as
J~m,V,T!5 (
N150

`

(
N250

`

¯ (
Nnmax

50

`
1

N1!N2!¯Nnmax
! )

n51

nmax

~exp~bmn!n3/@L3nn! # !Nn

3 (
Nv50

`

exp~bmNv!
1

L3NvNv! E drNv)
n

F E dr8n21GNn

3E )
n51

nmax

)
j n51

Nn

dRj n
wj n

~Rj n
,r 8n21;r Nv!exp@2bU~R;r Nv!#. ~A4!
ons
ions
le-
he
this
ter-
e-
ers.
Here, Rj n
denotes the center-of-masses of the clusters

the primes indicate that the coordinates are taken with
spect to the center-of-mass of the cluster. Note that we h
not split the potential energy function yet. The produ
PnP j n51

Nn wj n
containsPnNn distinct cluster functionswn . In

this equation, we have somewhat arbitrarily introduced
maximum cluster sizenmax.

For any given configuration of clusters, we can defin
potential of mean forceW(r Nl;m) as

exp@2bW~r Nl;m!#

[ (
Nv50

`

exp~bmNv!
1

L3NvNv!

3E drNv )
n51

nmax

)
j n51

Nn

wj n
~Rj n

,r 8n21;r Nv!

3exp@2bU~r Nl;r Nv!#. ~A5!

All possible configurations of the vapor particles will co
tribute toW(r Nl;m). It is the average potential the particle
in the liquid clusters feel due to all interactions with th
‘‘solvent’’ particles. With the above definition for the poten
tial of mean force, the grand-canonical partition function c
be rewritten as
d
e-
ve
t

a

a

n

J~m,V,T!5 (
N150

`

(
N250

`

¯ (
Nnmax

50

`
1

N1!N2!¯Nnmax
!

3 )
n51

nmax

~exp~bmn!n3/@L3nn! # !Nn

3 )
n51

nmax F E dr8n21GNnE )
n51

nmax

)
j n51

Nn

dRj n

3exp@2bW~r Nl;m!#. ~A6!

The potential of mean force depends on the interacti
between particles of the same cluster and on the interact
between particles of different clusters. In gas–liquid nuc
ation, the density of liquid clusters is usually so low that t
interactions between them can be neglected. However, at
stage we will not yet ignore these, but assume that the in
cluster interaction energy is pair-wise additive and only d
pends on the positions of the center-of-mass of the clust
The interaction energyW(r Nl;m) can then be written as

W~r Nl;m!5W01(
n

(
j n51

Nn

Wn~r n, j n;m!

1
1

2 (
n,n8

(
j n , j n8

Wn,n8~Rn, j n
,Rn8, j n8

;m!. ~A7!
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The constantW0 is a measure for the grand potential in the absence of clusters.Wn denotes the intracluster interaction ener
of cluster j n of sizen, andWn,n8 is a measure for the effective interaction between clustersj n and j n8 . With this assumption
for the potential of mean force, the grand partition function becomes

J~m,V,T!5exp~2bW0! (
N150

`

(
N250

`

¯ (
Nnmax

50

`
1

N1!N2!...Nnmax
! )

n51

nmax

~exp~bmn!n3/@L3nn! # !Nn

3 )
n51

nmax F E dr8n21 exp@2bWn~r 8n21;m!#GNnE )
n51

nmax

)
j n51

Nn

dRj n
exp@2bWn,n8~Rn, j n

,Rn8, j n8
;m!#. ~A8!
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As a final simplification, we ignore the interactions betwe
the clusters. The partition function then becomes

J~m,V,T!5exp~2bW0! (
N1 ,N2 ,...,50

`

)
n

@exp~bmnNn!#

3)
n

1

Nn! F Vn3

L3nn! E dr8n21

3exp@2bWn~r 8n21;m!#GNn

. ~A9!

We now define the partition functionZn of an n-mer, as

Zn[
Vn3

L3nn! E dr8n21 exp@2bWn~r 8n21;m!#. ~A10!

With the above definition of the partition functionZn of
an n-mer, the grand partition function can be rewritten as

J~m,V,T!5exp~2bW0!

3 (
N1 ,N2 ,...,50

`

)
n

@exp~bmn!Zn#Nn

Nn!
.

~A11!

We can interchange the order of the product and the sum
tion to obtain for the partition function

J~m,V,T!5exp~2bW0!)
n

exp~exp@bmn#Zn!

5exp~2bW0!expS (
n

exp@bmn#ZnD .

~A12!

The average number of clusters of sizen is then simply given
by

^Nn&5Zn exp@bmn#. ~A13!

APPENDIX B: DETAILED BALANCE

The detailed balance condition for the transition betwe
statei and j is

r i Pi→ j
gen Pi→ j

acc 5r j Pj→ i
gen Pj→ i

acc . ~B1!

Here, r i is the Boltzmann weight of configurationi, Pi→ j
gen

denotes the transition matrix which determines the proba
ity to perform a trial move from statei to statej, andPi→ j

acc is
the probability with which this trial move is accepted.
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In the standard Metropolis scheme, the transition ma
is symmetric and the acceptance criterion only depends
the Boltzmann factors of statei and j. However, in the
present scheme, liquid particles and vapor particles have
ferent maximum displacements, which affects the transit
matrix for the trial moves and needs to be taken into acco
in the acceptance criterion.

We rewrite Eq.~B1! as

Pi→ j
acc

Pj→ i
acc 5

r j

r i

Pj→ i
gen

Pi→ j
gen . ~B2!

The probability to generate a move fromi to j is proportional
to the inverse cube of the maximum displacement, deno
by drmax, and depends on the state of the particle,s. The
acceptance criterion now becomes

Pi→ j
acc

Pj→ i
acc 5

r j

r i
S drmaxi~s!

drmaxj~s! D
3

. ~B3!

There are many possible choices forPi→ j
acc that satisfy this

condition~and the obvious condition that the probability ca
not exceed 1!. We have adopted the Metropolis rule

Pi→ j
acc 5MinFr j

r i
S drmaxi~s!

drmaxj~s! D
3

,1G . ~B4!

However, there is one other condition that we have not m
tioned yet. If a particle makes a transition from the vapor
the liquid and its displacement is larger than the maxim
displacement in the liquid, then the move should be rejec
The reason is that when this move would have been acce
~and the particle would have become a liquid particle!, the
reverse move could never be made~because the maximum
displacement for liquid particles is smaller than the ma
mum displacement for vapor particles!.

APPENDIX C: THE NUCLEATION THEOREM

Consider a system in the grand-canonical ensemble.
probability to findn particles in the system is given by

P~n!5exp~bmn!Q~n,V,T!/J~m,V,T!, ~C1!

whereJ is the grand-canonical partition function defined
Eq. ~A1!. The total grand potentialV(52PV) is given by

V52kBT ln J. ~C2!

We can associate a Landau free-energy~strictly speaking, a
Landau ‘‘grand potential’’! v(n) with the probability distri-
bution P(n)
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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v~n!52kBT ln@exp~bmn!Q~n,V,T!#

52mn1F~n,V,T!, ~C3!

whereF(n,V,T) is the Helmholtz free-energy of a system
n particles in volumeV at temperatureT. The free-energy
difference between two states with different numbers of p
ticles, sayn1 andn2 , is

Dv[v~n2!2v~n1!

52m~n22n1!1F~n2 ,V,T!2F~n1 ,V,T!. ~C4!

Let us now consider howDv varies withm. Note that the
Helmholtz free-energy does not depend onm. Hence,

]Dv

]m
52~n22n1![2Dn. ~C5!

This result is general. Hence, it also holds for the case wh
n1 corresponds to the~local! maximum of P(n), i.e., the
homogeneous metastable phase, whilen2 corresponds to the
top of the~nucleation! barrier. In that case, it is immediatel
clear thatDn corresponds to the excess number of partic
in the critical nucleus. The extension to mixtures is straig
forward.

In a sense, this result is so trivial it is easy to extend it
other ensembles. Consider first theN,P,T ensemble. In that
case, the fluctuating quantity is the volume, the Landau fr
energy has the form of a Gibbs free-energy, and we obt

]Dg

]P
5~V22V1![2DV. ~C6!

Hence, the variation of the barrier height with pressure
given by the~usually negative! excess volume of the critica
nucleus. However, although that quantity is well defined, i
intuitively not very appealing. Of course, if we use th
Gibbs–Duhem relation to writedP5r dm, then Eq.~C6!
reduces to Eq.~C5!.

Finally, consider a variation in temperature, rather th
pressure or chemical potential. Then, for both the gra
canonical and the isothermal–isobaric ensemble we ob
the same results:

]Dg

]T
52~S22S1![2DS, ~C7!

and

]bDg

]b
5~E22E1![DE. ~C8!

It is worth pointing out that, in practice, the observable qu
tity is bDG; hence the second relation is more useful.

Note that althoughDn in Eq. ~C5! is a useful order
parameter for small systems, it becomes less meaningfu
larger systems. To be more specific, it becomes meaning
if the volumeV is so large that the spontaneous fluctuatio
in the number of particles become comparable toDn. In
general,

^N2&2^N&25NkBTk,

wherek denotes the isothermal compressibility. For an id
gas,
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^N2&2^N&25N.

Hence, a problem arises whennnucleus* is of orderAN. When
this happens, the change in free-energy associated wi
small, homogeneous fluctuation in the density is smaller t
the change in free-energy due to the formation of a liqu
like droplet, andDn is no longer a useful order paramete
Note that this situation can always arise when the volum
large enough and that it becomes even more serious clos
the critical point or the spinodal. However, in practice, t
problem is less serious because nucleation experiment
not probe the probability of arbitrary density fluctuations, b
only those that result in the formation of a critical nucleu
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