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Abstract: Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents,
appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass trans-
formation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing,
and many others. The range of their applicability continues to expand, which demands the develop-
ment of new DESs with improved properties. To do so requires an understanding of the fundamental
relationship between the structure and properties of DESs. Computer simulation and machine learn-
ing techniques provide a fruitful approach as they can predict and reveal physical mechanisms and
readily be linked to experiments. This review is devoted to the computational research of DESs and
describes technical features of DES simulations and the corresponding perspectives on various DES
applications. The aim is to demonstrate the current frontiers of computational research of DESs and
discuss future perspectives.

Keywords: deep eutectic solvents; computer simulation; quantum mechanics; molecular dynamics;
machine leaning

1. Introduction

Over the past two decades, deep eutectic solvents (DESs) have become increasingly
sought after for a wide range of applications [1,2]. According to Martins et al. [3], who
contributed significantly to the formulation of the comprehensive definition of DES from a
thermodynamic point of view, DESs are eutectic mixtures of two or more pure components
with the eutectic point temperature significantly lower than that of an ideal liquid mixture.
This was first discovered by Abbott et al. [4] using a mixture of choline chloride (ChCl) and
urea (in the molar ratio 1:2), which is so-called reline, currently one of the most studied
DESs. A mixture of ChCl and urea at a molar ratio of 1:2 melts at 30 ◦C [5] and the
corresponding ideal solution melts at 100 ◦C.

Int. J. Mol. Sci. 2022, 23, 645. https://doi.org/10.3390/ijms23020645 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23020645
https://doi.org/10.3390/ijms23020645
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-9699-100X
https://orcid.org/0000-0003-2448-8584
https://orcid.org/0000-0001-8245-8872
https://orcid.org/0000-0001-8739-3772
https://orcid.org/0000-0002-1570-9333
https://orcid.org/0000-0001-6272-9233
https://orcid.org/0000-0002-3743-4457
https://orcid.org/0000-0002-8626-3033
https://doi.org/10.3390/ijms23020645
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23020645?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 645 2 of 68

Since the first publications in 2001 [4], the number of articles devoted to DESs has
increased exponentially and to-date there are over six thousands publications on this topic,
according to Web of Science. This great interest in DESs is due to their unique properties.
DESs are often classified as cheap, non-toxic, and environmentally friendly analogues of
ionic liquids (ILs); see, e.g., Amde, Liu, and Pang [6] for a review regarding environmental
aspects of ILs. DESs have indeed shown great potential for nanotechnology [7], electrochem-
istry [8], extraction processes [9], biomass transformation [10], additive technology [11,12],
pharmaceuticals [13,14], biosensor development [15], membrane technology [16,17], and
many other applications.

Despite the fact that DESs have similar physical properties to ILs, they differ signif-
icantly in their chemical structures. DESs are mixtures of at least two compounds that
have different types of interactions, which are the underlying reason for the strikingly deep
melting points.

DESs are typically classified into four types depending on their chemical nature, as
listed in Table 1. Type III deserves special attention since it includes a subclass of natural
DESs (NADESs). NADESs are special in the sense that their components are derived from
natural resources. The term “natural DES” was first proposed by Choi et al., 2011 [18].
NADESs are biocompatible and biodegradable which expands their potential applications
to the medical field. The extensive growth in DES development has led to the appearance
of new types of DESs. Thus, in 2018 Verma et al. [19] discovered a deep depression in the
melting temperature of the mixture of non-ionic compounds (menthol and organic acids).
Subsequently, Abranches et al. [20] also discovered this effect in a mixture of thymol and
menthol and suggested classifying it as a new type of DES-non-ionic DES. This discovery
expands the properties and possible applications of DESs and has instilled a lot of interest
from both experimental and computational researchers. It is important to point out that
DESs are multi-component systems and consist of various types of compounds (salts, acids,
alcohol, etc.). The versatility of the components opens up broad opportunities for DES
development with highly tuneable properties.

Table 1. Types of DESs, their compositions, and examples.

Type Composition Example

Type I Organic and metal salts Choline chloride + Metal halide
(SnCl2, ZnCl2, etc.)

Type II Organic and metal salt hydrate Choline chloride + Metal salt hydrate
(CrCl3·6H2O, etc.)

Type III Organic salt and H-bond donor Choline chloride + organic compound
(urea, carboxylic acids, alcohols, etc.)

Type IV Metal salt and H-bond donor
Metal halide (ZnCl2) + organic

compound (urea, carboxylic acids,
alcohols, etc.)

Type V Non-ionic DESs. Hydrogen Bond
Acceptor and Hydrogen Bond Donor Thymol + menthol

One of the proven approaches to targeted material development is combined exper-
imental and theoretical research [21,22]. Theory is used to determine the relationship
between the structure and properties and can serve as a guide for further experiments.
Computer simulations have their own methodological and practical issues, but they are
unique in that they allow for direct observations of intermolecular interactions and pro-
cesses at the nanoscale [23,24]. According to Web of Science, the number of studies devoted
to computer simulations of DESs has been increasing exponentially since 2013 (Figure 1).
In addition, the development of artificial intelligence (AI)-based approaches offers a new
way to establish links between the structure and material properties.
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In this context, knowledge about the interactions of the nanoparticle surfaces with DES 
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simulations. Since DESs are used as electrolytes in power systems and battery technology 
[27–29], interactions of DESs with electrode surfaces is an important subject. Recent 
studies have also suggested the potential of DESs as storage media for biomolecules [30], 
and even as solvents for drugs [31] and pharmaceutical agents [32,33]. In all of the above 
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molecular dynamics (MD) simulations. The last but not least popular DES application is 
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responsible for the solvation of carbohydrates. The most important area of study is 
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Computer simulations that are directly related to DESs can be divided into different
groups. Most of the works are devoted to the structure and dynamical properties of DESs
to understand how those relate to the composition. Another important direction is low
molecular weight compounds in DESs with a main focus on the development of separation
techniques for CO2 and SO2 removal, as well as biofuel purification [9,25,26]. In nanotech-
nology, DESs are applied as solvents for the development of nanoparticles [7]. In this
context, knowledge about the interactions of the nanoparticle surfaces with DES molecules,
and their influence on DES structure and dynamics, are fruitful targets for simulations.
Since DESs are used as electrolytes in power systems and battery technology [27–29], in-
teractions of DESs with electrode surfaces is an important subject. Recent studies have
also suggested the potential of DESs as storage media for biomolecules [30], and even as
solvents for drugs [31] and pharmaceutical agents [32,33]. In all of the above cases, it is
extremely important to understand how DESs affect the molecular conformations, which
can be revealed by computer simulation methods, such as atomistic molecular dynamics
(MD) simulations. The last but not least popular DES application is biomass formation,
where a DES serves as a solvent for carbohydrates. In this case, simulation techniques can
be used to reveal the molecular mechanisms and interactions responsible for the solvation
of carbohydrates. The most important area of study is perhaps the influence of water
molecules on the properties of DESs. Since in practice it is almost impossible to remove
water from DESs, and the water molecules dramatically affect the H-bonding network in
it [34–36], understanding the influence of water is of critical importance.

In this review, we focus on simulations of DESs. Currently, there are only two re-
views in which simulations of DESs are the central topic: Kovács et al. [37] reviewed the
modeling of NADESs and Alkhatib et al. [38] devoted much attention to simulations of
DESs in their review on thermodynamic modeling of DESs. These reviews were published
at the end of 2019. Since then, the number of articles devoted to simulations of DESs
has almost doubled (Figure 1). Some computational studies have been discussed in re-
views devoted to current DES applications. For example, Kaur et al. [39] reviewed the
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research on microstructure and devoted part of the review to simulations of DES structures.
Pelaquim et al. [17], Liu et al. [16], and Shama et al. [40] have provided overviews of stud-
ies devoted to modeling gas solubility in DESs. De Castilla et al. [41] discussed research on
simulating thermodynamic and transport properties of DESs in their review. Ma et al. [35]
analyzed the effect of water on DESs and provided a review of related simulations.

In this article, we review the status of computer simulations devoted to DESs. We
discuss simulations of DESs at different scales (quantum chemistry calculations, atomistic
modeling, and coarse-grained simulations) and also address machine learning techniques.
It is important to note that there are also other computational methods that have been used
for establishing links between material properties and structure. Popular methods for DES
investigations include thermodynamic modeling, such as Conductor like Screening Model
for Realistic Solvents (COSMO-RS) [42,43] and Statistical-Associating Fluid Theory (SAFT)
equation of state [44–47] and its variants. COSMO-RS was developed by Andreas Klamt in
1995 and is now a very popular method for investigations of liquid properties. Based on
quantum mechanical calculations of the charge densities of the molecules and estimation
of interactions between the different segments of the liquid compounds, this method
allows for the prediction of chemical potentials and properties of DES compounds without
resource-intensive calculations. It gives a unique opportunity to screen large amounts of
DES compounds for developing DESs with desired properties. In addition, this technique
can be used for validations of MD simulations [48]. SAFT [44–47] is a method based on the
determination of the residual Helmholtz energy as the sum of a reference term and terms
for the molecular interactions and associations. A variation of this method was first used
for the investigation of DES solubility in 2015 [49] and it has become a common method
for DES development. These methods are being actively developed and, for example,
could be combined to increase predictive power [50]. In our review, we focus on molecular
modeling and AI techniques. For more detailed discussions of thermodynamic models in
DES research, we refer to the recent reviews [38,41,51].

2. Simulation Methods for DESs
2.1. Quantum Mechanical Methods

Interactions between molecules in DESs are more diverse than in regular liquids and
understanding them is more difficult. Namely, the nature of the H-bond network and
charge delocalization between solvent components are some of the key matters of interest.
The first general consideration about the physical mechanisms in reline was the suggestion
that when urea interacts with chloride anions, they disrupt the choline chloride’s lattice,
which leads to charge delocalization and prevents crystallization [52]. Later, it was shown
by Altamash et al. using electronic structure calculations that the greatest charge transfer
occurs from the anion to the choline cation [53]. Matters are more complex, however, and
it has also been shown that the interactions between urea and chloride do not necessarily
lead to a decrease in the melting point [54,55].

2.1.1. DFT-Derived Peculiarities of the Local DES Structure

Since electronic structure methods are very demanding when it comes to computa-
tional resources, it is necessary to select a small but sufficient fragment of a DES for the
simulation. As a good compromise between accuracy and efficiency at the quantum level,
density functional theory (DFT) is typically the preferred method as it can provide a good
description of geometry and electronic structure with reasonable calculation times. For
example, DFT functionals are commonly used to calculate equilibrium geometries of single
molecules or complexes of molecules bound by networks of various interactions in the
gas phase or by applying continuum solvation models [56] to simulate the effects of a
solution [56–58].

The conformational space of mutual arrangements of molecules in a DES can be
studied using, e.g., semi-empirical methods (SE), such as the PM6 approximation [59,60]
or the SE tight-binding DFT method GFN2-xTB [61]. DFT can also be used to study the
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details of the type and intensity of the interactions, as well as to quantify the short-range
interactions. Methods to study such properties include Bader’s quantum theory of atoms
in a molecule (QTAIM) [62], electrostatic potentials (ESP) and reduced density gradients
(RDG). Classification of H-bonds, the corresponding bond strengths and covalency can
be completed by analyzing bond critical points (BCP) in the QTAIM representation (as an
example of a simple system, see Ref. [63]). Based on electron density and its derivatives,
RDG analysis can characterize non-covalent interactions such as H-bonds, van der Waals
interactions, and steric effects [64].

As for functionals, a lot of studies of systems containing no more than several dozen
atoms have been performed using the hybrid B3LYP functional with 20% HF exchange in
conjunction with the family of Pople’s split-valence basis sets with the addition of a different
number of diffuse and polarization functions (6-31G(d), 6-31G(d,p), 6-31+G(d,p)) [61,64–74],
and correlation-consistent basis sets with augmented diffuse functions aug-cc-PVDZ [75].
Some organic cations contain alkyl side chains and/or aromatic moieties with important
contributions from dispersion forces and hence require a proper description. This can
be completed by amending the density functionals with dispersion corrections, such as
Grimme’s D2 [72,76], D3 [64,77–79], and D3BJ [80]. Another popular alternative is to use
the meta-hybrid functional M06-2X with 54% HF exchange. It has been shown to have
excellent performance and accuracy in systems where dispersion interactions contribute
significantly to conformer energetics [67,81–87]. Other functionals, for example hybrid
long-range corrected CAM-B3LYP [67], hybrid PBE0 [67], hybrid PW91 [88] have also been
used, albeit rarely.

DFT approaches have not only been fruitful for studies of distribution patterns of DES
components, but also in studies of interactions of DESs with various functional substances
in gas separation. In particular, free energy changes and structural analyses have been
used to develop new solutions towards desulfurization of liquid fuels [73,78,85,86,89], cap-
turing greenhouse gases such as CO2 or SO2 [72,79,90,91], metronidazole extraction from
plasma [92], developing efficient mercury removal strategies from different gases [93], ex-
tractive detoxification of feedstocks for the production of biofuels using new hydrophobic
DESs [74], capturing NH3 [94], and for separating phenolic compounds from oil mix-
tures [95].

Even more complex problems have been investigated in the context of nano-objects.
Lawal et al. [96] provided a molecular-level description of the interactions controlling a
DES composed of a mixture of methyltriphenylphosphonium bromide with glycerol and
carbon nanotubes and revealed physisorption through hydrophobic and π–π interactions.
Shakourian-Fard et al. [87] used the M06-2X functional to analyze the electronic structure
of noble metal nanoparticles (Mn, M = Cu, Ag, and Au; n = 1–4) and their complexes
with ChCl:Urea DES. The study revealed two major bonding factors that govern the
interactions: the [Cl]– . . . Mn interaction and unconventional H-bonds (C–H...Mn and
N–H...Mn). Shakourian-Fard et al. [87] used the M06-2X/cc-pVDZ level to characterize
adsorption of DESs on different graphene surfaces and showed that it is non-covalent and
dominated by dispersion energies.

2.1.2. Relations between DFT and NMR and FTIR Experiments of DESs

It is imperative to compare computational predictions with experiments, for example,
Fourier-transform infrared spectroscopy (FTIR) or nuclear magnetic resonance (NMR).
NMR enables studies of structure-property relationships and interactions in DESs by
probing both cations and anions through several nuclei (1H, 13C, 19F, 35Cl, 11B, 15N, and
31P) [97]. The use of NMR chemical shift deviations, relaxation, nuclear Overhauser effect,
and diffusion experiments allows for advanced studies of interactions between cation,
anion and solute, and, consequently, facilitates the molecular design of DESs. Li et al. [89]
used the B3LYP/6-311+G(2d,p) level with the self-consistent reaction field solvation model
to study the solvation effects of dimethylsulfoxide (DMSO). They calculated the NMR
shielding constants of hydrogen atoms by the gauge-including atomic orbitals (GIAO)
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method [98] for different SO2
− anion adducts of DESs and revealed molecular details

of sorption.
FTIR is a reliable technique for analyzing not only liquids but also solid samples.

Vibrational modes from DFT calculations may be matched against FTIR absorption spectra.
The presence of hydrogen bonds can be deduced from FTIR spectra after vibration assign-
ments. The accuracy is determined by the system size and how well the range of internal
vibrational frequencies inherent in the system is covered. As an example, Araujo et al. [70]
used a combination of computational and vibrational spectroscopy tools, including in-
elastic neutron scattering (INS), to probe intermolecular interactions in a eutectic mixture
of reline. Their analyses showed that reaching an agreement between calculations and
experiments requires expanding the models to include a greater variety of molecular con-
tacts. They performed comparative calculations of a discrete model of a single cluster by
utilizing the B3LYP functional and calculations of a periodic model of the aggregate by
using the plane-wave pseudopotential method with the Perdew–Burke–Ernzerhof (PBE)
exchange-correlation functional [99]. The eigenvalues and eigenvectors from the Gaussian’s
frequency calculation of a single cluster were then used to estimate the intensities of the INS
spectrum. The phonon frequencies for the aggregate were obtained by diagonalization of
the dynamical matrices computed using density-functional perturbation theory [100]. As a
result, the region above 200 cm−1 in reline’s INS spectrum is satisfactorily described by the
discrete cluster approximation. The simulations, however, failed in the lowest frequency
region, which, as mentioned by the authors, may only be adequately represented by a
three-dimensional lattice.

The phonon modes of the “shock-frozen” reline in an amorphous phase representing
a 3D array of extended clusters also did not perfectly succeed in replicating reline’s low-
frequency modes. Araujo et al. [70] noted that while discrete ab initio calculations of
internal vibrational modes satisfactory match to INS experiments, a little improvement is
achieved by running periodic calculations of the aggregate. The authors also noted that the
advantage of the periodic over the cheaper discrete calculation is a better representation
of the pure solvent components, whose details of crystal lattice packing is impossible to
reproduce using a small cluster. Hence, when going from pure solvent components to
their eutectic mixture, it requires a certain model of the pure crystal lattices for a realistic
comparison of calculated and experimental frequency shifts.

2.1.3. Periodic DFT in Studies of the Condensed Phase of DESs

Periodic ab initio calculations have become a popular tool allowing the study of
hundreds of atoms. This method serves as a powerful instrument to investigate the
electronic structure of the condensed phase of DES, but the system sizes are still limited.
Usually, periodic ab initio calculations use the DFT in the hybrid Gaussian and plane waves
(GPW) approach [101].

Korotkevich et al. [102] used this approach to study SO2 absorption by ChCl/glycerol
DES. The molecularly optimized double-z basis set (MOLOPT-DZVP-SR-GTH) [103] was
applied to all atoms together with the generalized gradient approximation (GGA) utiliz-
ing the Becke–Lee–Yang–Parr (BLYP) [104,105] functional and the corresponding BLYP
Goedecker–Teter–Hutter (GTH) [106] pseudopotentials for core electrons. The deficiency
of the dispersion interactions for the GGA functional was corrected using Grimme’s D3
scheme with Becke–Johnson damping [107,108]. The authors identified hydrogen bonding
and other specific interactions between all components. Fetisov et al. [109] used the same
approach to conduct ab initio MD (AIMD) simulations in the canonical ensemble at tem-
peratures of 333 and 363 K to investigate the behavior of reline and its equimolar mixture
with water. It was shown that in hydrous reline, water competes for the anions, and the
hydrogen atoms of urea have similar propensities to bond to the chloride (Cl−) ions and
the oxygen atoms of urea and water. The same level of theory was used by Malik et al. [90]
to elucidate the solvation structure around CO2 and SO2 in ChCl-based DESs, namely,
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reline and ethaline. Zahn et al. [110] revealed significantly reduced ion charges in several
choline-based DESs by using ab initio molecular dynamics in the GPW representation.

2.2. Molecular Dynamics Simulations

MD simulations have become the most popular computational technique for studies
of nanostructures and dynamic properties of materials [111]. MD provides direct infor-
mation about the molecular processes, and can explain and predict molecular interaction
mechanisms. More than half of the computational papers devoted to studies of DESs (more
than 150 articles in the Web of Science by the end of 2021) use MD simulations. Most
commonly, MD simulations are used to obtain information about the nanoscale structure.
Another frequent goal is to study properties directly related to applications, such as gas
separation and fuel purification, i.e., simulations of low molecular weight compounds in
DESs. The accessible length scales, typically on the order of about 10 nm, allow simulations
of nano-sized objects and surfaces of larger objects. Importantly, MD simulations are also a
useful tool for investigations of rheological properties. The MD technique has, however, its
own limitations, see, e.g., Refs. [112–114].

The main challenge in MD simulations is the development of force fields (FFs) capable
of reproducing the structural and dynamic properties of DESs. The history of FF develop-
ment for DESs is inextricably linked to the development of FFs for ionic liquids, since the
interactions in these solutions are very similar. However, due to the differences in composi-
tions and specific interactions in them, the FFs for DESs have their own peculiarities. The
main problems are related to the presence of strong ionic interactions and highly polarizable
atoms and molecules, and thus neglecting polarization may lead to an overestimation of
the ion–ion interactions [115] and potentially unreliable results, such as a reduction in the
diffusion coefficient by several orders of magnitude [115]. However, non-polarizable FFs
are often able to correctly reproduce the structural properties of DESs [116].

There are two main directions currently being pursued to solve the problem regarding
polarization effects. The first is based on adding correction(s) to the non-covalent inter-
actions in existing FFs. This approach has the advantage that it uses existing FFs and no
additional parameterization is needed. Moreover, this approach does not require more
computational resources than the usual MD. As a result, this has been the most common
approach used in simulations of ionic liquids [117]. The second approach is the explicit
inclusion of polarization effects in force fields, based on formulations that model the elec-
tronic degrees of freedom and thus requires more computational resources. This second
approach is described in the next section.

The first approach is based on charge rescaling. Since the atomic charges in DESs have
a significant impact on macroscopic properties [118], rescaling of the electrostatic interac-
tions is an effective way to reparametrize FFs for DESs. The magnitude of rescaling has
varied from 0.78 to 0.9 (e.g., Refs. [119–121]). Rescaling charges helps to reduce overbind-
ing and achieve agreement with experimental values regarding dynamic properties [122].
However, this approach has its drawbacks. Since the magnitude of rescaling could depend
on particular details of the system, a change in composition should be accompanied by
new validation of the FF. A common approach for FF validation is to select the scaling pa-
rameter such that it reproduces experimental data, usually density, viscosity, and diffusion
coefficients (e.g., Refs. [123,124]). Although charge scaling helps, at least in some cases, to
achieve agreement with experiments, it can also lead to artificial structural and dielectric
properties, such as an excessive decrease in density [125], less intense peaks in the radial
distribution functions, and an artificial dielectric response [126]. In addition, changes in
the atomic charges can affect the parameterization of intermolecular interactions leading
to artificial structural characteristics [122,127]. One particular problem is the incapacity of
the scaled-charge models to fix the artificially enhanced long-range ion–ion correlations
present in non-polarizable models, as discussed by McDaniel and Yethiraj [128]. In addition
to that, Son et al. [129] have shown that mixtures of compounds are not well reproduced
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with scaled-charge models, since these models underestimate the cohesive energy and lead
to poor predictions of phase behavior.

As the above indicates, finding new approaches to develop transferable FFs is of critical
importance. For example, Chaumont et al. [130] proposed a reparameterization of the van
der Waals potentials for atoms involved in H-bonding as an alternative to charge rescaling.
Another fruitful approach is explicit inclusion of polarization. Compared to fixed-charge
FFs, polarizable FFs are significantly more demanding on computational resources but are
more accurate and help to reproduce both structural and dynamic properties. Polarizable
FFs are discussed in detail in the next section. The main advantage of fixed-charge FFs is
their high transferability which allows for easy changes of DES compositions and simula-
tions of diverse compounds. However, despite their ability to model and predict structural
characteristics, their lack of accounting of polarization is a major drawback. Corrections to
existing fixed charge FFs allow to achieve correct results on dynamic properties, but that
often comes at the expense of transferability and can lead to unexpected artificial results.

2.3. Polarization and Polarizable Force Fields for Deep Eutectic Solvents

There are several ways to introduce polarization effects such as fluctuating
charges [131,132], induced point dipoles [133], or Drude oscillators [134,135]. Fluctuat-
ing charges allow mimicking polarizability with a, respectively, low computational cost.
However, in some cases, it might overestimate the polarizability of the molecule [136]
and cannot simulate induction of the out-of-plane dipole moment in planar molecules.
The induced point and Drude-induced dipoles are based on using additional particles,
either as massless points (induced point dipoles) or as positive and negative charges con-
nected to the atoms by a spring. Schmollngruber et al. have shown that there are no
quantitative differences between these two methods in simulations of molecular IL of
1-ethyl-3-Methyl-imidazolium triflate [137].

The high concentration of ions in DESs results in non-negligible local electric fields that
polarize the components of the eutectic solution. So far, almost all MD simulations of DES
have been performed with non-polarizable models only. However, efforts are emerging
towards simulations with polarizable FFs [138–141]. They are all based on the classical
Drude oscillator model, which will be briefly described next. For a deeper understanding
of this method, as well as other polarization methods, see the review of Bedrov et al. [115].

The Drude oscillator model consists of adding an additional particle, the Drude particle
(DP), bonded to the nucleus, also called the Drude core (DC), by a harmonic potential. In
this arrangement, the DP receives a negative charge (−qD), while the DC receives a positive
charge (qD), which is summed onto the initial charge of that nuclei, forming a Drude
induced dipole. This dipole is intended to capture the distortion of the electron cloud,
since the DPs are free to move around the nucleus. The pair of charges (±qD) assigned
to the DP and DC of a polarizable atom are determined by the atomic polarizability of
that atom and the force constant of the harmonic potential that connects the DP to the
DC. In addition to that, the polarizability of the hydrogen atoms is usually added onto the
polarizabilities of the heavy atoms that own them; hydrogens themselves are treated as
non-polarizable because of their small atomic mass. The relation between the polarizability
(α), force constant (kD), and Drude charges (±qD) is given by

α =
q2

D
kD

(1)

2.3.1. The Polarizable CL&Pol Force Field

In addition to the high computational cost, another main problem with polarizable
FFs is their poor transferability. Recently, using the CL&P fixed-charge FF [142] as the
basis, Goloviznina et al. developed a transferable polarizable FF for ionic liquids [143]
and extended it to DESs [139,142]. In order to increase transferability, they applied a
fragment approach, which was validated by calculating density, ion diffusion coefficients,
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and viscosity for a range of ionic liquids and their mixtures [143]. In DESs, the strong
combination of H-bonds and Drude-induced dipoles causes stability problems which were
also addressed by Goloviznina et al. [139].

When converting the non-polarizable CL&P model to the polarizable CL&Pol, the first
step is the addition of the Drude induced dipoles in the heavy atoms based on Equation (1).
Atomic polarizabilities are determined by first principle calculations. In CL&Pol [138,139],
the force constants of all of the harmonic bonds between the DCs and the DPs are assigned
to be kD = 4184 kJ·mol−1 and the masses of all DPs to mDP = 0.4 u. It is also necessary to
scale down the Lennard–Jones energy parameter Eto avoid double counting the polarization
effects, since induction effects are implicitly included in the CL&P parameter set [142].

In principle, this scaling can be rigorously performed based on symmetry-adapted
perturbation theory [144] (SAPT) calculations, a quantum chemistry method that allows
decomposing the interaction energies into electrostatic, induction, dispersion, and repulsive
terms. However, SAPT calculations are computationally intensive, especially if applied to a
broad range of compounds. In this context, an alternative predictive scheme was devised by
Goloviznina et al. [138,139,143] to obtain the scaling factor (kij) for the interaction between
fragments i and j,

kij =

(
1 + c0r2

ij

Q2
i αj + Q2

j αi

αiαj
+ ci

Q2
i µj + Q2

j µi

αiαj

)−1

(2)

This scheme only needs basic molecular properties of the target fragments: net charges
(Q) dipole moments (µ), and polarizabilities (α). In addition, rij is the equilibrium distance
of the fragments, and c0 = 0.25 and c1 = 0.11 are coefficients that were adjusted to a
set of reference kij values, obtained from SAPT calculations that covered charged and
neutral key-fragments. These key-fragments are common molecular structures present
in a broad range of DESs components, which allow to achieve a good transferability. For
instance, triethylammonium cations are represented by trimethylammonium and butane
as fragments.

All of the intramolecular bonded parameters and initial atomic partial charge distri-
butions are simply taken from the CL&P FF [142]. In addition, for modeling DESs with
CL&Pol, two new potentials are present. These are the Tang–Toennies [145] and Thole [146]
damping functions,

fn
(

Bij, rij
)
= 1− ce−Bijrij ∑n

k=0

(
Bijrij

)k

k!
, (3)

T
(
rij
)
= 1

1 +
prij

2
(
αiαj

) 1
6

e−prij/(αiαj)
1
6 , (4)

where k = 4 is the order of the sum, B = 4.5 determines the spatial extension of the damping,
c = 1, rij is the distance between the sites, i is the polarizability of atom i, and p = 2.6 is the
Thole Parameter.

The Thole function is used to dampen, at short distances, the Coulomb interactions
originating from the induced dipoles. The Tang–Toennis function dampens short-range
charge–dipole interactions, avoiding instabilities in the MD simulations. These functions
avoid the “polarization catastrophe” [115,139], that is, excessive correlations between
nearby dipoles and also events in which the DPs are captured by neighboring DCs.

An important aspect when using the CL&Pol FF is the absence of Lennard–Jones
parameters in some of the hydrogen atoms, especially those involved in H-bonds, such as
the hydroxyls group of choline cations and polyol molecules. These hydrogen atoms are
referred to as “naked” hydrogens [138,139]. This particular aspect may lead to unrealisti-
cally strong interactions after the addition of the Drude particles. This can be circumvented
by increasing the atomic diameter (σ-parameter) of the heavy atom to which, such as a
hydrogen, is bound [138,139]. Recently, de Souza et al. [147] showed that using the values
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of the σ-parameter of the CL&Pol FF leads to an artificial phase separation between the
components of the DES ethaline. This can be fixed by carefully adjusting the σ-values of
the hydroxyl groups to reproduce ab initio radial distribution functions.

There is emerging evidence about the so-called “chloride’s overpolarization” that may
be present in polarizable MD simulations. This was first noted by Szabadi et al. [147], who
performed aqueous chloride-based ionic liquid simulations, and subsequently reported
by de Souza et al. [140] in DES ethaline. This issue has its physical origin in the high
polarizability of chloride, Cl = 4.4 Å3. In the work of Szabadi et al. [147], they noted an
artificial alignment of chlorides with water molecules. In turn, de Souza [140] found that
this overpolarization leads to an overestimated spatial nano-heterogeneity, as indicated
by peaks and anti-peaks at very low q-vector values in all self- and cross-correlations
of the partial X-ray structure factors. Szabadi et al. [147] tried to reduce the chloride’s
polarizability, while de Souza et al. [140] extended the application of the Tang–Toennis
damping function for chloride’s induced dipole interactions. In both cases, the behavior of
the polarizable MD simulations improved.

The aforementioned aspects of the CL&Pol FF (“naked” hydrogens and chloride’s
overpolarization) may make it difficult to apply in simulations of DESs. Nonetheless,
following the guidelines of the original CL&Pol FF [138,139] and the contributions from
de Souza et al. [140] facilitate its reliable use. In addition, the CL&Pol FF has parameters
available for a broad range of components of DESs, such as alkylammonium-based and
alkylphosphonium-based cations, urea, ethylene glycol, and so on. In addition to that,
the CL&Pol model is relatively easy to extend to other components, since it shares the
functional form and parameterization strategy of the OPLS FF.

2.3.2. The Polarizable SAPT Force Field

The second available polarizable FF for DESs is the model from Jeong et al. [141],
which we will refer to as SAPT-FF since it is completely obtained from scratch based on
a SAPT protocol [148]. In this approach, the atomic point charges are obtained using a
distributed multipole analysis (DMA) on the electron density of a single molecule. Then,
the intermolecular parameters from distinguished FF terms are individually fitted to
the components of the total non-bonded energy, composed of electrostatics, induction,
exchange, dispersion, and delta Hartree–Fock, all obtained from SAPT calculations. The
functional form of these energy components are given as

Eelec ≈∑ij

qiqj

rijqj
+ ∑ij Aelec

ij e(−Bijrij), (5)

Epol ≈ U(2)
shell + ∑ij Aind

ij e(−Bijrij), (6)

Eexch ≈∑ij Aexch
ij e(−Bijrij), (7)

Edisp ≈∑n=6,8,10,12 ∑i,j fn
(

Bij, rij
)Cij

n
rn

ij
, (8)

Epol ≈ U(∆SCF)
shell + ∑ij Aδh f

ij e(−Bijrij). (9)

The electrostatic energy (Eelec) is composed of a Coulomb potential and a short-range
term describing charge penetration effects. The induction energy (Epol) is the contribution
from the polarizable Drude oscillator (the second-order Drude oscillator energy) plus a
short-range charge penetration component. The exchange energy (Eexch) describes the
short-range repulsion with an exponential Born–Mayer function. The dispersion energy
(Edisp) is represented with a series of r–n power functions (n = 6, 8, 10, 12) and it is
dampened by fn, Bij, rij, the Tang–Toennis function of Equation (3). The delta Hartree–Fock
energy is composed of the Drude oscillator energy above second-order and the penetration
component of the δ Hartree–Fock energy. Furthermore, for each pair of atoms, the pre-
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exponential coefficients Aelec
ij , Aind

ij , Aexch
ij , and Aδh f

ij determined based on the SAPT energy

benchmark. In addition, the exponents Bij and the dispersion coefficients Cij
n are assigned

with specific mixing rules [141].
The sum of all terms yields the total non-bonded energy expression,

Etotal ≈∑
ij

qiqj

rijqj
+ Ushell + ∑

ij

(
Atot

ij e(−Bijrij) − ∑
n=6,8,10,12

fn
(

Bij, rij
)Cij

n
rn

ij

)
, (10)

where Ushell = U(2)
shell + U(∆SCF)

shell is the total Drude oscillator polarization energy and it
considers all the intramolecular DP–DP interactions. Those atom pairs at 1–4 or closer
distances are screened using the Thole function of Equation (4) with p = 2.0.

The costly case-by-case SAPT-based parameterization combined with the incompatibil-
ity of the specific functional form of the SAPT-FF with commonly used FFs are challenging
aspects to achieving transferability. In fact, reline is the only available DES within the
SAPT-FF [141]. However, this “physically motivated” SAPT-FF presents some advantages.
In principle, any DES can be simulated in this formalism, considering that the FF is fitted to
ab initio data and no prior experimental data are needed in advance. Furthermore, due to
the explicit separation of energy components, improvements in the quality of individual
parameters are possible without the need for complete reparameterization. In addition, the
molecular interactions present in MD simulations of any DESs can be accurately rational-
ized in terms of the different energy contributions.

2.4. Combinations of Quantum Mechanics and Molecular Dynamics Techniques

The previous sections highlighted the advantages and disadvantages of different
computational approaches to studying DESs. One way to unite the strengths of these
methods and overcome their weaknesses is to use them in combination. In this regard,
there are two fundamentally different approaches. The first one implies the simultaneous
application of MD and QM methods within a single study. The second approach involves
the use of advanced ab initio MD (AIMD) simulations, also known as first-principles MD.
As quantum effects are not directly included in classical MD, several characteristics of
the systems can be probed only with the use of QM approaches. Conversely, due to the
complexity of QM calculations, the time and length scales accessible in classical MD are
well beyond those available in QM.

Aparicio’s group has used a combination of QM and MD to investigate the prop-
erties of a number of DESs, including ones based on ChCl [52–55], ammonium [149],
arginine [150–152], betaine [153], and cineole [154] for applications such as gas capture,
drug delivery, oil desulfurization, and the development of task-specific solvents. In par-
ticular, the strength and localization of H-bonds, the binding energy of the ionic pairs, as
well as energetically favored positions of solvated molecules with respect to DES molecules
were obtained from DFT. Their MD simulations allowed the estimation of properties, such
as intermolecular interaction energies, the extension of H-bonds, their number, residence
times, as well as prediction of the physicochemical properties of the fluids.

The QM and MD methods are not always applied independently. For example,
Ali et al. [155] used MD simulations to obtain the energetically most favorable cluster
conformers of menthol-based DESs, which required sufficient simulation time, and then
DFT calculations were utilized to optimize the isolated structures and calculate their
structural and thermochemical properties. In a study on ChCl/acetylsalicylic acid (ASA)
therapeutic DESs by Saha et al. [155], radial distribution functions obtained from MD
simulations demonstrated the presence of several H-bonds between the components and
DFT calculations allowed demonstrating that Cl− is acting as a charge transfer bridge
between choline and ASA. Finally, a combination of QM and MD methods is often not an
independent research method, but an auxiliary way to confirm a hypothesis formulated on
the basis of experimental findings, which is no exception in the case of DES studies [156,157].
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Similarly to classical MD, in AIMD, Newton’s equations of motion are solved at each
simulation step. However, instead of using a prescribed potential, DFT calculations are
employed to calculate the energy, which is then considered a function of nuclear coordinates.
Thus, AIMD directly treats many-body effects and polarizability. Moreover, compared
to classical MD, AIMD does not struggle with the problem of poor transferability. The
drawbacks of AIMD are small system sizes (~up to few 100 atoms) and short simulation
times (picoseconds), as well as the need to apply corrections due to the lack of van der
Waals interactions, similarly to DFT.

Although AIMD methods have long been used to study ILs, to date, only about a dozen
papers are devoted to the studies of DESs utilizing this method. The first investigation
of DESs by AIMD was reported by Zahn et al. in 2016 [110]. The authors examined
several choline-based DESs, including the widely studied mixture of ChCl and urea. As
the negative charge transferred from the halide anion to the organic compound was found
to be negligible, the authors questioned whether the deep eutectic melting point is due to
charge delocalization occurring through this hydrogen bonding.

Among the subsequent AIMD simulations of DESs, a number of papers have focused
on gas capture [90,102,158]. Since many-body effects and polarizability are directly in-
cluded in AIMD, it is excellent for elucidating the local solvation structure around the gas
molecules. For example, Malik et al. [90] demonstrated for CO2 and SO2 in reline and
ethaline that charge transfer between the solute and the chloride anion determines the
shapes of the solvation shells, while the nature of the H-bond donor (HBD) is responsible
for its organization around the solute. AIMD allows one to investigate the solvation of not
only small gas molecules in DES, but also, for example, mercury solvation, as its capture
represents a major challenge in natural gas processing [159]. In addition to structural fac-
tors, AIMD has also been used successfully to probe charge transfer and chemical reactions
in DES, as shown by Carrasco-Busturia et al. [160] and Warrag et al. [159].

AIMD can also be applied to validate FFs for classical MD simulations [161]. For
example, Jeong et al. [141] utilized AIMD to develop atomistic polarizable FF for reline. The
authors reported that the resulting FF is in good agreement with both AIMD simulations
and experimental data on the static structure factor and diffusion coefficient.

The final remark concerns the significant limitation of the AIMD method, namely
its resource intensity. Typical simulation times are of the order of hundreds of picosec-
onds, while the available sizes of the systems reach only some hundreds of atoms [109].
For example, Carrasco-Busturia et al. [160] have studied the speciation and reactivity in
AlCl3:urea DES using AIMD. Estimated time scales required for direct AIMD simulation of
reactants, AlCl3 and urea, were found to be well beyond nanoseconds, which is not feasible
using AIMD. To overcome this technical limitation, the authors devised an approach based
on the simulations of the products they hypothesized to be observed in this DES, such
as chloroaluminate anions and [AlClx(urea)y] cations, which allowed them to determine
the possible paths for aluminium electrodeposition in the battery anode with reasonable
simulation times.

2.5. Coarse-Grained Models

Despite its strengths, all-atom MD is limited by its characteristic time and length scales
and computational resources [162,163]. One of the possibilities to overcome the limitations
imposed on the simulation times and system sizes is multiscale simulations. One of the
critical steps in these schemes is the correct transfer of data between different levels of the
representation. These data should contain both structural and thermodynamic properties.

Coarse-grained (CG) models are often built using structure reduction [162,164–167].
This requires the definition of a scheme to transform the atomic structure of the investigated
system into a coarse-grained representation (mapping scheme) and the determination of
the interaction parameters between individual types of CG particles, i.e., a FF.

Typically, each CG bead represents a group of atoms. Therefore, the transition from
atomistic models to CG ones can significantly reduce the number of particles in a system
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and, consequently, the number of degrees of freedom but simultaneously may also lead to
inaccuracies when computing properties via fluctuation-dissipation relations [168]. The
other main disadvantage is the loss of essential chemical details. CG does, however, enable
a significant expansion in system sizes and simulation times.

As in the case of all-atom MD, the choice of the FF is of critical importance. In general,
the determination of interaction parameters is carried out individually for each calculated
system, taking into account the specifics of the mapping scheme to convert an all-atom
representation into a coarse-grained one [162,169–172].

It should be noted that one of the main drawbacks of CG models is the lack of general
applicability (MARTINI [167] being the notable exception) since, as mentioned earlier, the
choice of a mapping scheme and model parameters should be made taking into account
the studied system and the problem that is being addressed. With an increase in the
number of atoms included in each CG bead (i.e., with a decrease in the number of CG
beads in a system), one obtains a greater gain in the speed and efficiency of modeling due
to a decrease in accuracy. Another important problem in CG modeling is the issue of the
transferability [173] of models and FF parameters between different thermodynamic states
(for example, for modeling at different temperatures), as well as the relationship between
the CG timescale and the actual timescale. Coarse-grained FFs from ILs [174] may offer
alternatives that can be applied to DESs as well.

The well-established Dissipative Particle Dynamics (DPD) [175,176] method has been
used in a few DES simulations. Hu et al. [177] and Fan et al. [178] used DPD to study
the self-assembly process of the zeolitic imidazole framework (ZIF) based on sodium
dodecyl sulfate and zinc nitrate complex with 2-methilimidazole in reline with water. The
simulation results made it possible to describe the structure of the hierarchical porous
structure of ZIF-8 and the mechanism of its formation. Fan et al. [179] used DPD to study
microemulsions based on DES (ChCl/urea), tetrahydrofurfuryl alcohol (THFA), and diethyl
adipate (DA). The simulations were used to calculate the phase diagram, which was found
to be in good agreement with experimental data. The simulations also showed that the
main driving force behind the formation of a microemulsion is the interaction between DA
and amphiphilic THFA molecules associated with a change in surface tension. However,
the main restriction of the DPD approach is related to the highly coarse-grained nature of
the potentials, which enable only qualitative comparison with experimental data and all
atom simulations.

Despite the limited amount of coarse-grained simulations, we expect an increase due
to the new works devoted to the development of coarse-grained force fields. In particular,
in the group of Marrink in Groningen, the popular MARTINI force field was first extended
to IL models [180], and very recently they developed the first coarse-grained Martini model
for type III DESs [181] capable of reproducing experimental data on density, structure, and
thermal expansion, and has a good potential for transferability.

2.6. Machine Learning Methods

Designing new DESs usually relies on an intuitive understanding of the relation-
ship between the chemical composition of a DES and its properties. This can make
molecular design time-consuming and costly. Machine learning (ML) has become an
increasingly popular approach to alleviate such problems. ML is based on statistical pro-
cessing of large datasets and detecting correlations between input and output data (for
example, between structure and property) and using them to predict properties of new
compounds [1,182,183]. One of the most common applications of ML is prediction of the
quantitative structure-property relationship (QSPR) [1,184]. For this purpose, the most
frequently used mathematical models are Artificial Neural Networks (ANNs) and methods
of regression analysis [1,182,184].
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2.6.1. Working Principles of ANNs

ANN models consist of a set of nodes connected to each other and distributed over
several layers, similar to the neuron cells in a human brain [182]. The data analysis typically
begins with translating the structure from a chemical to mathematical language by coding
it with molecular descriptors, or features [184]. There are a number of different types of
descriptors; they can originate, for example, from properties with a clear physical meaning
(e.g., molecular mass, the number of carbons in the structure, HOMO or LUMO energies
and other characteristics obtained through the quantum chemical calculations) or from any
type of topological indices [185].

After a translation of the structure to a set of its features has been performed, it can
be regarded as an input layer of an ANN. The next step is transferring the initial data
from one layer to another by applying a transformation function to the input data using
appropriate weights at each node. The final layer consists of nodes that represent the
properties of interest, for example, density or viscosity. As a result, the model can recognize
some unknown non-linear correlations between the different features of the investigated
material, although it does not explain the reasons for the existence of such correlations.
In most cases, the ANN can be taught using training datasets, containing structures with
already known properties. This training involves minimization of an error function and
adjusting the weights [182]. A scheme of a simple commonly used model of ANN called
“multilayer perceptron” is presented in Figure 2.
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There are many methods to estimate the accuracy of the model, for example the mean
absolute percent error, the relative error, the mean square error (MSE), the root mean square
error, and so on. One of the most important and commonly used indicators of the model
“goodness” is R2, defined as the ratio between the sum of squares regression and sum of
squares total. In physical terms, R2 represents the proportion of dispersion in the dependent
variable that can be explained by the independent variable, the closer its value to unity, the
better the model describes the data.

2.6.2. DES Property Prediction

There are many works dedicated to the prediction and estimation of the different
properties of DESs by means of ANNs. For example, Shahbaz et al. used an ANN with
three layers (6-9-1 architecture, namely the input, hidden, and output layer has 8, 4, and 1
neurons, respectively) to predict densities of three different ammonium- and phosphonium-
based DESs across a range of temperatures and compositions [186]. The mole fraction of
DES components and the temperature were used as inputs. They achieved an average
absolute error of 0.14%. The same year, the authors published another study in which they
applied an ANN model with an 8-4-1 structure for the prediction of glycerol removal from
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palm-oil-based biodiesel using DESs [187]. The results were in good agreement with the
experimentally measured data with an absolute average deviation of 6.46%.

In another work by Benguerba et al., multi-linear regression (MLR) and ANN methods
were utilized for the prediction of DESs’ viscosities [188]. The authors used the σ-profile
surface area descriptors derived from DFT and a temperature descriptor as inputs for their
ML models and 108 experimental measurements of five amine-based DESs to build their
mathematical model. As a result, both the MLR and ANN models were able to predict
viscosity with high accuracy (with an R2 value of 0.9305 for the MLR model and an R2

value of 0.9863 for the ANN model). Alrugaibah et al. [189] compared the usage of ANN
and response surface methodology (RSM) models while investigating the efficiency of
NADESs for extraction of procyanidins and anthocyanins from cranberry pomace. For
extraction of anthocyanins using 8 NADESs under various conditions, the ANN models
performed better than the RSM model (R2 = 0.95 for ANN vs. 0.88 for RSM). Fiyadh et al.
compared two types of ANNs, namely feed-forward back-propagation (FFBP) and the
layer recurrent (LR) networks for the prediction of lead (Pb2+) removal from water by
DES-functionalized CNTs [190]. Through the utilization of the experimental data and
implementation of the types of ANN models mentioned above, the authors established the
influence of adsorbent dosage, the concentration of Pb2+, pH, and contact time (the input
features) on the adsorption capacity of the DES-CNT adsorbent (the models’ output feature).
After the optimization of the inner architecture of ANNs, the best prediction of lead removal
was achieved by applying a feed forward back propagation (FFBP) ANN that gave a MSE
of 1.66 × 10−4 and R2 = 0.9956. In another paper, Fiyadh et al. applied a NARX neural
network (non-linear autoregressive network with exogenous inputs) for the prediction
of arsenic removal from water using N,N-diethylethanolammonium chloride-based DES
functionalized CNTs [191]. As in their previous work, they studied the effect of the same
factors on the adsorption capacity of DES-CNTs. Using a NARX neural network with an
optimized structure gave an MSE of 4.75 × 10−4 for the testing set (20 experimental data
points) with R2 = 0.9922. In similar work, Fiyadh et al. explored the removal of the As3+ ions
from water with benzyltriphenylphosphonium chloride based DES-CNTs by implementing
a NARX-based approach [192]. The results showed that this model is suitable for the
prediction of the adsorption of As3+ ions from water (R2 = 0.9818). Finally, in a separate
work, Fiyadh et al. investigated removal of mercury ions from water using multi-walled
CNTs functionalized with an allyl triphenylphosphonium bromide and glycerol-based
DES [193]. After comparison of the NARX network, feedforward neural network and
LR network models with optimized structures, it was discovered that the NARX model
provides the best prediction of Hg2+ adsorption capacity with the R2 = 0.9701.

Dashti et al. used four ML models, namely particle optimization swarm (PSO-ANN),
adaptive network-based fuzzy inference system (PSO-ANFIS), least-squares support-vector
machine (LSSVM), and multi-variate polynomial regression (MPR). The models were
trained and tested using a set of 333 experimental data to demonstrate their efficiency in
the prediction of the CO2 solubility in different DESs [194]. It was shown that the LSSVM
model can provide better performance and the highest accuracy with R2 = 0.993. In the
work of Bagh et al., an ANN model was utilized for the prediction of electrical conductivity
of ammonium and phosphonium-based DESs [195]. The ANN with 8 hidden neurons
showed the best performance and gave the smallest R2 coefficient of 0.9988.

2.6.3. Optimization of Experiments using ML

In addition to prediction of materials properties, ANN models can be used to design
experiments, that is, they can identify optimal experimental conditions by analyzing the
datasets containing information about how different factors (for example, temperature
or humidity) influence the experimental outcome. As an example of such an application,
Sharma and Dash utilized a combined ANN and genetic algorithm (ANN-GA) approach
for how to establish parameters for a DES-based microwave-assisted extraction process
(microwave power, extraction time, liquid–solid ratio, and water percentage in DES) that
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allowed achieving a high extraction efficiency of phytochemical compounds from black
jamun pulp [196]. Stupar et al. applied the RSM and ANN model for the development
of an optimized procedure for β-carotene ultrasound-assisted extraction from pumpkin
using natural DESs [197]. Ghaedi et al. described the development of linear and quadratic
regression models for the prediction of CO2 solubility in DESs and their aqueous solu-
tions [198]. The authors used the designed quadratic regression model for investigating the
influence of pressure, temperature, molar ratio, and water/DES concentration on the CO2
mole fraction and establishing the experimental conditions under which CO2 solubility in
DESs and their aqueous mixtures reaches its maximum.

In the study by Xu et al., 42 key factors of DES pre-treatment of lignocellulosic biomass
procedure were handled by principal component analysis (PCA) and partial least squares
analysis methods to raise the possible efficiency of this industrial procedure [199]. An-
other case where PCA and regression analysis were used synergistically is the work of
Kollau et al. [200]. In this study, the authors used a combination of experimental, theoret-
ical, and computed properties as input for their linear and non-linear models to predict
the non-ideality of the DES mixtures and, thus, the eutectic temperatures. As a result, the
non-linear model with singular descriptors appeared to be significantly more accurate with
R2 = 0.93.

2.6.4. Different Aspects Regarding Application of ML Methods

One of the greatest benefits of the ML approach is that it can be combined with MD
simulations. ML algorithms can be used not only for the construction of FFs, but also in
post-processing of simulation data or/and their interpretation [201–203]. Moreover, the
results of the MD simulation can be used as an input for ML models [184]. Although some
works exist where MD and ML methods have been applied synergistically, to the best of our
knowledge, there are currently no examples of the implementation of these two approaches
in combination with DES research.

Despite the vast number of possibilities that ML methods offer, they have their own
limitations. For example, during iterations, the algorithm can converge to a local minimum
of the error function [182,194]. Moreover, in order to avoid the common problem of
overfitting, some advanced ML models use the molar structure (e.g., graph-convolutional
neural networks [204]) as their direct input. As a result, the number of parameters may be so
large that they require a substantial amount of data to properly estimate the weights [184].
Thus, gathering a sufficient amount of experimental data is a major obstacle for developing
advanced ML models, since training of these models may require thousands and even
hundreds of thousands of entries on molecular properties that may not be available. A
promising solution to this problem may be developing advanced ML models by applying
the so-called “transfer learning” approach [205]. It implies a two-stage protocol of ML
model learning: (1) pre-training using data on proxy-properties and (2) fine-tuning using
data on the target property(ies). Passing the first stage of the protocol typically requires large
“synthetic” (computationally obtained) databases (for example, QM9 [206], Open Quantum
Materials Database [207], etc.). For this reason enlarging and developing “synthetic”
databases specifically for DES is among the most vital tasks.

3. Main Directions of Investigations
3.1. DES Structure

One of the main aims is determining the DES structure-property relationship. Con-
sidering the huge number of conceivable combinations of possible DESs, insights into the
properties of DESs at the nanoscopic level are critical.

In this section, we summarize the structural characteristics of different DESs obtained
by different simulation methods. Most of the work has been devoted to the third type of
DES (see Table 1 in Introduction). It consists of a HBD and an organic salt. To control the
structure and properties of DES, each component can be varied. We first overview the
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role of each component in DES structure formation based on existing simulation studies.
Figures 3 and 4 illustrate the chemical structures discussed in this section.
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3.1.1. Role of the Hydrogen Bond Donor

Most of the works on the structures of classical DESs are based on ChCl, such as
reline [64,70,76,123,208–212] (HBD is urea), ethaline [161,210,213,214] (HBD is ethylene
glycol), glyceline [82,210,215] (HBD is glycerol), and propoline [216,217] (HBD is propylene
glycol). Over the last five years, their structures and properties have been investigated
intensively and the main interactions have been determined. In particular, the interplay
of soft and strong interactions confers flexibility of the hydrogen-bond network formed
in DESs and allows the ensemble to remain liquid at room temperature. Thus, for reline,
urea molecules interact with Cl− ions weakening their interactions with choline cations,
which leads to a decrease in the melting point of the mixture [4]. The compounds for
DESs should provide a competitive balance of interactions between them to ensure the
depression of the melting point. The position of the eutectic point is dependent on the
activity and the melting properties of individual DES components and their fraction in
the mixture. The theory of solid–liquid phase behavior of a simple eutectic system was
described by Alhadid et al. [218]

Celebi et al. [123] used MD simulations to accurately describe the influence of the
fraction of urea in DESs based on ChCl and urea. They showed that the H-bond network
between ions and urea molecules disappears as the mole fraction of urea increases. In
addition, they demonstrated a non-monotonic behavior between the urea fraction and ionic
conductivity: the latter increases with increasing urea concentration and reaches a plateau
at reline composition. Shayestehpour et al. also recently highlighted the main molecular
features responsible for the properties of ChCl/Urea mixtures using MD simulations [119].
In particular, they demonstrated the key role of urea in the formation of the H-bond network
in reline.

Instead of urea, Bonomo et al. [215] investigated DESs based on ChCl and glycerol
(which has three hydroxyl groups). They showed that in the case of glycerol 1:2 compo-
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sition, the coordination is probably defective, and chloride stabilization is ensured both
by H-bonding with the choline hydroxyl group and electrostatic interactions with the
tetramethylammonium group. At 1:3 composition, the excess of glycerol was sufficient to
stabilize chloride anions due to the high amount of hydroxyl group in them.

Stefanovic et al. compared three DESs based on ChCl, ethaline, glyceline, and reline
by AIMD simulations [210]. They showed that the structure of the bulk HBDs is largely
preserved for glyceline and ethaline which can explain a smaller melting point depression.
In contrast, reline exhibits a well-established hydrogen-bond network between the salt
and HBD, leading to a larger melting point depression. The extensive hydrogen-bond
network in reline also results in higher viscosity compared to ethaline and glyceline.
Glyceline also exhibits over-saturation of HBD groups, which leads to higher cohesive
forces within the bulk liquid and to a higher viscosity than ethaline due to more extensive
interactions between HBDs. Another comparison of the choline-based DESs was performed
by Ferreira et al. [216,217]. In their first work [216], they developed a non-polarizable OPLS-
based FF for propeline. The results showed that the HBDs in propeline have a preference
to interact with the salt rather than with itself, which explains its relatively high viscosity.
In the follow-up work Ferreira et al. [217] compared four DESs, namely, ethaline, propeline,
propaneline (based on propanediol), and glyceline. Glyceline, which has a higher number
of hydroxyl groups, demonstrated a higher degree of H-bonding formation with the anion.
Despite the number of HBD groups, an important factor determining the DES properties is
the size of the HBD molecule. Thus, the smaller molecular size of ethaline compared to
propeline and propaneline, allows these molecules to become closer to choline leading to a
higher density of DES based on diatomic alcohols. The critical role of the H-bond network in
DES formation was also recently demonstrated using MD simulations by Panda et al. [219]
who compared DESs based on tetrabutylammonium chloride and two different HBDs
glycerol and ethylene glycol.

Role of HBD can be played by acids, which can endow a DES with unique proper-
ties [68,220–224]. Fu et al. [220] developed a DES based on acrylic acid and estimated the
stability of the ChCl-acrylic acid complexes by QM calculations. The authors demonstrated
a strong interaction between ChCl and acrylic acid, which is more stable than interactions
between individual components. This is an important result because acrylic acid is able to
polymerize, and a DES containing it has the potential to function as an ink for 3D printing.
Gautam et al. [68] used DFT to compare the structure of clusters formed in DESs based on
acetic acid and formic acids. The authors detected the formation of strong H-bonds between
the hydroxyl groups of choline, chlorine ions, and double-bonded oxygens in carboxylic
acids. It is important to note that the viscosity of DESs based on formic acid is two times
lower due to its smaller size and faster movement in the liquid structure. The importance
of the size of HBD was also shown by Rozas et al. [154] who used MD simulations and
revealed the mechanism of H-bond network formation in salt-free cineole-based DES based
on different acid HBDs: the interaction between cineole and HBD are highly dependent on
the size of the HBD. Access to the ester group of cineole is sterically hindered, and only
small molecules can form the most favorable interactions with it.

As discussed in Introduction, components of DESs could act as active pharmaceutical
ingredients forming so-called therapeutic DESs. These DESs can be used to enhance the solu-
bility of active ingredients, membrane transport, drug delivery, and bioavailability [225,226].
Saha et al. [222] used combined DFT/MD simulations to study the possibility of developing
DESs based on acetylsalicylic acid (aspirin), and Bonab et al. [223,224] simulated DESs
based on ChCl and phenyl propionic acid, which have a wide variety of uses including
cosmetics, food additives, and pharmaceuticals [227]. The authors aimed to understand
the physical mechanisms occurring at the eutectic composition point.

Polyols and acids have also received attention [67,228]. Naseem et al. [67] used MD
simulations to compare DESs based on polyols (ethylene glycol and glycerol) and acids
(malic acid, tartaric acid, and oxalic acid). The DES based on tartaric acid was found to be
more stable due to the larger number of HBD groups in tartaric acid compared to other
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HBDs. The H-bond network, as revealed by QM simulations, showed a three-dimensional
structure via cross-linking through carboxyl groups of tartaric acid and choline’s hydroxyl
group. Similar results have been obtained by Perkins et al. [228] and Bruinhorst et al. [229].
Perkins et al. [228] showed that a DES based on malonic acid is much more stable than
ethaline and glyceline. Bruinhorst et al. [229] simulated DESs based on heterocyclic amino
acid proline as HBA and glycolic acid or malic acid as HBD and showed that malic acid
with the largest number of HBD sites forms the most stable DES.

3.1.2. Role of Hydrogen Bond Acceptor (Anion)

Another way to control the properties of a DES is to change the H-bond acceptor (HBA).
Because HBA is involved in both interactions (with cation and HBD), its replacement will
cause changes in both interactions. This makes property and structure prediction a non-
trivial task. Migliorati et al. [230] recently discussed the role of an anion in H-bond network
formation. They compared the structure and properties of DESs based on four different
anions: chloride, fluoride, nitrate, and acetate. The results showed that there is no one-
to-one correspondence between the order of DES melting points and the strength of the
H-bonds between urea and anion; a complex network of interactions is formed in which
the anions try to maximize their H-bond interactions with the other components of the
system. The specific way in which each anion achieves this goal depends on the nature of
the anion. It was shown that unlike monatomic anions, polyatomic anions, such as nitrate
and acetate are able to simultaneously bind two hydrogens of urea.

3.1.3. Role of Cation

Most of the studies regarding cations have focused on DESs based on ChCl. Migliorati
et al. [211] compared structures of DESs based on choline (reline) and butyltrimethylammo-
nium (UBTMAC). H-bonds between chloride ions and urea molecules are more favored
in DESs based on UBTMAC due to absence of competition from the anion. This result
suggests that the formation of anion-urea H-bonds is not the only reason for the large
melting point depression observed in DESs, so a more complex picture has to be considered
in which a variety of different H-bonds exists. In this context, it is worth mentioning
the work of Gutiérrez et al. [153] in which a DES based on amino acid betaine and lactic
acid was developed. Betaine has a close similarity in chemical structure to choline, where
the hydroxyl group of choline is instead replaced by a carboxyl group. This produces a
stronger H-bond network in DESs based on betaine and makes such DESs promising for
future applications.

The role of another cation, 1-ethyl-3-methylimidazolium (EMIm), for (EMImCl]):urea
DES structure formation was investigated by Cerajewski et al. [231]. Their MD simulations
revealed nanoscale segregation of DES into two regions: EMIm and urea-enriched regions.
The properties of the DES are determined by the interface between these regions, which
depends on the interaction of chloride anions with urea and EMIm. Another example is
the fact that one can control the structure of DES and its intramolecular interactions by
varying cation types is the work of Naik et al. [232]. They demonstrated the difference in
structure and formation of the H-bond network of DESs based on methyltriphenylphos-
phonium bromide (MTPPBr) and tetrabutylammonium bromide with ethylene glycol or
glycerol as HBD [232]. It is worth mentioning that a DES based on MTPPBr is highly
required for CO2 adsorption and its structure has been studied using MD simulations by
Kussainova et al. [233].

3.1.4. Hydrophobic Deep Eutectic Solvents

One of the actively developed types of DESs are hydrophobic DESs. Hydrophobic
DESs were presented as solvents for liquid–liquid extractions in 2015 [234,235]. Since then,
the field of hydrophobic DESs has grown extensively. The development of hydrophobic
DESs is well described in the review by van Osch et al. [236].
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Several authors have reported that the structure of hydrophobic DES could be het-
erogeneous. Because the structure of a DES is mostly determined by the H-bond network,
the investigation of the influence and diversity of H-bonds on the structure is one of the
common tasks. Thus, Salehi et al. [237] investigated the effect of the hydrophobicity of the
cation on the structure and properties of the DESs. They performed MD simulations of
DESs based on tetraalkylammonium chloride and decanoic acid with varying lengths of the
alkyl side chain of the cation. The increase in cation chain length decreases the density and
slows down diffusion. However, no significant influence was observed on the intermolecu-
lar characteristic distances and the H-bonds. Abbas et al. [238] investigated the structure
and dynamics of H-bonds in hydrophobic salt-free DESs formed by the composition of
decanoic acid, menthol, thymol, and lidocaine by MD simulations. They demonstrated
the critical role of H-bonding on the structure and dynamics of DES and revealed a high
diversity of H-bonds. The strength of the dominating H-bonds determines the diffusion of
components in DES and the character of the H-bond network.

Control of heterogeneity is an important task for the development of DESs for extrac-
tion and other separation applications [238,239]. Alizadeh et al. [239] studied heterogeneity
in DESs based on ChCl and its depravities with different lengths of the alkyl chain. MD
simulations revealed strong heterogeneity caused by the segregation of polar and non-polar
parts of molecules in DESs based on the cations with the long alkyl chains. A similar
result was observed by Cui et al. [240], who compared the structures of DESs based on
tetramethylammonium and tetraethylammonium, and Migliorati et al. [211] butyltrimethy-
lammonium in the simulations discussed above.

3.1.5. Electrolyte-Based DESs

Heterogeneity in structure has also been observed in electrolyte-based DESs (the first
and fourth type of DES). Direct evidence of nanoscale spatial heterogeneity in electrolyte-
based DES Li+/ClO4

−:alkylamides (acetamide and propionamide) was reported by
Kashyap et al. [241,242]. The authors demonstrated that nanoscale spatial heterogeneity is
exhibited by the segregated domains of the constituent electrolyte; elongation of the tail of
alkylamide enhances the extent of nanoscale morphology and the strength of ion-pairing.
Moreover, they found that the degree of heterogeneity increases with temperature and
explained this by the enhanced correlations between the ionic species that overpower the
decrease in ionic species-alkylamide cross-correlations.

Biswas et al. [243,244] performed MD microstructure simulations for a number of Li
salts (Li+, Br−, NO3

−, ClO4
−) and acetamide to identify the solution-phase microstruc-

tures in these media, and investigated the anion and temperature dependence of these
microstructures. The authors showed that the presence of heterogeneity arises from the
balance of the interactions between the various species. Ionic clusters were found to be
most stable in the presence of NO3

−. It was also revealed that the perchlorate DES is the
most heterogeneous among the three systems studied.

New DESs based on lithium salts are promising electrolytes for lithium-ion batteries
operated in low-temperature environments. In this context, the phenomenon of the decrease
in melting temperature in metal salt-based DESs is relevant. Ogawa and Mori [245]
combined MD and DFT methods to study four representative DESs based on LiCl or
Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and urea or tetramethylurea as HBDs.
They compared directly the coordination states between Li salts and amides with or without
NH groups, such as urea (with NH) or tetramethylurea (without NH), and revealed the
eutectic mechanism of DESs. It was established that if the cation in the DES is bulky, such
as in reline, the NH group coordinated with Cl− ions causes the melting point to decrease.
In contrast, in the case of high Lewis acidity of the cation (such as Li+), the CO group in
amide coordinates preferentially with cation. In the case of DESs based on LiTFSI and an
amide, the presence of an NH group may not lead to a decrease in the electrolyte melting
point. Furthermore, the HOMO–LUMO calculated from DFT to estimate electrochemical
stability showed that Li-salt:amide-based electrolytes with NH group are unstable on the
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reduction side. So, in contrast to ChCl-based DES, for lithium-ion batteries it is preferable
to use compounds without any NH groups.

3.1.6. Ternary DES

Recently, the possibility of the formation of ternary DESs (TDESs) has been put forth
which offer lower viscosity and melting points than binary DESs.

The ternary DES choline chloride (ChCl):resorcinol (Res):glycerol (Gly) mixture was
simulated using MD by Li et al. [246]. It was concluded that ChCl, resorcinol, and glycerol
form numerous H-bonds that lead to the destruction of the intrinsic microstructure of each
component. As a result, ChCl/Res/Gly are strongly associated through supramolecular
H-bond network and form a DES.

The influence of alcohols as ternary components (n-butanol, iso-butanol, and bu-
tandiol) as an additional HBD in a binary DES composed of ChCl and malonic acid in
equimolar ratio (1:1), also called as maline, was examined in Ref. [59] to understand the
H-bonding interactions. The calculations focused on the molecular orbital (MO) energy
levels. It was concluded that the H-bond network formed between maline and butandiol
results in a larger melting point depression in comparison to n-butanol and iso-butanol. The
interpretation was that maline and butandiol (in contrast to n-butanol and iso-butanol) form
stable and homogeneous systems. These findings were further supported and significantly
validated by the evaluation of the total energy. Maline:butandiol makes a homogeneous
mixture to form a TDES with a less negative value, while n-butanol and iso-butanol with
more negative value show prominent phase separation. The conclusion was also supported
by the recent work of the same authors [247] where they calculated the MO energy levels
for the molecular structures formed in TDES maline/butandiole. The results indicate that
maline molecule more easily donates electrons accepted by the unoccupied orbitals of the
two hydroxyl groups of the HBD.

Jangir et al. [60] studied the effects of alcohols such as ethanol and ethylene glycol as
additional HBD (cosolvents) on DESs formed using ChCl as the HBA and L-lactic acid as the
HBD at 1:2 molar ratio. The calculations of the MO energy levels revealed that the ethanol-
based DESs showed more favorable hydrogen bonding than the ethylene glycol-based
DESs leading to a thermodynamically stable binary system.

3.2. Dynamic Properties

Transport properties, namely diffusion coefficients and viscosity, are important pa-
rameters characterizing the potential of DESs practical applications. Significant attention
has been dedicated to the investigation of mechanisms of motion of DES components,
dynamical heterogeneities, as well as their dependence on different factors (such as ion
identity, chain length, polarity, etc.). MD simulations could provide valuable insights
into the dynamics of different components of DESs which is not easily possible in exper-
iments. For example, quasi-elastic neutron scattering (QENS) experiments provide only
ensemble-averaged results for the system [248]. Moreover, MD simulations allow access to
smaller time and length scales, thus giving more information about dynamic properties
and underlying mechanisms of motions in DESs.

Srinivasan et al. used MD simulations in addition to QENS to examine nanoscale
dynamics in DESs comprised of acetamide (C2H5ON) with lithium nitrate (LiNO3) or
lithium perchlorate (LiClO4) to investigate mechanisms of motion of their molecular com-
ponents [248–250]. In particular, it was observed that movement of acetamide within the
temperature range of 300 to 365 K consists of localized motions in transient cages formed
by the neighboring molecules (both ions and acetamide) and cage-to-cage jumps. Thus,
there are two types of acetamide molecules: (i) H-bonded to lithium ions (slow diffusion)
and (ii) completely free of any H-bonds (fast diffusion). Interestingly, for the first type of
acetamide molecules, jump diffusivity is at least 3 times lower and the mean residence
time between jumps is twice larger than those for the molten acetamide. Additionally, it
was found that almost all lithium ions (90%) are moving between the cages by a vehicular
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motion between solvation shells formed by 3–4 acetamide molecules. Only a small number
of ions (10%) are diffusive due to the structural relaxation of cages. At the same time, no
correlation was observed in the movement of ions, implying a system of dissociated anions
and cations.

MD simulations were extensively used by Biswas’ group to prove the existence of
dynamic heterogeneity in DESs [251–256]. Das et al. [251] applied MD simulations to
provide support for the fractional viscosity dependence of rotation rates of fluorescence
probes observed in experiments for DESs based on acetamide (C2H5ON) and lithium
bromide (LiBr) with an acetamide mole fraction of 0.78. Analysis of the wavenumber-
dependent incoherent and coherent scattering functions for acetamide molecules calculated
at 303 K and corresponding to four different length scales of density fluctuations showed
stretched exponential behavior. This provided evidence for temporal heterogeneity, thus
explaining the experimentally observed fractional viscosity.

Guchhait et al. [252] simulated acetamide-based DESs with lithium perchlorate (LiClO4),
lithium bromide (LiBr), and lithium nitrate (LiNO3) as electrolytes. Three systems with dif-
ferent mole fractions of acetamide (C2H5ON) and electrolytes were studied (0.81C2H5ON
+ 0.19LiClO4, 0.78C2H5ON + 0.22LiNO3, and 0.78C2H5ON + 0.22LiBr). The observed
stretched exponential relaxation of the dynamic structure factors (even at ~150 K above Tg)
allowed explanation of viscosity decoupling in terms of the temporal heterogeneity of the
DES medium controlled by anion identity.

A more comprehensive molecular view regarding the influence of anion identity on
orientational jumps was given by Das et al. [253] who carried out MD simulations of DESs
composed of acetamide and different lithium salts (bromide (Br−), nitrate (NO3

−), and
perchlorate (ClO4

−)) with 78:22 mol ratio of the components at 303 K. Orientational jumps
involve a bifurcation of a H-bond, switching of a binding partner followed by a large-angle
rotation of the molecule. This mechanism was first suggested (using MD simulations) by
Laage and Hynes [257] for water and has since been shown to be an important mechanism
in solvation especially in the presence of hydrophobes [258]. To study the orientational
jumps of DES components, Das et al. analyzed both acetamide-acetamide and acetamide-
ion pairs. Their analysis of the MD data showed that: (1) Compared to the other two anions,
the presence of NO3

− leads to less frequent large-angle jumps; (2) compared to NO3
− and

ClO4
−, the presence of Br− anion has a different impact on the jump angle distribution,

resulting in a bimodal form; (3) the energy barriers of orientational jumps of acetamides
H-bonded to NO3

− and to ClO4
− differ almost by a factor of two; (4) viscosity of DESs

has an opposite trend compared to the relative reorientational jumps displacements (both
radial and angular) of sequence ClO4

− > NO3
− > Br−; and (5) there is almost no difference

between the free energy barriers of orientational jumps for acetamide-acetamide in systems
with different anions, the value being also close to that for molten acetamide. Additionally,
the presence of dynamic heterogeneity in the systems was supported by the fact that jump
time distributions exhibit a power-law dependence for all the anions studied.

Interestingly, the opposite conclusions about dynamic heterogeneity of DESs were
made by Das et al. [254] while studying systems composed of acetamide (C2H5ON) +
urea (CH4ON2) at 338 K with acetamide mole fractions of 0.6 and 0.7. These systems are
non-ionic DESs composed of dipolar molecules and amphiphiles. Examining the mean
squared displacement profiles, heterogeneity parameters, displacement distributions, and
relaxation of dynamic structure factors showed that acetamide + urea is both a spatially
and dynamically homogeneous system.

Mukherjee et al. [255] examined systems based on acetamide + urea. Pure systems
containing only urea molecules were also simulated for reference. By analyzing various
correlation functions, the authors proposed an explanation for the physical origin of the
three slowest time scales measured in dielectric relaxation. They suggested that they
are dominated by structural H-bond relaxation that involves center-of-mass translation.
Particularly, they proposed that the origin of the fastest time scale in dielectric relaxation
that lies in the sub-10 ps regime could be fast reorientational dynamics of the components
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(acetamide and urea). Additional conclusions were made about the time and length scales
of dynamical and spatial heterogeneity in DESs, which were estimated to be on the order
of ~10 ps and ~10 Å, respectively.

Reorientation dynamics was also studied by Rajbangshi et al. [256] using MD in ChCl +
urea DES. They simulated systems at 0.33 mol fraction of urea at six different temperatures
between 293 and 333 K. Their results suggested evidence for strong temporal heterogeneity
in DESs based on, e.g., displacement distributions and dynamic susceptibilities. The
comparison of a rank-dependent average reorientation relaxation time and translational
diffusion also provided support for translation-rotation decoupling.

The above works use a single FF in MD simulations, the most popular ones being OPLS-
DES [116] (in Ref. [256]), CHARMM [259–261] (in Refs. [248–251]) and its modified ver-
sions [261–263] (in Refs. [248–250,252,253]) and combined versions (CHARMM [259–261]
+ GROMOS [264]) (in Refs. [254,255]). The atomistic models in these works were mostly
validated by measuring density [252–256] and good agreement was found. The situation is
different for dynamic properties. Despite partial agreement with experiments regarding
viscosity [249,255] and ionic conductivity [249] at a single state point, the temperature
transferability of dynamical properties suffers from a lack of quantitative agreement. For
example, Rajbangshi et al. [256] have shown that the ratio of diffusion coefficients measured
with pulsed-field gradient nuclear magnetic resonance to those estimated in MD simula-
tions lay in the range of 0.58 to 4.82 for choline and 0.63 to 4.76 for urea in the temperature
range 293 to 333 K, despite using a specific OPLS-DES FF [116]. This result emphasizes the
importance of FF development and inclusion of polarizability.

Perkins et al. [228] examined the influence of different FF parameters on various
properties of the most commonly investigated DESs based on ChCl and urea using a single
molar ratio 1:2. The authors showed that using the default values of GAFF and charges
reduced by a factor of 0.8 (HF/6–31 G* level calculation) provides a better agreement
with experimental data for density, thermal expansion coefficients, and heat capacity
compared to other FFs. They found the self-diffusivities of the DES components at 298
K are underestimated between 25 and 51% compared to experimental data. On the other
hand, good agreement with experimental values was observed at 330 K.

In their follow-up work, Perkins et al. [124] found that better agreement with experi-
mental values of diffusion coefficients could be achieved by reducing the partial charges
by a factor of 0.9 in the ionic species. This result was shown for three ChCl-based DESs:
ChCl + ethylene glycol 1:2 (ethaline), ChCl + glycerol 1:2 (glyceline). They found that at
298 K the diffusion coefficients were underestimated only by 20–30% (for ethaline) and
by 14–20% (for glyceline). At 330 K the discrepancy was 5–25% (for ethaline) and 17–27%
(for glyceline).

The above shows the complexity of finding universal charge scaling and parameter-
ization for different DES systems. For a more comprehensive discussion on simulations
of DES transport properties, we refer the reader to the excellent review by the group of
Smirnova [41].

To conclude, an alternative way to achieve more accurate predictions could be via
the use of polarizable FFs. A recent example is given by Goloviznina et al. [138], who
used the polarizable CL&Pol FF to simulate transport properties of ChCl + ethylene
glycol (1:2 molar ratio). Their results show good agreement with experimental data
at 298 K (2.18 × 10−11 m2 s−1 in MD vs. 2.62 × 10−11 m2 s−1 in the experiment) and
viscosity (35 ± 5 mPa·s in MD vs. 37 mPa·s in the experiment). However, the H-bond
donor diffusion coefficient was significantly overestimated (13 × 10−11 m2 s−1 in MD
vs. 4.77 × 10−11 m2 s−1 in the experiment). Improved performance of CL&Pol compared
to its non-polarizable version (CL&P) was demonstrated for the diffusion coefficient of
ethylene glycol in DESs based on ChCl (1:2), as shown by de Souza et al. [140]. Interest-
ingly, a better agreement between MD and experimental results was achieved when using
temperature-grouped Nosé–Hoover thermostats rather than traditional ones [138]. Accord-
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ing to the authors, the reason for that is a better treatment of translational, intramolecular,
and polarization degrees of freedom.

3.3. DES for Separations and Gas Capture

One of the world’s major challenges is the reduction in greenhouse gases. Acid
gas emissions, especially CO2, are one of the most pressing technical challenges of this
century, given their role in driving climate change and ocean acidification. The world’s CO2
emissions are emitted in a number of ways, such as burning of oil, coal, natural gas, or liquid
gas in power plants, or for instance by aluminum or petrochemical industries. Despite
recent advances and developments in renewable energy sources, it is likely that at least for
the next few years, fossil fuels will continue to play a key role in energy production. This
means that CO2 emissions will inevitably continue to increase [265–267]. Thus, developing
more sustainable and environmentally friendly ways to capture CO2 (before, during, or
after processing) from fossil fuels is a major challenge today.

A wide range of CO2 capture technologies have been proposed over the past few
years, including solid and liquid sorbents and sorption through membranes [268]. Selective
membrane separation technology is one of the most promising methods and it is considered
to be a cost-effective method to mitigate the emission of CO2. It is necessary to use materials
that can effectively separate and capture gases on industrial scales. Membranes based on
DESs are highly promising due to their unique properties and relative cheapness [269].

Another challenge is the removal of carbon dioxide from natural gas. Natural gas
exists in deep underground reservoirs as a shale gas with non-hydrocarbon components,
such as CO2. The presence of CO2 in natural gas is undesirable due to corrosion and
low heating value; one of the difficulties in using natural gas is the removal of CO2 from
it [270,271].

García et al. [268] used MD simulations to study the intermolecular interactions of
different DESs (reline, glycine and maline) in contact with gas phases consisting of pure
CO2, pure SO2, and a model flue gas (containing N2, CO2, O2, and water). It has been
established that their intermolecular interactions depend on the nature of H-bonding sites
available in the HBDs. Mechanisms of CO2 absorption were also investigated on methylt-
riphenylphosphonium (MEA) bromide and mono ethanol amine-based DESs using MD
simulations by Kussainova et al. [272]. The authors found that interactions between the
CO2 molecules decreased significantly in the presence of the DESs, while interactions be-
tween CO2 and MEA became enhanced. In addition, strong interactions between Br−/CO2
and MEA/CO2 were shown, which suggests the predominant sorption of CO2 by these
components. Haider et al. [273] investigated the CO2 removal process from model shale
gas using two DESs, reline and ethaline. They found that the process of CO2 recovery from
shale gas with a DES is better than the conventional methyl diethanolamine (MDEA)-based
acid gas removal process.

Investigation of highly CO2-philic DES-based separation membrane was carried out
by Lin et al. [274]. The membrane was developed by nano-confining ChCl/ethylene
glycol (ChCl/EG) DES into graphene oxide nano-slits. Their MD simulations revealed
that the confinement affects the structure of the nanosized ChCl/EG liquid, which greatly
facilitates CO2 transfer. It has been shown that by adjusting the ChCl/EG molar ratio and
membrane thickness, it is possible to create materials with desired properties, which makes
it a promising membrane for the selective separation of CO2. Similar studies were carried
out by Shen et al. [275]. This study was aimed to understand how slit-like nanopores of
graphite and titania (rutile) walls containing different amounts of DESs would perform
in the gas binary mixture of CO2 and CH4 separation. Such a system is relevant for the
separation of carbon dioxide from methane in natural gas. Lin et al. proposed a new kind
of supported liquid membrane by incorporating a DES (1ChCl:4EG eutectic liquid) into
the nano-slits of titanium carbide (Ti3C2Tx) membrane [276]. Their MD simulations were
applied to the resulting Ti3C2Tx-based deep eutectic liquid membrane which showed a
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good preference for CO2 in permeability, selectivity (over other light gases), high heat
resistance, and durability.

Alioui et al. [277] used MD simulations and a theoretical approach to study the molec-
ular interaction between CO2 and different DESs. A relationship between the solubility
of gas molecules and the energy of their interaction with DESs was established: The sol-
ubility of CO2 in DESs becomes greater when the energy of attraction is higher and vice
versa [277]. Wang et al. [278] studied phosphonium-based DESs and found good agreement
with experimentally determined solubility coefficients.

In addition to the problems described above associated with capturing carbon dioxide
from the processing of fossil fuels or removing CO2 from natural gas combustion, desul-
furization is a critical process for producing quality fuel. This required researchers to
develop new and environmentally friendly methods for fuel desulfurization. Research
shows that DESs have provided a new route for fuel desulfurization due to the cheapness
and availability of raw materials, higher desulfurization efficiency and environmentally
friendly properties [279]. Hydrodesulfurization and Extractive Desulfurization are among
the most promising desulfurization methods due to their simple operation, low-cost, and
high efficiency when using low-quality fuels [279,280].

MD simulations could be used for the theoretical investigation of these desulfurization
processes by DESs: in the study by El-hoshoudy et al. [280], it was shown that DESs can be
used to capture and remove thiophene compounds. Li et al. [279], proposed metal ion-based
DESs (MDESs), which have even higher sulfur extraction efficiency, and Shah et al. [281] used
MD simulations to investigate them. The authors showed that an MDES based on tetrabutyl
ammonium chloride (TBAC), polyethylene glycol (PEG), and ferric chloride (FeCl3) could be
useful in desulfurization of diesel and capable of rapidly removing thiophenic compounds,
such as benzothiophenes and thiophenes. It was also shown that PEG-free systems can have
higher extraction abilities than TBAC + PEG + FeCl3 systems.

In addition to the absorption of CO2 and SO2, and natural gas purification, DESs could
also be used for extraction of pure components (aromatic and aliphatic) from naphtha
streams. This is of great significance for the petrochemical industry due to the high
economic value of its components [282]. Kumar et al. [282] investigated the molecular
mechanisms of benzene extraction from hydrocarbon mixture using a phosphonium-based
DES using MD simulations. They found that the van der Waals interactions prevailed
over electrostatic ones and enabled the extraction of benzene from a DES-benzene-hexane
mixture. In this ternary system, the DES-benzene pair had a higher interaction energy
than DES-hexane. The self-diffusion value suggested a higher miscibility with DESs and
benzene compared to hexane.

It should be noted that fossil fuels also contain a variety of nitrogen-based polyaromatic
compounds in various forms. The presence of nitrogen-based polyaromatic hydrocarbons
(PAHs) in fuels, which emit NOx into the environment during fuel combustion in engines
and industrial plants, have a large negative impact on the environment and ecosystem.
Recent studies have shown that DESs based on phosphonium have a very high ability
to remove PAHs from fuel oils. Naik et al. [283] studied the extraction of polyaromatic
hydrocarbons from fuel oils using the DES-quinoline-heptane ternary system. The results
of their MD simulations, similar to results obtained by Kumar et al. [282] showed that the
van der Waals interactions were the controlling interactions. Thus, the low-cost DES could
be used for extraction of PAH from fuel oils.

Oxygen-containing additives are widely used in the production of gasoline to reduce
lead content and thereby minimize the severe engine knocking induced by hydrocarbon
mixtures in gasoline. For the production of these oxygenated additives, more and more
processes are being developed for the coexistence of alkanes resulting in many azeotropic
mixtures (such as n-hexane-ethanol and n-heptane-1-butanol). However, these azeotropic
mixtures are difficult to separate by conventional distillation. Liquid–liquid extraction
(LLE) can be applied to solve this problem. In this case, DESs can be used as an extractant.
The study by Zhang et al. [284] explored a choline-based DES for extracting 1-butanol
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(a renewable high-energy biofuel) from an alkanol azeotrope system. Simulations of the
LLE process were performed using the MD method to explain the azeotropic separation
extraction mechanism at the molecular level. The results showed that a ChCl + urea DES
had the best extraction effect. Moreover, the results showed that the extraction of different
DESs depends on the HBDs in DESs, and urea had the best performance among the studied
HBDs. It was also found that among the three components of DESs, Cl− ions played a
dominant role in the extraction process. In addition to studies of 1-butanol + DES mixtures,
there are investigations of other alcohol + DES mixtures separation. Verma et al. [19] first
used non-ionic DESs to carry out extraction of ethanol, 1-propanol, and 1-butanol from the
aqueous phase. MD simulations helped them to establish that the energy of interaction
between DES and alcohol is much higher than between DES components and water, or
water and alcohol. This fact explained the effectiveness of DES for alcohol extraction.
Liu et al. [285] used MD simulations to investigate molecular mechanisms of separation of
methanol: n-hexane mixture by ChCl based DESs and determined the most effective DES
for the separation, and also showed the key role of Cl- ions in the separation process.

Thus, today there are significant hurdles to face in the purification of various energy
sources (fuel, gas) from different substances, such as acid gases, organic compounds, and
others. Their presence can have a disastrous effect on the environment, polluting the
atmosphere and on the quality of the fuel itself, from which these impurities were extracted.
DESs can be used as separating membranes in the processes of gas (liquid) purification.
In addition to pure DESs, some nano-confining (nanoparticles, such as graphene oxide
or the nano-slits of titanium carbide) or additives of the MoO3 type can also be used for
changing the properties of the gas separation membrane. Each method allows one to
improve certain characteristics that are necessary for a specific industrial task. However,
the processes occurring at the nanoscale are often completely inaccessible by experimental
methods. In this regard, computer simulations are an excellent tool that allows studies of
the molecular mechanisms.

3.4. Water Effect on DES

One of the important questions is the interactions of water with DESs. The effect of
water on DESs and ILs has been reviewed by Ma et al. [35]. In practice, the presence of
trace amounts of water in DESs is unavoidable in most cases [34–36]. However, even trace
amounts of water can affect the H-bond network and significantly change the properties
of a DES [35,36]. Water molecules have the ability to be both HBDs and HBAs and can
therefore significantly modify the arrangement of DES at the molecular level [34,286].

Water can also be used to change many of the crucial properties of DES, such as
viscosity, density, and ionic conductivity, to lower the financial cost and to preserve the
environmental friendliness of the solvent [35,286]. For example, high viscosity is considered
as one of the drawbacks of DESs that may impede their wider application [35,287,288]
and increasing water content leads to a decrease in DES solution viscosity that is often a
desirable effect [289,290].

3.4.1. Water Effect on DES Micro- and Nanostructure

Much effort has been put into understanding the influence of water on the micro-
and nanostructures of DESs [34,66,109,287,291–298]. Using MD simulations along with
NMR spectroscopy, Di Pietro et al. investigated ChCl:urea and ChCl:glycolic acid DESs
upon aqueous dilution [34]. The addition of water caused the displacement of DES compo-
nents and asymmetric hydration around the Cl− ions until water became the main ligand.
Busato et al. analyzed the effect of water on the structure of ChCl/sesamol 1:3 DES [296]. It
was shown that for water/DES molar ratios greater than 6, water segregates from sesamol
and captures the majority of ChCl in the aqueous area. Weng et al. described the dual
effect of water on DESs made of 1:2 ChCl/glycerol using MD simulations [287]. With
the addition of water, the number of ChCl–glycerol supramolecular complexes in DES
and the number of H-bonds between choline and glycerol decreased significantly. Water
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can also link choline to glycerol instead of chloride. Alizadeh et al. performed AIMD
simulations to study ChCl:ethylene glycol DES structure with the addition of water (1:2:1
ChCl:EG:water) [294]. The results showed that water molecules compete for association
with Cl− anions. At the same time, some charge transfer occurs from the anion and the
hydroxyl group of the cation to water.

QM calculations can also be used to complement experimental data for water–DES
systems [66,293,297]. For instance, Faraji et al. compared molecular interactions in aqueous
solutions of NADESs based on different amino acids [66]. It was shown that NADES
containing lactic acid/histidine have the highest interaction energy compared with those
NADESs based on alanine and glycine.

3.4.2. Effects of Water on Reline

A large number of studies have focused on the structure and properties of reline in
the presence of water [109,286,292,295,298,299]. Kumari et al. demonstrated that increasing
hydration levels leads to the reduction in interactions between the components of reline
while water preferentially solvates Cl− anions, as well as hydroxyl and ammonium groups
of choline cations [286]. Above 41 wt% of water content, the structure of reline changes
dramatically and a transition from reline to an aqueous solution of reline components occurs.
Below this point, the DES structure is qualitatively retained. More recently, Sapir et al.
analyzed the effect of water on the nanostructure of reline using MD simulations [292]. The
results showed that the nanostructure changed even at very low water content. Moreover,
hydrated DES can be deconvoluted into two dominant nanostructures that prevail up to
30 wt% water: water-in-DES with preserved structural characteristics of pure DES, and DES-
in-water where aqueous solvation of chloride and formation of water–chloride aggregates
occurs. Thus, DESs in the presence of water are mostly heterogeneous, i.e., composed of a
few structures. However, when water content is >50 wt%, a dilute aqueous solution of DES
with solvation of the choline–chloride ion pairs is observed. The quantitative difference
between water content that corresponds to a transition to a dilute aqueous solution obtained
by Kumari et al. [286] and Sapir et al. [292] could be explained by the differences in the
water models used in these works. Sarkar et al. [300,301] confirmed the results obtained by
Kumari et al. [286] and Sapir et al. [292] and investigated changes in water structure with
the increase in the fraction of reline [300] and pure ChCl [301]. They showed that in the
presence of reline, water–water contacts are replaced with contacts between water and urea
molecules and chloride anions, which affects water structure significantly.

Fetisov et al. [109] also demonstrated the micro-heterogeneous structure of reline
DES and water mixtures using AIMD simulations. Similarly, results indicated that water
preferentially solvates Cl− anions. Furthermore, it was shown that the hydrogen atoms of
urea have a similar tendency to bond to the Cl− anions as well as to the oxygen of urea and
water. Using MD simulations, Celebi et al. investigated the microscopic structure and ther-
mophysical properties of aqueous reline and ethaline DESs [298]. It was shown that higher
water content corresponds to more H-bond networks in reline and ethaline disappearing.
Consequently, DESs were fully dissolved at 40 wt% of water. This corresponds to the results
obtained for reline by Kumari et al. using the same SPC/E water model [286]. Alterations
in DESs structures strongly influence their properties. With increasing water concentration,
viscosity, and density of reline and ethaline decreased, self-diffusion coefficients increased
while the ionic conductivity increased up to 60 wt% of water followed by a decrease.

Recently, Celebi et al. analyzed the thermal conductivity of aqueous solutions of reline,
ethaline, and glyceline using non-equilibrium MD simulations [299]. Almost a doubling
of the thermal conductivities was observed for all of the aforementioned DESs in the case
of the addition of 25 wt% of water. The increase in water fraction up to 75 wt% leads to
a three-fold increase in thermal conductivity. Bezerra et al. explored the effect of water
on the electrochemical behavior of Ag+ ions in reline by combining experiments and MD
simulations [302]. Using the cyclic voltametric technique, it was demonstrated that the
addition of water catalyzes the electrochemical reduction in Ag+ ions in reline DES. MD
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simulations revealed structural features in the investigated mixtures upon addition of
water, the number of urea molecules around the Ag+ ions slightly reduced while the water
molecules adjusted to the free space in the DES. Thus, the results obtained in different
studies for reline-based systems in presence of water are qualitatively consistent. The
quantitative differences could be related to the differences in the particular water models
used in these studies.

3.4.3. Water’s Effect on the Properties of DESs

Computer simulations are widely used to analyze the effects of water on DES, which
is important for practical applications [298,299,302–304]. Bezerra et al. [302] studied the
effect of water content on the electrochemical properties of the Cu2+ ions in an ethaline
DES. An increase in water content in ethaline led to an increase in the diffusion coefficient
of the Cu2+ ions. Moreover, the addition of water electro-catalysed the electrodeposition of
Cu on the Pt electrode. MD simulations allowed supplementing the experimental findings
to understand the relationship between these properties and the structure. For instance,
Bezerra et al. [302] demonstrated the complexation of Cu2+ ions with water molecules in
DES. It was also shown that when the amount of water was less than 1%, Cu2+ diffusion
remained almost unaltered.

Baz et al. [304] studied thermophysical properties of glyceline DES in aqueous solu-
tions using MD simulations. The results showed that an increase in water content reduced
the viscosity of the DES, while the thermodynamic activity of water increased. It was
suggested that MD simulations can be used to predict the optimal composition with low
viscosity and low enough water activity to be of importance for biocatalytic applications.
Lukaczynska-Anderson et al. [303] studied the complexation of Ni2+ in 1:2 ChCl:urea
(reline) and 1:2 ChCl:ethylene glycol (ethaline) and demonstrated that the addition of water
changes the complexation of metal cations (Ni2+) which is reflected in electrochemical
performance of DESs. Moreover, the addition of 0–10 wt% of water to reline led to a strong
decrease in viscosity and an increase in conductivity. Interestingly, ethaline appears to be
less sensitive to water addition than reline.

3.4.4. Activity and Stability of Enzymes in DES/Water Mixtures

DESs can be also used as a non-toxic and biodegradable reaction medium for redox
biocatalysis [288]. The stability and activity of enzymes in DES with different water
concentrations have been addressed using MD simulations [288,291,305]. Kumari et al. [291]
showed that the conformation of hen egg-white lysozyme is substantially destabilized
in reline/water mixtures especially at 50:50 reline:water content. Huang et al. analyzed
the activity and stability of alcohol dehydrogenase in glyceline/water mixtures [288]. At
10% of water content, the molecular flexibility of the enzyme increased which, in turn, can
influence the enzymatic activity. At the same time, Shehata et al. showed that slightly
hydrated reline (5%) activates thermoalkalophilic lipases while the mobility of the lid
domain that controls catalytic activity increases [305].

3.4.5. Hydrophobic DESs

Until recently, synthesized DESs were mostly hydrophilic and showed substantial
solubility in water [306]. Increased hydrophobicity of DESs extends the range of their
applications. For example, hydrophobic DESs can be used for separating toxic or important
products from water.

There is an increasing interest in the synthesis, analysis, and application of hydropho-
bic DESs, which were first synthesized by van Osch et al. in 2015 [234]. Recently, Paul et al.
studied the water stability of various hydrophobic DESs, tetrabutylammonium chloride-
based DESs and menthol-based DESs with different organic acid-based HBDs [219]. MD
simulations demonstrated the key role of H-bond strength on water stability. H-bond
strength was related to the DES structure and the length of the alkyl chain of the HBDs. It
was shown that DESs based on menthol and higher fatty acid (C8–C12) are water-stable.
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For menthol-based DESs, the order of stability was the following: dodecanoic acid > de-
canoic acid > octanoic acid > hexanoic acid > pyruvic acid > butanoic acid > levulinic acid
> acetic acid, for ammonium-based DESs the order corresponded to the same sequence.
The same order was demonstrated for the average number of H-bonds between HBDs
and HBAs in DESs. Using MD simulations, Paul et al. investigated phase separation in
a DES made of a 1:1 mixture of oleic acid and lidocaine in an aqueous solution [306]. It
was found that the H-bonds and non-bonding interactions, as well as the competition
between them play a crucial role in the phase separation process. Phase separation at
higher temperatures was defined by the increase in unfavorable interactions between the
DES and water molecules. In their recent work, Salehi et al. [307] studied the interfacial
properties of the following hydrophobic DESs with water at different temperatures: tetra-
butylammonium chloride–decanoic acid (TBAC-dec) 1:2, thymol-decanoic acid (Thy-dec)
1:2, and DL-menthol-decanoic acid (Men-dec) 2:1. Using MD simulations, they found
that the hydrophobicities of the DESs did not depend significantly on temperature. The
preferential alignment of oxygen atoms of decanoic acid toward the water phase was also
indicated by large peaks on the density profiles. Thy-dec and Men-dec demonstrated strong
hydrophobic behaviors with no leaching of the DES constituents into water and negligible
water-in-DES solubilities.

3.4.6. Prediction of DES/Water Mixtures Properties by ANNs

Special attention should also be paid to the application of ANNs for the prediction of
DES/water mixtures properties. For instance, Fiyadh et al. developed ANNs to predict
the removal of Pb2+ from water by DES-functionalized carbon nanotubes [190]. The
following experimental variables were used as input parameters: adsorbent dosage, initial
concentration of metal ions, pH, and contact time while the single output parameter was
adsorption capacity. The ANN model was successfully used for prediction and the optimal
topology of the neural network was found. Fiyadh et al. also studied the adsorption
capacity of DES-functionalized carbon nanotubes for arsenic removal from water solution
using ANNs [191].

3.5. DES in Nanotechnology

Understanding how the molecular-level structure relates to the properties of the
solvent is critical to the design and development of DESs for commercial and indus-
trial use. Over recent years, there has been a dramatic increase in computer simulation
studies of interactions of DES components with nanoparticles of different chemical struc-
tures, molecular composition, mass fraction, and other properties using detailed fully
atomistic computer simulations [61,65,87,96,308–323]. Generally, these studies have been
carried out using atomistic MD methods [308–313,315,317–324] and quantum chemistry
(QC) [61,65,87,96,314,316].

To date, DESs have attracted attention for their ability to break agglomeration of carbon
nanoparticles, influencing their modification processes, and creating complexes between DES
components and nanoparticles. Using atomistic computer simulations, the structure of DESs
have been investigated close to the surfaces of different nano-objects: single-walled carbon nan-
otube (SWCNT) [324], graphene [308,310,313,323], nano-surfaces [308,310,313,315,317,320,322–324],
nanopores [309,311], and metal nanoparticles [312,315,317–320].

As discussed earlier, one of the most common DESs is reline. The orientation of compo-
nents of reline near the nanoparticle surface has been investigated using
MD [310,313,316,322–324] and QC [316] modeling. The results show that in DES solu-
tions, both HBA and HBD molecules are oriented in different ways. Several studies have
also shown [313,317,318,324] the emergence order of DES components close to the interface.
Pair distribution functions and densities between the nanofiller atoms and DES compo-
nents show several peaks, characterizing the appearance of regions with different packing
densities of DES components near the filler surface. In the vicinity of the nanoparticle
surface, one can distinguish the appearance of one well-defined near-surface layer of DES
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components, which has a structure different from the one observed in the DES liquid state
without contact with nanoparticle surfaces.

Lawal et al. [96] combined theoretical calculations and experimental measurements
of adsorption of phenol and crystalline violet dye on carbon nanotubes modified by a
DES (methyltriphenylphosphonium bromide and glycerol). At the molecular level, the
interactions occurring between the surface of the SWCNT with phenol or crystalline violet
dye in contact with the components of the DES were studied using QC methods. The
authors concluded that the suggested DES could be used for nanofiller modification [96].

Wu et al. [61] studied the effect of bromine and Cl− anions on how solvation occurs
and supercapacitors’ characteristics. They showed that DES electrolytes based on tetraethy-
lammonium bromide (TEAB) or tetraethylammonium chloride (TEAC) as the HBA and
ethylene glycol (EG) as the HBD modulate how ion transport depends on temperature and
electrode surface desolvation from activated carbon. In particular, their QC calculations
showed that after DES formation with EG, the TEAB and TEAC LUMO energies become
slightly reduced. Alternatively, HOMO energies decline more crucially in DES systems,
which decreases electron loss and oxidation. The large differences between the LUMO-
HOMO energies lead to the deterioration of electronic transitions and enhancement of
complex stabilization.

Patidar et al. [316] characterized the amphiphilic star block ethylene oxide propylene
oxide block (T1304 star) copolymers in different DES–water mixtures in solution by varying
the molar water ratio. The results led to the conclusion that among the DES pool studied,
glycerol with ChCl in DESs had the most prominent interactions with the T1304 star
copolymer. The authors explained it by the fact that the large energy difference between
HOMO and LUMO for a DES leads to the most stable solvent at room temperature. Using
DFT, Ghenaatian and coworkers [87] studied clusters of metal particles (Cu, Ag, and Au)
with DES comprising ChCl and urea. Analysis of the binding energies between the metal
particles and DES shows that ChCl:urea interacts more with Au and less with Cu and
Ag nanoparticles. With help of DFT calculations, Shakourian-Fard et al. [314] studied
different ChCl-based DESs with graphene molecules (GNF) and graphene with defective
double-vacancy and Stone–Wales forms (DV-GNF and SW-GNF). The results show that
graphene defects lead to DES adsorption enhancements in the following order: DV-GNF >
SW-GNF > GNF. The authors also found that the presence of aromatic fragments in DES
enhances the van der Waals interactions with surfaces.

MD simulations are being extensively used to predict structural properties of DESs in
the vicinity of nanoparticles. Shen et al. [309] modeled four DES systems of mixtures of
choline iodide and glycerol at a molar ratio of 1:3, confined inside slotted nanopores whose
walls are made of TiO2 or graphite. The limiting effect of the pore was found to be strongly
influenced by the dominant arrangement of glycerol over DES cations and anions in the
first near-surface layer close to the pore. The limiting effect of the wall considerably slows
down the mobility of the DES components near the slit walls. Atilhan et al. [319] studied
the solvation of various metal nanoparticles (gold, silver, etc.) in various DES solutions by
all-atom MD methods. They observed the formation of two solvation layers surrounding
the nanoparticles for all types of metals and DESs. In the first layer, intermolecular bulk
interactions between the HBDs and metal atoms dominate, and interactions between anions
and cations are almost absent. In the second layer, the concentration of their components
is close to that of the DES solution. The study performed by Atilhan et al. [319] shows
the promising use of different DESs for the solvation of various metal nanoparticles. They
showed that due to their ability to stabilize nanoparticles and prevent their aggregation,
DESs can be used as prospective solutions for the development of new nanoparticles with
controlled properties.

Rozas et al. [313,324] investigated the influence of differences in the chemical structures
of nanoparticles (graphene-like [313] and SWCNT-like [324]) consisting of C, BN, Si, Ge,
MoS2 on the structure of the solvation layer of reline. It was found that for graphene-like
nanoparticles, a stable near-surface layer of DES components is formed. This layer is
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dominated by urea molecules due to the formation of H-bonds and there is a lack of choline
and Cl− ions. A change in the radius of the SWCNT-like nanotubes did not affect the
ability of the nanoparticles to undergo solvation in the DES solution. It was shown that the
liquid-like structure of the DES solution is practically unchanged even near the surface of
the SWCNT-like nanoparticles. Elbourne et al. [317] studied the emerging patterns of DES
molecules on graphene surfaces. The orientation of molecules depending on their distance
from the surface was studied. It was suggested that the formation of a near-surface DES
layer implies the emergence of a separate nanostructure of the adsorbed layer from the
DES components. The appearance of such a structure is apparently caused by a balance
between the “surface–liquid” and “liquid–liquid” interactions, as well as the limiting effect
of the solid surface at the interface.

3.6. Biomolecules in DES

As discussed in Introduction, DESs have a wide range of applications in pharmaceu-
ticals as solvents, active pharmaceutical ingredients [13] and cryoprotective agents [325].
For example, it is well-known that in water solution, urea forms H-bonds with proteins
breaking intramolecular protein contacts and causing denaturation [326–328]. A surpris-
ing and counterintuitive fact is the observed stabilization of protein structure in the DES
based on urea and ChCl reported by Gorke et al. [329]. To explain this, Monhemi et al.
compared the results of an MD simulation of Candida antarctica lipase B in reline and in
urea solution [330]. It was shown that ChCl limits the diffusion of urea molecules to the
protein core. Moreover, reline components form H-bonds with residues of the enzyme
leading to greater enzyme stability, instead of its denaturation. This problem was further
investigated by Chakrabarti’s group [331,332]. In their first work, they analyzed the effect
of the ammonium salt on stabilization of DESs based on urea [331]. Comparison of peptide
structures in DESs based on two different ammonium salts (ChCl and triethylammonium
acetate chlorides) in different compositions (relative proportions of 1:2 molar ratio and 1:5
molar ratio) showed that reducing the concentration of ammonium salt leads to a desta-
bilization of the protein structure. However, in case of ChCl, the protein remains more
stable than in case of triethylammonium acetate. In their next work [332], Chakrabarti et al.
revealed the molecular mechanisms of protein stabilization in a series of simulations of the
HP-36 peptide, fully confirming the results of Monhemi et al. [330]. In addition, Pal et al.
demonstrated the stabilization effect of glyceline on the protein [333]. MD simulations in
this case revealed stabilizing H-bonds between the glycerol and protein residues. These
H-bonds make the protein more rigid and structurally stable at high temperatures.

The same group recently studied the effect of reline on the structure of nucleic acids
(Thrombin-Binding G-quadruplex Aptamer (TBA)) [334,335]. In their first work, Pal et al.
demonstrated that an increase in reline concentration in water solution decreases the flexi-
bility of TBA [334] suggesting that reline is a good choice for nucleic acid storage. In another
publication, Pal et al. explored the temperature-mediated conformational dynamics of
c-kit oncogene promoter G-quadruplex DNA in reline [333]. The authors demonstrated
increased thermal stability of the DNA structure similar to what was observed for pro-
teins [333] and revealed the molecular interactions responsible for these phenomena.

A series of publications from Aparicio’s group [149–151,336] deserves special attention.
In their work on lidocaine solubility, they predicted that the solubility of lidocaine in two
different DESs (ChCl + lactic acid, β-alanine + lactic acid) is several orders of magnitude
larger than in water and revealed the interactions responsible for the solvation [55]. In
the follow-up work, they studied the solubility of lidocaine in three newly designed DESs
based on arginine and three different organic acids (glutamic acid, oxalic acid, tartaric
acid) [150]. They showed that long-lived H-bonds between lidocaine and both arginine
and organic acids are the main reason for the high solubility of lidocaine and demonstrated
how the solubility of medicinal compounds in a DES can be controlled by the selection of
suitable HBDs and HBAs. In their most recent work [151], Aparicio’s group investigated
the behavior of two β-lactam antibiotics (piperacillin and ampicillin) in the same arginine
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DESs [150] and determined its structure and the main interactions between DESs and
the antibiotics.

Another important work of Aparicio’s group focused on the investigation of cyto-
toxicity of different DESs by the simulation of lipid biomembranes in eleven DESs based
on ChCl and different HBDs [336]. Atilhan et al. showed that the free HBDs of the DESs
are inserted in the bilayer [336]. The authors showed that the insertion of HBDs initiates
bilayer disruption. These results predict high cytotoxicity of the concentrated solutions of
DESs. However, the number of HBDs inserted in the bilayer is strictly dependent on the hy-
drophobicity of the HBD. Thus, this work demonstrates the ability to regulate cytotoxicity
by varying the HBD type in the DES [336].

It can be concluded that DESs are prospective solvents for pharmaceutical applications.
QC and MD techniques have demonstrated their ability to resolve the intermolecular
interactions and how DESs can stabilize the structures of biomolecules, such as DNA and
proteins. DESs’ ability to dissolve antibiotics, together with their low toxicity, makes them
promising solvents in pharmacology.

3.7. Biomass Pretreatment by DES

Owing to their low cost and toxicity, biodegradability, high thermal, and chemical
stability, DESs have emerged as promising solvents for the pretreatment of biomass, i.e.,
by-products from plants, animals, and micro-organisms [337]. DESs could be used for the
dissolution and separation of biomass, the exaction of useful chemicals from biomass, as
well as for biomass conversion [337]. It is highly important for the optimization of biomass
pretreatment to understand the molecular mechanisms responsible for the process. In this
regard, computational methods have proved to be irreplaceable. Below we give typical
examples of such studies.

Mohan et al. [338] studied the dissolution of glucose in DESs based on tetrabutylam-
monium bromide using DFT calculations and MD simulations. These techniques allowed
the analysis of the glucose-DES interactions. It was shown that the anion of the hydrogen
bond acceptor and the HBD molecules form hydrogen bonds with glucose and thus govern
the dissolution of glucose. Similar conclusion was made by Smirnov et al. [125] in their
simulation of nanocrystalline cellulose in reline. In particular, it was revealed that the
formation of H-bonds between the cellulose hydroxyl groups, the urea CO group and the
Cl− ions are the key for dissolution, see Figure 5. The importance of H-bonds for cellulose
dissolution was also demonstrated in the case of 1,8-diazabicyclo[5.4.0]undec-7-enium
based DES [339]. In their study [339], Fu et al. utilized DFT calculations to describe interac-
tions in systems consisting of cellobiose and DES molecules. It was established that both
the HBA and HBD in the DES interact with cellulose via H-bonds. It was also proposed that
this interaction could destroy the H-bond network of cellulose chains, thereby promoting
the dissolution process. ILs dissolve cellulose in a similar fashion [340] with anions playing
a major role in cellulose dissolution.

It is worth mentioning that the cellulose-based products obtained from biomass could
be used to develop novel DES-containing materials. For example, Smith et al. [127] reported
experimental and simulation results on bacterial cellulose gels containing DES glyceline.
Both X-ray diffraction analyses and MD simulations confirmed that the DESs has almost
no effect on the crystalline structure of cellulose. Moreover, MD simulations allowed the
authors to explain the increased diffusion rates for DES components in gels, which was
verified by nuclear magnetic resonance; it was suggested that faster diffusion stems from
the migration of chloride from the bulk to the cellulose surface.
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Some studies [199,341] have focused on the dissolution of lignin from biomass. Muley
et al. [341] investigated lignin tetramers immersed in a DES consisting of oxalic acid and
ChCl under external electric fields using MD simulations. They showed that an electric field
could lengthen certain lignin bonds and, therefore, increase their probability of breaking,
thus contributing to biomass deconstruction. Xu et al. [199] performed DFT calculations
together with principal component analyses to evaluate factors influencing lignin removal
when using ChCl-based DESs. It was established that the hydrophilic ability, polarity,
acidity, and ability to form H-bonds have a significant effect on the pretreatment process.

Recently, an effective procedure has been developed for β-carotene extraction from
pumpkins using DESs based on fatty acids [197]. To this end, the RSM and ANN ap-
proaches were used to optimize the extraction process. Namely, they allowed selecting
the temperature, ultrasound power, and solvent to solid ratio to reach the highest yield of
β-carotene from pumpkin.

4. Future Directions

The field of computational research of DES systems is rapidly evolving. During the
past five years, a number of fundamental questions about the relation between DESs’
structure and properties have been answered with the aid of computer simulations. It is
now well understood that the nature of the eutectic phenomena of DESs is directly related
to the H-bond network and its subtleties. Understanding the role of each of components
in classic DESs (such as reline, ethaline, or glyceline), and the interactions between them,
allows for obtaining the desired structural and transport properties. For example, increasing
the number of donor sites of an HBD not only should change the eutectic composition
but also increase the stability of the H-bond network, and, as a result, raise viscosity. An
increase in the hydrophobic part of the cation should lead to the appearance of structural
heterogeneities. However, the development of new DESs with improved properties sets
new tasks for computational chemistry. For example, the development of ternary DESs has
great potential to enhance their properties. At the same time, increasing the number of DES
components significantly complicates the prediction of the properties and emphasizes the
role of computational research as an indispensable step in DES development.

The development of DESs with application-specific optimal properties is a large
and active field in computational research. Most of the applications are related to the
interactions of DESs with various compounds and mediums. However, in some research
areas, such as solubility studies with biomolecules and molecular mechanisms of the
interactions between DESs and nanoparticles, there are currently only a few investigations.
Although these provide much needed information about studied systems, the low number
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of these publications does not allow obtaining comprehensive fundamental knowledge
about the molecular processes. Moreover, the appearance of new DES applications requires
knowledge from computational chemistry. For example, the recent developments of
polarizable DESs for 3D printing open questions about how to control DESs’ viscosity and
the complex mixtures based on them [12]. These questions can be answered using computer
simulation techniques. It is important to note that DES models and approaches are currently
imperfect and, in some cases, cannot provide quantitatively correct information. As can be
seen from this review, work is underway to develop new approaches.

The vast growth of experimental and computational works devoted to DES publica-
tions provides a significant increase in the amount of new data. This creates a fertile field
for ML techniques that should kickstart a new stage of the DES evolution.

In this review, it has been discussed in depth how particle simulations at atomistic and
quantum levels provide excellent means for detailed studies of complex systems. However,
these systems can only be simulated up-to nanoscale spatial lengths and nanosecond time
scales. To study DESs on a larger scale, which would be desirable for industrial applications
for instance, simulation techniques that can model systems on the meso- (intermediate)
or macroscale might be better suited. In particular, it would be desirable to capture the
microstructure evolution of a DES, for example, near its eutectic point. Furthermore, meso-
and macroscale modeling can also provide information about the behavior of parameters
such as chemical potential, surface tension and viscosity, necessary for advancing our
understanding of DESs [37].

At a high level of coarse-graining [164], phase-field modeling (PFM) is a very powerful
mathematical and computational framework for microstructure simulations [342]. In
PFM, instead of particles, a system is represented using one or more continuous variables
called order parameters and the corresponding set of partial differential equations can
be determined from a free energy functional or even derived phenomenologically. The
order parameters are typically based on the symmetries of the system around a phase
transition, e.g., the eutectic point, and represent the phase as a field of values (hence the
name phase-field) at a mesoscopic scale. The appeal of PFM comes from its ability to
capture large-scale behavior. Additionally, and very importantly, the interfaces between
the bulk regions and the complex dynamics emerge naturally from the construction of a
PFM [343]. The PFM approach has been successful in a wide variety of application, such
as directional solidification and dendritic growth [344–346], formation of polycrystalline
structures [347,348], cardiac electric signals [349,350], and crystal growth [349,351] and
electrochemical effects [352]. On the computational side, PFM is highly amenable to large-
scale parallelizable simulations and there are a number of software packages available
to simulate various phase-field models based on both finite element and finite difference
methods that usually employ some level of parallelization [353–358].

Although, currently, there are no direct applications of PFM to DESs, it is a potential
new approach and has been used in modeling the formation and behavior of eutectic
materials. The application of PFM to eutectics initially began with describing isothermal
phase transitions in binary alloys [359]. This work was extended to include eutectic growth
by Elder et al. [360] and by Karma [361]. The disadvantage of the initial attempts of formu-
lating a model was that the pure substances had an infinitely high melting temperature.
There were further extensions to mitigate this issue, as well as to include non-isothermal
eutectic systems [362,363]. Recent work on PFM of eutectics includes studies of directional
solidification of ternary eutectics by Hötzer et al., who base their PFM on multicomponent
alloy solidification [364–367] and simulate a ternary eutectic at the three phase invariant
point to study microstructure formation. Additionally, phase-field simulations were per-
formed for the ternary eutectic Al–Ag–Cu by Steinmetz et al., who found good agreement
of directional solidification patterns with experimental results [368].

One step to applying PFM to DESs is understanding the phase behavior of such
systems. Some work has been performed on this topic; a study by Kollau et al. showed that
one of the difficulties in adequately describing the phase behavior arises because typical
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DES components often have different sizes and shapes, thus, an ideal entropy of mixing
does not appropriately represent DESs. They found that significant differences in the phase
behaviors of DESs come from the choice of entropy expressions and molar volumes [369].

It is important to note that despite all of our efforts, not all publications devoted to
DES simulations were included in the review due to their high number. To help the reader
and to put the studies that we may have missed, and new studies that become published, in
a perspective, we present systemized information about the publications in Tables A1–A3
in Appendix A with brief information about every publication.
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Appendix A

Table A1. Atomistic simulations of DES consisting systems, force field used, and the topic of the
publication. It should be noted that the partial charges may vary greatly in the publications with the
same force field due to variations of approaches for their calculations. We refer to current publications
for the details.

No DES FF/Corrections Topic of the Publication Reference

1
1-ethyl-3-methylimidazolium

chloride:Urea
Different molar ratios

CL&P
OPLS-AA

Investigation of DES
structure [231]

2

1-octyl-3-methylimidazolium:
Tetrafluoroborate 1-ethyl-3-

methylimidazolium:Tetrafluoroborate
Different molar ratios

CL&P Investigation of DES
structure [370]

3 Acetamide:LiBr (3.5:1) CHARMM 27
only/no corrections Support to experiment [253]

4 Acetamide:LiClO4 (3.5:1) CHARMM 27 + separate
parameters for ions

Mechanisms of DES
components motion [249]

5 Acetamide:LiClO4 (3.5:1) CHARMM 27 + separate
parameters for ions

Mechanism of Acetamide in
Deep Eutectic Solvents [250]

6
Acetamide:LiClO4 (3.5:1)
Acetamide:LiNO3 (3.5:1)
Acetamide:LiBr (3.5:1)

CHARMM 27 + separate
parameters for ions

Orientation jumps of
acetamide molecules [253]
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Table A1. Cont.

No DES FF/Corrections Topic of the Publication Reference

7
Acetamide:LiClO4 (4.1:1)
Acetamide:LiNO3 (3.5:1)
Acetamide:LiBr (3.5:1)

CHARMM 27 + separate
parameters for ions Support to experiment [252]

8 Acetamide:LiNO3 (3.5:1) CHARMM 27 + separate
parameters for ions

Mechanisms of DES
components motion [248]

9 Acetamide:Urea (1.5:1)
Acetamide:Urea (2.3:1)

CHARMM +
GROMOS96/no

corrections

Temperature dependent
relaxation dynamics, particle
motion characteristics, and

heterogeneity aspects of
deep eutectic solvents

[254]

10 Acetamide:Urea (2.3:1)
CHARMM +

GROMOS96/no
corrections

Structural H-bond relaxation [255]

11 Acetamide:Urea (2.3:1) OPLS-DES/no
corrections

Heterogeneity of
reorientational relaxation

and translational dynamics
[256]

12
Arginine:Glutamic acid (1:1)

Arginine:Oxalic acid
(1:1)Arginine:Tartaric acid (1:1)

No name of FF.
Parameters are given Lidocaine in DES [150]

13
Arginine:Glutamic acid (1:1)

Arginine:Oxalic acid
(1:1)Arginine:Tartaric acid (1:1)

No name of FF.
Parameters are given Antibiotics in DES [151]

14 Benzene-1,4-diol:Urea
Different molar ratios AMBER99

Investigation of DES
structure and dynamics and

water effect on it
[371]

15 Betaine:Lactic acid (1:1) No name of FF.
Parameters are given

Investigation of DES
structure [153]

16 Betaine Monohydrate:Glycerol
Different molar ratios GAFF/no corrections Extraction of palmitic acid by

DES [372]

17 Betaine Monohydrate:Glycerol (1:2) GAFF/no corrections Investigation of DES
structure [373]

18

Bis(trifluoromethanesulfonyl)imide:
Methanesulfonamide

Bis(trifluoromethanesulfonyl)imide:
Dimethylmethanesulfonamide

Different molar ratios

OPLS-AA/no corrections
Characterization of the
transport properties of

binary DESs
[374]

19

Caprolactam:Tetrabutylammonium
bromide (1:1)

Caprolactam:Tetrabutylammonium
bromide (1:1)

ChCl:Urea (1:2)
Methyltriphenylphosphonium

bromide:Monoethanolamine (1:6)

Gromos54a7,
the optimized forcefield

parameters were
obtained from the

Automated Topology
Builder (ATB) database

Natural Gas Desulfurization
using DES [375]

20
Ceineole:Succinic acid (1:1)

Ceineole:Malic acid (1:1)
Ceineole:Lactic acid (1:1)

No name of FF.
Parameters are given

Investigation of DES
structure [154]

21 ChCl:Ethylene glycol (1:4) OPLS-AA/no corrections DES for gas separation [276]

22
ChCl:1,2-ethanediol (1:2)

ChCl:1,3-propanediol (1:3)
ChCl:1,4-butanediol (1:3)

OPLS and GAFF/no
corrections

Dependence of Solvation
Dynamics in Alcohol-Based

DES
[376]
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Table A1. Cont.

No DES FF/Corrections Topic of the Publication Reference

23

ChCl:1,2-ethanediol
ChCl:1,3-propanediol
ChCl:1,4-butanediol

ChCl:1,5-pentanediol

Combination of
OPLS-AA and Amber

parameters

Investigation of DES
structure [377]

24 ChCl:Acetyl salicylic acid (1:1) GAFF/no corrections Investigation of DES
structure [222]

25

ChCl:Citric acid (1:1)
ChCl:Fructose (1:1)

ChCl:Malic acid (1:1)
ChCl:Lactic acid (1:1)

No name of
FF.Parameters are given

Gas Solubility and
Rheological Behavior of

Natural DES
[54]

26 ChCl:Ethylene glycol
Different molar ratios OPLS-AA/no corrections DES for CO2 separation [274]

27 ChCl:Ethylene glycol (1:1)
ChCl:Ethylene glycol (1:2)

OPLS-AA CL&P/charges
scaling for ions is 0.8 Water effect on DES structure [294]

28 ChCl:Ethylene glycol (1:2) GAFF/ charges scaling
for ions is 0.9

CO2 uptake by a DES in slit
nanopores [311]

29 ChCl:Ethylene glycol (1:2) OPLS/no corrections DES at a solid electrode [315]

30 ChCl:Ethylene glycol (1:2) INTERFACE and
CGenFF DES at solid interfaces [317]

31 ChCl:Ethylene glycol (1:2) GAFF/charges scaling
for ions is ±0.9

Investigation of DES
structure [161]

32 ChCl:Ethylene glycol (1:2) CHARMM General Force
Field/no corrections

Investigation of DES
structure [213]

33 ChCl:Ethylene glycol (1:2)
FF developed by authors

(0.8 FFM3) based on
OPLS

Investigation of DES
structure [214]

34 ChCl:Ethylene glycol (1:2) CL&Pol Force field validation [137]

35 ChCl:Ethylene glycol (1:2) CL&PolCL&P Force field validation [140]

36 ChCl:Ethylene glycol (1:2) OPLS-AA/no corrections Water effect on DES
physicochemical properties [302]

37 ChCl:Ethylene glycol (1:2) GAFF/no corrections

Solvatochromic parameters,
and preferential solvation in

aqueous solutions of DES
and its components

[293]

38 ChCl:Ethylene glycol (1:2) OPLS/no corrections CO2 absorption in DES [158]

39
ChCl:Ethylene glycol (1:2)

ChCl:Glycerol (1:2)
ChCl:Malonic acid (1:2)

GAFF/charge scaling for
ions is 0.9

Investigation of DES
structure [124]

40
ChCl:Ethylene glycol (1:2)

ChCl:Glycerol (1:2)
ChCl:Urea (1:2)

GAFF/no corrections Solvation dynamics of an
ionic probe in DES [157]

41
ChCl:Ethylene glycol (1:2)

ChCl:Glycerol (1:2)
ChCl:Urea (1:2)

GAFF/no corrections
Investigation of separation

mechanism of methanol
hexane mixtures

[285]

42 ChCl:Ethylene glycol (1:2)
ChCl:Levulinic acid (1:2)

GAFF/charge scaling for
ions is 0.9 for systems
with ethylene glycol

0.8—for systems with
levulinic acid

Fluorinated refrigerants in
DESs [120]
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Table A1. Cont.

No DES FF/Corrections Topic of the Publication Reference

43 ChCl:Ethylene glycol (1:2)
ChCl:Levulinic acid (1:2)

ChCl and Ethylene
glycol–GAFF

Levulinic
acid-HF/6–31G* +

AMBER or DFT for
optimized clusters

DES for gas separation [275]

44

ChCl:Ethylene glycol (1:2)
ChCl:Propylene glycol (1:2)
ChCl:1,3-propanediol (1:2)

ChCl:Glycerol (1:2)

FF developed by authors
(0.74 FFM16) based on +

OPLS

Investigation of DES
structure [217]

45 ChCl:Ethylene glycol (1:3)
ChCl:Glycerol (1:3) COMPASS Silica nanoparticles in DES [378]

46

ChCl:Ethylene urea (1:2)
ChCl:Thiourea (1:2)

ChCl:Ethylene glycol (1:2)
ChCl:Glycerol (1:2)

“UNIVERSAL” force
field

Forcite and Blends
Module Materials studio

package

Desulfurization mechanism
by the DES solvents [280]

47 ChCl:Glucose (1:3, 1:1, 3:1) CHARMM 36/no
corrections

Investigation of DES
structure [379]

48 ChCl:Glycerol OPLS-AA/no corrections Gels based on DES and
cellulose [127]

49 ChCl:Glycerol:Resorcinol (1:5:3) AMBER
Parameters are given

Investigation of DES
structure [246]

50 ChCl:Glycerol (1:2) CHARMM 36/no
corrections Water effect on DES structure [287]

51 ChCl:Glycerol (1:1) Gromos54a7/no
corrections

Effects of a cholinium based
DES on function and
structure of versatile

peroxidase

[380]

52 ChCl:Glycerol (1:2, 1:3) GAFF/no corrections Investigation of DES
structure [215]

53 ChCl:Glycerol (1:2) GAFF/charge scaling is
0.9 Protein in DES [333]

54 ChCl:Glycerol (1:2) GAFF/no corrections solvation of enzyme in DES [381]

55 ChCl:Glycerol (1:2)
ChCl:Ethylene glycol (1:2)

GAFF
OPLS-DES

CGenFF
no corrections

Validation of force field for
mixtures of DES and water
and interaction DES with

enzyme

[382]

56 ChCl:Glycerol (1:2) GAFF/charge scaling for
ions is 0.9

Effect of water on
thermophysical properties

DES
[304]

57 ChCl:Lactic acid (1:1)
β-alanine:Lactic acid (1:1)

No name of FF.
Parameters are given Lidocaine in DES [55]

58 ChCl:Lactic acid (1:9) GAFF/no corrections Lignin dissolution behaviors
of DES [383]

59 ChCl:Levulinic acid (1:2) No name of FF.
Parameters are given DES on the metal surface [318]

60 ChCl:Levulinic acid (1:2) No name of FF.
Parameters are given DES for CO2 capture [52]
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61

ChCl:Malonic acid
ChCl:Oxalic acid

ChCl:Succinic acid
ChCl:Fumaric acid

Different molar ratios

GAFF/no corrections Investigation of DES
structure [221]

62 ChCl:Malonic acid (1:1, 1:2) GAFF/no corrections
Separation of

nitrogen-containing
aromatics by DES

[384]

63 ChCl:Oxalic acid (1:1) CHARMM 36/no
corrections Biomass separation [341]

64 ChCl:Phenyl propionic acid (1:2) CHARMM 36/charges
scaling is 0.8.

Investigation of DES
structure [224]

65 ChCl:Phenyl propionic acid
Different molar ratios

CHARMM 36/no
corrections

Investigation of DES
structure [223]

66 ChCl:Phenylacetic acid (1:2) No name of FF.
Parameters are given CO2 absorption with DES [53]

67 ChCl:Propylene glycol (1:2)
ChCl:Ethylene glycol (1:2)

FF developed by authors
(0.74 FFM16) based on

OPLS

Investigation of DES
structure [216]

68 ChCl:Sesamol (1:3) OPLS-AA/no corrections Water effect on DES structure [296]

69 ChCl:Urea (1:2) No name of FF.
Parameters are given

Investigation of enhanced oil
recovery by DES [385]

70 ChCl:Urea
Different molar ratios

CL&P/charge scaling for
ions is 0.9.

Investigation of DES
structure [214]

71 ChCl:Urea
Different molar ratios

GAFF/charge scaling for
ions is 0.8

Investigation of DES
structure [123]

72 ChCl:Urea (1:2) GROMOS 96/no
corrections Protein in DES [330]

73 ChCl:Urea (1:2) GAFF/charge scaling is
0.8 DNA in DES [335]

74 ChCl:Urea (1:2) OPLS-AA/no corrections Protein in DES [332]

75 ChCl:Urea (1:2) GAFF/charge scaling is
0.8 DNA in DES [334]

76 ChCl:Urea (1:2) CHARMM 22/no
corrections DES near graphene [322]

77 ChCl:Urea (1:2) No name of FF.
Parameters are given

DES at 2D nanomaterial
interfaces [313]

78 ChCl:Urea (1:2) No name of FF.
Parameters are given

DES with different
nanotubes [324]

79 ChCl:Urea (1:2)
Combine force field

based on CGenFF and
CHARMM 36

DES nanodroplet at carbon
material [323]

80 ChCl:Urea (1:2) GAFF/ charges scaling is
0.9 for the ions

DES droplets on ionic
substrates [320]

81 ChCl:Urea (1:2) OPLS-AA/no corrections Dissolution of cellulose in
DES [21]

82 ChCl:Urea (1:2) q4-MD force field/no
corrections Molecular encapsulation [386]
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83 ChCl:Urea (1:2)
Monte Carlo/Empirical

potential structure
refinement (EPSR)

Investigation of DES
structure [387]

84 ChCl:Urea (1:2) OPLS-AA/no corrections Separation of uranyl Ions [388]

85 ChCl:Urea (1:2) Various force-fields Force fields comparison [228]

86 ChCl:Urea (1:2) OPLS-AA/no corrections
Flow resistance of DES
confined in ionic model

nanoslits
[389]

87 ChCl:Urea (1:2) CHARMM 36/no
corrections

Conformation and Stability
of Lysozyme in DES/water

mixtures
[291]

88 ChCl:Urea (1:2) CHARMM 36/no
corrections

Stability and activity of
lipase in DES/water

mixtures
[305]

89 ChCl:Urea (1:2) OPLS-AA/no corrections Water effect on DES structure [295]

90 ChCl:Urea (1:2) CHARMM 36/no
corrections Water effect on DES structure [286]

91 ChCl:Urea (1:2) CHARMM 36/charge
scaling is 0.89 Water effect on DES structure [292]

92 ChCl:Urea (1:2) OPLS-AA/no corrections Effect of DES on the water
structure [300]

93 ChCl:Urea (1:2) Merck Molecular Force
Field (MMFF)

Water effect on DES
thermo-physical properties [36]

94 ChCl:Urea (1:2) Gromos54a7/no
corrections

Intermolecular interactions
between DES and
dimethylsulfoxide

[390]

95
ChCl:Urea (1:2)

Butiyltrimetylammonium chloride:Urea
(1:2)

Lopes-Padua and
OPLS-AA/no corrections

Investigation of DES
structure [211]

96 ChCl:Urea (1:2)
ChCl:Ethylene glycol (1:2)

GAFF based FF/charge
scaling for ions is 0.9 for

systems with urea
0.8—for systems with

ethylene glycol

Water effect on DES
properties [298]

97 ChCl:Urea (1:2)
ChCl:Ethylene glycol (1:2)

Merck Molecular Force
Field (MMFF)

Water effect on DES
properties [303]

98 ChCl:Urea (1:2)
ChCl:Ethylene Glycol (1:2)

No name of FF.
Aspen plus simulator

CO2 removal
from shale gas by DESs [273]

99
ChCl:Urea (1:2)

ChCl:Ethylene glycol (1:2)
ChCl:Glycerol (1:2)

GAFF based FF/charge
scaling for ions is 0.9 for

systems with urea
0.8—for systems with

ethylene glycol or
glycerol

DES for absorption
refrigeration systems [391]

100
ChCl:Urea (1:2)

ChCl:Ethylene glycol (1:2)
ChCl:Glycerol (1:2)

GAFF based FF/charge
scaling for ions is 0.9 for

systems with urea
0.8—for systems with

ethylene glycol or
glycerol

Water effect on DES thermal
conductivity [299]
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101
ChCl:Urea (1:2)

ChCl:Ethylene glycol (1:2)
ChCl:Glycerol (1:2)

Gromos54a7/no
corrections Water effect on DES structure [392]

102
ChCl:Urea (1:2)

ChCl:Ethylene glycol (1:2)
ChCl:Glycerol (1:2)

GAFF/no corrections
Solvatochromic properties

and ion solvation structure in
DESs

[393]

103
ChCl:Urea (1:2)

ChCl:Ethylene glycol (1:2)
ChCl:Glycerol (1:2)

GAFF/no corrections
Solvatochromic behavior of

dimethyl sulfoxide with
DESs

[394]

104

ChCl:Urea (1:2)
ChCl:Ethylene glycol (1:2)

ChCl:Glycerol (1:2)
and their mixtures

No name of FF.
Parameters are given DESs on 2D materials [321]

105

ChCl:Urea (1:2)
ChCl:Ethylene glycol (1:2)

ChCl:Glycerol (1:2)
ChCl:Malonic acid (1:1)
ChCl:Oxalic acid (1:1)

OPLS, GAFF/scaling of
1–4 intramolecular
interaction energies

Hildebrand and Hansen
solubility parameters of

DESs
[395]

106

ChCl:Urea (1:2)
ChCl:Ethylene glycol (1:2)

ChCl:Glycerol (1:2)
ChCl:Oxalic acid (1:1)

ChCl:Malonic acid (1:1)
ChCl:Glutaric acid (1:1)

ChCl:Malic acid (1:1)
ChCl:Citric acid (1:1)

ChCl:Levulinic acid (1:2)
ChCl:Phenyl acetic acid (1:2)

ChCl:Acetamide (1:2)

Combine force field
based on CGenFF and

CHARMM 36
Lipid membrane in DES [336]

107

ChCl:Urea (1:2)
ChCl:Ethylene glycol (1:2)

ChCl:Glycerol (1:2)
ChCl:Propylene glycol (1:2)

GAFF/no corrections

extraction mechanism of
1-butanol separation

from alkanol azeotropic
system using choline-based

DES

[284]

108

ChCl:Urea (1:2)
ChCl:Ethylene glycol (1:2)
ChCl:Levulinic acid (1:2)

Betaine:Levulinic acid (1:2)

Modified AMBER force
field

Mercury Capture from
Petroleum using DES [159]

109

ChCl:Urea (1:2)
ChCl:Ethylene Glycole (1:2)

ChCl:Glycerol (1:2)
ChCl:2-aminoethan-1-ol (1:6)
Allyltriphenyl phosphonium
bromid:Ethylene glycol (1:4)
Allyltriphenyl phosphonium

bromid:Triethylene Glycol (1:4)
Allyltriphenyl phosphonium
bromid:Levulinic acid (1:4)

No name of FF.
Forcite module, from

Materials Studio software

Molecular interaction
between the different DESs

and CO2

[277]

110

ChCl:Urea (1:2)
ChCl:Glycerol (1:2)

ChCl:Levulinic acid (1:2)
ChCl:Malonic acid (1:1)

ChCl:Phenylacetic acid (1:2)

No name of FF.
Parameters are given

Charges are calculated
for clusters.

Investigation of DES
structure [396]
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111
ChCl:Urea (1:2)

ChCl:Glycerol (1:2)
ChCl:Malonic acid (1:1)

No name of FF.
MDynaMix v.5.2

molecular modeling
software

Mechanisms of acid gases
capture in DES [268]

112 ChCl:Urea (1:2)
ChCl:Glycolic acid (1:1)

OPLS/charge scaling is
0.8

Stability and activity of
alcohol dehydrogenase in

DES/water mixtures
[288]

113

ChCl:Urea (1:2)
ChCl:Thiourea (1:2)

ChCl:Methyl urea (1:2)
ChCl:Dimethyl urea (1:2)
ChCl:1,1-dimethylurea

(1:2)ChCl:N,N′-ethylene urea (1:2)

GAFF/charges scaling is
0.9 for

urea and 0.8 for ChCl

Investigation of DES
structure [118]

114

ChCl:Urea (1:2)
ChF:Urea (1:2)

ChNO3:Urea (1:2)
Ch acetate:Urea (1:2)

CL&P Investigation of DES
structure [230]

115 ChCl: Water

ChCl: LJ parameters
(AMBER) + partial

charges (DFT)
Water: TIP3P

Water structuring in DES [397]

116 ChCl:Water (1:3.3) OPLS-AA/no corrections Investigation of DES
structure [398]

117 ChCl:Water OPLS-AA/no corrections Effect of ChCl on water
structure [301]

118

ChCl derivatives consisted of a series of
elongated alkyl side chains and elongated

alcohol side chains
[Ch]+, [C4Ch]+, [C6Ch]+, [C8Ch]+,

[(C4)3Ch]+, [ChC4OH]+, [ChC6OH]+,
[ChC8OH]+, [ChC10OH]+, [ChC12OH]+)

HBD:Ethylene glycol
Molar ratio 1:4

CL&P Investigation of DES
structure [239]

119

Choline chloride:Trifluoroacetamide
(1:2.5)

Chlorocholine
chloride:Trifluoroacetamide (1:2.5)

Tetrametilammonium
chloride:Trifluoroacetamide (1:2.5)

Tetraethylammonium
chloride:Trifluoroacetamide (1:2.5)

Benziltriethylammoniun
chloride:Trifluoroacetamide (1:2.5)

GAFF/no corrections Investigation of DES
structure [240]

120 Choline iodide:Glycerol (1:3) GAFF/ charges scaling is
0.9 for for the ions DES in nanopores [309]

121

Decanoic acid:Menthol (1:1, 1:2)
Decanoic acid:Lidocain (2:1)

Menthol:Lidocain (2:1)
Thymol:Lidocaine (1:1, 2:1)
Thymol:Menthol (1:1, 2:1)

OPLS-AA/M
Parameters are given

Investigation of DES
structure [238]

122 Menthol:Lauric acid 2:1
Menthol:Decanoic acid 1:1 GAFF/no corrections Investigation of DES

structure [19]



Int. J. Mol. Sci. 2022, 23, 645 44 of 68

Table A1. Cont.

No DES FF/Corrections Topic of the Publication Reference

123
DL-menthol:Hexanoic acid (1:1)
DL-menthol:Octanoic acid (1:1)
DL-menthol:Decanoic acid (1:1)

CHARMM 36/no
corrections

Dynamics of
hydrogen-bonding and

translational dynamics and
their dependence on acid tail

length

[399]

124

DL-menthol based DESs
HBDs: Acetic acid, Butanoic acid,

Hexanoic acid, Octanoic acid, Decanoic
acid, Dodecanoic acid, Pyruvic acid,

Levulinic acid
Tetrabutylammonium chloride based

DESs
HBDs: Acetic acid, Octanoic acid

GAFF/no corrections Water Stability of
Hydrophobic DES [219]

125
Ferric chloride:Tetrabutylphosphonium

bromide
Different molar ratios

Gromos54A7 Investigation of DES
structure [400]

126
L-Arginine:Glutamic acid (1:1)

L-Arginine:Oxalic acid (1:1)
L-Arginine:Tartaric acid (1:1)

No name of FF.
Parameters are given Nitric oxide solubility in DES [152]

127 L-Menthol:Acetic acid (1:1) AMBER 14 Structure Elucidation of DES [155]

128
LiBr:Acetamide (4.5:1)

LiNO3:Acetamide (4.5:1)
LiClO4:Acetamide (4.5:1)

OPLS-UA Investigation of DES
structure [244]

129
LiBr:Acetamide (4.5:1)

LiNO3:Acetamide (4.5:1)
LiClO4:Acetamide (4.5:1)

CHARMM 22 for nucleic
acids

Investigation of DES
structure [243]

130

LiCl and LiTFSI based DESs
HBDs: Urea,

Acetamide:N,N0-dimethylpropyleneurea,
2-imidazolidinone,

TetramethylureaMolar ratio 1:5

COMPASS II Investigation of DES
structure [245]

131 LiClO4:Acetamide (1:3.5) CHARMM 27/no
corrections

Water effect on DES
properties [401]

132 LiClO4:Acetamide (1:5.2)
LiClO4:Propion amid (1:5.2)

CHARMM 22/no
corrections

Investigation of DES
structure [242]

133

Litium
bis-(trifluoromethanesulfonyl)-imide:

Urea
Different molar ratios

OPLS-AA/no corrections Investigation of DES
structure [402]

134

Litium
bis-(trifluoromethanesulfonyl)-imide:

Urea
Different molar ratios

OPLS-AA/no corrections Investigation of DES
structure [403]

135 Methyltriphenylphosphonium
bromide:Ethylene glycol (1:4) GAFF/no corrections

Extraction of benzene from
hydrocarbon mixture

using a phosphonium based
DES

[282]

136 Methyltriphenylphosphonium
bromide:Ethylene glycol (1:4) GAFF/no corrections

Extraction of a polyaromatic
hydrocarbon from fuel oils

using DES
[283]
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137

Methyltriphenylphosphonium
bromide:Ethyleneglycol (1:4)

Methyltriphenylphosphonium
bromide:Glycerol (1:4)
Tetrabutylammonium

bromide:Ethyleneglycol (1:4)
Tetrabutylammonium bromide:Glycerol

(1:4)

GAFF/no corrections Investigation of DES
structure [232]

138
Methyltriphenylphosphonium
bromide:Monoethanolamine

Different molar ratios

No name of FF.
Parameters are given

Investigation of DES
structure [233]

139

Monoethanolamine (MEA) and
Methyltriphenylphosphonium
bromide (MTPPBr) based DESs.

Different molar ratios

Gromos54a7,
Ions: MTPP+ (AMBER),

MEA and CO2: ATB
database

CO2 absorption in DES [272]

140

Monoethanolamine
hydrochloride:Methyldiethanolamine

Diethanolamine
hydrochloride:Methyldiethanolamine

N-methyl diethanolamine
hydrochloride:Methyldiethanolamine

Different molar ratios

GAFF/no corrections CO2 capture performance by
DES [404]

141

Morpholine and Morpholine based DESs.
HBDs: Urea, Diethylene glycol,

Carboxylic acid, Thiourea, Methanol
Molar ratio 1:4

OPLS-AA/no corrections Investigation of DES
structure [405]

142 Oleic acid:Lidocaine (1:1) GAFF/no corrections Phase separation property of
a hydrophobic DES [306]

143
Proline:Glycolic acid

Proline:Malic acid
Different molar ratios

Amber-Cornell force field Investigation of DES
structure [229]

144
Tetraalkylammonium chloride:Decanoic

acid (1:2)
Cation alkylchain lengths-4, 7, 8)

GAFF/charges scaling is
0.6–1.0

LJ well-depth scaling
factors

Investigation of DES
structure [237]

145
Tetrabutilamonium chloride:Ethylene

glycol (1:3)
Tetrabutilamonium chloride:Glycerol (1:5)

OPLS-AA/partial
charges scaling for ions is

0.8

Investigation of DES
structure [406]

146 Tetrabutylammonium bromide:Formic
acid (1:1)

No name of FF.
Parameters are given Oil desulfurization by DES [149]

147

Tetrabutylammonium bromide:Imidazole
(1:2)

Tetrabutylammonium bromide:Ethylene
glycol (1:4)

Tetrabutylammonium bromide:Glycerol
(1:4)

GAFF/no corrections Dissolution of carbohydrates
in DES [338]

148 Tetrabutylammonium bromide:Sulfolane
Different molar ratios OPLS-AA and CL&P Quantification of the total

vapor pressures of DESs [407]

149

Tetrabutylammonium chloride:Decanoic
acid (1:2)

Thymol:Decanoic acid (1:2)
DL-menthol:Decanoic acid (2:1)

GAFF/charge scaling for
ions is 0.833

Interfacial Properties of
Hydrophobic DES [307]
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150 Tetrabutylammonium chloride:FeCl3:
Polyethylene glycol (4:0.05:1)

Gromos54a7/no
corrections

Investigation of DES
structure [408]

151
Tetrabutylammonium

chloride:Polyethylene glycol:Ferric
chloride (4:1:0.05)

Gromos54a7/no
corrections

Mechanism of
desulfurization by the DES [281]

152

Tetrabutylphosphonium
bromide:Phenol (1:4)

Tetrabutylphosphonium
bromide:Diethylene glycol (1:4)

Allyltriphenylphosphonium
bromide:Phenol (1:4)

Allyltriphenylphosphonium
bromide:Phenol (1:6)

AMBER/no corrections CO2 solubility in DESs [278]

153 Triethylammonium acetate:Urea (1:2) OPLS-AA/no corrections Protein in DES [331]

Table A2. QM calculations of DES consisting systems, method and basis, and the topic of the
publication. Corrections of method and basis are not indicated. We refer to current publications for
the details.

No DES Method/Basis Topic of the Publication Reference

1
1-ethyl-3-methylimidazolium

chloride: Imidazole
Different molar ratios

AIMD
The BLYP functional with triple-ζ

valence polarization basis set and GTH
pseudopotentials. CP2K/QUICKSTEP

code
DFT

B3LYP/6-311+G(2d,2p)

DES as physical solvents
for remarkable separation

of H2S from CO2

[409]

2
1,8-diazabicyclo

[5.4.0]undec-7-enium:
methylthiourea (4:1)

DFT
M06e2X/6-311++G(d,p)

Dissolution of cellulose in
DES [339]

3 24 choline chloride-based DES
with molar ratio from 1:4 to 15:1

DFT
B3LYP/6-311G(d,p)

B3LYP/def2-SVP def2-SVP/J
B3LYP/6-311G(d,p)/def2-TZVP

def2-TZVP/J

Biomass separation [119]

4

Alanine:Lactic Acid (1:1)
Alanine:Malic Acid (1:1)
Betaine:Lactic Acid (1:1)

ChCl:Malic Acid (1:1)
ChCl:Lactic Acid (1:1)

ChCl:Fructose (1:1)

DFT
B3LYP/6-311++G(d,p) CO2 absorption by DES [79]

5

Alanine:Lactic acid (1:1)
Betaine:Lactic acid (1:1)
ChCl:Lactic acid (1:1)
ChCl:Malic acid (1:1)

ChCl:Phenylacetic acid (1:2)

DFT
B3LYP/6-311++G(d,p)

High Pressure Methane
Solubility in Natural DES [410]

6 AlCl3:Urea (1:1, 1.5:1) AIMD
DFT/PAW

Investigation of DES
structure [160]

7
Arginine:Glutamic acid (1:1)

Arginine:Oxalic acid (1:1)
Arginine:Tartaric acid (1:1)

DFT
B3LYP/6-311++G(d,p) Lidocaine in DES [150]

8
Arginine:Glutamic acid (1:1)

Arginine:Oxalic acid (1:1)
Arginine:Tartaric acid (1:1)

DFT
B3LYP/6-311++G(d,p) Antibiotics in DES [151]
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9
Betain:Glycerol (1:2)

Betain:DL-lactic acid (1:2)
Betain:Levulinic acid (1:2)

DFT
GGA/VMN-BP function in DNP 4.4

basis set

Extraction phenolic
compounds from oil

mixtures by DES
[95]

10 Betaine:Lactic acid (1:1) DFT
B3LIP/6-311++G(d,p)

Investigation of DES
structure [153]

11
Camphor:1-decanol

Camphor:Decanoic acid
Camphor:3,4-xylenol

DFT
B3LYP/6-311++G(d,p)

Detoxification of
feedstocks using DES [74]

12

Caprolactam:Tetrabutylammonium
bromide (1:1)

Caprolac-
tam:Tetrabutylammonium

bromide (1:1)
ChCl:Urea (1:2)

Methyltriphenylphosphonium
bromide:Monoethanolamine (1:6)

DFT
B3LYP/6-311++G(d,p)

Natural Gas
Desulfurization using DES [375]

13
Ceineole:Succinic acid (1:1)

Ceineole:Malic acid (1:1)
Ceineole:Lactic acid (1:1)

DFT
B3LIP/6-311++G(d,p)

Investigation of DES
structure [154]

14
ChCl:1,2-butanediol (1:4)
ChCl:1,3-butanediol (1:4)
ChCl:1,4-butanediol (1:4)

DFT
DMol3 module with the generalized

gradient approximation (GGA)-based
Perdew-Wan (PW91) functional

The structure of DES and
supercapacitor
performance

[88]

15

ChCl:4-chlorophenol
ChCl:4-ethylphenol

ChCl:Phenol
ChCl:2-methylphenol
ChCl:3-methylphenol
ChCl:4-methylphenol

ChCl:2,6-dimethylphenol
Different molar ratios

DFT
M06-2x/6–31++G(d,p)

Extractive desulfurization
of fuels by DES [86]

16 ChCl:Acetyl salicylic acid (1:1) DFT
ωB97XD/6-311++G(d,p)

Investigation of DES
structure [222]

17 ChCl:Acrylic acid (1:2) Gaussian software
No name of method

Investigation of DES
structure [220]

18 ChCl:Carboxylic acid (1:2)
ChCl:Formic acid (1:2)

DFT
B3LYP/DNP

Investigation of DES
structure [68]

19

ChCl:Citric acid
ChCl:Ethylene glycol

ChCl:Fructose
ChCl:Glycerol

ChCl:Lactic acid
ChCl:Levulinic acid

ChCl:Malic acid
ChCl:Phenylacetic acid

1-Butyl-3-methylimidazolium
chloride:Acetamide

1-Ethyl-3-methylimidazolium
chloride:Acetamide

1-Ethyl-3-methylimidazolium
chloride:Ethylene glycol

DFT
B3LYP/6-311++G(d,p)

Interactions Between Deep
Eutectic Solvents and SO2

[78]

20

ChCl:D-(+)-xylose
ChCl:D-(−)-ribose

ChCl:D-(−)-fructose
Different molar ratios

DFT
B3LYP/6-311++G(d,p)

DES as absorbents for NH3
capture [94]

21 ChCl:Ethylene glycol (1:2)
AIMD

GPW/PBE/MOLOPT-TZVP-GTH basis
set

Investigation of DES
structure [161]

22 ChCl:Ethylene glycol (1:2) AIMD
BLIP/DZVP

Investigation of DES
structure [214]
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No DES Method/Basis Topic of the Publication Reference

23 ChCl:Ethylene glycol (1:2) DFT/PAW Eutectic-mediated selective
synthesis of nanocrystals [297]

24 ChCl:Ethylene glycol (1:2)
DFT

B3LYP/6-31G(d)
TD-DFT

CAM-B3LYP/TZVP

Solvatochromic
parameters, and

preferential solvation in
aqueous solutions of DES

and its components

[293]

25 ChCl:Ethylene glycol (1:2) DFT
B3LYP/6–311++G(d,p)

Dissolution of
dimethylformamide in

DES
[411]

26 ChCl:Ethylene glycol (1:2)

AIMD
MOLOPT-DZVP-SR-GTH

with GGA
BLYP with GTH pseudopotentials to

represent the core electrons

CO2 absorption in DES [158]

27
ChCl:Ethylene glycol (1:2)

ChCl:Glycerol (1:2)
ChCl:Urea (1:2)

DFT
B3LYP/6-311++G(d,p)

Solvation dynamics of an
ionic probe in DES [157]

28

ChCl:Ethylene glycol (1:2)
ChCl:Malic acid (1:2)

ChCl:Tartaric acid (2:1)
ChCl:Oxalic acid (1:2)

ChCl:Glycerol (1:2)

HF, M06, B3LYP, CAM-B3LYP or
PBEPBE/

6-31G(d,p)
Investigation of DES

structure [67]

29 ChCl:Glycerol (1:1) DFT
BLYP/MOLOPT-DZVP-SR-GTH SO2 solvation in DES [102]

30 ChCl:Glycerol (1:2)
DFT

M062x/
6-31++G(d,p)

Investigation of DES
structure [82]

31
ChCl:Glycerol (1:2)
ChCl:Glycerol (1:3)

ChCl:Malonic acid (1:1)

DFT
B3LYP/6-31+G(d,p) Mitigation of CO2 in DES [72]

32

ChCl:Imidazole:Ethylene glycol
(3:7:14)

ChCl:Triazole:Ethylene glycol
(3:7:14)

ChCl:Tetrazole:Ethylene glycol
(3:7:14)

AIMD
BLYP

triple-ζ valence polarization basis set
and GTH pseudopotentials

DFT
6-31++G(d,p)

DES for Highly Efficient
and Reversible Capture of

Ammonia
[412]

33
ChCl:Lactic acid:Ethanol (1:2:1)

ChCl:Lactic acid:Ethylene glycol
(1:2:1)

Semiempirical method with the PM6
level

Investigation of DES
structure [60]

34 ChCl:Lactic acid (1:1)
β-alanine:Lactic acid (1:1)

DFT
B3LYP/6-311++G(d,p) Lidocaine in DES [55]

35 ChCl:Lactic acid (1:9)
DFT

M06-2X functional with the standard
6-311+G(d,p)//6-311G(d,p) basis set.

Lignin dissolution
behaviors of DES [383]

36 ChCl:Levulinic acid (1:2) DFT
B3LYP/6-31+G(d,p) DES for CO2 capture [52]

37 ChCl:Malonic acid:1, 4-butanediol
(1:1:1)

DFT
B3LYP/3-21G

semiempirical method with the PM6
level

Investigation of DES
structure [247]

38

ChCl:Malonic acid:n-butanol
(1:1:1)

ChCl:Malonic acid:Iso-butanol
(1:1:1)

ChCl:Malonic acid:Butandiol
(1:1:1)

Semiempirical method with the PM6
level

Investigation of DES
structure [59]
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39

ChCl:Oxalic acid
ChCl:Citric acid
ChCl:Glycerol

ChCl:Ethylene glycol
Different molar ratios

3–21G basis set

Toxicity assessment and
enhanced drug solubility

profile of green DES
derivatives

[413]

40
ChCl:Phenol (1:2)

ChCl:Glycol ethylene (1:2)
ChCl:Levulinic acid (1:2)

DFT
B3LYP/6-311++G(d,p) Desulfurization using DES [71]

41 ChCl:Phenylacetic acid (1:2) DFT
B3LYP/6-31+G(d,p) CO2 absorption with DES [53]

42 ChCl:R-3-hydroxyl acids
Different molar ratios

DFT
B3LYP/6-31+G(2d,2p)

B3LYP-D3/6-311++G(2d,2p)

Investigation of DES
structure [77]

43 ChCl:Urea (1:1)
ChCl:Ethylene glycol (1:1)

AIMD
BLYP/triple-ζ double-polarization basis

set and Goedecker–Teter–Hutter
pseudopotentials

Solvation structure around
CO2 and SO2 in DESs [90]

44 ChCl:Urea (1:2) DFT
M06e2X/6-311++G(d,p)

Interaction of Cu, Ag and
Au nanoparticles with DES [87]

45 ChCl:Urea (1:2) DFT
B3LYP/6-311++G(d,p)

Investigation of DES
structure [76]

46 ChCl:Urea (1:2) DFT
B3LYP/6-311++G(2d,p)

Investigation of DES
structure [64]

47 ChCl:Urea (1:2) periodic DFT
B3LYP/6-31+G(d,p)

Investigation of DES
structure [70]

48 ChCl:Urea (1:2)
AIMD
DFT

B3LYP/TZ2P
Water effect on DES

structure [109]

49

ChCl:Urea (1:2)
ChCl:Acetylsalicylic acid (1:2)

ChCl:Sesamol (1:2)
ChCl:Pyrogallol (1:1)

DFT
B3LYP/

ug-cc-pVTZ

Solubilization properties
and structural

characterization in DES
[93]

50 ChCl:Urea (1:2)
ChCl:Ethylene glycol (1:2)

DFT
M06-2X/6-31++G(d,p)

Extractive Desulfurization
of Fuel with DES [85]

51
ChCl:Urea (1:2)

ChCl:Ethylene glycol (1:2)
ChCl:Glycerol (1:2)

AIMD
DFTB3

Investigation of DES
structure [210]

52
ChCl:Urea (1:2)

ChCl:Ethylene glycol (1:2)
ChCl:Glycerol (1:2)

DFT
B3LYP/cc-pVDZ

Solvatochromic behavior of
dimethyl sulfoxide with

DESs
[394]

53

ChCl:Urea (1:2)
ChCl:Ethylene glycol (1:2)

ChCl:Glycerol (1:2)
ChCl:Propylene glycol (1:2)

DFT
B3LYP/6-311G(d)

Extraction mechanism of
1-butanol separation from
alkanol azeotropic system
using choline-based DES

[284]

54

ChCl:Urea (1:2)
ChCl:Ethylene glycol (1:2)
ChCl:Levulinic acid (1:2)

Betaine:Levulinic acid (1:2)

AIMD
BLYP with a triple-ζ, double

polarization basis set for nonmetal
atoms, and GTH pseudopotentials

Mercury Capture from
Petroleum Using DES [159]

55

ChCl:Urea (1:2)
ChCl:Ethylene glycol (1:2)

Choline iodide:Glycerol (1:1)
ChCl:Benzoic acid (1:2)

DFT
M06-2X/cc-pVDZ level

Adsorption of DESs onto
graphene and defective

graphene nanoflake
[314]

56
ChCl:Urea (1:2)

ChCl:Glycerol (1:2)
ChCl:Malonic acid (1:1)

DFT
B3LYP/6-311+G(d)

Mechanisms of acid gases
capture at relevant

interfaces and at atomistic
level in DES

[268]
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57

ChCl:Urea (1:2)
ChCl:Thio urea (1:2)

ChCl:Ehylene glycol (1:2)
ChCl:Glycerol (1:2)

DFT
B3LYP/6-31G

Ammonium-based DES for
secondary water flooding [414]

58

ChCl:Urea (1:2)
ChCl:Thio urea (1:2)

ChCl:Methyl urea (1:2)
ChCl:Dimethyl urea (1:2)

ChCl:1,1-dimethylurea (1:2)
ChCl:N,N′-ethylene urea (1:2)

AIMD
BLYP-D3(BJ)

Investigation of DES
structure [119]

59
ChCl based DESs

HBDs: straight-chain monobasic
acids

DFT
B3LYP/6-31G(d) Sulfur removal by DES [73]

60 ChCl:Urea (1:2) BLYP-D2/
DZVP-MOLOPT-SR-GTH

Investigation of DES
structure [209]

61

DESs based on LiCl and LiTFSI
HBD: Urea, Acetamide,

N,N0-dimethylpropyleneurea,
2-imidazolidinone,
Tetramethylurea
Molar ratio 1:5

DFT
B3LIP/6-311++G(d,p)

Investigation of DES
structure [245]

62
L-Arginine:Glutamic acid (1:1)

L-Arginine:Oxalic acid (1:1)
L-Arginine:Tartaric acid (1:1)

DFT
B3LYP/6-31++G(d,p)

Nitric oxide solubility in
DES [152]

63 L-Menthol:Acetic acid (1:1) ωB97XD/6-311G(d,p) Structure Elucidation of
DES [155]

64
Lactic acid:Alanine (7:1)
Lactic acid:Glycine (7:1)

Lactic acid:Histidine (9:1)

DFT
B3LYP/6-311G(d,p)

Vapor−liquid equilibria,
vapor pressure and water
activity for the aqueous

solutions of natural deep
eutectic solvents (NDESs)

[66]

65

Litium
bis-(trifluoromethanesulfonyl)-

imide:Urea
Different molar ratios

B3LYP/
def2-TZVPP

Investigation of DES
structure [403]

66 Methyltriphenylphosphonium
bromide:Ethylene glycol (1:4)

DFT
B3LYP/6-31G(d)

Extraction of a
polyaromatic hydrocarbon

from fuel oils using DES
[283]

67 Methyltriphenylphosphonium
bromide:Glycerol (1:2) HF/6-31G(d)

Adsorption of phenol and
crystal violet dye on carbon

nanotube functionalized
with deep eutectic solvent

[96]

68

Monoethanolamine hydrochlo-
ride:Methyldiethanolamine
Diethanolamine hydrochlo-
ride:Methyldiethanolamine
N-methyl diethanolamine

hydrochlo-
ride:Methyldiethanolamine

Different molar ratios

DFT
B3LYP/6-31G(d,p)

CO2 capture performance
by DES [402]

69 Tetrabutylammonium
bromide:Formic acid (1:1)

DFT
B3LYP/6-311++G(d,p) Oil desulfuration by DES [149]

70

Tetrabutylammonium
bromide:Imidazole (1:2)
Tetrabutylammonium

bromide:Ethylene glycol (1:4)
Tetrabutylammonium
bromide:Glycerol (1:4)

DFT
B3LYP/6-311+G(d)

Dissolution of
carbohydrates in DES [338]
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71

Tetrabutylphosphonium
bromide:Phenol (1:4)

Tetrabutylphosphonium
bromide:Diethylene glycol (1:4)

Allyltriphenylphosphonium
bromide:Phenol (1:4)

Allyltriphenylphosphonium
bromide:Phenol (1:6)

DFT
B3LYP/6-31++G(d,p) CO2 solubility in DESs [278]

72

Tetraethylammonium
bromide:Ethylene glycol (1:2)

Tetraethylammonium
chloride:Ethylene glycol (1:2)

DFT
B3LYP/6-31G(d)

Influence of Br− and Cl−
on DES [61]

73

Tetraethylammonium
chloride:Lactic acid (1:2)
Tetrabutylammonium

chloride:Lactic acid (1:2)
Benzyltributylammonium
chloride:Glycolic acid (1:2)
Benzyltributylammonium
bromide:Lactic acid (1:2)

Dodecyltributylammonium
chloride:Lactic acid (1:2)
Tetrabutylammonium

chloride:Lactic acid (1:2)
Benzyltributylammonium
chloride:Lactic acid (1:2)

DFT
B3LYP/6-31+G(d,p)

DES complex with regulate
magnetic (Fe3O4) metal

organic framework
[65]

74

Triethylammonium:Formate
Triethylammonium:Acetate

Triethylammonium:Propionate
Triethylammonium:Butanoate
Triethylammonium:Pentanoate

Different molar ratios

DFT
M06-2X/6-31++G(d,p)

Extractive desulfurization
process with DES [84]

Table A3. Machine Learning calculations of DES consisting systems, used method and model, and
the topic of the publication.

No DES Models and Methods Topic of the Publication Reference

1
DESs based on

ammonium salt and on
phosphonium salt

Artificial neural network model.
A feed forward back propagation neural

network with 9 hidden neurons.
The group contribution method applied the
modified Lydersen–Joback–Reid, Lee–Kesler

and the modified Rackett equations

Prediction of DES densities [186]

2
DESs based on

ammonium salt and on
phosphonium salt

Artificial neural network model 8-4-1.
A feed-forward neural network with 4 hidden

neurons
Levenberg–Marquardt optimization method

Prediction of glycerol
removal from palm-oil

based biodiesel using DESs
Total glycerol content

[187]

3 DESs based on amine
with different HDSs

A combination of multi-linear regression and
artificial neural networks methods

The stepwise regression algorithm was used for
the regression analysis of the experimental
viscosity data expressed by s-profile and

temperature multi-linear regression model
descriptors

Prediction of the viscosity
of DESs [188]



Int. J. Mol. Sci. 2022, 23, 645 52 of 68

Table A3. Cont.

No DES Models and Methods Topic of the Publication Reference

4 DESs based on ChCl Response surface methodology and Artificial
neural networking

Study of the efficacy of 10
NDES (natural DES),

including 3 new NDES, to
extract procyanidins and

anthocyanins from
cranberry pomace

[189]

5 DESs based on ChCl

Artificial neural network model.
A total of two types of neural network to

analyze the feed-forward back-propagation and
the layer recurrent

Prediction of lead removal
from water using DES
functionalized CNTs

[190]

6
N,N-

diethylethanolammonium
chloride:Glycerol (2:1)

The non-linear autoregressive network with
exogenous inputs neural network strategy.

The back-propagation training algorithm was
selected to update the bias and weight vector
values corresponding to the momentum, and
the tangent sigmoid transfer function (tansig)

was selected as the neuron transfer function for
the network

Prediction of arsenic
removal from water
solution using DES

functionalized CNTs

[191]

7
Benzyltriphenylphosphonium

chloride:Glycerol
(16:1)

The non-linear autoregressive network with
exogenous inputs (NARX) neural network

strategy.
Three kinetic models were used to identify the

adsorption rate and mechanism, and the
pseudo-second order best described the

adsorption kinetics

Prediction of arsenic
removal from water
solution using DES

functionalized CNTs

[192]

8
Allyl triphenyl
phosphonium

bromide:Glycerol

Artificial neural network
The non-linear autoregressive exogenous model

network
Feedforward neural network and layer

recurrent neural network

Prediction of mercury
removal from water
solution using DES

functionalized CNTs

[193]

9
DESs based on acid ChCl

and Levulinic acid as
HBAs

Particle Swarm Optimization to optimize an
Artificial Neural Network

Adaptive-network-based fuzzy inference
system and particle swarm optimization

Least square support vector
Multilayer perceptron

Modeling of CO2 solubility
in various DESs [194]

10

DESs based on ChCl,
N,N-diethyl ethanol

ammonium chloride, and
methyl triphenyl

phosphonium bromide
salts

Artificial neural network model.
Feed-forward back propagation neural network

with 8 hidden neurons

Prediction of the electrical
conductivity DESs at

different temperatures and
compositions

[195]

11

Choline chloride:citric
acid 1:1

Choline chloride:
monohydrate 1:1

Artificial neural network model.
Artificial neural network and genetic algorithm

approach
The feed-forward backpropagation neural

network algorithm with 4 input layer neurons
and 2 output layer neurons for 4 independent

and 2 dependent variables. The optimum
number of hidden layer neurons was 11

Experiment design for
microwave-assisted

extraction of
phytochemical compounds

from black jamun pulp

[196]
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12

DESs based on allyltriph-
enylphosphonium

bromide: Triethylene
glycol

with molar ratios of 1:4,
1:10 and 1:16

Linear and quadratic regression models Estimation of carbon
dioxide solubility in DESs [198]

13
DESs based on
ChCl: Glycerol

ChCl: P-coumaric acid

Principal component analysis Partial least
squares

Furthermore, based on molecular simulation,
the detailed relationships between key

variables were further analyzed

Revealing the biomass
pretreatment mechanism
by evaluating the inner

relationships among 42 key
process factors

[199]

14
DESs based on

tetraalkylammonium
bromide

Principal component analysis
Regression analysis

Prediction of DES eutectic
temperatures [200]
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197. Stupar, A.; Šeregelj, V.; Ribeiro, B.D.; Pezo, L.; Cvetanović, A.; Mišan, A.; Marrucho, I. Recovery of β-Carotene from Pumpkin
Using Switchable Natural Deep Eutectic Solvents. Ultrason. Sonochem. 2021, 76, 105638. [CrossRef] [PubMed]

198. Ghaedi, H.; Ayoub, M.; Sufian, S.; Murshid, G.; Farrukh, S.; Shariff, A.M. Investigation of Various Process Parameters on the
Solubility of Carbon Dioxide in Phosphonium-Based Deep Eutectic Solvents and Their Aqueous Mixtures: Experimental and
Modeling. Int. J. Greenhouse Gas Control 2017, 66, 147–158. [CrossRef]

199. Xu, H.; Kong, Y.; Peng, J.; Song, X.; Liu, Y.; Su, Z.; Li, B.; Gao, C.; Tian, W. Comprehensive Analysis of Important Parameters of
Choline Chloride-Based Deep Eutectic Solvent Pretreatment of Lignocellulosic Biomass. Bioresour. Technol. 2021, 319, 124209.
[CrossRef] [PubMed]

200. Kollau, L.J.B.M.; Tuinier, R.; Verhaak, J.; den Doelder, J.; Filot, I.A.W.; Vis, M. Design of Nonideal Eutectic Mixtures Based on
Correlations with Molecular Properties. J. Phys. Chem. B 2020, 124, 5209–5219. [CrossRef] [PubMed]

201. Huan, T.D.; Batra, R.; Chapman, J.; Krishnan, S.; Chen, L.; Ramprasad, R. A Universal Strategy for the Creation of Machine
Learning-Based Atomistic Force Fields. NPJ Comput. Mater. 2017, 3, 1–8. [CrossRef]

202. Botu, V.; Ramprasad, R. Adaptive Machine Learning Framework to Accelerate Ab Initio Molecular Dynamics. Int. J. Quantum
Chem. 2015, 115, 1074–1083. [CrossRef]

203. Häse, F.; Fdez Galván, I.; Aspuru-Guzik, A.; Lindh, R.; Vacher, M. How Machine Learning Can Assist the Interpretation of Ab
Initio Molecular Dynamics Simulations and Conceptual Understanding of Chemistry. Chem. Sci. 2019, 10, 2298–2307. [CrossRef]

204. Korolev, V.; Mitrofanov, A.; Korotcov, A.; Tkachenko, V. Graph Convolutional Neural Networks as “General-Purpose” Property
Predictors: The Universality and Limits of Applicability. J. Chem. Inf. Model. 2020, 60, 22–28. [CrossRef]

http://doi.org/10.1039/D0GC01823F
http://doi.org/10.1021/acssuschemeng.1c06521
http://doi.org/10.1039/D1SC01000J
http://doi.org/10.1016/j.tca.2011.10.010
http://doi.org/10.1016/j.chemolab.2012.06.005
http://doi.org/10.1016/j.molstruc.2019.02.052
http://doi.org/10.1016/j.seppur.2020.117720
http://doi.org/10.2166/wst.2017.393
http://www.ncbi.nlm.nih.gov/pubmed/29144299
http://doi.org/10.2166/aqua.2018.107
http://doi.org/10.1061/(ASCE)EE.1943-7870.0001412
http://doi.org/10.3390/ijms20174206
http://doi.org/10.1080/01496395.2020.1828460
http://doi.org/10.1016/j.fluid.2013.07.012
http://doi.org/10.1111/jfpe.13750
http://doi.org/10.1016/j.ultsonch.2021.105638
http://www.ncbi.nlm.nih.gov/pubmed/34225213
http://doi.org/10.1016/j.ijggc.2017.09.020
http://doi.org/10.1016/j.biortech.2020.124209
http://www.ncbi.nlm.nih.gov/pubmed/33045547
http://doi.org/10.1021/acs.jpcb.0c01680
http://www.ncbi.nlm.nih.gov/pubmed/32531161
http://doi.org/10.1038/s41524-017-0042-y
http://doi.org/10.1002/qua.24836
http://doi.org/10.1039/C8SC04516J
http://doi.org/10.1021/acs.jcim.9b00587


Int. J. Mol. Sci. 2022, 23, 645 61 of 68

205. Jha, D.; Choudhary, K.; Tavazza, F.; Liao, W.-K.; Choudhary, A.; Campbell, C.; Agrawal, A. Enhancing Materials Property
Prediction by Leveraging Computational and Experimental Data Using Deep Transfer Learning. Nat. Commun. 2019, 10, 5316.
[CrossRef]

206. Ramakrishnan, R.; Dral, P.O.; Rupp, M.; von Lilienfeld, O.A. Quantum Chemistry Structures and Properties of 134 Kilo Molecules.
Sci. Data 2014, 1, 140022. [CrossRef] [PubMed]

207. Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials
Database (OQMD): Assessing the Accuracy of DFT Formation Energies. NPJ Comput. Mater. 2015, 1, 1–15. [CrossRef]

208. Rimsza, J.M.; Corrales, L.R. Adsorption Complexes of Copper and Copper Oxide in the Deep Eutectic Solvent 2:1 Urea–choline
Chloride. Comput. Theor. Chem. 2012, 987, 57–61. [CrossRef]

209. Zahn, S. Deep Eutectic Solvents: Similia Similibus Solvuntur? Phys. Chem. Chem. Phys. 2017, 19, 4041–4047. [CrossRef]
210. Stefanovic, R.; Ludwig, M.; Webber, G.B.; Atkin, R.; Page, A.J. Nanostructure, Hydrogen Bonding and Rheology in Choline

Chloride Deep Eutectic Solvents as a Function of the Hydrogen Bond Donor. Phys. Chem. Chem. Phys. 2017, 19, 3297–3306.
[CrossRef]

211. Migliorati, V.; Sessa, F.; D’Angelo, P. Deep Eutectic Solvents: A Structural Point of View on the Role of the Cation. Chem. Phys.
Lett. X 2019, 2, 100001. [CrossRef]

212. Sun, H.; Li, Y.; Wu, X.; Li, G. Theoretical Study on the Structures and Properties of Mixtures of Urea and Choline Chloride. J. Mol.
Modeling 2013, 19, 2433–2441. [CrossRef] [PubMed]

213. Kaur, S.; Malik, A.; Kashyap, H.K. Anatomy of Microscopic Structure of Ethaline Deep Eutectic Solvent Decoded through
Molecular Dynamics Simulations. J. Phys. Chem. B 2019, 123, 8291–8299. [CrossRef] [PubMed]

214. Ferreira, E.S.C.; Voroshylova, I.V.; Pereira, C.M.; Cordeiro, M.N.D.S. Improved Force Field Model for the Deep Eutectic Solvent
Ethaline: Reliable Physicochemical Properties. J. Phys. Chem. B 2016, 120, 10124–10137. [CrossRef]

215. Bonomo, M.; Gontrani, L.; Capocefalo, A.; Sarra, A.; Nucara, A.; Carbone, M.; Postorino, P.; Dini, D. A Combined Electrochemical,
Infrared and EDXD Tool to Disclose Deep Eutectic Solvents Formation When One Precursor Is Liquid: Glyceline as Case Study. J.
Mol. Liq. 2020, 319, 114292. [CrossRef]

216. Ferreira, E.S.C.; Voroshylova, I.V.; Figueiredo, N.M.; Pereira, C.M.; Cordeiro, M.N.D.S. Computational and Experimental Study of
Propeline: A Choline Chloride Based Deep Eutectic Solvent. J. Mol. Liq. 2020, 298, 111978. [CrossRef]

217. Ferreira, E.S.C.; Voroshylova, I.V.; Figueiredo, N.M.; Cordeiro, M.N.D.S. Molecular Dynamic Study of Alcohol-Based Deep
Eutectic Solvents. J. Chem. Phys. 2021, 155, 064506. [CrossRef] [PubMed]

218. Alhadid, A.; Mokrushina, L.; Minceva, M. Modeling of Solid–Liquid Equilibria in Deep Eutectic Solvents: A Parameter Study.
Molecules 2019, 24, 2334. [CrossRef] [PubMed]

219. Paul, N.; Naik, P.K.; Ribeiro, B.D.; Gooh Pattader, P.S.; Marrucho, I.M.; Banerjee, T. Molecular Dynamics Insights and Water
Stability of Hydrophobic Deep Eutectic Solvents Aided Extraction of Nitenpyram from an Aqueous Environment. J. Phys. Chem.
B 2020, 124, 7405–7420. [CrossRef] [PubMed]

220. Fu, N.; Li, L.; Liu, K.; Kim, C.K.; Li, J.; Zhu, T.; Li, J.; Tang, B. A Choline Chloride-Acrylic Acid Deep Eutectic Solvent Polymer
Based on Fe3O4 Particles and MoS2 Sheets (poly(ChCl-AA DES)@Fe3O4@MoS2) with Specific Recognition and Good Antibacterial
Properties for β-Lactoglobulin in Milk. Talanta 2019, 197, 567–577. [CrossRef]

221. Gontrani, L.; Plechkova, N.V.; Bonomo, M. In-Depth Physico-Chemical and Structural Investigation of a Dicarboxylic
Acid/Choline Chloride Natural Deep Eutectic Solvent (NADES): A Spotlight on the Importance of a Rigorous Preparation
Procedure. ACS Sustain. Chem. Eng. 2019, 7, 12536–12543. [CrossRef]

222. Saha, M.; Rahman, M.S.; Hossain, M.N.; Raynie, D.E.; Halim, M.A. Molecular and Spectroscopic Insights of a Choline Chloride
Based Therapeutic Deep Eutectic Solvent. J. Phys. Chem. A 2020, 124, 4690–4699. [CrossRef]

223. Bonab, P.J.; Esrafili, M.D.; Ebrahimzadeh, A.R.; Sardroodi, J.J. Molecular Dynamics Simulations of Choline Chloride and Phenyl
Propionic Acid Deep Eutectic Solvents: Investigation of Structural and Dynamics Properties. J. Mol. Graph. Model. 2021,
106, 107908. [CrossRef]

224. Jahanbakhsh Bonab, P.; Rastkar Ebrahimzadeh, A.; Jahanbin Sardroodi, J. Insights into the Interactions and Dynamics of a DES
Formed by Phenyl Propionic Acid and Choline Chloride. Sci. Rep. 2021, 11, 6384. [CrossRef]

225. Stott, P.W.; Williams, A.C.; Barry, B.W. Transdermal Delivery from Eutectic Systems: Enhanced Permeation of a Model Drug,
Ibuprofen. J. Control. Release 1998, 50, 297–308. [CrossRef]

226. Aroso, I.M.; Silva, J.C.; Mano, F.; Ferreira, A.S.D.; Dionísio, M.; Sá-Nogueira, I.; Barreiros, S.; Reis, R.L.; Paiva, A.; Duarte, A.R.C.
Dissolution Enhancement of Active Pharmaceutical Ingredients by Therapeutic Deep Eutectic Systems. Eur. J. Pharm. Biopharm.
2016, 98, 57–66. [CrossRef] [PubMed]

227. Korneev, S.M. Hydrocinnamic Acids: Application and Strategy of Synthesis. Synthesis 2013, 45, 1000–1015. [CrossRef]
228. Perkins, S.L.; Painter, P.; Colina, C.M. Molecular Dynamic Simulations and Vibrational Analysis of an Ionic Liquid Analogue. J.

Phys. Chem. B 2013, 117, 10250–10260. [CrossRef] [PubMed]
229. van den Bruinhorst, A.; Spyriouni, T.; Hill, J.-R.; Kroon, M.C. Experimental and Molecular Modeling Evaluation of the Physico-

chemical Properties of Proline-Based Deep Eutectic Solvents. J. Phys. Chem. B 2018, 122, 369–379. [CrossRef] [PubMed]
230. Migliorati, V.; D’Angelo, P. Deep Eutectic Solvents: A Structural Point of View on the Role of the Anion. Chem. Phys. Lett. 2021,

777, 138702. [CrossRef]

http://doi.org/10.1038/s41467-019-13297-w
http://doi.org/10.1038/sdata.2014.22
http://www.ncbi.nlm.nih.gov/pubmed/25977779
http://doi.org/10.1038/npjcompumats.2015.10
http://doi.org/10.1016/j.comptc.2011.11.003
http://doi.org/10.1039/C6CP08017K
http://doi.org/10.1039/C6CP07932F
http://doi.org/10.1016/j.cpletx.2018.100001
http://doi.org/10.1007/s00894-013-1791-2
http://www.ncbi.nlm.nih.gov/pubmed/23435478
http://doi.org/10.1021/acs.jpcb.9b06624
http://www.ncbi.nlm.nih.gov/pubmed/31448914
http://doi.org/10.1021/acs.jpcb.6b07233
http://doi.org/10.1016/j.molliq.2020.114292
http://doi.org/10.1016/j.molliq.2019.111978
http://doi.org/10.1063/5.0058561
http://www.ncbi.nlm.nih.gov/pubmed/34391364
http://doi.org/10.3390/molecules24122334
http://www.ncbi.nlm.nih.gov/pubmed/31242576
http://doi.org/10.1021/acs.jpcb.0c03647
http://www.ncbi.nlm.nih.gov/pubmed/32706582
http://doi.org/10.1016/j.talanta.2019.01.072
http://doi.org/10.1021/acssuschemeng.9b02402
http://doi.org/10.1021/acs.jpca.0c00851
http://doi.org/10.1016/j.jmgm.2021.107908
http://doi.org/10.1038/s41598-021-85260-z
http://doi.org/10.1016/S0168-3659(97)00153-3
http://doi.org/10.1016/j.ejpb.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26586342
http://doi.org/10.1055/s-0032-1318475
http://doi.org/10.1021/jp404619x
http://www.ncbi.nlm.nih.gov/pubmed/23915257
http://doi.org/10.1021/acs.jpcb.7b09540
http://www.ncbi.nlm.nih.gov/pubmed/29200300
http://doi.org/10.1016/j.cplett.2021.138702


Int. J. Mol. Sci. 2022, 23, 645 62 of 68

231. Cerajewski, U.; Träger, J.; Henkel, S.; Roos, A.H.; Brehm, M.; Hinderberger, D. Nanoscopic Structures and Molecular Interactions
Leading to a Dystectic and Two Eutectic Points in [EMIm] [Cl]/urea Mixtures. Phys. Chem. Chem. Phys. 2018, 20, 29591–29600.
[CrossRef]

232. Naik, P.K.; Paul, S.; Banerjee, T. Physiochemical Properties and Molecular Dynamics Simulations of Phosphonium and Ammonium
Based Deep Eutectic Solvents. J. Solut. Chem. 2019, 48, 1046–1065. [CrossRef]

233. Kussainova, D.; Shah, D. Structure of Monoethanolamine Based Type III DESs: Insights from Molecular Dynamics Simulations.
Fluid Phase Equilib. 2019, 482, 112–117. [CrossRef]

234. van Osch, D.J.G.P.; Zubeir, L.F.; van den Bruinhorst, A.; Rocha, M.A.A.; Kroon, M.C. Hydrophobic Deep Eutectic Solvents as
Water-Immiscible Extractants. Green Chem. 2015, 17, 4518–4521. [CrossRef]

235. Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.A.Z.; Marrucho, I.M. Menthol-Based Eutectic Mixtures: Hydrophobic Low Viscosity
Solvents. ACS Sustain. Chem. Eng. 2015, 3, 2469–2477. [CrossRef]

236. van Osch, D.J.G.P.; Dietz, C.H.J.T.; Warrag, S.E.E.; Kroon, M.C. The Curious Case of Hydrophobic Deep Eutectic Solvents: A Story
on the Discovery, Design, and Applications. ACS Sustain. Chem. Eng. 2020, 8, 10591–10612. [CrossRef]

237. Salehi, H.S.; Celebi, A.T.; Vlugt, T.J.H.; Moultos, O.A. Thermodynamic, Transport, and Structural Properties of Hydrophobic Deep
Eutectic Solvents Composed of Tetraalkylammonium Chloride and Decanoic Acid. J. Chem. Phys. 2021, 154, 144502. [CrossRef]
[PubMed]

238. Abbas, U.L.; Qiao, Q.; Nguyen, M.T.; Shi, J.; Shao, Q. Molecular Dynamics Simulations of Heterogeneous Hydrogen Bond
Environment in Hydrophobic Deep Eutectic Solvents. AIChE J. 2022, 68, e17382. [CrossRef]

239. Alizadeh, V.; Geller, D.; Malberg, F.; Sánchez, P.B.; Padua, A.; Kirchner, B. Strong Microheterogeneity in Novel Deep Eutectic
Solvents. Chemphyschem 2019, 20, 1786–1792. [CrossRef] [PubMed]

240. Cui, Y.; Kuroda, D.G. Evidence of Molecular Heterogeneities in Amide-Based Deep Eutectic Solvents. J. Phys. Chem. A 2018, 122,
1185–1193. [CrossRef]

241. Kaur, S.; Gupta, A.; Kashyap, H.K. Nanoscale Spatial Heterogeneity in Deep Eutectic Solvents. J. Phys. Chem. B 2016, 120,
6712–6720. [CrossRef]

242. Kaur, S.; Kashyap, H.K. Unusual Temperature Dependence of Nanoscale Structural Organization in Deep Eutectic Solvents. J.
Phys. Chem. B 2018, 122, 5242–5250. [CrossRef]

243. Das, S.; Mukherjee, B.; Biswas, R. Microstructures and Their Lifetimes in Acetamide/electrolyte Deep Eutectics: Anion Depen-
dence. J. Chem. Sci. 2017, 129, 939–951. [CrossRef]

244. Banerjee, S.; Ghorai, P.K.; Das, S.; Rajbangshi, J.; Biswas, R. Heterogeneous Dynamics, Correlated Time and Length Scales in Ionic
Deep Eutectics: Anion and Temperature Dependence. J. Chem. Phys. 2020, 153, 234502. [CrossRef]

245. Ogawa, H.; Mori, H. Lithium Salt/amide-Based Deep Eutectic Electrolytes for Lithium-Ion Batteries: Electrochemical, Thermal
and Computational Study. Phys. Chem. Chem. Phys. 2020, 22, 8853–8863. [CrossRef] [PubMed]

246. Li, Y.; Ali, M.C.; Yang, Q.; Zhang, Z.; Bao, Z.; Su, B.; Xing, H.; Ren, Q. Hybrid Deep Eutectic Solvents with Flexible Hydrogen-
Bonded Supramolecular Networks for Highly Efficient Uptake of NH3. ChemSusChem 2017, 10, 3368–3377. [CrossRef] [PubMed]

247. Jangir, A.K.; Nain, A.K.; Kuperkar, K. Insight into Structural Properties and Molecular Interactions of Maline (choline Chloride +
Malonic Acid) and 1, 4- Butanediol Based Pseudo-Binary Mixture: A Thermophysical, Spectral, and Simulation Portrayal. J. Mol.
Liq. 2021, 334, 116050. [CrossRef]

248. Srinivasan, H.; Sharma, V.K.; Mitra, S.; Biswas, R.; Mukhopadhyay, R. Dynamics in Acetamide+LiNO3 Deep Eutectic Solvents.
Phys. B Condens. Matter 2019, 562, 13–16. [CrossRef]

249. Srinivasan, H.; Sharma, V.K.; Mukhopadhyay, R.; Mitra, S. Solvation and Transport of Lithium Ions in Deep Eutectic Solvents. J.
Chem. Phys. 2020, 153, 104505. [CrossRef] [PubMed]

250. Srinivasan, H.; Sharma, V.K.; Sakai, V.G.; Embs, J.P.; Mukhopadhyay, R.; Mitra, S. Transport Mechanism of Acetamide in Deep
Eutectic Solvents. J. Phys. Chem. B 2020, 124, 1509–1520. [CrossRef] [PubMed]

251. Das, A.; Das, S.; Biswas, R. Fast Fluctuations in Deep Eutectic Melts: Multi-Probe Fluorescence Measurements and All-Atom
Molecular Dynamics Simulation Study. Chem. Phys. Lett. 2013, 581, 47–51. [CrossRef]

252. Guchhait, B.; Das, S.; Daschakraborty, S.; Biswas, R. Interaction and Dynamics of (alkylamide + Electrolyte) Deep Eutectics:
Dependence on Alkyl Chain-Length, Temperature, and Anion Identity. J. Chem. Phys. 2014, 140, 104514. [CrossRef]

253. Das, S.; Biswas, R.; Mukherjee, B. Orientational Jumps in (acetamide + Electrolyte) Deep Eutectics: Anion Dependence. J. Phys.
Chem. B 2015, 119, 11157–11168. [CrossRef]

254. Das, A.; Das, S.; Biswas, R. Density Relaxation and Particle Motion Characteristics in a Non-Ionic Deep Eutectic Solvent
(acetamide + Urea): Time-Resolved Fluorescence Measurements and All-Atom Molecular Dynamics Simulations. J. Chem. Phys.
2015, 142, 034505. [CrossRef]

255. Mukherjee, K.; Das, S.; Tarif, E.; Barman, A.; Biswas, R. Dielectric Relaxation in Acetamide + Urea Deep Eutectics and Neat
Molten Urea: Origin of Time Scales via Temperature Dependent Measurements and Computer Simulations. J. Chem. Phys. 2018,
149, 124501. [CrossRef]

256. Rajbangshi, J.; Mukherjee, K.; Biswas, R. Heterogeneous Orientational Relaxations and Translation-Rotation Decoupling in
(choline Chloride + Urea) Deep Eutectic Solvents: Investigation through Molecular Dynamics Simulations and Dielectric
Relaxation Measurements. J. Phys. Chem. B 2021, 125, 5920–5936. [CrossRef]

257. Laage, D.; Hynes, J.T. A Molecular Jump Mechanism of Water Reorientation. Science 2006, 311, 832–835. [CrossRef] [PubMed]

http://doi.org/10.1039/C8CP04912B
http://doi.org/10.1007/s10953-019-00903-0
http://doi.org/10.1016/j.fluid.2018.11.017
http://doi.org/10.1039/C5GC01451D
http://doi.org/10.1021/acssuschemeng.5b00532
http://doi.org/10.1021/acssuschemeng.0c00559
http://doi.org/10.1063/5.0047369
http://www.ncbi.nlm.nih.gov/pubmed/33858163
http://doi.org/10.1002/aic.17382
http://doi.org/10.1002/cphc.201900307
http://www.ncbi.nlm.nih.gov/pubmed/31099143
http://doi.org/10.1021/acs.jpca.7b10264
http://doi.org/10.1021/acs.jpcb.6b04187
http://doi.org/10.1021/acs.jpcb.8b02378
http://doi.org/10.1007/s12039-017-1263-9
http://doi.org/10.1063/5.0024355
http://doi.org/10.1039/D0CP01255F
http://www.ncbi.nlm.nih.gov/pubmed/32285884
http://doi.org/10.1002/cssc.201701135
http://www.ncbi.nlm.nih.gov/pubmed/28703458
http://doi.org/10.1016/j.molliq.2021.116050
http://doi.org/10.1016/j.physb.2019.01.003
http://doi.org/10.1063/5.0018510
http://www.ncbi.nlm.nih.gov/pubmed/32933283
http://doi.org/10.1021/acs.jpcb.9b11137
http://www.ncbi.nlm.nih.gov/pubmed/32017563
http://doi.org/10.1016/j.cplett.2013.07.013
http://doi.org/10.1063/1.4866178
http://doi.org/10.1021/acs.jpcb.5b03022
http://doi.org/10.1063/1.4906119
http://doi.org/10.1063/1.5040071
http://doi.org/10.1021/acs.jpcb.1c01501
http://doi.org/10.1126/science.1122154
http://www.ncbi.nlm.nih.gov/pubmed/16439623


Int. J. Mol. Sci. 2022, 23, 645 63 of 68

258. Titantah, J.T.; Karttunen, M. Long-Time Correlations and Hydrophobe-Modified Hydrogen-Bonding Dynamics in Hydrophobic
Hydration. J. Am. Chem. Soc. 2012, 134, 9362–9368. [CrossRef]

259. MacKerell, A.D.; Wiorkiewicz-Kuczera, J.; Karplus, M. An All-Atom Empirical Energy Function for the Simulation of Nucleic
Acids. J. Am. Chem. Soc. 1995, 117, 11946–11975. [CrossRef]

260. Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.M.; Mittal, J.; Feig, M.; MacKerell, A.D. Optimization of the Additive CHARMM All-Atom
Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. J. Chem.
Theory Comput. 2012, 8, 3257–3273. [CrossRef]

261. Jensen, K.P.; Jorgensen, W.L. Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions. J. Chem.
Theory Comput. 2006, 2, 1499–1509. [CrossRef] [PubMed]

262. Cadena, C.; Maginn, E.J. Molecular Simulation Study of Some Thermophysical and Transport Properties of Triazolium-Based
Ionic Liquids. J. Phys. Chem. B 2006, 110, 18026–18039. [CrossRef]

263. Papoyan, G.; Gu, K.-J.; Wiorkiewicz-Kuczera, J.; Kuczera, K.; Bowman-James, K. Molecular Dynamics Simulations of Nitrate
Complexes with Polyammonium Macrocycles: Insight on Phosphoryl Transfer Catalysis. J. Am. Chem. Soc. 1996, 118, 1354–1364.
[CrossRef]

264. Smith, L.J.; Berendsen, H.J.C.; van Gunsteren, W.F. Computer Simulation of Urea−Water Mixtures: A Test of Force Field
Parameters for Use in Biomolecular Simulation. J. Phys. Chem. B 2004, 108, 1065–1071. [CrossRef]

265. Mardani, A.; Streimikiene, D.; Cavallaro, F.; Loganathan, N.; Khoshnoudi, M. Carbon Dioxide (CO2) Emissions and Economic
Growth: A Systematic Review of Two Decades of Research from 1995 to 2017. Sci. Total Environ. 2019, 649, 31–49. [CrossRef]

266. Kumar, M.; Sundaram, S.; Gnansounou, E.; Larroche, C.; Thakur, I.S. Carbon Dioxide Capture, Storage and Production of Biofuel
and Biomaterials by Bacteria: A Review. Bioresour. Technol. 2018, 247, 1059–1068. [CrossRef] [PubMed]

267. Mukherjee, A.; Okolie, J.A.; Abdelrasoul, A.; Niu, C.; Dalai, A.K. Review of Post-Combustion Carbon Dioxide Capture Technolo-
gies Using Activated Carbon. J. Environ. Sci. 2019, 83, 46–63. [CrossRef] [PubMed]

268. García, G.; Atilhan, M.; Aparicio, S. Interfacial Properties of Deep Eutectic Solvents Regarding to CO2 Capture. J. Phys. Chem. C
2015, 119, 21413–21425. [CrossRef]

269. Taghizadeh, M.; Taghizadeh, A.; Vatanpour, V.; Ganjali, M.R.; Saeb, M.R. Deep Eutectic Solvents in Membrane Science and
Technology: Fundamental, Preparation, Application, and Future Perspective. Sep. Purif. Technol. 2021, 258, 118015. [CrossRef]

270. Karadas, F.; Atilhan, M.; Aparicio, S. Review on the Use of Ionic Liquids (ILs) as Alternative Fluids for CO2 Capture and Natural
Gas Sweetening. Energy Fuels 2010, 24, 5817–5828. [CrossRef]

271. Peters, L.; Hussain, A.; Follmann, M.; Melin, T.; Hägg, M.-B. CO2 Removal from Natural Gas by Employing Amine Absorption
and Membrane technology—A Technical and Economical Analysis. Chem. Eng. J. 2011, 172, 952–960. [CrossRef]

272. Kussainova, D.; Shah, D. Monoethanolamine Based DESs for CO2 Absorption: Insights from Molecular Dynamics Simulations.
Sep. Purif. Technol. 2020, 231, 115931. [CrossRef]

273. Haider, M.B.; Jha, D.; Marriyappan Sivagnanam, B.; Kumar, R. Modelling and Simulation of CO2 Removal from Shale Gas Using
Deep Eutectic Solvents. J. Environ. Chem. Eng. 2019, 7, 102747. [CrossRef]

274. Lin, H.; Gong, K.; Ying, W.; Chen, D.; Zhang, J.; Yan, Y.; Peng, X. CO2 -Philic Separation Membrane: Deep Eutectic Solvent Filled
Graphene Oxide Nanoslits. Small 2019, 15, e1904145. [CrossRef]

275. Shen, Y.; Abedin, R.; Hung, F.R. On the Performance of Confined Deep Eutectic Solvents and Ionic Liquids for Separations of
Carbon Dioxide from Methane: Molecular Dynamics Simulations. Langmuir 2019, 35, 3658–3671. [CrossRef]

276. Lin, H.; Gong, K.; Hykys, P.; Chen, D.; Ying, W.; Sofer, Z.; Yan, Y.; Li, Z.; Peng, X. Nanoconfined Deep Eutectic Solvent in
Laminated MXene for Efficient CO2 Separation. Chem. Eng. J. 2021, 405, 126961. [CrossRef]

277. Alioui, O.; Benguerba, Y.; Alnashef, I.M. Investigation of the CO2-Solubility in Deep Eutectic Solvents Using COSMO-RS and
Molecular Dynamics Methods. J. Mol. Liq. 2020, 307, 113005. [CrossRef]

278. Wang, J.; Cheng, H.; Song, Z.; Chen, L.; Deng, L.; Qi, Z. Carbon Dioxide Solubility in Phosphonium-Based Deep Eutectic Solvents:
An Experimental and Molecular Dynamics Study. Ind. Eng. Chem. Res. 2019, 58, 17514–17523. [CrossRef]

279. Li, C.; Zhang, J.; Li, Z.; Yin, J.; Cui, Y.; Liu, Y.; Yang, G. Extraction Desulfurization of Fuels with “metal Ions” Based Deep Eutectic
Solvents (MDESs). Green Chem. 2016, 18, 3789–3795. [CrossRef]

280. El-hoshoudy, A.N.; Soliman, F.S.; Abd El-Aty, D.M. Extractive Desulfurization Using Choline Chloride-Based DES/molybdate
Nanofluids; Experimental and Theoretical Investigation. J. Mol. Liq. 2020, 318, 114307. [CrossRef]

281. Shah, D.; Gapeyenko, D.; Urakpayev, A.; Torkmahalleh, M. Molecular Dynamics Simulations on Extractive Desulfurization of
Fuels by Tetrabutylammonium Chloride Based Deep Eutectic Solvents. J. Mol. Liq. 2019, 274, 254–260. [CrossRef]

282. Kumar, N.; Naik, P.K.; Banerjee, T. Molecular Modeling Insights in the Extraction of Benzene from Hydrocarbon Stream Using
Deep Eutectic Solvent. J. Mol. Liq. 2020, 317, 113909. [CrossRef]

283. Naik, P.K.; Mohan, M.; Banerjee, T.; Paul, S.; Goud, V.V. Molecular Dynamic Simulations for the Extraction of Quinoline from
Heptane in the Presence of a Low-Cost Phosphonium-Based Deep Eutectic Solvent. J. Phys. Chem. B 2018, 122, 4006–4015.
[CrossRef]

284. Zhang, Z.; Liu, X.; Yao, D.; Ma, Z.; Zhao, J.; Zhang, W.; Cui, P.; Ma, Y.; Zhu, Z.; Wang, Y. Molecular Kinetic Extraction Mechanism
Analysis of 1-Butanol from N-Heptane-1-Butanol by Choline-Based DESs as Extractants. J. Mol. Liq. 2021, 322, 114665. [CrossRef]

285. Liu, X.; Xing, J.; Sun, M.; Su, Z.; Chen, Z.; Wang, Y.; Cui, P. Phase Behavior and Extraction Mechanism of Methanol-N-Hexane
Separation Using Choline-Based Deep Eutectic Solvent. J. Mol. Liq. 2022, 345, 118204. [CrossRef]

http://doi.org/10.1021/ja301908a
http://doi.org/10.1021/ja00153a017
http://doi.org/10.1021/ct300400x
http://doi.org/10.1021/ct600252r
http://www.ncbi.nlm.nih.gov/pubmed/26627020
http://doi.org/10.1021/jp0629036
http://doi.org/10.1021/ja9500567
http://doi.org/10.1021/jp030534x
http://doi.org/10.1016/j.scitotenv.2018.08.229
http://doi.org/10.1016/j.biortech.2017.09.050
http://www.ncbi.nlm.nih.gov/pubmed/28951132
http://doi.org/10.1016/j.jes.2019.03.014
http://www.ncbi.nlm.nih.gov/pubmed/31221387
http://doi.org/10.1021/acs.jpcc.5b04585
http://doi.org/10.1016/j.seppur.2020.118015
http://doi.org/10.1021/ef1011337
http://doi.org/10.1016/j.cej.2011.07.007
http://doi.org/10.1016/j.seppur.2019.115931
http://doi.org/10.1016/j.jece.2018.10.061
http://doi.org/10.1002/smll.201904145
http://doi.org/10.1021/acs.langmuir.8b03990
http://doi.org/10.1016/j.cej.2020.126961
http://doi.org/10.1016/j.molliq.2020.113005
http://doi.org/10.1021/acs.iecr.9b03740
http://doi.org/10.1039/C6GC00366D
http://doi.org/10.1016/j.molliq.2020.114307
http://doi.org/10.1016/j.molliq.2018.10.131
http://doi.org/10.1016/j.molliq.2020.113909
http://doi.org/10.1021/acs.jpcb.7b10914
http://doi.org/10.1016/j.molliq.2020.114665
http://doi.org/10.1016/j.molliq.2021.118204


Int. J. Mol. Sci. 2022, 23, 645 64 of 68

286. Kumari, P.; Kaur, S.S.; Kashyap, H.K. Influence of Hydration on the Structure of Reline Deep Eutectic Solvent: A Molecular
Dynamics Study. ACS Omega 2018, 3, 15246–15255. [CrossRef]

287. Weng, L.; Toner, M. Janus-Faced Role of Water in Defining Nanostructure of Choline Chloride/glycerol Deep Eutectic Solvent.
Phys. Chem. Chem. Phys. 2018, 20, 22455–22462. [CrossRef]

288. Huang, L.; Bittner, J.P.; Domínguez de María, P.; Jakobtorweihen, S.; Kara, S. Modeling Alcohol Dehydrogenase Catalysis in Deep
Eutectic Solvent/Water Mixtures. Chembiochem 2020, 21, 811–817. [CrossRef] [PubMed]

289. Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate
Their Applications. Food Chem. 2015, 187, 14–19. [CrossRef] [PubMed]

290. Yadav, A.; Pandey, S. Densities and Viscosities of (choline Chloride+ Urea) Deep Eutectic Solvent and Its Aqueous Mixtures in the
Temperature Range 293.15 K to 363.15 K. J. Chem. Eng. Data 2014, 59, 2221–2229. [CrossRef]

291. Kumari, P.; Kumari, M.; Kashyap, H.K. How Pure and Hydrated Reline Deep Eutectic Solvents Affect the Conformation and
Stability of Lysozyme: Insights from Atomistic Molecular Dynamics Simulations. J. Phys. Chem. B 2020, 124, 11919–11927.
[CrossRef]

292. Sapir, L.; Harries, D. Restructuring a Deep Eutectic Solvent by Water: The Nanostructure of Hydrated Choline Chloride/Urea. J.
Chem. Theory Comput. 2020, 16, 3335–3342. [CrossRef]

293. Aryafard, M.; Karimi, A.; Harifi-Mood, A.R.; Minofar, B. Molecular Dynamics Simulations, Solvatochromic Parameters, and
Preferential Solvation in Aqueous Solutions of Ethaline, Ethylene Glycol, and Choline Chloride. J. Chem. Eng. Data 2020, 65,
4556–4566. [CrossRef]

294. Alizadeh, V.; Malberg, F.; Pádua, A.A.H.; Kirchner, B. Are There Magic Compositions in Deep Eutectic Solvents? Effects of
Composition and Water Content in Choline Chloride/Ethylene Glycol from Ab Initio Molecular Dynamics. J. Phys. Chem. B 2020,
124, 7433–7443. [CrossRef]

295. Bezerra-Neto, J.R.; Bezerra, L.L.; Sousa, N.G.; Dos Santos, L.P.M.; Marinho, E.S.; Monteiro, N.K.V.; Correia, A.N.; de Lima-Neto, P.
Molecular Approach about the Effect of Water on the Electrochemical Behaviour of Ag+ Ions in Urea-Choline Chloride-Water
Mixture. J. Mol. Model. 2020, 26, 339. [CrossRef]

296. Busato, M.; Di Lisio, V.; Del Giudice, A.; Tomai, P.; Migliorati, V.; Galantini, L.; Gentili, A.; Martinelli, A.; D’Angelo, P. Transition
from Molecular- to Nano-Scale Segregation in a Deep Eutectic Solvent-Water Mixture. J. Mol. Liq. 2021, 331, 115747. [CrossRef]

297. Ghorpade, U.V.; Suryawanshi, M.P.; Shin, S.W.; Wang, X.; Jo, E.; Bae, H.; Park, K.; Ha, J.-S.; Kolekar, S.S.; Kim, J.H. Eutectic
Solvent-Mediated Selective Synthesis of Cu–Sb–S-Based Nanocrystals: Combined Experimental and Theoretical Studies toward
Highly Efficient Water Splitting. J. Mater. Chem. A Mater. Energy Sustain. 2018, 6, 19798–19809. [CrossRef]

298. Celebi, A.T.; Vlugt, T.J.H.; Moultos, O.A. Structural, Thermodynamic, and Transport Properties of Aqueous Reline and Ethaline
Solutions from Molecular Dynamics Simulations. J. Phys. Chem. B 2019, 123, 11014–11025. [CrossRef] [PubMed]

299. Celebi, A.T.; Vlugt, T.J.H.; Moultos, O.A. Thermal Conductivity of Aqueous Solutions of Reline, Ethaline, and Glyceline Deep
Eutectic Solvents; a Molecular Dynamics Simulation Study. Mol. Phys. 2021, e1876263. [CrossRef]

300. Sarkar, S.; Maity, A.; Chakrabarti, R. Microscopic Structural Features of Water in Aqueous-Reline Mixtures of Varying Composi-
tions. Phys. Chem. Chem. Phys. 2021, 23, 3779–3793. [CrossRef] [PubMed]

301. Sarkar, S.; Maity, A.; Chakrabarti, R. In Silico Elucidation of Molecular Picture of Water–Choline Chloride Mixture. J. Phys. Chem.
B 2021, 125, 13212–13228. [CrossRef]

302. Bezerra-Neto, J.R.; Sousa, N.G.; Dos Santos, L.P.M.; Correia, A.N.; de Lima-Neto, P. The Effect of Water on the Physicochemical
Properties of an Ethylene Glycol and Choline Chloride Mixture Containing Cu2+ Ions: Electrochemical Results and Dynamic
Molecular Simulation Approach. Phys. Chem. Chem. Phys. 2018, 20, 9321–9327. [CrossRef] [PubMed]

303. Lukaczynska-Anderson, M.; Mamme, M.H.; Ceglia, A.; Van den Bergh, K.; De Strycker, J.; De Proft, F.; Terryn, H.; Ustarroz, J. The
Role of Hydrogen Bond Donor and Water Content on the Electrochemical Reduction of Ni2+ from Solvents-an Experimental and
Modelling Study. Phys. Chem. Chem. Phys. 2020, 22, 16125–16135. [CrossRef]

304. Baz, J.; Held, C.; Pleiss, J.; Hansen, N. Thermophysical Properties of Glyceline-Water Mixtures Investigated by Molecular
Modelling. Phys. Chem. Chem. Phys. 2019, 21, 6467–6476. [CrossRef]

305. Shehata, M.; Unlu, A.; Sezerman, U.; Timucin, E. Lipase and Water in a Deep Eutectic Solvent: Molecular Dynamics and
Experimental Studies of the Effects of Water-In-Deep Eutectic Solvents on Lipase Stability. J. Phys. Chem. B 2020, 124, 8801–8810.
[CrossRef] [PubMed]

306. Paul, R.; Mitra, A.; Paul, S. Phase Separation Property of a Hydrophobic Deep Eutectic Solvent-Water Binary Mixture: A Molecular
Dynamics Simulation Study. J. Chem. Phys. 2021, 154, 244504. [CrossRef]

307. Salehi, H.S.; Moultos, O.A.; Vlugt, T.J.H. Interfacial Properties of Hydrophobic Deep Eutectic Solvents with Water. J. Phys. Chem.
B 2021, 125, 12303–12314. [CrossRef]

308. Atilhan, M.; Costa, L.T.; Aparicio, S. Elucidating the Properties of Graphene–Deep Eutectic Solvents Interface. Langmuir 2017, 33,
5154–5165. [CrossRef]

309. Shen, Y.; He, X.; Hung, F.R. Structural and Dynamical Properties of a Deep Eutectic Solvent Confined Inside a Slit Pore. J. Phys.
Chem. C 2015, 119, 24489–24500. [CrossRef]

310. Mamme, M.H.; Moors, S.L.C.; Terryn, H.; Deconinck, J.; Ustarroz, J.; De Proft, F. Atomistic Insight into the Electrochemical Double
Layer of Choline Chloride-Urea Deep Eutectic Solvents: Clustered Interfacial Structuring. J. Phys. Chem. Lett. 2018, 9, 6296–6304.
[CrossRef] [PubMed]

http://doi.org/10.1021/acsomega.8b02447
http://doi.org/10.1039/C8CP03882A
http://doi.org/10.1002/cbic.201900624
http://www.ncbi.nlm.nih.gov/pubmed/31605652
http://doi.org/10.1016/j.foodchem.2015.03.123
http://www.ncbi.nlm.nih.gov/pubmed/25976992
http://doi.org/10.1021/je5001796
http://doi.org/10.1021/acs.jpcb.0c09873
http://doi.org/10.1021/acs.jctc.0c00120
http://doi.org/10.1021/acs.jced.0c00381
http://doi.org/10.1021/acs.jpcb.0c04844
http://doi.org/10.1007/s00894-020-04587-y
http://doi.org/10.1016/j.molliq.2021.115747
http://doi.org/10.1039/C8TA07400C
http://doi.org/10.1021/acs.jpcb.9b09729
http://www.ncbi.nlm.nih.gov/pubmed/31794220
http://doi.org/10.1080/00268976.2021.1876263
http://doi.org/10.1039/D0CP05341D
http://www.ncbi.nlm.nih.gov/pubmed/33532810
http://doi.org/10.1021/acs.jpcb.1c06636
http://doi.org/10.1039/C7CP05911F
http://www.ncbi.nlm.nih.gov/pubmed/29564421
http://doi.org/10.1039/D0CP02408B
http://doi.org/10.1039/C9CP00036D
http://doi.org/10.1021/acs.jpcb.0c07041
http://www.ncbi.nlm.nih.gov/pubmed/32940465
http://doi.org/10.1063/5.0052200
http://doi.org/10.1021/acs.jpcb.1c07796
http://doi.org/10.1021/acs.langmuir.7b00767
http://doi.org/10.1021/acs.jpcc.5b08172
http://doi.org/10.1021/acs.jpclett.8b01718
http://www.ncbi.nlm.nih.gov/pubmed/30277778


Int. J. Mol. Sci. 2022, 23, 645 65 of 68

311. Shen, Y.; Hung, F.R. A Molecular Simulation Study of Carbon Dioxide Uptake by a Deep Eutectic Solvent Confined in Slit
Nanopores. J. Phys. Chem. C 2017, 121, 24562–24575. [CrossRef]

312. Safavi, A.; Shekarnoush, M.; Ajamian, M.; Zolghadr, A.R. High-Yield Synthesis, Characterization, Self-Assembly of Extremely
Thin Gold Nanosheets in Sugar Based Deep Eutectic Solvents and Their High Electrocatalytic Activity. J. Mol. Liq. 2019, 279,
208–223. [CrossRef]

313. Rozas, S.; Atilhan, M.; Aparicio, S. Deep Eutectic Solvent Reline at 2D Nanomaterial Interfaces. J. Phys. Chem. B 2020, 124,
1197–1206. [CrossRef] [PubMed]

314. Shakourian-Fard, M.; Taimoory, S.M.; Ghenaatian, H.R.; Kamath, G.; Trant, J.F. A DFT Study of the Adsorption of Deep Eutectic
Solvents onto Graphene and Defective Graphene Nanoflakes. J. Mol. Liq. 2021, 327, 114850. [CrossRef]

315. Zec, N.; Mangiapia, G.; Zheludkevich, M.L.; Busch, S.; Moulin, J.-F. Revealing the Interfacial Nanostructure of a Deep Eutectic
Solvent at a Solid Electrode. Phys. Chem. Chem. Phys. 2020, 22, 12104–12112. [CrossRef]

316. Patidar, P.; Kanoje, B.; Bahadur, A.; Kuperkar, K.; Ray, D.; Aswal, V.K.; Wang, M.; Chen, L.-J.; Bahadur, P. Micellar Characteristics
of an Amphiphilic Star-Block Copolymer in DES-Water Mixture. Colloid Polym. Sci. 2021, 299, 117–128. [CrossRef]

317. Elbourne, A.; Meftahi, N.; Greaves, T.L.; McConville, C.F.; Bryant, G.; Bryant, S.J.; Christofferson, A.J. Nanostructure of a Deep
Eutectic Solvent at Solid Interfaces. J. Colloid Interface Sci. 2021, 591, 38–51. [CrossRef]

318. Atilhan, M.; Aparicio, S. Deep Eutectic Solvents on the Surface of Face Centered Cubic Metals. J. Phys. Chem. C 2016, 120,
10400–10409. [CrossRef]

319. Atilhan, M.; Aparicio, S. Molecular Dynamics Simulations of Metal Nanoparticles in Deep Eutectic Solvents. J. Phys. Chem. C
2018, 122, 18029–18039. [CrossRef]

320. Gao, Q.; Wu, N.; Qin, Y.; Laaksonen, A.; Zhu, Y.; Ji, X.; Lu, X. Molecular Insight into Wetting Behavior of Deep Eutectic Solvent
Droplets on Ionic Substrates: A Molecular Dynamics Study. J. Mol. Liq. 2020, 319, 114298. [CrossRef]

321. Atilhan, M.; Aparicio, S. Molecular Dynamics Simulations of Mixed Deep Eutectic Solvents and Their Interaction with Nanomate-
rials. J. Mol. Liq. 2019, 283, 147–154. [CrossRef]

322. Kaur, S.; Sharma, S.; Kashyap, H.K. Bulk and Interfacial Structures of Reline Deep Eutectic Solvent: A Molecular Dynamics Study.
J. Chem. Phys. 2017, 147, 194507. [CrossRef]

323. Malik, A.; Dhattarwal, H.S.; Kashyap, H.K. Molecular Dynamics Investigation of Wetting-Dewetting Behavior of Reline DES
Nanodroplet at Model Carbon Material. J. Chem. Phys. 2020, 153, 164704. [CrossRef] [PubMed]

324. Rozas, S.; Atilhan, M.; Aparicio, S. Insights on (C, BN, Si, Ge, MoS2) Nanotubes in Reline Deep Eutectic Solvent. J. Phys. Chem. B
2020, 124, 3556–3567. [CrossRef]

325. Castro, V.I.B.; Craveiro, R.; Silva, J.M.; Reis, R.L.; Paiva, A.; Duarte, A.R.C. Natural Deep Eutectic Systems as Alternative Nontoxic
Cryoprotective Agents. Cryobiology 2018, 83, 15–26. [CrossRef]

326. Das, A.; Mukhopadhyay, C. Urea-Mediated Protein Denaturation: A Consensus View. J. Phys. Chem. B 2009, 113, 12816–12824.
[CrossRef]

327. Lim, W.K.; Rösgen, J.; Englander, S.W. Urea, but Not Guanidinium, Destabilizes Proteins by Forming Hydrogen Bonds to the
Peptide Group. Proc. Natl. Acad. Sci. USA 2009, 106, 2595–2600. [CrossRef]

328. Rossky, P.J. Protein Denaturation by Urea: Slash and Bond. Proc. Natl. Acad. Sci. USA 2008, 105, 16825–16826. [CrossRef]
329. Gorke, J.T.; Srienc, F.; Kazlauskas, R.J. Hydrolase-Catalyzed Biotransformations in Deep Eutectic Solvents. Chem. Commun. 2008,

1235–1237. [CrossRef] [PubMed]
330. Monhemi, H.; Housaindokht, M.R.; Moosavi-Movahedi, A.A.; Bozorgmehr, M.R. How a Protein Can Remain Stable in a Solvent

with High Content of Urea: Insights from Molecular Dynamics Simulation of Candida Antarctica Lipase B in Urea: Choline
Chloride Deep Eutectic Solvent. Phys. Chem. Chem. Phys. 2014, 16, 14882–14893. [CrossRef] [PubMed]

331. Sarkar, S.; Ghosh, S.; Chakrabarti, R. Ammonium Based Stabilizers Effectively Counteract Urea-Induced Denaturation in a Small
Protein: Insights from Molecular Dynamics Simulations. RSC Adv. 2017, 7, 52888–52906. [CrossRef]

332. Maity, A.; Sarkar, S.; Theeyancheri, L.; Chakrabarti, R. Choline Chloride as a Nano-Crowder Protects HP-36 from Urea-Induced
Denaturation: Insights from Solvent Dynamics and Protein-Solvent Interactions. Chemphyschem 2020, 21, 552–567. [CrossRef]

333. Pal, S.; Roy, R.; Paul, S. Potential of a Natural Deep Eutectic Solvent, Glyceline, in the Thermal Stability of the Trp-Cage
Mini-Protein. J. Phys. Chem. B 2020, 124, 7598–7610. [CrossRef]

334. Pal, S.; Paul, S. Effect of Hydrated and Nonhydrated Choline Chloride–Urea Deep Eutectic Solvent (Reline) on Thrombin-Binding
G-Quadruplex Aptamer (TBA): A Classical Molecular Dynamics Simulation Study. J. Phys. Chem. C 2019, 123, 11686–11698.
[CrossRef]

335. Pal, S.; Paul, S. Understanding The Role of Reline, a Natural DES, on Temperature-Induced Conformational Changes of C-Kit
G-Quadruplex DNA: A Molecular Dynamics Study. J. Phys. Chem. B 2020, 124, 3123–3136. [CrossRef] [PubMed]

336. Atilhan, M.; Costa, L.T.; Aparicio, S. On the Behaviour of Aqueous Solutions of Deep Eutectic Solvents at Lipid Biomembranes. J.
Mol. Liq. 2017, 247, 116–125. [CrossRef]

337. Chen, Y.; Mu, T. Application of Deep Eutectic Solvents in Biomass Pretreatment and Conversion. Green Energy Environ. 2019, 4,
95–115. [CrossRef]

338. Mohan, M.; Naik, P.K.; Banerjee, T.; Goud, V.V.; Paul, S. Solubility of Glucose in Tetrabutylammonium Bromide Based Deep
Eutectic Solvents: Experimental and Molecular Dynamic Simulations. Fluid Phase Equilib. 2017, 448, 168–177. [CrossRef]

http://doi.org/10.1021/acs.jpcc.7b07315
http://doi.org/10.1016/j.molliq.2019.01.111
http://doi.org/10.1021/acs.jpcb.9b08873
http://www.ncbi.nlm.nih.gov/pubmed/31983208
http://doi.org/10.1016/j.molliq.2020.114850
http://doi.org/10.1039/C9CP06779E
http://doi.org/10.1007/s00396-020-04770-w
http://doi.org/10.1016/j.jcis.2021.01.089
http://doi.org/10.1021/acs.jpcc.6b01826
http://doi.org/10.1021/acs.jpcc.8b02582
http://doi.org/10.1016/j.molliq.2020.114298
http://doi.org/10.1016/j.molliq.2019.03.068
http://doi.org/10.1063/1.4996644
http://doi.org/10.1063/5.0023460
http://www.ncbi.nlm.nih.gov/pubmed/33138435
http://doi.org/10.1021/acs.jpcb.0c01253
http://doi.org/10.1016/j.cryobiol.2018.06.010
http://doi.org/10.1021/jp906350s
http://doi.org/10.1073/pnas.0812588106
http://doi.org/10.1073/pnas.0809224105
http://doi.org/10.1039/b716317g
http://www.ncbi.nlm.nih.gov/pubmed/18309428
http://doi.org/10.1039/c4cp00503a
http://www.ncbi.nlm.nih.gov/pubmed/24930496
http://doi.org/10.1039/C7RA10712A
http://doi.org/10.1002/cphc.201901078
http://doi.org/10.1021/acs.jpcb.0c03501
http://doi.org/10.1021/acs.jpcc.9b01111
http://doi.org/10.1021/acs.jpcb.0c00644
http://www.ncbi.nlm.nih.gov/pubmed/32207949
http://doi.org/10.1016/j.molliq.2017.09.082
http://doi.org/10.1016/j.gee.2019.01.012
http://doi.org/10.1016/j.fluid.2017.05.024


Int. J. Mol. Sci. 2022, 23, 645 66 of 68

339. Fu, H.; Wang, X.; Sang, H.; Hou, Y.; Chen, X.; Feng, X. Dissolution Behavior of Microcrystalline Cellulose in DBU-Based Deep
Eutectic Solvents: Insights from Spectroscopic Investigation and Quantum Chemical Calculations. J. Mol. Liq. 2020, 299, 112140.
[CrossRef]

340. Sánchez-Badillo, J.A.; Gallo, M.; Rutiaga-Quiñones, J.G.; López-Albarrán, P. Solvent Behavior of an Ionic Liquid Set around a
Cellulose Iβ Crystallite Model through Molecular Dynamics Simulations. Cellulose 2021, 28, 6767–6795. [CrossRef]

341. Muley, P.D.; Mobley, J.K.; Tong, X.; Novak, B.; Stevens, J.; Moldovan, D.; Shi, J.; Boldor, D. Rapid Microwave-Assisted Biomass
Delignification and Lignin Depolymerization in Deep Eutectic Solvents. Energy Convers. Manag. 2019, 196, 1080–1088. [CrossRef]

342. Provatas, N.; Elder, K. Phase-Field Methods in Materials Science and Engineering; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,
Germany, 2010.

343. Steinbach, I. Phase-Field Models in Materials Science. Model. Simul. Mater. Sci. Eng. 2009, 17, 073001. [CrossRef]
344. Boettinger, W.J.; Warren, J.A.; Beckermann, C.; Karma, A. Phase-Field Simulation of Solidification. Annu. Rev. Mater. Res. 2002, 32,

163–194. [CrossRef]
345. Humadi, H.; Ofori-Opoku, N.; Provatas, N.; Hoyt, J.J. Atomistic Modeling of Solidification Phenomena Using the Phase-Field-

Crystal Model. JOM 2013, 65, 1103–1110. [CrossRef]
346. Grossmann, B.; Elder, K.R.; Grant, M.; Kosterlitz, J.M. Directional Solidification in Two and Three Dimensions. Phys. Rev. Lett.

1993, 71, 3323–3326. [CrossRef] [PubMed]
347. Elder, K.R.; Katakowski, M.; Haataja, M.; Grant, M. Modeling Elasticity in Crystal Growth. Phys. Rev. Lett. 2002, 88, 245701.

[CrossRef]
348. Alster, E.; Elder, K.R.; Voorhees, P.W. Displacive Phase-Field Crystal Model. Phys. Rev. Mater. 2020, 4. [CrossRef]
349. Courtemanche, M. Complex Spiral Wave Dynamics in a Spatially Distributed Ionic Model of Cardiac Electrical Activity. Chaos

1996, 6, 579–600. [CrossRef] [PubMed]
350. Efimov, I.R.; Krinsky, V.I.; Jalife, J. Dynamics of Rotating Vortices in the Beeler-Reuter Model of Cardiac Tissue. Chaos Solitons

Fractals 1995, 5, 513–526. [CrossRef]
351. Elder, K.; Grant, M. Modeling Elastic and Plastic Deformations in Nonequilibrium Processing Using Phase Field Crystals. Phys.

Rev. E 2004, 70, 051605. [CrossRef]
352. Wang, Q.; Zhang, G.; Li, Y.; Hong, Z.; Wang, D.; Shi, S. Application of Phase-Field Method in Rechargeable Batteries. NPJ Comput.

Mater. 2020, 6, 176. [CrossRef]
353. Wheeler, D.; Keller, T.; DeWitt, S.J.; Jokisaari, A.M.; Schwen, D.; Guyer, J.E.; Aagesen, L.K.; Heinonen, O.G.; Tonks, M.R.; Voorhees,

P.W.; et al. PFHub: The Phase-Field Community Hub. J. Open Res. Softw. 2019, 7, 1–7. [CrossRef]
354. DeWitt, S.; Rudraraju, S.; Montiel, D.; Andrews, W.B.; Thornton, K. PRISMS-PF: A General Framework for Phase-Field Modeling

with a Matrix-Free Finite Element Method. NPJ Comput. Mater. 2020, 6, 1–12. [CrossRef]
355. Permann, C.J.; Gaston, D.R.; Andrš, D.; Carlsen, R.W.; Kong, F.; Lindsay, A.D.; Miller, J.M.; Peterson, J.W.; Slaughter, A.E.; Stogner,

R.H.; et al. MOOSE: Enabling Massively Parallel Multiphysics Simulation. SoftwareX 2020, 11, 100430. [CrossRef]
356. Cimrman, R.; Lukeš, V.; Rohan, E. Multiscale Finite Element Calculations in Python Using SfePy. Adv. Comput. Math. 2019, 45,

1897–1921. [CrossRef]
357. Guyer, J.E.; Wheeler, D.; Warren, J.A. FiPy: Partial Differential Equations with Python. Comput. Sci. Eng. 2009, 11, 6–15. [CrossRef]
358. Silber, S.A.; Karttunen, M. SymPhas—General Purpose Software for Phase-Field, Phase-Field Crystal and Reaction-Diffusion

Simulations. Adv. Theory Sim. 2021, 2100351. [CrossRef]
359. Wheeler, A.A.; Boettinger, W.J.; McFadden, G.B. Phase-Field Model for Isothermal Phase Transitions in Binary Alloys. Phys. Rev.

A 1992, 45, 7424–7439. [CrossRef]
360. Elder, K.R.; Drolet, F.; Kosterlitz, J.M.; Grant, M. Stochastic Eutectic Growth. Phys. Rev. Lett. 1994, 72, 677–680. [CrossRef]

[PubMed]
361. Karma, A. Phase-Field Model of Eutectic Growth. Phys. Rev. E 1994, 49, 2245–2250. [CrossRef]
362. Wheeler, A.A.; McFadden, G.B.; Boettinger, W.J. Phase-Field Model for Solidification of a Eutectic Alloy. Proc. R. Soc. Lond. Ser. A

Math. Phys. Eng. Sci. 1996, 452, 495–525.
363. Gyoon Kim, S.; Tae Kim, W.; Suzuki, T.; Ode, M. Phase-Field Modeling of Eutectic Solidification. J. Cryst. Growth 2004, 261,

135–158. [CrossRef]
364. Choudhury, A.N. Quantitative Phase-Field Model for Phase Transformations in Multi-Component Alloys; KIT Scientific Publishing:

Karlsruhe, Germany, 2012.
365. Choudhury, A.; Nestler, B. Grand-Potential Formulation for Multicomponent Phase Transformations Combined with Thin-

Interface Asymptotics of the Double-Obstacle Potential. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2012, 85, 021602. [CrossRef]
366. Plapp, M. Unified Derivation of Phase-Field Models for Alloy Solidification from a Grand-Potential Functional. Phys. Rev. E Stat.

Nonlin. Soft Matter Phys. 2011, 84, 031601. [CrossRef] [PubMed]
367. Nestler, B.; Garcke, H.; Stinner, B. Multicomponent Alloy Solidification: Phase-Field Modeling and Simulations. Phys. Rev. E Stat.

Nonlin. Soft Matter Phys. 2005, 71, 041609. [CrossRef]
368. Steinmetz, P.; Hötzer, J.; Kellner, M.; Genau, A.; Nestler, B. Study of Pattern Selection in 3D Phase-Field Simulations during the

Directional Solidification of Ternary Eutectic Al-Ag-Cu. Comput. Mater. Sci. 2018, 148, 131–140. [CrossRef]
369. Kollau, L.J.B.M.; Vis, M.; van den Bruinhorst, A.; Tuinier, R.; de With, G. Entropy Models for the Description of the Solid–liquid

Regime of Deep Eutectic Solutions. J. Mol. Liq. 2020, 302, 112155. [CrossRef]

http://doi.org/10.1016/j.molliq.2019.112140
http://doi.org/10.1007/s10570-021-03992-7
http://doi.org/10.1016/j.enconman.2019.06.070
http://doi.org/10.1088/0965-0393/17/7/073001
http://doi.org/10.1146/annurev.matsci.32.101901.155803
http://doi.org/10.1007/s11837-013-0683-3
http://doi.org/10.1103/PhysRevLett.71.3323
http://www.ncbi.nlm.nih.gov/pubmed/10054944
http://doi.org/10.1103/PhysRevLett.88.245701
http://doi.org/10.1103/PhysRevMaterials.4.013802
http://doi.org/10.1063/1.166206
http://www.ncbi.nlm.nih.gov/pubmed/12780289
http://doi.org/10.1016/0960-0779(95)95761-F
http://doi.org/10.1103/PhysRevE.70.051605
http://doi.org/10.1038/s41524-020-00445-w
http://doi.org/10.5334/jors.276
http://doi.org/10.1038/s41524-020-0298-5
http://doi.org/10.1016/j.softx.2020.100430
http://doi.org/10.1007/s10444-019-09666-0
http://doi.org/10.1109/MCSE.2009.52
http://doi.org/10.1002/adts.202100351
http://doi.org/10.1103/PhysRevA.45.7424
http://doi.org/10.1103/PhysRevLett.72.677
http://www.ncbi.nlm.nih.gov/pubmed/10056495
http://doi.org/10.1103/PhysRevE.49.2245
http://doi.org/10.1016/j.jcrysgro.2003.08.078
http://doi.org/10.1103/PhysRevE.85.021602
http://doi.org/10.1103/PhysRevE.84.031601
http://www.ncbi.nlm.nih.gov/pubmed/22060379
http://doi.org/10.1103/PhysRevE.71.041609
http://doi.org/10.1016/j.commatsci.2018.02.040
http://doi.org/10.1016/j.molliq.2019.112155


Int. J. Mol. Sci. 2022, 23, 645 67 of 68

370. Cosby, T.; Kapoor, U.; Shah, J.K.; Sangoro, J. Mesoscale Organization and Dynamics in Binary Ionic Liquid Mixtures. J. Phys.
Chem. Lett. 2019, 10, 6274–6280. [CrossRef]

371. Ding, Y.; Zhang, C.; Zhang, L.; Wei, H.; Li, Y.; Yu, G. Insights into Hydrotropic Solubilization for Hybrid Ion Redox Flow Batteries.
ACS Energy Lett. 2018, 3, 2641–2648. [CrossRef]

372. Zahrina, I.; Nasikin, M.; Mulia, K.; Prajanto, M.; Yanuar, A. Molecular Interactions between Betaine Monohydrate-Glycerol Deep
Eutectic Solvents and Palmitic Acid: Computational and Experimental Studies. J. Mol. Liq. 2018, 251, 28–34. [CrossRef]

373. Zahrina, I.; Mulia, K.; Yanuar, A.; Nasikin, M. Molecular Interactions in the Betaine Monohydrate-Polyol Deep Eutectic Solvents:
Experimental and Computational Studies. J. Mol. Struct. 2018, 1158, 133–138. [CrossRef]

374. Pauric, A.D.; Halalay, I.C.; Goward, G.R. Combined NMR and Molecular Dynamics Modeling Study of Transport Properties
in Sulfonamide Based Deep Eutectic Lithium Electrolytes: LiTFSI Based Binary Systems. Phys. Chem. Chem. Phys. 2016, 18,
6657–6667. [CrossRef]

375. Karibayev, M.; Shah, D. Comprehensive Computational Analysis Exploring the Formation of Caprolactam-Based Deep Eutectic
Solvents and Their Applications in Natural Gas Desulfurization. Energy Fuels 2020, 34, 9894–9902. [CrossRef]

376. Chatterjee, S.; Ghosh, D.; Haldar, T.; Deb, P.; Sakpal, S.S.; Deshmukh, S.H.; Kashid, S.M.; Bagchi, S. Hydrocarbon Chain-Length
Dependence of Solvation Dynamics in Alcohol-Based Deep Eutectic Solvents: A Two-Dimensional Infrared Spectroscopic
Investigation. J. Phys. Chem. B 2019, 123, 9355–9363. [CrossRef]

377. Chatterjee, S.; Haldar, T.; Ghosh, D.; Bagchi, S. Electrostatic Manifestation of Micro-Heterogeneous Solvation Structures in
Deep-Eutectic Solvents: A Spectroscopic Approach. J. Phys. Chem. B 2020, 124, 3709–3715. [CrossRef] [PubMed]

378. Liu, C.; Fang, H.; Liu, X.; Xu, B.; Rao, Z. Novel Silica Filled Deep Eutectic Solvent Based Nanofluids for Energy Transportation.
ACS Sustain. Chem. Eng. 2019, 7, 20159–20169. [CrossRef]

379. Barani Pour, S.; Jahanbin Sardroodi, J.; Rastkar Ebrahimzadeh, A. The Study of Structure and Interactions of Glucose-Based
Natural Deep Eutectic Solvents by Molecular Dynamics Simulation. J. Mol. Liq. 2021, 334, 115956. [CrossRef]

380. Mamashli, F.; Badraghi, J.; Delavari, B.; Lanjanian, H.; Sabbaghian, M.; Hosseini, M.; Saboury, A.A. Improvement of Versatile
Peroxidase Activity and Stability by a Cholinium-Based Ionic Liquid. J. Mol. Liq. 2018, 272, 597–608. [CrossRef]

381. Lehmann, C.; Bocola, M.; Streit, W.R.; Martinez, R.; Schwaneberg, U. Ionic Liquid and Deep Eutectic Solvent-Activated CelA2
Variants Generated by Directed Evolution. Appl. Microbiol. Biotechnol. 2014, 98, 5775–5785. [CrossRef] [PubMed]

382. Bittner, J.P.; Huang, L.; Zhang, N.; Kara, S.; Jakobtorweihen, S. Comparison and Validation of Force Fields for Deep Eutectic
Solvents in Combination with Water and Alcohol Dehydrogenase. J. Chem. Theory Comput. 2021, 17, 5322–5341. [CrossRef]

383. Ji, H.; Lv, P. Mechanistic Insights into the Lignin Dissolution Behaviors of a Recyclable Acid Hydrotrope, Deep Eutectic Solvent
(DES), and Ionic Liquid (IL). Green Chem. 2020, 22, 1378–1387. [CrossRef]

384. Yan, W.-W.; Zong, Z.-M.; Li, Z.-X.; Li, J.; Liu, G.-H.; Ma, Z.-H.; Zhang, Y.-Y.; Xu, M.-L.; Liu, F.-J.; Wei, X.-Y. Effective Separation and
Purification of Nitrogen-Containing Aromatics from the Light Portion of a High-Temperature Coal Tar Using Choline Chloride
and Malonic Acid: Experimental and Molecular Dynamics Simulation. ACS Sustain. Chem. Eng. 2020, 8, 9464–9471. [CrossRef]

385. Atilhan, M.; Aparicio, S. Molecular Dynamics Study on the Use of Deep Eutectic Solvents for Enhanced Oil Recovery. J. Pet. Sci.
Eng. 2022, 209, 109953. [CrossRef]

386. Triolo, A.; Lo Celso, F.; Russina, O. Structural Features of β-Cyclodextrin Solvation in the Deep Eutectic Solvent, Reline. J. Phys.
Chem. B 2020, 124, 2652–2660. [CrossRef]

387. Hammond, O.S.; Bowron, D.T.; Edler, K.J. Liquid Structure of the Choline Chloride-Urea Deep Eutectic Solvent (reline) from
Neutron Diffraction and Atomistic Modelling. Green Chem. 2016, 18, 2736–2744. [CrossRef]

388. Gupta, R.; Vats, B.; Pandey, A.K.; Sharma, M.K.; Sahu, P.; Yadav, A.K.; Ali, S.M.; Kannan, S. Insight into Speciation and
Electrochemistry of Uranyl Ions in Deep Eutectic Solvents. J. Phys. Chem. B 2020, 124, 181–189. [CrossRef]

389. Zhang, Y.; You, Y.; Gao, Q.; Zhang, C.; Wang, S.; Qin, Y.; Zhu, Y.; Lu, X. Molecular Insight into Flow Resistance of Choline
Chloride/urea Confined in Ionic Model Nanoslits. Fluid Phase Equilib. 2021, 533, 112934. [CrossRef]

390. Shah, D.; Mansurov, U.; Mjalli, F.S. Intermolecular Interactions and Solvation Effects of Dimethylsulfoxide on Type III Deep
Eutectic Solvents. Phys. Chem. Chem. Phys. 2019, 21, 17200–17208. [CrossRef] [PubMed]

391. Abedin, R.; Heidarian, S.; Flake, J.C.; Hung, F.R. Computational Evaluation of Mixtures of Hydrofluorocarbons and Deep Eutectic
Solvents for Absorption Refrigeration Systems. Langmuir 2017, 33, 11611–11625. [CrossRef]

392. Zhekenov, T.; Toksanbayev, N.; Kazakbayeva, Z.; Shah, D.; Mjalli, F.S. Formation of Type III Deep Eutectic Solvents and Effect of
Water on Their Intermolecular Interactions. Fluid Phase Equilib. 2017, 441, 43–48. [CrossRef]

393. Aryafard, M.; Abbasi, M.; Řeha, D.; Harifi-Mood, A.R.; Minofar, B. Experimental and Theoretical Investigation of Solvatochromic
Properties and Ion Solvation Structure in DESs of Reline, Glyceline, Ethaline and Their Mixtures with PEG 400. J. Mol. Liq. 2019,
284, 59–67. [CrossRef]
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