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We report a computer-simulation study of homogeneous gas—liquid nucleation in a Lennard-Jones
system. Using umbrella sampling, we compute the free energy of a cluster as a function of its size.
A thermodynamic integration scheme is employed to determine the height of the nucleation barrier
as a function of supersaturation. Our simulations illustrate that the mechanical and the
thermodynamical surfaces of tension and surface tension differ significantly. In particular, we show
that the mechanical definition of the surface tension cannot be used to compute this barrier height.
We find that the relations recently proposed by McGraw and Laakgdné&hem. Physl06, 5284

(1997] for the height of the barrier and for the size of the critical nucleus are obeyedl998
American Institute of Physic§S0021-960608)50946-4

I. INTRODUCTION V. A simple analysi¥?° of the change in Helmholtz free
) o ) energy when a liquid droplet is formed from the vapor shows
The spontaneous formation of liquid droplets in a superypat a liquid cluster can be in equilibrium with the vapor in a

saturated vapor is probably the best known example of hozynstant volume simulation. However, in most nucleation

mogeneous nucleation. In view of its great practical 'mpor_'experiments the pressure or, equivalently, the chemical po-

tance, a large number of experimental studies of gas—liquighytia| of the vapor, is held constant. Classical nucleation
nuc_leguon has been reported aé%d the earliest theoretical dﬁieory also usually considers the nucleation of a liquid drop
scription dates back to the 1920s. from the vapor at constant chemical potential, i.e., at con-

I.n recent years, researc.:h'on gas-liquid nucleation ha tant pressure of the vapor. Therefore, one would like to
received a new impetus. This is partly due to the emergence

. . . . erform a simulation at constant pressure rather than at con-
of sophisticated experimental techniques that make it pos- o :
) ) : tant volume. At constant pressure a liquid cluster can be in
sible to measure nucleation rates with unprecedente

accuracy>* The so-called nucleation theordft’ makes it equilibrium with the vapor at the top of the nucleation bar-

possible to deduce, from the experimental data on the nucldier- However, this equilibrium is unstable. If a cluster, due

ation rate, detailed information about the size and composit—q spc_)nta_neous ﬂuctuanons_, becomes Igrger tha_n _th? cr_|t|caI
size, it will grow, because in that way it can minimize its

tion of the critical nucleus®-1In parallel, modifications :
and extensions of the classical nucleation theory have bedrCess free energy. On the other hand, if a cluster by chance
proposedt~25and novel theoretical todi&have made it pos- becomes_smaller tha_n this cr|t|ca_l size, it will shrink, again
sible to go beyond the essentially macroscopic descriptiof€Cause in that way it can lower its excess free energy.
that lies at the basis of classical nucleation theory. In particu- ~H€nce, in a standartlPT simulation it is virtually im-
lar, expressions for the height of the barrier and the size oP©SSible to study a critical cluster. However, using the
the critical nucleus have been proposed that could provide gmPrella-sampling scherffeit is possible to stabilize the
possible explanation for the systematic discrepancies beitical cluster at constant pressure. But, more importantly, it
tween classical nucleation theoi@NT) and experiment’-18 also makes it possible to stabilize the precritiGahd post-
Furthermore, much theoretical progress has been made fyitical) nuclei, thus allowing us to compute the excess free
calculating the Tolman lengtf,which is an important quan- €nergy of a cluster as a function of its size at constant pres-
tity in nucleation as it describes how the surface free energgure. Hence, with the umbrella-sampling technique we obtain
changes with droplet size. not only structural information about the precritical and criti-
However, despite the fact that nucleation rate measurecal nuclei, but also about the height of the nucleation barrier.
ments have become increasingly accurate, many of the thddoreover, the umbrella sampling technique can be combined
oretical predictions are difficult to test directly in an experi- with a thermodynamic integration scheme, which enables the
ment as they are concerned with the microscopic structure dfficient computation of the height of the barrier as a func-
the critical nucleus. Computer simulation is a natural tool totion of supercooling.
study the details of the nucleation process, because it yields This integration scheme is not only efficient, but also
essentially exact microscopic information about the modevery accurate and allows us to test several theoretical predic-
studied. tions. First, we examine to what extent the nuclei behave like
Liquid clusters in vapor have been studied in detail bysmall droplets of bulk liquid, which is one of the main as-
computer simulatioR®2” Most of these simulations were sumptions of classical nucleation theory. We then compare
done in the canonical ensemble, that is, at constant numbéhe size of the critical nuclei and the height of the nucleation
of particlesN, constant temperaturg and constant volume barrier with the corresponding predictions of classical nucle-
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ation theory. Furthermore, we have investigated whether the vn3

deviations from classical nucleation theory can be accounted  Zn="3n.y dr'"™exd — BW(r'" )] v
for by a curvature correction to the surface tension, as pro-

posed by McGraw and Laakson&nt® Here, A=h/\27mmkgT is the thermal De Broglie wave-

We have also computed the Tolman lengthyhich de- length,r'"~* denotes the coordinates with the prime indicat-
scribes the lowest-order correction to the surface tension. Agg that the coordinates are taken with respect to the center-
will be discussed in more detail below, the Tolman length isof-mass of the cluster, and is the potential of mean force.
defined as the difference in position between the equimolafhe potential of mean force is obtained by carrying out the
dividing surface and the thermodynamically defined surfacéntegration over the coordinates of the vapor particles. That
of tension. It is possible to give both a mechanical definitionis, all possible configurations of the vapor particles will con-
and a thermodynamic definition of the surface tension andribute toW; it is the average potential the particles in the
surface of tension of a liquid droplétee Refs. 30, 31How-  liquid clusters feel, due to all interactions with the “solvent”
ever, we find that both definitions are not equivalent, whichparticles. As shown in Appendix A, our cluster criterion is
means that we cannot obtain the Tolman length from th&bsorbed into the definition of the potential of mean force.
mechanical description of the droplet. More importantly, thisAll configurations of the particles in the cluster that do not
also implies that we cannot use a simple “mechanical” ex-satisfy the cluster criterion will not contribute to the partition
pression to compute the height of the nucleation barrier. Oufunction. To illustrate this, let us consider a cluster of non-
simulations illustrate the fact that the thermodynamic andnteracting particles. The partition function of suchramer
mechanical definitions cannot be used interchangeably, arif
that any attempt to do so leads to an incorrect estimate of the v
height of the nucleation barrier. zn:W dr'"tw(rn Y, 3)

We have performed our simulations for a Lennard-Jones n:
system. The choice for this system was motivated by severgyhere the functiom(r" 1) is defined to be one, if its argu-
factors. First, the phase behavior of this system is kn&wn. ments satisfy the cluster criterion, and zero otherwise. Note
Second, gas—liquid nucleation in this system has also beafat the volume of this “ideal-gas cluster” is well defined

studied extensively with density functional thedy*>* Fi-  and that the cluster criterion provides a natural volume scale
nally, the Tolman length has been computed both numeritor the cluster®
cally and theoretically for the Lennard-Jones systéAg:% If we define the free-energy of armer as
The rest of the paper is organized as follows. In the next
section, we give relations for the cluster-size distributions in ~ Fn=—kgT In Z,, (4)

terms of the free energy of the clusters. We then describe thlg_aq_ (1) can be rewritten as
numerical techniques to calculate the cluster-size distribu-
tions and the nucleation barriers. In Sec. IV we discuss how (Np)=exd —B(F,—nu)]=exd — BAF]. 5

we can obtain the mechanically and thermodynamically deAn expression very similar to the one above has been ob-
fined surface tension and surface of tension. We then giv?ained by Reiset al273%*3The only difference is that we

the computational details of the simulations in Sec. V, and in, .« fewer assumptions; Reissal. assumed that the sur-

Sec. VI we discuss the results. rounding gas is ideal and that there is no interaction between
molecules that are inside the cluster and those outside. In-
stead, we have carried out the integration over the coordi-

Il. CLUSTER-SIZE DISTRIBUTION nates of the nonclustésolven particles, and the effect of
the surrounding phase is adsorbed into the effective interac-

In order to perform a numerical study of the formation of tjons between the particles that make up the cluster. Note

a liquid-like droplet from the vapor phase, we need an uUny|sg that, in the present description, we need not introduce

ambiguous definition of an incipient liquid-like cluster. In e concept of a “shell-molecule” to arrive at an unique

the following, we use an approach that is quite similar, butyefinition of the cluste@°-*3—whether or not a molecule

not quite identical, to the one introduced more than 30 yearge|ongs to a cluster is uniquely defined by our cluster crite-
ago by Stillinger}’ Consider a vapor in a constant voluMe  rion. In particular, the present approach allows for mono-
at constant temperatufie and at constant chemical potential meric clusters. Of course, we still have to specify the cluster

w. In gas—liquid nucleation, the density of liquid-like clus- ¢riterion. Our choice for this function is described in detail in

ters is usually so low that the interactions between them caBec. v. Here, it suffices to say that it enables us to identify

be neglected. Furthermore, let us assume that we have a C{jich particles in the system have a liquid-like density; all
terion that enables us to define which particles make up fquid-like particles that are connected make up a cluster. An
liquid cluster. As shown in Appendix A, the average numberagged advantage is that the present approach does not suffer

N, of clusters of sizen is then given by frométgemproblem of redundant counting of configuration

_ space” " Furthermore, the present scheme can easily be
(Nn)=Zn exil Bn]. @ used to study crystal nucleatiéfi*®In crystal nucleation, the

Here, B=1/KkgT is the reciprocal temperatur&g is Boltz-  density difference between the crystallite and the surround-

mann’s constant, and,, is the partition function of then- ing liquid is usually so low that the interactions between the

mer. It is given by cluster and the surrounding medium cannot be ignored.
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In practice, it is useful to express the number of clustergluster to break up in smaller fragments. However, for the
of size n (which is extensive in terms of a probability nucleation process, we are interested in the properties of the

(which is intensive largest connected cluster.
N Rather than using a global order parameter, we therefore
n !
P,= N (6) use a local order parameter. We define the order parameter to

be the sizen, of the largest liquid cluster present in the
whereN is the total number of particles in the system. This,System. The cf:ldvan_tag_e of this _scheme_ is that by using a
in turn, defines an intensive Gibbs free-energy of the clustebiasing potential which is a function of this order parameter,

(where the reference state is the homogeneous phase we can directly control the size of one cluster and sample all
sizes of this cluster with equal accuracy. The functional form
AG,=—kgT In[P,]. (7)

of the biasing potentialV was taken to be harmonic,

The average number of clusters of sizés then given by WEN(rY)] = 2k [n(r™) = ng ]2 ®)
(Ny)=N exp(— BAG,). N . _

wherer"™ denotes the atomic coordinates. The result of add-
ing this potential to the true potential of our model system is
that, in every run, a “window” of cluster sizes will be
A. The free-energy barrier as a function of droplet sampled. The width and “location” of this window depend
size onk, andn,. By increasingn, we can increase the size of

The probability distribution functio(n), as defined in  the cluster.
Eq. (6), is an equilibrium property and can be measured both
by Monte Carlo(MC) and molecular dynamicdD). How-
ever, at experimentally accessible degrees of supersaturatios, The free-energy barrier as a function of
the brute force approach, in which we would simulate thesypersaturation
supersaturated vapor, either by MC or MD, and simply count . :
the liquid clusters that spontaneously appear, would never In principle, one could compute the height of the free-

yield an accurate measure of the nucleation barrier. In exenergy barrier for every degree of supersaturation by the

periments, the height of the nucleation barrier is typically inscheme discussed in the previous section. However, calculat-

the order of 78gT. This means that the probability of find- ing the free-energy curve all the way up to the top of the
ing a cluster that has the critical size is extremely small, o

1barrier is rather time consuming because a lot of windows
the order of 10%°. Hence, the numerical accuracy of any

have to be simulated.
direct simulation will be very poor. To obtain good statistics We therefore followed a different approach. Only for
for all values ofn, we therefore use the umbrella sampling

one pressure did we compute the full nucleation barrier by
scheme of Torrie and Valledfl. The basic idea of this

the umbrella-sampling technique as outlined in the previous
scheme is to bias the sampling of configuration space an?ection. This free-energy barrier is then used as a reference
correct for the bias afterward. 0

r the calculation of the height of the free-energy barrier at
We can bias the sampling by adding a fictitious potentia|other supersaturations. The main idea is that for every pres-
to the true potential of our original system. In a previous

sure we only have to perform two simulations: one in the
study?®47 on crystal nucleation in a Lennard-Jones Systemmetastable vapor phase aqd one at the_top of the barrier. For
we used a biasing potential that was a function of a globatac_)th states we can detgrmme the vgrlatlon of the.free energy
order parameterQQg. This order parameter measured theWIth pressure, f_rom which we pbtam how the helght. of the
overall degree of crystallinity in the system and served as Quqlegtlon barrier _Cha”QeS W!th pressure. By Imkmg the
reaction coordinate from the liquid to the solid. By using the variation of the barrier height with the he!ght of the'barrler at
biasing potential, we could move the system along the reac,I-he ref_erence pressure, we then obtain the height of the
tion coordinate from the liquid to the solid, and vice versa. mnucleatlon barn_er as a func_tl_on of to_tal pressure. -
the same spirit, we could now apply a biasing potential tha To make th|s_mo_re epr|C|_t, consider tieandag G'bbs
depends on an order parameter which is sensitive to the tot [ee-energyG, which is a function of the number _Of particles
number of liquid particles in the supersaturated vapor. B)J\I' the pressur.eP, the temperaturg, a}nd the size of the
increasing the value of this order parameter, using the biaé:_lustern. The first differential of the Gibbs free-energy is

ing potential, we could then cross the nucleation barrier angg(N, P, T,n)
force the system to condense.

However, as explained in detail in Ref. 44, the use of a
global order parameter has some serious drawbacks from a
computational point of view. The reason is the following: if
we use the total amount of the new phase as a reaction c¥hereu is the chemical potentiaV is the volume, andis
ordinate, then the value of this reaction coordinate tells ushe entropy of the system. At a constant total number of
how much of the new phassay, liquid we have, but not particles and temperature, E§) reduces to
how it is distributed in space. In particular, the new phase 9G
need not be concentrated in one cluster. In fact, in a suffi-  dG(N,P,T,n)=V(n)dP+—
ciently large volume it is always entropically favorable for a d

IIl. NUCLEATION BARRIER

dn, 9
N,P, T

dG
=u(n)dN+V(n)d P—S(n)dT+m

dn. (10
N,P,T
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Using the above equation, we can now compute the chang®. Thermodynamic description
in free-energy when the pressure is varied. When we alter the
pressure, the position of the top of the barrier, denoted b
n*, can change. However, at the top of the barrier, the parti
derivative of the free-energys with respect to sizen,
dG/an, is zero, so the last term in EGLO) drops out. In the

In the thermodynamic approach, introduced by Giffbs,
ne can derive the generalized Laplace equafidhwhich
elates the pressure difference over the digpto the loca-
tion, R, of the dividing surface, and to the surface tensjon

metastable vapom=0 and remains zero, so for the vapor _2¥(R)  d¥(R) 15
phase the last term is also zero. So we have for the top of the P=7R IR (15
barrier

Here,Ap=p,—p,, with p, andp, the pressure in the liquid
dG(n*)=V(n*)dP, (1)  and vapor region, respectively. Of course, the pressure in the
vapor is always well defined and is equal to the pressure of a
homogeneousbulk) vapor phase with the same density as
dG(0)=V(0)dP, (12)  the density in the vapor region far away from the drop. When
the droplet is large enough, the pressure inside the drop is
then also well defined and equal to that of a bulk liquid phase
with a density which equals that of the density in the core of
dAG* =d[G(n*)—G(0)]=[V(n*)—V(0)]dP. (13) the drop. However, for smaller droplets the pressure in the

core may differ from the bulk liquid pressure. Yet it is im-
(portant to realize that the generalized Laplace relation is de-
rived from the hypothetical model system, in which the ac-
tual droplet is replaced by a droplet that has bulk properties;
i.e., it is uniform in density and pressure up to the dividing

surface. Therefore, the pressysgin the drop is that of a
hypothetical bulk liquid phase which has a chemical poten-

) tial u,(p,,T) equal to the chemical potentia,(p,,T) of
In order to obtain a good measure for the volume at thgpq (bulk) vapor phase at pressupg .

top of the barrier, we have to determine the top of the barrier e thermodynamically defined surface of tension is the

with & high accuracy, as the volume of the system strongly,rface for which the second term on the right-hand side of

depends on the value of the order parameter, i.e., the size @iy (15) vanishes. Another natural choice for the dividing

the largest cluster. We therefore performed, for every presgyface is the so-called equimolar dividing surface, which is
sure, not one but three simulations near the top of the barriefjafined as the surface for which the excess number of par-
one at the estimated top, and one at each side. The clust§[zjes at the surface is zero. The Tolman Ieﬁ@tﬂr iS USU-

size probability distribution functions of these three simula—a”y defined as the differencé between these two dividing
tions were fitted to a polynomial to get the relative free-g rfaces in the planar limit

energiedvia Eq.(7)] of the droplets in the vicinity of the top

of the barrier. From this we could then deduce the position of ~ 6r=_lim 6= lim (R.—Ry), (16)
the top of the barrier. Finally, to obtain the volume at the top Re:Rs— Re:Rs—

of the barrier, the value of the critical droplet size was in-whereR, is the radius of the equimolar dividing surface and
serted into the expression for the volume as a function oR; is the radius of the surface of tension.

droplet size, which was obtained by fitting the volume histo-  For any choice of the dividing surface, tl@ibbs free-
grams to a polynomial. energy of a droplet with radiug is given by?

AG*=—27R3Ap+47R2y(R), (17
whereAp is given by the generalized Laplace equation, i.e.,
Eq. (15). If we take for the dividing surface the surface of

The surface of a droplet in the vapor is not sharp. Rathertension, then Eq(17) reduces to
itis a tr_an5|t|0n Iaye_r of physical inhomogeneity in vv_h|_ch the AG* = %WRg'}’sv (18)
properties of the fluid change smoothly. However, it is con- )
venient to treat the actual droplet in the vapor as being uni®f. equivalently,

and, similarly, for the vapor phase,

from which we obtain for the variation of the barrier height
AG* with pressure

The height of the free-energy barrier at a pressuoan now
be obtained by taking the height of the barrier at the refe
ence pressur® ., as obtained by the umbrella-sampling
technique, and by integrating E€.3):

AG*(P)=AG*(Pref)+LP [V(n*)=V(0)]dP’. (14
ref

IV. TOLMAN LENGTH AND SURFACE OF TENSION

form up to an imaginary surface of zero thickness, the so- jg* =§7rApR§. (19)
called dividing surface, which separates the droplet from the )
(uniform) vapor. We have used the above equation, wkiE* and Ap ob-

The position of this dividing surface can be obtained viatained from the simulations, to compute the thermodynami-
a thermodynamic route and via a mechanical route. How¢al surface tension and surface of tension.
ever, both approaches are not equivalent. Below, we indicate
how we have computed both the thermodynamically and me-
chanically defined surface tensions and surfaces of tensior?’.‘
In Sec. VI E we show that the mechanical route cannot be The thermodynamic description of droplets is macro-
used to compute the height of the nucleation barrier. scopic in nature. In order to establish a link with molecular

Mechanical description
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properties, it would seem more natural to use a mechanicdar away from the drop the local pressure is equal to the
picture. This approach would allow one to relate the surfacevapor pressure, i.epn(r,)=ps(r,)=p,. Furthermore, if
tension and surface of tension of a droplet to microscopiave taker, at the center of the drop, i.e,,=0, then Eq(23)
guantities, such as the pressure tensor. However, the mean be subtracted from E(R4) to give

chanical and thermodynamic definitions are not equivalent.

As a result, the surface tension and dividing surface that are :i Mo lorm ooy

computed mechanically cannot be used to predict the height PI ~Po=gsa | {n[p™(r;R*)—pn(r)]

of the nucleation barrier. In fact, our simulations show that

the mechanical route may lead to unphysical results. Below +2[pn(r)—pr(r)1pr"~tdr. (25

we discuss the mechanical description. The actual value opy(r;) drops out of the above equation

By considering the force and moment acting on & hypoy,qyided thar, =0 andn+0. Under those conditions we are

thetical strip cutting the surface of the drop, Buff showedfree to choose our definition qf/ . However, forn=0 the
that is possible to obtain a mechanical definition of the SUr-hoice ofp! is no longer free Ir: that case \'/ve must taKe

face Fen§|0ﬁ9'31'49The positionRs , of the surface of ten- o4 5| 1o the normal component of the local pressure in the
sion is given by center of the droplet, i.ep, =pyn(0). Note that with this
choice forp/, we need not choosg=0 to arrive at Eq.
TSP (r;Rsm) —pr(r)]r2 dr (25). In the following, we therefore takp, to be the local
Rsm= JalPi(r;Rs m)— pr(r)]r dr (20 pressure in the center of the droplet. We stress that, except
' for very large droplets, this definition differs from the ther-
and the surface tensiorys ,,, acting on the surface of ten- modynamic one.

sion is given by Forn=2 Eq.(25) reduces to
L[ b=z | TR —pr(1)]r d (26)
-p,= r:R*)—p(r)]r dr.
Yom=5— fo [P1o(iRsm) = Pr(N)]r dr (21) PImPemRez [ P Pr
s,m
This relation is valid for any position of the dividing surface.
and also by If we position the dividing surface at ththermodynamic

surface of tension with radiugg, we obtain

1 o
Ysm— 52 [p v(r;Rs,m)_p (r)]rZ dr. (22 2 o
Rom Joie ' P —p, =z | TPu(riRY—pr(r)r dr. (27

In the above equationgy(r) is the tangential pressure and
p,, is a step function, such thap,(r;Rsm)=p, for r
<Rgm and p;,(r;Rsm)=p, for r>Ry . The subscripm
indicates that we consider the mechanical surface of tensio
There are two logical choices fqy, : the first is the one
introduced below Eq(15), namely the pressure of the bulk
liquid at the chemical potential of the vapor. The second is 1 (o

the actual, local pressure in the core of the droplet. For some Y=g f [p1,(r;Rs)—pr(r)]r dr. (28

of the relations that we will employ, we can choose either s J0

definition. However, as we indicate below, in some equationshijs equation has the same structure as (24). However,

the choice is not free—only the second definition can behis does not imply that the thermodynamic and mechanical

If the core of the droplet behaves as a bulk liquid, that is, if
the actual pressurg, in the droplet is equal to the pressure
& of a bulk liquid with a chemical potential that is equal to
at of the vapor phase, then we can combine the above
equation with the Laplace equation, Ed5), to arrive at

used. _ o - surface tensions and surfaces of tensions are equal. In fact,
From the hydrostatic equilibrium condition-p=0 we  Bjokhuis et al'® have shown that the positions of the sur-
obtair’® faces can differ significantly, and our simulations show that

in fact they do.
. . r, - It is possible to relateRs , and ys, to p/ —p, in an
FuPN(ry) =T pN(H):J [(N=2)pn(r)+2p(r)]r" = dr,  expression, which, to increase the confusion, looks like the
L 23) Laplace relation. We takR* = Rg ,, in Eq. (26) and combine
the resulting expression with EQR1), to arrive at
wherepy(r) is the normal component of the pressure tensor,
r, denotes a position far away from the drop in the vapor, ,  2%sm
andr, is a position in the drop. Integrating the step-function PI=Py= Rem
pi,(r;R*) yields '

(29

So also for the mechanically defined surface tension and sur-
face of tension, a Laplace-type relation is fulfilled. We can
r o . .
U lugr-p*yrn—1 Ay — N _ N/ o p*n now exploit this relation to expre$% ,, andyg ,, in terms of
r;R*)nr dr=r ri’p +R . X : ' :
fn PH(rRY) oPo TP (PI=Py) pn(r)—p, . from which we can compute the mechanically
(24 defined surface tension and surface of tension. We start by
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combining the above equation and E85) with n=3 and However, as the mechanical and thermodynamic pictures
with R* =R ,, and subtract the resulting expression fromcannot be mixed, the height of the barrier cannot be ex-

Eq. (22), to obtain pressed in terms of an integral of the pressure profile,
TU 0
[t iR = putr) 17 a0 @) AG* <27 [y -p, I dr @7
0
This equation can be combined with E@2) to yield Figure 5 illustrates the kind of errors that may result if the

mechanical and thermodynamic pictures are confused.
1 w 5 We stress that the distinction between mechanical and
Ysm= g7 fo [Pn(r)—pr(r)]redr. (31 thermodynamic expression for the surface tension should not
sm be confused with the ambiguity in the definition of the mi-
In Refs. 30 and 31 it is suggested that a similar expressiodroscopic stress tensor. Schofield and Hendéfdwave pro-
can be derived for the thermodynamically defined surfaceposed a general expression for the stress tensor. This expres-
tension by combining the expression following from Eq.sion reflects the freedom that we have in defining the
(25, with n=3 and R=Rg, and the generalized Laplace momentum flux density in a fluid. The commonly used
equation[Eq. (15)] with Eq. (22). However, in order to ar- Irving—Kirkwood pressure tenséf,and the Harasima pres-
rive at this result, one has to make the assumption that theure tensof#°1°3%* are special cases of the Schofield—
mechanical and thermodynamic descriptions are equivalentdenderson expression. Both from simulatihand from
We do not make the identification between the thermotheory?! these expressions are known to give the same sur-
dynamic and mechanical descriptions. Instead, we make usace tension for a planar interface, as the surface tension is
of the fact that for the mechanically defined surface of tentelated to the zeroth moment pf,(r) — p+(r). However, the
sion a Laplace-type relation also holds, and use the relationsosition of the mechanical surface of tension, which is re-
that follow from the hydrostatic equilibrium condition for lated to the first moment, is not insensitive to the choice of
this dividing surface. For instance, it is possible to obtainthe pressure tensor. The Irving—Kirkwood expression ap-
another expression for the mechanically defined surface terpears to be the most natural choice, as the contour joining
sion by combining Eq(29) with Eq. (25 for n=0 andR*  two interacting particles, which determines where the force
=Rgm is acting, corresponds to a straight line. Furthermore,
Blokhuis et al® showed that the Irving—Kirkwood pressure
* _ tensor, in contrast to the Harasima pressure tensor, leads to
Ysm= Rslmjo [pn(r) —pr(r)]r— dr. (32) expressions for the pressure difference, the surface tension,
and the Tolman length, that agree with expressions found
We can obtain the position of the mechanical surface of te”USing microscopic sum rules. We have therefore used the

sion by combining the above equation with Eg1) Irving—Kirkwood expression for the pressure tensor to com-
. 5 pute the pressure profiles.
s Jolpn(r)—p+(r)]redr (33

S folpn(r)—pr(r)Ir—tdr’ V. COMPUTATIONAL DETAILS
The above three equations can be rewritten using We have studied homogeneous gas—liquid nucleation in
a Lennard-Jones system in which the interaction potential

B r dpn(r) was truncated and shifted at a cutoff radiys- 2.50, where

pr(r)=pn(r)+ > dr B4 5is the particle diameter. We made no long-range correc-

tions and applied cubic periodic boundary conditions. In the
following, we use reduced units, such that the Lennard-Jones
well depthe is the unit of energy, while the Lennard-Jones
diametero is the unit of length.
Jm[pN(r)—pv]rz dr, (35) ' In most experﬁme;ntal studies of homoggngous nucle-
0 ation, the volume is fixed and nucleation of liquid droplets
from the vapor phase leads to a decrease of the vapor pres-
s 3 (" ) sure. However, as the concentration of nuclei is very small,
Ysm=g AP fo [Pn(r) —p,]re dr, (36)  the drop in vapor pressure is negligible and the pressure and
chemical potential effectively remain constant during the
whereAp=p/ —p,. We have used these equations to com-nucleation process. In principle, we could simulate the ex-
pute the mechanically defined surface tensions and surfac@erimental situation by performing AVT simulation. A
of tension. large excess number of vapor particles would then be needed
In the thermodynamicenodel, the height of the barrier is in order to keep the vapor pressure constant, which can be
given by Eq.(19). It is clear that if the mechanical and ther- achieved by simulating a very large system. However, this
modynamic descriptions were equivalent, combining Eqwould make the simulations unnecessarily expensive. It is
(19) with Eq. (35) would yield amicroscopicexpression for much more natural to work in th&lPT or in the uVT>®
the height of the barriefEq. (37), see Refs. 17 and 50 ensemble. In th&lIPTensemble, as the droplet is formed, the

which follows from the condition of hydrodynamic equilib-
rium, V- p=0. We then obtain

3
Rg,mZA_p
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0.4

in MD both the liquid and vapor particles move on the same
time scale. Therefore, in MD the fluctuations in the size of
the largest cluster, i.e., the order parameter, are limited by
0371 A | the influx of particles from the vapor.
Y The advantage of MC is that it is particularly suited for
| the umbrella-sampling scheme as, in contrast to MD, the
forces associated with the biasing potential do not have to be
calculated. Furthermore, one can perform tricks to facilitate
the sampling of configuration space. In order to speed up the
/ \ diffusion of particles in the vapor, the particles in the vapor
. phase are given a different maximum displacement from the
00, 5 10 15 20 particles in the liquid phase. Of course, this introduces a bias
number of neighbours per particle which needs to be corrected in order to satisfy detailed bal-
ance. This is described in Appendix B.

FIG. 1. Distributions of the number of neighbors per particle, denoted by We have tested both MD and MC by determining the
NCP, in a Lennard-Jones system for a thermally equilibrated liquid and

vapor, at coexistencel=0.741,P=0.007 83). Two particles are consid- dlff!JSIOh constant” of the order paramEter at the top of the

ered to be neighbors if they are separated by a distance less|then5. barrier. It was found that per MD timestep or per MC cycle
(in which, on average, every patrticle is given one trial dis-
placement

fraction
o
N

0.1 +

volume is adjusted such that the press(aed the chemical >
potentia) in the vapor will remain constant. In this ensemble /(A” >MC%7—8 (39)
it is therefore not necessary to simulate a large number of (An?) o '

vapor part_lcles_. The same. hOId_S for theV'T ensemble. However, the number of cycles performed per unit of CPU
However, in this approach insertions and removals of par;

. . . .~ . P time was three times higher for MD, so that the effective
ticles fror_n the system are requ|req,. which can be Ir]emC'enhiffusion constant for MC was about two to three times that
or even impossible at high densities. We have chosen t8f MD. We did use MD to speed up the equilibration, but
work in the NPT ensemble. i '

. . . _ most of the actual simulations were performed using MC
In our simulations, we need an operational definition of

Lo . . o sampling.
liquid-like (.:IlIJSterhS' V;]/e do tlr."S %yl_rEaklng a d'Stm(i.tLon bef In the umbrella-sampling scheme, the system should
tween partl'c €s t'at ave a fiquid-ike and a vapor-like enV"sample configuration space according to the potential
ronment. Liquid-like particles are particles that experience a
local density that is significantly higher than that of the va- NN N N
por. There ?/s no uniqSe definit)ilon gof the local density sur- Ui(r)=Uo(r) + Wn(rH], (39
rounding a particle. In the following, we use the number ofwhereU(r") is the potential of the original model system
particles within a spherical shell of radigs as a measure of andW[n(rV)] is the biasing potential as defined in E§).
the local density. The distribution functions of the number ofin principle, we could recompute the size of the largest clus-
neighbors per particle in the liquid and in the vapor areter and the biasing potential after every MD or MC cycle, or
shown in Fig. 1. Note that the distribution functions hardly even after every particle displacement in the MC simula-
overlap. We have therefore adopted the criterion that all partions. However, this would be far too time consuming. We
ticles which have more than four neighbors are considered ttherefore adopted a staged scheme. In the first stage, a series
be liquid-like. of MD or MC cycles is performed without the biasing po-
After we have identified which particles in the systemtential. In the second stage, after the unbiased trajectory, the
are liquid-like, we can determine the liquid-like clusters. Wesize of the cluster and the biasing potential are recalculated.
have applied the criterion that any two liquid-like particles To ensure that configuration space will be sampled in accor-
which have a distance less thgg= 1.5 (which corresponds dance with the potential in Eq39), the trajectory is then
to the first minimum in the radial distribution function of the accepted with a probability which is determined by
liquid) belong to the same liquid cluster. Note that our defi-exd —BAWN(rN)]], whereAW[n(rV)] is the difference in
nition of a cluster is close to the one used by Stillindfdbut  biasing potential before and after the trajectory.
not quite equivalent. Stillinger adopted the criterion taay In the MC simulations, each trial move consisted either
two particles that are within a certain cutoff distance belongof an attempted particle displacement or a trial volume
to the same cluster. So even particles that, in our definitiomhange. The choice between trial particle moves and trial
are considered to be vapor particles, can be part of a liquigtolume moves was made at random. As we used a fixed
cluster according to Stillinger’s criterion. cutoff in real coordinates for the intermolecular interactions,
The nucleation barrier can be measured both by MC anthe potential energy did not scale with a volume move, and
MD. The advantage of MD is that it gives faster equilibrationwe had to recalculate the total potential energy from scratch
of pressure gradients through collective particle motionsafter every trial volume move. Therefore, an MC cycle con-
However, with MD the diffusion of the system through the sisted on average of only one trial volume move and one trial
order-parameter window in the umbrella-sampling simula-displacement per particle. The acceptance ratio for both
tions is rather slow. The density in the vapor is very low andtypes of MC moves was kept at 50% by adjusting the maxi-
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mum size of the move. The maximum displacements for the 60.0 - ; :
liquid and vapor particles were tuned independently. - T~
The length of the trajectories depends on the computa- 50.0 /-”“
tional cost of evaluating the order parameter and the average 100 |
probability with which the trajectories are accepted. To be  _ ™ &
more precise, the efficienayis proportional to % 300 -
P_(0) S
ac 200 r,
" atbil o ¢
10.0 §
Here,| is the length of the trajectories aachndb denote the
computational costs of performing an MD/MC cycle and a 0.0

0 100 200 300 400

cluster analysis, respectivel.{|) is the acceptance prob- n

ability of the trajectories, which depends on the trajectory
length and on the force constant of the biasing poteliéial FIG. 2. The Gibbs free-energy barrier as a function of the size of a cluster,
well as on the steepness of the underlying free-energy baflenoted byn, at a supersaturation &= 1.53 (T=0.741,P=0.012 02).

rier). Typically, for k,=0.01-0.02, a trajectory length of 50

MC cycles was optimal. To speed up the simulations, we

Used bOth a I|nked ||St and a neighbor ||St fOI‘ the CaICUIation In our simulations we are able to Study not on|y critical

of the energies and the identification of the CIUS?@I‘S. dropletS, but also pre- and postcritical dropletsl Visual in-
The number of umbrella windows for the free-energy spection revealed that precritical droplets consisting of only
barrier was 15. A typical simulation in a window consisted 10_25 particles are already quite spherical. We therefore
of an equilibration period of 100 000—-250 000 MD steps,computed the density as a function fthe distance to the
followed by a production run of 250 000 MC cycles. The center-of-mass of the cluster. Figure 3 shows the radial den-
individual probability distribution functiond®(n) obtained  sjty profiles for several precritical and critical clusters. For
in the different runs were fitted simultaneously to a polyno-the smallest droplets, the density already approaches a bulk
mial. We used a polynomial fit rather than the self-consistenfiquid density in the core. We stress that this is not due to our
scheme of Ferrenberg and Swendebecause not all adja- choice of the cluster definition, which requires that a cluster
cent histograms overlapped. particle should have at least five neighbors. A radial profile
of the number of connections per particle shows that, in the
core of the liquid droplet, the number of connections per
VI. RESULTS AND DISCUSSION particle is much larger than the threshold value of our cluster
definition. In fact, it also approaches a bulk liquid value, i.e.,

We studied the nucleation of liquid droplets from the ».,,nq 12 neighbors per particle. Hence, our results are not
vapor as a function of supersaturation. All simulations wereVery sensitive to the choice of the threshold value

performed for one temperature;= 0'7415'8WhiCh_ is 32% be- Figure 3 also shows that the density in the core hardly
low the critical temperatureT=1.085) ™ At this tempera-  j, reases when the cluster grows to its critical sive

ture, the pressure and densities of the coexisting phases ar&,gq F(rthermore, the density profiles show that the width
known>® Furthermore, in order to make a comparison with

nucleation theories, we have to know the surface tension.
The temperature of our simulations is in the range of tem-
peratures for which Chapett al>® and, more recently, Hol-
comb et al® computed surface tensions for planar gas—
liquid interfaces.

The number of particles wads=864. As the size of the
largest critical nucleus obtained in the simulations is around
300 particles, corresponding to the smallest degree of super-
saturation, and, more importantly, the density in the sur-
rounding vapor is very low, with this number of particles the
size of the simulation box was always large enough com-
pared to the size of the critical droplets for system-size ef-
fects not to be present.

p(r)

A. The nucleation barrier

We first computed the full nucleation barrier with the
umbrella-sampling technique for a reference pressure. ThiBIG. 3. Density as a function of the distance to the center-of-mass of the
reference pressure was chosen td?e0.012 02, which cor- clusters, for several precritical and critical nuclei at a supersaturati@® of
; _ ; =1.53 (T=0.741,P=0.012 02). The thin horizontal dashed line denotes
responds to a supersatur_anﬁq: P“.Dcoex 1.53. Figure 2 the density in the vapor, and the thin horizontal solid line denotes the den-
shows the nucleation barrier for this degree of supersaturagy in the bulk liquid, which has a chemical potential equal to that of the

tion. vapor phase.
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FIG. 4. Radial profiles of the normal component of the pressure ensofg 5 The height of the nucleation barrier as a function of supersaturation
pn(r), for several precritical and critical nuclei at a supersaturatiois of Sfor T=0.741. The solid line is obtained via a thermodynamic integration

=1.53 (T=0.741,P=0.012 02). The thin horizontal dashed line denotes \opniq e, see Eq14). The dashed line is obtained by integrating the pres-
the pressure in the bulk vapor, and the thin horizontal solid line denotes th’éure profile, see Eq37). It is seen that the mechanical route to the nucle-

pressure in the bulk liquid, which has a chemical potential equal to that obyion harrier(dashed lingdoes not give the correct height of the free-energy
the vapor phase. barrier.

) . . . B. Dependence on supersaturation

of the interface remains essentially constant at approximately
3.50. Using the method described in Sec. Ill B, we computed

Using the Irving—Kirkwood expression for the pressurethe height of the nucleation barrier as a function of super-
tensor>? we also computed the pressure profiles for the presaturation. Figure 5 shows the free-energy barrier as a func-
critical and critical nuclei. In Fig. 4, we show the radial tion of supersaturation. We could not continue our simula-
profiles of the normal component of the pressure tensor. It i§ons beyondS=2.2, because at this point the height of the
seen that all pressure profiles smoothly go to a bulk vapoParrier is so low that spontaneous nucleation of additional
value for large values df, i.e., far away from the center of droplets occurs in the vapor. But, before we discuss the
the droplet. In the center of the droplet, the statistical accubeight of the nucleation barrier as a function of supersatura-
racy with which the pressure can be determined is low, as thdon in more detail, let us first describe qualitatively how the
volume is small. Nevertheless, the data suggests that, excegﬂ'tical nucleus changes as the supersaturation is increased.
for the smallest droplets, the pressure profiles approach a In Figs. 6 and 7 we show, respectively, the density and
plateau value in the core. In fact, the pressure in the core, dyessure profiles for three critical nucleus sizes. In the leg-
well as the densitysee Fig. 3 approaches that of a hypo- ends, we have also indicated the excess number of particles
thetical bulk liquid at a chemical potential that is equal to thedefined as
chemical potential in the vapor phase. This indicates that the
interior of the droplets shows bulk liquid-like behavior. An=4me[p(r)—pv]r2 dr, (41)

From the normal component of the pressure tensor we 0
can also obtain the transverse component of the pressure ten-
sor using Eq(34). This equation shows that, when the de-

rivative of the normal component of the pressure tensor with 1.0 .

respect to the radius is positive, the transverse component is —— 5-1.53; An'=317
larger than the normal component of the pressure tensor. i $=1.79; An'=179
Under these conditions the surface would be under compres- ~ p~o. ™~—_~_ 7 5=2.04; An =59

sion, rather than under tension. When the normal component
is larger than the transverse component, the surface is under
tension.

Figure 4 shows that most of the surface of the droplets is
under tension. However, at the vapor side of the interface the
normal pressure becomes smaller than the vapor pressure. As
the profile subsequently approaches the bulk vapor value, it
is clear that there is a small region in which the derivative of © 00
the normal-pressure profile is positive. In this region the in-
terface is under compression, rather than under tension. This
behavior is also found in theoretical calculations, for differ- FIG. 6. Radial density profiles for different critical nuclei, at different su-

; 1-63 ; i : persaturation$ (T=0.741). In the legends, the excess number of particles,
ent pmentlalé’ as well asin a computer simulation StUdy An*, is also indicated. The thin horizontal lines indicate, for the different

. . 24 .
O_f |IC]UIq droplets by '_I'hompsoet al,”* and 'ns:lfhe COmMpUter  gypersaturations, the density in the bulk liquid that has the same chemical
simulations of a flat interface by Waltaet al. potential as the vapor phase.

1.0 6.0
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0.4 - ecules of a given component in the critical nucleus can be
""""""""""" —— §=1.53; An =317 obtained from the variation of the height of the barrier with
0.3 = 8=1.79; An =179 the chemical potential, ;, of that component in the vapor
----- 5=2.04; An'=59 ) *
phase:
02 -
g IAG*
< ——An?, (42)
01 a#l),i
0.0 whereAn;* is defined as in Eq41) above.
As nucleation is a rare event, it is impossible to measure
01 , the size and composition of critical nuclei directly in an ex-
1.0 6.0 periment. However, if one assumes that the prefactor in the
r expression for the nucleation rate depends only weakly on

FIG. 7. Radial profiles of the normal component of the pressure tensor foBUpersaturation, the nucleation theorem makes it possible to
critical nuclei, at different supersaturatioB{T=0.741). The excess num- determine the size and composition of the critical nuclei as a

ber of particlesAn* is also given. The thin horizontal lines indicate, for the fynction of the activities of the components in the vapor
different supersaturations, the pressure in the bulk liquid that has the Sa"ﬁhase

chemical potential as the vapor phase. o .
Several derivations of the nucleation theorem have been

presented in the literature. The original derivation by
where Po is the density in the Vapoﬁar away from the Kashchieé and a later one by Viisanest al.g were based on

dropled. Because of the diffuse nature of the interface, the2 thermodynamic model in which the reversible work of for-
size of the critical nucleus is ambiguous and depends on th@ation of a cluster is written as the sum of a bulk term and
position of the dividing surface. However, the excess numbefn excess free-energy term, which includes contributions
of particles is independent of the position of the dividing from the surface free-energy. The nucleation theorem was
surface and is therefore a more meaningfl_” quantity_ obtained by aSSUming that the variation of the excess free-
Figures 6 and 7 show that as the supersaturation is irenergy of the cluster depends only weakly on the chemical
creased, the density and pressure in the core slowly decreag®tential. However, in the approach of Refs. 5 and 9, the
This indicates that the droplet already starts to lose bullvariation of the barrier height with the gas phase activities
behavior in the core. If the core of the droplet showed bulkyields the total number of particles in the cluster, and not the
liquid behavior, then, in order for the chemical potential in €xcess number of particles in the cluster. Also, an analysis
the bulk liquid core to be equal to the chemical potential inbased on classical nucleation theory by Stewl® suggests
the vapor, the density and pressure in the core of the drop|éhat, from the variation of the hE|ght of the barrier with the
would have to increase when the pressure in the vapor inchemical potential in the vapor phase, the total number of
creased. Indeed, this behavior has been observed by Thomparticles, rather than the excess number of particles, is ob-
sonet al24 and Nijmeijeret al2® in their simulations of lig- tained. However, Oxtoby and Kashchiéwho also used a
uid droplets. However, the droplets for which this behaviorthermodynamic approach, showed that the variation of the
was seen were much |argéarger than 2000 partic|¢$han surface free-energy with the chemical potential in the vapor
the droplets studied here. In fact, in the simulations ofPhase is related to the surface density of the molecules, and
Thompsoret al.,>* a clear crossover in behavior was seen forthat the nucleation theorem gives the excess number of par-
smaller droplets. In line with the present results, they foundicles and not the total number of particles in the critical
that once the drop|ets are smaller than a certain size, tf@uster. All these derivations are based on thermOdynamiC
density and pressure in the core of the droplets decrease wifAodels. It is conceivable that such an approach fails for very
increasing vapor pressure. This loss of bulk behavior is als§mall droplets. However, Fofdgave a derivation, using
found in several molecular theorid&s1-63 small system thermodynamics, which confirmed that the ex-
Figures 6 and 7 suggest that the width of the interfac&e€ss number of particles in the cluster is obtained from the
remains constant over the range of droplet sizes studiegariation of the height of the barrier with the gas phase ac-
Note that when the droplets become smaller, the region fofivities. Moreover, the same result was obtained from a sta-
which the normal pressure is smaller than the vapor pressufistical mechanical analysis by Viisanen, Strey and R&lss.
increases. Moreover, the region for whiph>py increases Appendix C, we give a compact derivation which is also
as well; that is, the interface is progressively under mordased on statistical mechanics. Furthermore, this derivation
compression. In fact, for the smallest droplets studied, mosdlso shows that the variation of the height of the Gibbs free-

of the interface is under compression rather than tensiorgnergy barrier with the pressure is related to the excess vol-
This trend has also been observed by Fetlsl®* ume of the system at the top of the barrier, and that the

variation of the barrier heightboth in the grand-canonical

and in the isothermal—isobaric ensemhigth T and 3 gives

the excess entropy and excess internal energy, respectively.
The nucleation theorem is a powerful tool to analyze In our simulations, we compute the barrier height as a

experimental data on homogeneous nucleatfbri’® The  function of pressure. However, for comparison with the

nucleation theorem states that the excess number of mohucleation theorem, we need to know the variation of the

C. The nucleation theorem
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400 3277'}/3
G—=o Nucleation theorem n* = 352A 43’ (43
& ——0 density profile praf
800 ¢ where vy, is the surface free-energy of the planar interface
andp, is the density of the bulk liquid at coexisteneu is
*s 200 the difference between the chemical potentiglin the va-
< por phase and the chemical potentigl in the bulk liquid
phase, both at the pressuPan the vapor phase, i.e.,
100
Ap(P)=p,(P) = m(P). (44)
0 ; s In classical nucleation theory, the height of the nucleation
1.50 1.75 P 2.00 2.25 barrier is given by
FIG. 8. The excess number of particlAn* in the critical nuclei as a 1677-%30
function of the supersaturatid®(T=0.741), as obtained from the variation AG*=-——. (45)
of the height of the barrier with the chemical potential in the vapor phase, 3P| AM
and as obtained by integrating the density profiles. According to the nucle-
ation theorem they should give the same results. As the cube of the surface free-energy enters the expres-

sions for the height of the barrier and for the critical nucleus

size, we need an accurate estimate for the surface free-

energy. Chapelat al®® and Holcombet al®® have calcu-
barrier height with the chemical potential of the vapor phasejated surface free-energies for a Lennard-Jones system with
The variation of the chemical potential with pressure is giventhe same potential cutoff used in our simulations, and for a
by the Gibbs—Duhem relatiodu/dP|T=1/p, , wherep, is  range of temperatures that encompasses our temperature. In
the density in the vapor. In Fig. 8 we show the excess numorder to obtain the surface free-energy at our temperature, we
ber of particles in the cluster obtained via the nucleatiormade a polynomial fit to their data and foumd=0.494.
theorem and by directly integrating the density profiles. Itis  The chemical-potential differendiew(P) was computed
seen that for all droplets sizes studied the agreement is ey integrating the difference in the inverse density between

cellent. This indicates that the method to measure the heiglibe liquid and vapor phase from the coexistence presSure:
of the barrier as a function of supersaturation described in

Sec. Il B is not only efficient, but also very accurate.
P’ (46)

l 1 1 d
Peoed Po(P")  pi(P")
Here, Poex IS the coexisting pressure apg and p, are the
densities of the bulk vapor and bulk liquid phase, respec-
Recent experiments on gas-liquid nucleation indicateively. As the chemical potential of the vapor phase depends
that the sizes of the critical nuclei are accurately predicted byery strongly on pressure, the difference in chemical poten-
classical nucleation theoRy:*®*However, the rate of nucle- tial is very sensitive to the exact location of the coexistence
ation was found to be consistently higher than that predictegoint. We found that the data of Srifitwas not accurate
by classical nucleation theory. In fact, it was observed thatnough for our purpose, and we therefore performed a more
the ratio of the experimentally determined nucleation rateextensive Gibbs ensemble simulafidto calculate the coex-
and the nucleation rate as predicted by CNT, although deistence point. We found that the coexistence pres®yg,
pending on temperature, was nearly independent of the-0.007 83, and that the density of the liquid at coexistence
supersaturatioff In two recent papers, McGraw and Laak- p=0.766.
sonen derived relations for the height of the barrier and the  Figure 9 shows the number of particles in the critical
size of the critical nucleus that could provide an explanatiomucleus as a function of Ajx?. In the figure, we compare
for these observatiort$:*8In their first papet,’ they gave a  the predictions of CNT and the numerical resultsrigr, the
derivation which was based on the nucleation theorem. In thaumber of particles within the equimolar dividing surface:
second paper, they gave a derivation which was based on the
nonuniform spherical droplet mod®.They showed that if 47p(0)
the nucleus has an incompressible core with a density equal Ne = 2(0)—p, f [p(r)—p,]r*dr. (47)
to that of the bulk phase and the number of particles within v
the equimolar dividing surface is correctly predicted byHere,p, is the density in the vapor, and0) is the density in
CNT, then the difference between the actual barrier heighthe core of the droplet. The statistical errorgf®), the den-
and the height of the barrier as predicted by CNT is indepensity in the core, is relatively large. However, as<p(0),
dent of the supersaturation and depends only on temperaturthis inaccuracy has little effect on the valuergf. For the
Using the techniques discussed in Sec. Il B, we are able teame reasom} is nearly equal to the better defined quantity

auP)= [

D. Deviations from classical nucleation theory

test these predictions directly. An*, which is shown in Fig. 9. But more importantly, it is
In classical nucleation theory, the size of the criticalseen that, for all droplet sizes studied, CNT gives a good
droplet is given by estimate for the number of particles in the critical cluster.
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FIG. 9. The number of particles in the critical nuclei as a function afudd, FIG. 11. The thermodynamically defined surface tensjgrand the me-

as predicted by classical nucleation theory and as obtained from the simghanically defined surface tension , (acting at the respective surface of
lations. The number of particles predicted by classical nucleation theory igensiong, as well as the surface tension at the equimolar dividing surface,
indicated bynZ,;, and the number of particles within the equimolar divid- denoted byy., as a function of the excess number of particles in the critical

ing surface, as obtained from the simulations, is indicated’py For com- ~ nuclei.

parison, we have also shown the excess number of particles, denoted by

An*, as obtained from the simulations. According to the relations proposed

by McGraw and LaaksonefRefs. 17, 18 n? is given by classical nucle- that the relations proposed in Refs. 17 and 18 are quite ro-

ation theory (igyy)- bust. If we have the right theoretical tools to predict the
offset, a better agreement between experiment end
tended CNT can be obtaine.

Surprisingly, the predictions of CNT are excellent down to McGraw and Laaksonéhshowed that, within their non-

the smallest droplets, which consist almost exclusively ofyniform droplet model, the offséd(T) is related to the ri-

interface. gidity coefficientks:
In Fig. 10, we show that the simulation results support
the McGraw—Laaksonen predictions for the height of the AGEN— AG* =D(T)=— 47k, (48

barrier: the barrier height found in the simulations differs by - _ _
a constant offset from the value predicted by CNT. ThisWhere ks/R” is the elastic curvature free-energy per unit
result appears to hold even for critical nuclei consisting of2"€8 From our simulations we estimatés=—0.31e

only 50100 particles. Again, this finding is surprising be- = —0-4sT. This is smaller than the value that McGraw
cause, as discussed in Sec. VI B, the cores of these nuclei @d Laaksonen obtained in their density functional
not show bulk behavior. In fact, McGraw and |_aaksonencalcuIatlonsl.8 However, the discrepancy could well be due

gave two derivations of their expressions for the height o0 the fact that we used a truncated Lennard-Jones potential,

the nucleation barrier and for the critical nucleus size: ongVhereas in the density functional calculations, the full
made use of the assumption that the nucleus had an incorh€nnard-Jones potential was used.
pressible coré® the other did not’ Our simulations suggest
E. Tolman length
We computed the thermodynamically defined surface
80 ' ' ' ' tension and surface of tension using E(8) and (19). As
explained in Sec. IVAAp is the difference between the
pressure in the vapor and the pressure in a hypothetical bulk
liquid with a chemical potential equal to that of the vapor
phase. We therefore performed a series of simulations of the
1 bulk liquid to obtain the chemical potential of the liquid as a
function of P. In Figs. 11 and 12, we show the thermody-
namic surface tension and the location of the surface of ten-
] sion, respectively. For small droplets, the surface tension in-
creases rapidly with droplet size, and then smoothly
0 . . . . approaches its planar limit. Such behavior has also been
4 6 8 10 12 14 found in theoretical studie$:1-%2
1/8p° For the sake of comparison, we have also calculated the
mechanical surface tension and surface of tension using Egs.
FIG. 10. The height of the barrier as predicted by classical nucleation theory35) and (36). The results are shown in Figs. 11 and 12,
and as obtained from the simulations, as a function af#. The relations respectively. The figures show that both the surface tension

proposed by McGraw and Laaksong@efs. 17, 18predict a constant offset ; ;
between the actual barrier height and the height of the barrier as predicte%nd the surface of .tenS|on become negat.lve for clusters
by classical nucleation theory. The dashed curve is a guide to the eye; it hasnaller than 100 particles. The reason for this can be under-

the same slope as the curve of the classical nucleation theory prediction. stood from Fig. 7. As can be seen from this figure, small
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FIG. 12. The radii of the equimolar dividing surfad®,, of the thermody-  FIG. 13. The differencé=R.— R, between the equimolar dividing surface
namically defined surface of tensioRg and of the mechanically defined and the surface of tension as a function of the excess number of particles,
surface of tensionRs ,, as a function of the excess number of particles in An* ~3, in the critical nuclei. The solid curve is a fit of the data to a
the critical nuclei. function of the form f(An* ~¥¥)=c,;An* Y3+ c,An* ~?2 This corre-
sponds to zero spontaneous curvature for the planar interface and to a Tol-
man lengthd;=lim, .« -13_,¢ 6=0.0, as(implicitly) assumed in the nonuni-
form droplet model of McGraw and LaaksonéRef. 18. Clearly, our
droplets have a progressively larger region where the presimulations do not rule out this possibiliy.
sure is lower than the vapor pressure. As discussed in Sec.
VI B, this implies that the surface of small droplets is in-
creasingly under compression. For clusters smaller than 100 3
particles, compression dominates and the integral in Egs. Rg:m f [p(r)=p,]r?dr. (50
(35 and(36) becomes negative. For a cluster size of about v
100, the integral in Eqs(35) and (36) vanishes, and both The thermodynamically defined surface of tension is the sur-
Re.m and ys m Cross zero. face for which the surface tension is at its minimdhit
Figure 12 also shows that the mechanically defined surbence,ys should be smaller thaw, . For the larger droplet
face of tension and thermodynamically defined surface ofizes, the(Tolman length 6=R.—Rs becomes small com-
tension are shifted with respect to one another. If we ignordared to the radius of the droplet. In that limit, we should
the smallest droplets for which the radius of the mechanicagxpect the surface tensions to approach each other, as the
surface tension becomes negative, the displacement is fouridirface tension varies quadratically wih- R, .*>**We find
to be constant over the range of droplet sizes studied, anffat e andys are equal to within the accuracy of our simu-
equals approximately &. It is thus clear that the two sur- lations.
faces cannot be identified with each other. This was first In Fig. 13, we have plotted as a function of the size of
pointed out by Blokhuis and Bedeatkand later also found the droplets. It is seen thatis a strong function of the size
by Haye and Brui?’P in their Computer simulation Study of a of the droplet. In faCt, our results are in fair agreement with
planar interface. Haye and Brifhobserved the displace- the density functional calculations of Talanquer and
ment to be strongly depending on temperature, butTor OXtoby>> We can obtain the Tolman length by fittinito a
=0.75, which is quite close to the temperature of the preserffolynomial and extrapolating the result to the planar limit.
simulations, they also found a displacement close dgile., ~ We find thatdy is zero to within the accuracy of our simu-
0.92 0. lations (—0.2< 87<0.8). Haye and Bruiff have computed
Figure 11 shows that not only the position of the surfacethe Tolman length for a range of temperatures by molecular
of tension is different for the two definitions, but also the dynamics simulations. Within the error bars, the Tolman
magnitude of the surface tension. In the planar limit the surlength was found to be independent of temperature and equal
face tensions should become eqtfal* but for smaller drop-  to 6t=0.16+0.04, which is compatible with the earlier nu-
lets the difference becomes quite significant. In Fig. 11, wenerical calculations by Nijmeijeet al,?® who found that
also show the surface tension at the equimolar dividing surkér|<0.7 for T=0.9. Recently, Kalikmanov formulated a
face. McGraw and Laaksonthshowed that within their Semiphenomenological cluster theory of the Tolman length
nonuniform droplet model, the surface tension at the equimobased on the Fisher cluster model of condens&tioom-
lar dividing surface can be obtained from the offset betwee®ined with a Tolman-like ansatz for the microscopic surface
the actual barrier height and the height of the barrier as pretension of a clustet’ Kalikmanov performed calculations for

dicted by CNT: a variety of nonpolar substanc®swhich show that, not too
close to the critical temperaturg(T—T.)/T¢>0.1), the
AGENT—AG=4WR§( Yom Vo) (49) Tolman length is positive and about 0s2 Considering the

small droplet sizes that we have studied, our results are in
Here, vy, is the surface tension at the equimolar dividing fair agreement with the previous results.
surface andR; is the radius of the equimolar dividing sur- The Helfrich expression for the surface free-energy in
face, which is given by powers of the inverse radius of curvaturis
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1\2 For the range of droplet sizes studied here, we find a
R—e> . (5D significant discrepancy between the thermodynamic and me-
chanical descriptions of the surface tension. Of course, one
Here, Cy is the spontaneous curvatulejs the bending ri-  could argue that the thermodynamic description should fail
gidity associated with the principal curvature, akds the  for very small droplets. But even for larger droplets, which
bending rigidity constant associated with Gaussian curvaturelo show bulk liquid behavior in the core, we find that the
From the above expression it can be derived that the Tolmarespective surfaces of tension cannot be identified with each
length is given b§79 other, and that the surface tensions that follow from the dif-
ferent definitions are different. This implies that the height of
the nucleation barrier cannot be obtained from €&q). The
failure of this equation is clearly illustrated by Fig. 5. The
discrepancy between the free-energy barriers obtained by the
thermodynamic and mechanical approaches is quite large,
around 10-4RsT. In fact, as this figure shows, the mechani-
K cal route leads to an estimate for the height of the barrier that
Y(Re)= Voot =3 (53  even becomes negative—this is due to the fact that the inte-
Re gral of the pressure profile in E¢437) becomes negative.

A comparison of the above equations shows that in thd1€nce, at present, there seems to be no “cheap” numerical
model of McGraw and Laaksonen, it is implicitly assumed@/térnative to the direclumbrella-sampling approach to
thatkC,, and hence the Tolman length is zero. Our simula-COMPUte nucleation barriers.
tions suggest that, for the Lennard-Jones system, this is a
reasonable assumption.

Comparing Eqs(51) and (53) shows thatks=2k+k. =~ ACKNOWLEDGMENTS
We stress thaktg can be negative. The condition that must be
fulfilled is that y(R,) is positive. If y was not positive, it
would be energetically favorable for a cluster to break u

1 _
¥(Re)= 7.+ 2kCo &=+ (2k+K)
e

kC
Sr=——2

Voo
In the model of McGraw and Laakson&hthe surface free-
energy is given by

(52
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order, and the relation of McGraw and Laaksonen, break

down if y(R;) becomes negative. Then, higher-order terms
in the expansion of the surface free-energy in the inverse )
radii have to be taken into account. However, in the presen%PpENDlX A: CLUSTER SIZE DISTRIBUTION

case this only occurs for droplets containing fewer than five  consider a system in a volumg at temperaturd and
to ten particles. at constant chemical potential(i.e., a system in the grand—
canonical ensembleThe partition function is given by

VII. CONCLUSIONS *

o _ E(p V.= 2 exp(BuN)QN,V.T), (A1)
In our simulations, we have studied the structure and N=0

thermodynamics of th&re) critical nuclei that play a role in whereN is the number of particlesg=1/kgT is the recipro-

the homogeneous nucleation of the liquid phase from the temperatureks is Boltzmann's constant, an@(N,V, T)
vapor. We found that the dependence of the size of the critiis the canonical partition function:

cal nucleus on the degree of supersaturation is in excellent
agreement with the nucleation theorem. Furthermore, our 1
simulations show that liquid-like clusters larger than 200  Q(N,V,T)=——x— fdrN exd —BU(rM)]. (A2)

X L ; A°NNI
particles show bulk behavior in the core. That is, the pressure
and the density in the core of the droplets are those of a bulklere,U(r") is the potential energy of the configuration with
fluid with a chemical potential equal to that of the vaporthe coordinates", and A=h/\27mkgT is the thermal De
phase. However, smaller droplets start to lose this bulk beBroglie wavelength.
havior. Nevertheless, the critical-nucleus sizes are still cor- Now we will assume that we have a criterion that en-
rectly predicted by classical nucleation theory. The simulaables us to define which particles make up a liquid cluster.
tion results for the height of the nucleation barrier differ by aThe total number of particles in a liquid-like environment
constant amount from the prediction of classical nucleatiorwill be denoted byN,, and the remaining particles in the
theory, not only for large droplets, but even for quite smallvapor will be denoted by, ; hence,N=N,+N,. Clearly,
droplets. This constant offset can be accounted for by assunthe potential energyJ depends onr™e and r™i, i.e., U
ing that the surface tension depends quadratically or=U(rNi;r™y), and we rewrite the grand—canonical partition
1/R.1718 function as
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o * otherwise. It should be stressed that we do not assume that
E(w,V,T)= > exp(BuN)) > exp(BuN,) there is only a single liquid-like cluster in the system. Hence,
Ni=0 N, =0 we have to consider later the number of ways in which we
1 1 can distributeN, particles over the total number of liquid
X AN T AN clusters. In fact,77" contains products of single-cluster
v " weight functions. If we label the clusters by their sizand
. by j,=1,...N,, whereN,, is the number of clusters of size
X f drNUJ drf 77 (rMir™) it cann be wri?ten as "
xexg —BU(rM;r)], (A3)
G = X n
where we have used the fact that there BHé(N;!N,!) 7/NI 2 1;1 j:rl]'_:'[l Wi, (f ),

ways to selecN, liquid-like andN, vapor-like particles from
a total number olN,+N, particles. In the above equation, WhereZ indicates that we consider all cluster distributions

we have introduced a weight functio#r” which is defined andw; equals one if its arguments satisfy the criterion for a
such that it equals one when the number of particles that isingle j,-particle cluster, and zero otherwise. With these
liguid-like according to our definition equald,, and zero definitions, we can rewrite EGA3) as

*° 1 Nmax

E(pVI=2 > - X ,—H (exp(Bn)n®[A%™n1])Nn
N1=0 N,=0 =0 NiINy!

N“m

X E exp(BuN,) AN T f dI’NUH [f dr'nt
N,=0 v* n

f]'m[ H dRj w; (R; ,r'"Hr')exd — BU(R;r™)]. (A4)

n=1j,=1

o

Here, R]-n denotes the center-of-masses of the clusters and * * 1
the primes indicate that the coordinates are taken with re- E(u,V,T)= E: ZO "'N 2:0 W
spect to the center-of-mass of the cluster. Note that we have N2 Mmax lmax
not split the potential energy function yet. The product Nmax
I 1'[J "_,w;_containslT,N, distinct cluster functions, . In x [T (exp(Bun)n3[A3"n1])Nn
n=1
this equation, we have somewhat arbitrarily introduced a
maximum cluster Siz@,ay. ”max Np - Mmax N
. " . . 1
For any given configuration of clusters, we can define a f dr'™” Hl JHl dR
potential of mean forc&V(rVi; u) as "
XeXd—BW(rN';M)]- (AB)

_ N
ex — AW w)] The potential of mean force depends on the interactions

o

1 between particles of the same cluster and on the interactions
ENZO exp(BuN,) T3 T NI between particles of different clusters. In gas—liquid nucle-
ation, the density of liquid clusters is usually so low that the

Nmax Nn interactions between them can be neglected. However, at this

J dr UnHl 1H1 w; (R ,r'™ L No) stage we will not yet ignore these, but assume that the inter-

cluster interaction energy is pair-wise additive and only de-
X exg — BU(rMN:rNo)]. (A5) pends on the positions of the center-of-mass of the clusters.
The interaction energW(ri; x) can then be written as

All possible configurations of the vapor particles will con- Ny
. N . . . .
Frlbute t_oV\((r I,w). Itis the average p.otentlall the pgrtlcles W(rN; ) = Wo+2 2 W, (r™in: )
in the liquid clusters feel due to all interactions with the N jn=
“solvent” particles. With the above definition for the poten-
tial of mean force, the grand-canonical partition function can + = 5 2 2 Wi (Ryj R j ). (A7)
be rewritten as n,n’ Jnsdn
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The constanW, is a measure for the grand potential in the absence of clusterdenotes the intracluster interaction energy
of clusterj, of sizen, andW,, ,» is a measure for the effective interaction between clugieesidj,,, . With this assumption
for the potential of mean force, the grand partition function becomes

* 1 Nmax

E(uVD=exg=pWo) 2 X - X NN Ny 1 [T (exp(pumn®/[A 1)
1= No= Max

Ny Mmax Nn

11 ,-Hl dR,exfl — AWo o (Ryj Rorj im)]- (A8)

[J’dr/n lexn: ﬂW (rrn l,M)]

As a final simplification, we ignore the interactions between In the standard Metropolis scheme, the transition matrix

the clusters. The partition function then becomes is symmetric and the acceptance criterion only depends on
the Boltzmann factors of state and j. However, in the
E(w,V,T) =exp(—ﬁWo) E H [exp( BunN,)] present scheme, liquid particles and vapor particles have dif-

..... ferent maximum displacements, which affects the transition
Vv matrix for the trial moves and needs to be taken into account
n° f dr/n-1 in the acceptance criterion.
We rewrite Eq.(B1) as

XHNI

n

Np pacc Pgen
xexp — BWy(r' "% )] (A9) It 8 el 5
ﬂ n ’M . acc gen - (B )
PJHI PI*)J
We now define the partition functiofi, of ann-mer, as The probability to generate a move frdrto j is proportional

vn to the inverse cube of the maximum displacement, denoted
Zn= S3nny f dr'" L exgd —BW,(r'" % u)]. (A10) by drmax, and depends on the state of the partildhe

' acceptance criterion now becomes
With the above definition of the partition functiaf, of

acc 3
ann-mer, the grand partition function can be rewritten as P'—*l — drmax(s) B3
— P drma>§(s) (B3)
E(w,V,T)=exp(— W) J
. There are many possible choices ®f; that satisfy this
< S T] [exp(Bun)Z,]"n condition(and the obvious condition that the probability can-
Ny,N3,...,=0 “n N,! ' not exceed L We have adopted the Metropolis rule
. [drmax(s) |3
(A1) pace —Min| 2 (d_x() ,1}. (B4)
We can interchange the order of the product and the summa- pi | drmax(s)
tion to obtain for the partition function However, there is one other condition that we have not men-
tioned yet. If a particle makes a transition from the vapor to
E(,u,V,T)=exp(—BWO)H explexd BunlZ,) the liquid and its displacement is larger than the maximum
n

displacement in the liquid, then the move should be rejected.
The reason is that when this move would have been accepted
=exp(—,8W0)exp< > exp:,BMn]Zn). (and the particle would have become a liquid parlictae
" reverse move could never be ma@ecause the maximum
(A12)  displacement for liquid particles is smaller than the maxi-

The average number of clusters of sizis then simply given Mum displacement for vapor particles

by
APPENDIX C: THE NUCLEATION THEOREM

(Np)=Z, exd fun]. (A13)
Consider a system in the grand-canonical ensemble. The

APPENDIX B: DETAILED BALANCE probability to findn particles in the system is given by

The detailed balance condition for the transition between ~ P(M)=&XABun)Q(n,V, T)/=(u,V,T), (€
statei andj is whereE is the grand-canonical partition function defined in

Plgin] P?ic, Pjginl Pff. . (B1) Eqg. (Al). The total grand potentidl (= —PV) is given by

Here, p; is the Boltzmann weight of configuratiain PP Q=—kgT In E. (C2)
denotes the transition matrix which determines the probabilWWe can associate a Landau free-enegyictly speaking, a
ity to perform a trial move from stateto statej, and P"jICC [ Landau “grand potential) w(n) with the probability distri-
the probability with which this trial move is accepted bution P(n)
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w(n)=—kgr In[exp(Bxn)Q(n,V,T)] (N?)—(N)>=N.

=—un+F(n,V,T), (C3 Hence, a problem arises whefj,.e,sis of orderyN. When
this happens, the change in free-energy associated with a
small, homogeneous fluctuation in the density is smaller than
the change in free-energy due to the formation of a liquid-
Tike droplet, andAn is no longer a useful order parameter.
Note that this situation can always arise when the volume is
Aw=w(n,)—w(ny) large enough and that it becomes even more serious close to
the critical point or the spinodal. However, in practice, the
=—wp(nz=ny)+F(n,V,T)=F(n,V,T).  (C4  proplem is less serious because nucleation experiments do
Let us now consider howAw varies with . Note that the not probe the probability of arbitrary density fluctuations, but

whereF (n,V,T) is the Helmholtz free-energy of a system of
n particles in volumeV at temperaturél. The free-energy
difference between two states with different numbers of par
ticles, sayn; andn,, is

Helmholtz free-energy does not depend@nHence, only those that result in the formation of a critical nucleus.
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