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INTRODUCTION

The solid-liquid transition is one of the most common phase changes

occurring in nature, yet our theoretical understanding of it is quite
fragmented. Although there exist theories of freezing and of melting,

these theories are often phrased in very different languages. In order to
understand the thermodynamics and kinetics of the solid-liquid transi-

tion it is essential to have a good theoretical picture of the microscopic

structure and dynamics of both the solid and the liquid phase, along the

melting curve. The theoretical description of anharmonic, defect-rich

solids and, in particular, of dense fluids is a formidable many-body

problem. It is in tackling this problem that simulation techniques have

proven to be an invaluable tool. In discussing the role of (computer)
simulations in the study of the solid liquid transition, it is important to

distinguish between the thermodynamics and the kinetics of the phase

transition. Studies of the thermodynamics of the solid-liquid transition

address themselves to the following question: Given the intermolecular
forces for a particular system, what is the location of the melting curve

and how do the thermodynamic properties of the system (e.g. density,

entropy etc) change on melting? In contrast, studies of the kinetics of

the solid-liquid transition focus on the question: By what microscopic

mechanism does a system melt or freeze? Of course, as many fluids can
be cooled well below their normal freezing point, related questions are:
What factors favor supercooling and what is the nature of the glass

transition? In general, the answers to these questions may be expected

to depend on the dimensionality of the system and the nature of the

intermolecular forces.
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492 FRENKEL & McTAGUE

The outline of the present review is as follows. First we briefly discuss

the simulation techniques that are used to study the above mentioned

aspects of the solid-liquid transition. Next we present a necessarily

incomplete survey of the relevant simulation results. In this survey we

limit ourselves to single component systems and largely, though not

exclusively, to molecules interacting through central forces. The material

is organized in three sometimes overlapping categories: thermody-

namics, kinetics, and the properties of amorphous solids. Although a

survey of the theoretical framework (or frameworks) is clearly outside

the scope of this review, we attempt to assess the relevance of simula-
tions on finite systems as a means to test theoretical predictions on

infinite systems. Not included in this survey are the freezing and melting

properties of mixtures, liquid-crystals, polymeric substances, and quan-

tum systems.

SIMULATION METHODS

Mechanical Mode&

The earliest simulations of the microscopic structure of dense fluids

were mechanical rather than numerical in nature. Bernal, who pioneered

the structural analysis of assemblies of randomly packed spheres, quotes

in his 1962 Bakerian Lecture (1) the work of the Reverend Stephen

Hales who, in 1727, studied the swelling properties of peas. The Rever-

end observed that peas, when made to swell in a heavy iron pot with a

weighted lid, tended to fill up the remaining space, "being thereby
formed into pretty regular Dodecahedrons." In the early 1940s, Rice

determined the density of an assembly of glass beads randomly thrown

into a container and then shaken down (2). He found that the density 

this assembly of spheres was about 15% lower than that of the close-

packed crystalline phase [earlier experiments by Westman & Hugill (3)

had yielded a value some 21% below the crystal density]. On basis of
this observation Rice predicted that, at sufficiently high pressures, the

hard-sphere solid must be more stable than the fluid phase. More

recently, mechanical models of hard-sphere fluids were investigated in

great detail by Bernal (1,4-7) and Scott et al (8-11), and we discuss

some of their findings in the section on amorphous solids. At this stage
we only want to sketch the method and point out some of its advantages

and limitations.
Mechanical models can be used to study some of the structural

properties of hard-core fluids. As an example, let us consider an

assembly of ball bearings. This system has been extensively used to

simulate a dense hard-sphere fluid. In a mechanical simulation a large

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


FREEZING AND SUPERCOOLED LIQUIDS 493

number of spheres [typically (5(104)] are poured into a container with

irregularly shaped walls (to prevent "nucleation"). On "shaking and

tapping," (8) the density of the assembly quickly levels off at a maxi-

mum (the density of "random close packing"). Of course, as the system
is finite, boundary effects may be important and a careful extrapolation

to infinite system size is important (8). Properties that can be conveni-

ently studied with a mechanical model are the density of random close
packing (12, 13) and the local coordination geometry of particles. Ex-

tracting further structural information (e.g. the radial distribution func-

tion) from a mechanical model is exceedingly tedious. Moreover, mech-

anical models can only be used to simulate a system at the density of

random close packing (assuming that this state is sufficiendy well

defined). The "correct" preparation of a random close structure is not

well understood; other preparation methods lead to lower final densi-

ties, although under shearing motion both 3-D (11) and 2-D (14)

random close packed structures were found to "crystallize."

Computer Simulations

Almost from the day that they were first introduced, computer simula-

tion techniques have been used to study the solid-liquid transition and
related phenomena. In 1953 Metropolis et al (15) reported the first

Monte Carlo (MC) simulation on a system of 224 hard disks. The first
Molecular Dynamics (MD) calculations (on systems of up to 108 hard

spheres) were reported by Alder & Wainwright in 1957 (16). Excellent

review articles exist on both the MC (17-19) and the MD (20-22)
method, to which we refer the reader for information on the practical

aspects of these simulation techniques. Here we only describe the basics

of the MC and MD methods and mention certain practical limitations

of these simulation techniques that may have important consequences

for the study of phase transitions (see also 23, chapter 10).

As the MC and MD methods are closely related, we briefly sketch the

MD method (because it is conceptually simpler) and, after that, indicate

in what respects the MC method is different.

A Molecular Dynamics simulation amounts to nothing more than a

numerical integration of the classical equations of motion for an assem-

bly of N particles. To start a simulation one has to specify: (a) the

positions and momenta (and, for molecules, orientations, and angular

momenta) of all particles and (b) the intermolecular force laws 

general assumed to be pairwise additive). The force on each particle can
then be evaluated by summing the contributions due to all other

particles within a distance rc from that particle, where rc is a cutoff
distance appropriate to the range of the force. Given the force on each
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particle the equations of motion can be integrated for a small, but finite

time increment. The new positions are then used to evaluate the new

forces and the cycle is repeated. (Note: MD calculations on particles

with steep repulsive cores follow a somewhat different procedure. In the

latter case the equations of motion are integrated from one collision to

the next.) The most important limitation of the MD (and MC) method

is the fact that only relatively small systems (10 2 tO 104 particles) can be

handled with the present generation of computers. As a consequence,

boundary effects may be very important (the fraction of atoms at the

surface is proportional to N-l/D, where D is the dimensionality of the

system). For this reason periodic boundary conditions are commonly

used in the simulation of bulk fluids (solids). The effect of periodic

boundary conditions is to embed the system to be studied in an infinite

array of identical replica systems. The most common periodic boundary

condition is the cubical (sometimes rectangular) boundary condition; 

particles are initially placed in a cube (length L). This cube is the unit

cell of a simple cubic lattice of replica systems. Every time a particle

moves out of the original cube (say at x = + L/2) its periodic image will

move into cube (at x = -L/2). Although periodic boundary conditions

effectively eliminate surface effects, they do introduce some problems of

their own. For instance, a periodic fluid is no longer isotropic but has

the symmetry of the boundary conditions (e.g. cubic). Moreover, crystal

lattices that are commensurate with the boundary conditions are clearly

favored over all others. When studying the solid-liquid transition in a

periodic system one should attempt to assess the effect of the boundary

conditions. Mandell (24a) has studied the effect of periodic boundary

conditions on the properties of a fluid of 108 Lennard-Jones molecules.

He found that for such a small system the periodic boundary effects are

by no means negligible, in particular at low temperatures.
Another effect of periodic boundary conditions is the suppression of

all fluctuations with wavelengths larger than the boxlength L [or, to be

more precise, only fluctuations with wavevector k= (2~r/L)(n

are allowed]. It should be stressed that periodic boundary conditions

only eliminate surface effects in a one-phase system. If two phases

coexist, the fraction of particles in the interface region is once again of

order N- i/z~. Consequently, a system that may be large enough to study

the properties of a single phase may be much too small to observe

two-phase coexistence. An alternative to periodic boundary conditions

is to constrain the system to a closed (hyper) surface. This latter method

has been used by Hansen, Levesque & Weis (24b) who studied 

two-dimensional one-component plasma, constrained to move on the
surface of a sphere. In an MD calculation the total energy E, the

volume V, and the number of particles N are held constant. If the
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system is ergodic, taking the time average of a dynamical property will
be equivalent to taking the microcanonical ensemble average. Two

questions arise: 1. Is the system under consideration indeed ergodic? 2.

If so, how long should one time-average to obtain a result within

specified error bounds? In general there is no satisfactory answer to

either of these questions. The first question, although interesting in

principle, is less relevant for MD calculations than the second. At high

densities and low temperatures finite periodic systems with a sufficiently

repulsive core will, most likely, become nonergodic (i.e. the available

phase space consists of a number of isolated islands). But what really

counts is whether the system can adequately sample the available phase

on the time scale of a typical MD simulation. If the longest relaxation

times in the system become of the order of the duration of an MD run,

the computed time average will start to deviate appreciably from the

microcanonical ensemble average. Very long relaxation times may be
expected near a critical point or close to the glass transition. Under such

circumstances one may also expect a pronounced system-size depen-

dence of the observed properties, because the longest relaxation time is
often strongly size dependent.

Another manifestation of nonergodicity on the time scale of an MD

experiment is metastability. The distinction between metastability and

the examples given above is that there is a large gap between all the
relaxation times of the metastable phase and the characteristic time it

takes to nucleate the stable phase. The properties of metastable phase

(e.g. a supercooled liquid) can be studied by MD simulation in the same

way as those of a stable phase. However, when the gap between

relaxation and nucleation rates becomes smaller it is no longer meaning-

ful to speak of a metastable phase.
Monte Carlo simulations are used to study the static properties of

systems at constant N, V, and T (the method can easily be adapted to

study constant N, P, T or /~, V, T systems). In an MC simulation the

system performs a biased random walk through phase space. In the

basic MC step one particle in the system is given a small, random

displacement. The potential energy of the resulting configuration is then

compared with the original potential energy. If the move lowers the
potential energy, the move will be accepted; if it increases the potential

energy by an amount AU the move is rejected unless exp (- AU/kT) > 

(where R is a random number between 0 and 1). Irrespective of whether
or not the move was accepted, the properties of the resulting configura-

tion are included in the averaging.

The systems studied by MC calculations are typically of the same size
as those studied by Molecular Dynamics and periodic boundary condi-

tions are usually imposed. The important difference between the MC

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


496 FRENKEL & McTAGUE

and MD methods is that the molecular movements in an MC simulation

are unrelated to the natural time evolution of the system. Consequently,

no dynamical information can be derived from MC simulations. An

infinite MC simulation will yield average values for the energy, pressure

and other static properties that are identical to the canonical ensemble

averages (for a constant N, V, T simulation) (15, 18). As in the MD 

it may happen that the available phase space is inadequately sampled in

a finite MC run. In general, such problems have been observed under

the same conditions that lead to nonergodic behavior in MD simu-

lations. Yet it is not obvious that this should always be the case because

in MC runs "structural relaxation" and "nucleation" are the result of a

succession of nonphysical moves. Consequently, structural rearrange-

ments that are favored by the MC method may be impossible to realize

in an MD simulation, and vice versa. Apart from the MD and MC

methods a number of computation techniques have been developed to

study the properties of dense random-packed structures. Such computer

modeling techniques have recently been reviewed in a paper by Hoare

(25), to which we refer the interested reader.

THERMODYNAMICS OF MELTING

Locating the melting curve of a model system in an MC or MD

simulation is not a trivial matter. When Metropolis et al first studied the

equation of state of 224 hard disks (15), they passed through what 

now believed to be the melting density of this system without finding
evidence for a phase transition. In their description of the first Monte

Carlo simulations of a system of 256 hard spheres, Rosenbluth &

Rosenbluth reported that the equation of state shows no sign of a phase

transition (26). But at. the same time they observed that the radial

distribution function changes from "solid-like" to "liquid-like"when the

volume of the system is expanded to about 1.5 times the regular close

packed volume, V0. [In fact, the best estimates of the volume of a

hard-sphere fluid at coexistence yield V/V o= 1.50 (27).] Evidence for

the existence of discontinuous solid-fluid transition came from the first

Molecular Dynamics simulation of hard-sphere system by Alder &
Wainwright (16) and an accompanying paper by Wood & Jacobson (28)

who performed extensive Monte Carlo calculations on the same system.

It was observed in both these calculations that for 1.5 < V/Vo < 1.6 the

hard-sphere system can be in either a "low-pressure" state or a "high-

pressure" state. The low-pressure and high-pressure points define sep-

arate branches of the equation of state, and jumps between the two
branches occur very infrequently and only in a limited density range.
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Both papers point out that on the high-pressure branch molecular

diffusion is relatively free, whereas in the low-pressure system the

spheres are confined by their neighbors. Yet, the words "solid" and
"fluid" are never used in either paper.

These early simulations illustrate some of the problems associated

with the determination of the melting point. In the small systems

studied in References (16,28) (N--32 and N= 108), two-phase coexis-
tence is apparently impossible because of the large amount of free

energy needed to form an interface. Although calculations of this sort

can be used to estimate a lower limit to the density of the stable solid

phase, they provide no direct information on the densities of the

coexisting liquid and solid phases. To observe coexisting phases one has

to study fairly large systems. Alder & Wainwright (29) observed two-

phase behavior in a system of 870 hard disks. In three dimensions, one

has to go to even larger systems to observe coexistence. For instance,

solid-fluid coexistence has recently been observed by Cape & Wood-

cock (30) in a system of 1920 soft-spheres [~(r)=e(a/r)~2]. Ladd &

Woodcock (31,32) even reported three-phase coexistence in a system 

1500 Lennard-Jones (LJ) atoms. Although direct observation of two-
phase coexistence may seem a straightforward method to study the

properties of the coexisting phases, there are some disadvantages at-

tached to it. In a macroscopic system, the P vs p isotherm is flat in the

coexistence region. For the system sizes studied in MD and MC

simulations, P is not constant in the coexistence region, but exhibits a

"van der Waals-like" loop (29). This loop is a consequence of the fact

that the free energy needed to form interfaces is non-negligible in a
small system [the relation between the shape of the loop and the

solid-fluid surface tension has been discussed in some detail by Mayer

& Wood (33)]. Alder & Wainwright determined the densities of the

coexisting phases from an equal area construction. To get acceptable

statistics on the pressure in the two-phase region, exceedingly long runs

(up to 107 collisions/run) are required because the dynamics in the

two-phase region is quite sluggish. Woodcock and co-workers de-

termined the density of the coexisting phases directly by studying parts

of the solid and liquid phases not too dose to the interface. The latter

method, although more economical because only one state is studied,
requires careful preparation of a stable, equilibrated two-phase system

as the differences between an insufficiently equilibrated sample (31) and

a well-equilibrated one (32) are quite substantial. Woodcock et al give
no estimate of the effect of the solid-fluid interface on the total pressure.

The Alder-Wainwright method, although straightforward, is prohibi-

tively expensive.
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For these reasons many of the computer studies of melting have

concentrated on methods to determine the solid-fluid coexistence curve

from properties of the homogeneous phases only. Here we should dis-

tinguish between rigorous and approximate melting criteria. The rigor-

ous thermodynamic criterion for solid-fluid coexistence is that the

chemical potential of the two phases at equal temperature and pressure

be the same. The well-known double tangent construction to the free

energies of the coexisting phases is the graphical expression of this

condition. Unfortunately neither the MC nor the MD method directly

determine the free energy [to be precise, the (/~, V, T) Monte Carlo

method does, but is impractical at the relevant densities (19)]. 
determine the free energy of the solid and fluid phase near the melting

curve one has to start from a reference state for which the free energy is

known exactly (e.g. the ideal gas) and then compute the difference

between the free energy of the dense fluid (solid) and the reference state

(for instance, by integrating (3A/SV)r= -P along an isotherm). Two,

rather similar, methods have been developed to calculate the free energy

of both solid and fluid phases. One method originally introduced by

Hoover, Gray & Johnson (34) to determine the melting properties 

systems with inverse power interactions [~(r)=e(o/r) ~, with n =4, 6,

and 9] uses the ideal gas as the reference state for the fluid and the

dense, harmonic solid as the reference state for the solid. Of course,
determining the free energy of the (classical) harmonic solid is nontrivial

because it involves finding the complete phonon density of states. An

alternative method that can also be applied in cases where the dense

solid is not harmonic (e.g. a hard-sphere system) was developed some-

what earlier by Hoover & Ree (35). In this method the reference state

for the fluid is also the ideal gas. But the free energy of the solid is

determined by constructing a reversible path from the dilute gas to the

dense solid. This is accomplished using an artificial single-occupancy

solid. In such a solid the entire volume is divided up into Wigner-Seitz

cells corresponding to the lattice type of the solid. In the MC or MD

calculation each particle is constrained to stay within its cell. In the

dense solid these constraints have no noticeable effect on the thermody-

namic properties because the particles are localized by their neighbors

and collisions with cell walls are very unlikely. This single-occupancy

solid is slowly expanded from solid densities to dilute gas densities. Due

to the presence of the cell walls, melting, in the conventional sense of

the word, does not take place. Hoover & Ree noted that the equation of

state of the single-occupancy solid shows a cusp at the density where the

localization of the molecules becomes dominated by the cell walls [to be
precise, this cusp is well defined in 3-D, but somewhat fuzzy in 2-D
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(27, 36)]. The advantage of the Hoover & Ree method is that it is simple

and applicable to any system that forms an ordered solid at sufficiently

high densities. Hoover et al (37) compared the lattice dynamics method

and the single-occupancy cell technique for a system of "soft-spheres"
[qffr)=e(o/r) 12] and found good agreement. Nevertheless caution is

required when using the single-occupancy model for the following

reasons:

1. It is not obvious that the equation of state of the single-occupancy

solid is necessarily free of discontinuities [see, for instance, the MC

calculations by Ogura et al (38)].

2. The single-occupancy model is not a valid description of the solid

phase if lattice defects contribute appreciably to the thermodynamic

properties (this may happen close to the melting transitioff).

3. Because of the lack of long-range translational order in infinite 2-D
solids at finite temperatures (39), the single-occupancy model may

be less appropriate in two dimensions.

An important problem is the N dependence of the location of the

melting curve. Hoover & Alder (40) observed that the melting pressure

in a system of 870 hard disks was some 10% higher than in a system of
72 disks [see also the (N, P, T) MC calculations by Wood (41; see also

17)]. Hoover & Alder argued that the main N dependence of the

transition is due to the N dependence of the communal entropy of the

fluid phase (even though the communal entropy is not the most im-
portant contribution to the entropy of fusion). The leading N dependent

term in the communal entropy is -1/21n(2~rN)/N. This expression

predicts an N dependence of the hard-disk melting point that agrees

closely with the MD data of Reference (40). This In N/N dependence is

probably quite general because the free energy of a harmonic solid also

has a leading N dependence of order In N/N (37). Finally it should 

emphasized that methods like the ones mentioned above are dangerous

to use if it is not obvious that the melting transition is first order. As the
method sets out to determine the separate free energy branches for the

solid and fluid phases, slight inaccuracies in the results may lead one to

interpret a higher order transition as being weakly first order. This

problem seems to be particularly serious for the 2-D one-component

plasma (42).

The above discussion clearly indicates that all "rigorous" methods to

determine melting curves are quite time consuming, requiring either

lengthy runs on large, two-phase systems or runs on a large number of

thermodynamic states of the (artificial) one-phase systems. For this
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reason there have been a number of attempts to correlate melting to a

directly observable property of either the solid or the fluid phase.

The best known criterion of this nature is Lindemann’s melting law

(43). This law states that along the melting curve the rms displacement

of a molecule from its lattice site is a fixed fraction of the lattice

spacing. This criterion has been tested in a number of computer

simulations (34,36,42,44-46). In general it is found that, for a given

substance, the fraction f--- ((Ar)2/d 2 )1/2 is fairly constant along the

melting curve (for inverse power potentials, rigorously constant), but for
different model systems f may be quite different [e.g. f~0.136 for hard

spheres (45) and f~0.176 for the classical one-component plasma (46)].

In two dimensions the Lindeman criterion is, strictly speaking, not
applicable because ((Ar)2) is expected to diverge as In N. This 

dependence has indeed been verified (42,45) but, for a given system

size, f is found to be reasonably constant (36) and, suprisingly, even for

rather different systems [hard disk (45), f~0.17; 2-D LJ (36), f~,-~0.15;

2-D classical one-component plasma (42), f=0.176; all evaluated for
N= 256]. Another melting criterion that focuses on the properties of the

solid phase at melting has been formulated by Ross (47). Ross’ melting

rule states that, at melting, the excess free energy Aex is constant. Ae,, is

defined as

dex = A
In + 1 NkT

NkT NkT

where A is the total free energy of the solid and Vo is the potential
energy of the solid if all molecules are localized at the lattice sites. Ross’

criterion presupposes knowledge of the free energy of the solid as a
function of p and T and is therefore not exactly a simple rule of thumb.

Where it has been tested it appears to be somewhat superior to Linde-

¯ mann’s rule. Hoover, Gray &/ Johnson (34) find that for systems 

inverse power potentials (n--4, 6, 9, 12 and oo), A , is very close to 6NkT

(the extreme value is 6.3 NkT for n = 4). In contrast to Lindemann’s rule,

Ross’ criterion can be used in 2-D; for hard disks Aex = 3.9NkT (27), for
two-dimensional Lennard-Jones molecules Aex,~3.7NkT (36).

A freezing criterion based on the properties of the dense fluid has

been formulated by Hansen & Verlet (48) and investigated in some

detail by Hansen & Schiff (49). The rule states that, along the melting

curve, the value of the first maximum of the structure factor is constant
and approximately equal to the first maximum of the structure factor of

a hard-sphere fluid at the freezing density. This rule is based on the

same observation that provides the starting point for the successful

perturbation theories of dense simple liquids (50, 51) and the Longuet-

www.annualreviews.org/aronline
Annual Reviews



FREEZING AND SUPERCOOLED LIQUIDS 501

Higgins-Widom theory of freezing (52), namely that the structure of the

dense fluid is dominated by the steep repulsive interactions between
molecules. In fact, as has first been shown by Verlet (53), an appropriate

choice of the equivalent hard-sphere radius can make the structure

factor of a hard-sphere fluid almost indistinguishable from that of a
dense Lennard-Jones fluid, in particular close to its first maximum. At

freezing, the first peak in the structure factor of a hard-sphere fluid is

S(ko)=2.85 (49). Hansen & Verlet (48) observed that, for a Lennard- 

Jones system, the criterion S(ko) = 2.85 predicts the correct shape of the
melting curve over a wide range of pressures. Later work by Hansen &

Schiff indicates that for widely different inverse power potentials (q~=
e(o/r) n, n= 1,4,6,9, 12,oo) S(ko)at melting varies between 3.05 (n= 12)

and 2.57 (n=l). The Hansen-Verlet melting criterion has not been

adequately tested in 2-D. Gannet al (42) have studied the structure
factor of the classical 2-D one-component phases. They could not
obtain a good estimate of S(ko) at melting but suggest that it is

certainly larger than the 3-D hard-sphere value of 2.85. (Curiously

enough, the 2-D hard-disk value has, to our knowledge, not been
published.) Hockney & Brown (54) obtain very different estimates 

the structure factor of the 2-D one-component plasma (OCP) (and, 

fact, for all other properties) but their plots of S(k) suggest that a

nonconventional definition of the structure factor was used. Systematic

tests of the 2-D equivalent of the Hansen-Verlet rule would be interest-

ing because liquid state perturbation theories are not nearly as success-

ful in 2-D as they are in 3-D (55). Raveche, Mountain & Streett (56)

observed that for an LJ fluid near freezing, the ratio

R=g( r,~,n)/g( r,~a~,)~0.2

where r,~in is the position of the first (nonzero) minimum of the pair

distribution function and r,~ax the position of its first maximum. Raveche

et al quote experimental evidence indicating that for some real simple

liquids this criterion is valid to within _+ 10%. The data of Hansen &

Schiff for inverse power potentials indicate that R varies from 0.10 for

hard spheres (n = o~) to R=0.26 for the classical OCP (n= 
Two heuristic melting criteria have been proposed specifically for the

purpose of quickly and economically locating melting points in machine

calculations. The first criterion, due to Ross & Alder (44), states that the
highest density at which an over-expanded solid can melt during a
typical Monte Carlo simulation coincides with the fluid density at

coexistence. A similar rule has been formulated by Streett, Raveche &

Mountain (57). This rule also attributes special significance to the
instability point of the overexpanded solid. It suggests that the fluid and
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solid branches of P vs V may be joined by drawing a vertical line at the

density of instability. The densities of the coexisting phases are than

determined by an equal area construction on the resulting "van der

Waals loop." For an LJ system the melting density thus obtained is

some 4% lower than the value derived by Hansen & Verlet from a

double-tangent construction on the free energy; the melting pressures

even differ by some 30%. The method of Streett et al has been criticized

by Hansen & Pollock (58). If melting is not a first-order transition none

of the above melting criteria are applicable. In such cases it is advanta-

geous to monitor directly the mechanical and transport properties of the

two phases because, :in contrast to the first-order case, metastability

cannot occur. It should be noted, however, that close to a higher order

transition the structural relaxation becomes very sluggish and apparent

hysteresis may result if the transition region is traversed too fast. Of
course, one does not always know whether a transition will be higher

order or weakly first-order but, as long as hysteresis effects are small,

monitoring mechanical and transport properties is a sensitive way of

detecting phase transition in either ease. Such properties are for instance

the shear modulus of the system (59), the shear viscosity (60), 
self-diffusion constant (59), and the order-parameters indicative 

long-range translational and orientational order (60).

SPECIFIC EXAMPLES

For a number of simple model systems the melting curve has been
determined using one or more of the techniques described above. The

systems that have been studied most extensively are those with inverse

power potential interactions: v(r)= e(o/r) n. To this class belong both

the hard-sphere (disk) system (n--oo) and the classical one-component
plasma (n=l). Due to the scaling properties of the inverse power

potentials, the equation of state of these systems is a function of one

parameter only: (e/kT)O/noZ~p. It suffices therefore to determine one

melting point, because the coexistence curve follows the scaling relation

p~= constant ( kTv/eOn)D/n.

If several solid phases with different crystal structures are possible,

coexistence between the fluid and the most stable crystal phase defines

the melting curve. Hoover, Young & Grover (61) have investigated the
relative stability of FCC and BCC phases for inverse power potentials.

They find that for n>>6, BCC is the more stable solid at high tempera-

tures, whereas for n > 7 the BCC phase is unstable. The relative stability

of the different close-packed phases (e. g. FCC, HCP) at high tempera-

tures has not been investigated for most inverse power potentials with
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n > 7. In general it is assumed that FCC is the stable solid at melting.

For hard spheres (n = ~) there is some evidence that, at close-packing,

the entropy of the FCC solid is slightly higher than that of the HCP

solid (45). This difference is, however, extremely small (Srcc-St.tce~
0.002 Nk ), and for system sizes that are typically studied in machine

calculations IN=Q(103)] the entropy of hybrid FCC-HCP phase would

be higher than that of the pure phases.
The coexistence properties of a number of inverse power potential

systems have been collected in Table 1. Additional information on the

phase coexistence properties of inverse power potential spheres can be
found in the following References: (16, 17, 20, 27, 28, 35, 62- 64) for hard

spheres; (30, 34, 37, 38,49, 65, 66) for inverse power potentials; (46, 67, 

for 3-D one-component plasma; (17,27,29,35,41) for 2-D hard-disks;

(42,54,59) for 2-D one-component plasma; and (69) for 2-D inverse

power potentials.

The phase diagram of the 3-D Lennard-Jones system has been

studied extensively by several authors (31,32, 48, 57, 65). Hansen & Vedet

performed single-occupancy cell calculations for four different iso-

therms (48), while Ladd & Woodcock studied three-phase coexistence 

a large system (N= 1500) (31,32). Single-occupancy cell MD calcula-

tions on a 2-D Lennard-Jones fluid have been performed by Toxvaerd

(36) for 5 different temperatures. In the temperatures range studied 
Toxvaerd the melting transition appears to be first-order. Earlier MC

T~ble I Coexistence properties of a number of inverse power potential systems

3-D

(O,/po)(e/krm)3/n (#r/Oo)(e//O~,,)3tn e/~,okr,~ (~oo~=

n = oo 0.736 0.667 8.27 Ref. (27)
n ~ 12 0.844 0.813 16 Ref. (34, 37, 65)
n = 9 0.971 0.943 22 Ref. (34)
n=6 0.156 1.54 61 Ref. (34)

n = 4 3.94 3.92 426 Ref. (34)

2-D

(ps//paXe/kT)2/n (pF/po)(e/kT)2/n
P/pokTm (poo2ffi 2/V~)

n = oo 0.798 0.761 8.08 Ref. (27)

One component plasma

3-D F, nf(Ze)24’rrp/3)~/3/kTffi 155___ 10 (Ap/p~3.10 -’~) Ref. (46)

2-D Fm ~ (Ze)2(~rp)l/2/kT = 125 +-- 15 (Ap/p < 4 10-4) Ref. (42)
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calculations by Tsien & Valleau (70). also suggest first-order melting 

the 2-D LJ system. On the basis of their MD calculations Frenkel &

McTague (60) were unable to decide whether melting of the LJ system

(at somewhat lower temperatures) was first-order or higher order. How-

ever, the low coverage (tao2< 0.8) work of Hanson & McTague (71) 

show a broad continuous transition that sharpened near close-packed

coverage, perhaps becoming first-order there. Frenkel & McTague noted

that the melting behavior of the 2-D LJ system showed many of the

characteristics predicted by Halperin & Nelson and Young (72-74) for

higher order melting in two-dimensional systems. More recent calcula-

tions by van Swol, Woodcock & Cape (69), Abraham (75), and Toxvaerd

(76) appear to be more compatible with first-order melting behavior.

In the case of the 2-D one-component plasma there is stronger

evidence for higher order melting. Gannet al (42) locate the melting

point of the 2-D OCP by a double tangent construction on the free

energy curve derived from their MC results. These authors observe that

their results are compatible with a first-order melting transition but that

the free energy curves cross with a difference in slope of only 0.03%!

They are therefore unwilling to state an order for the phase transition.
Recent MD calculations by Morf (59) have focused on the temperature

dependence of the shear modulus in the 2-D OCP. Morf observes a

sharp drop in the shear modulus for

120<r< 140, (r=(2e)2(~rp)l/2/kT).

The temperature dependence of the shear modulus is in excellent

agreement with the predictions of the Halperin-Nelson theory; the

estimated melting point is F= 128 [cf 125_+ 15 in Reference (42)]. The

fact that theory and computer experiment agree so closely suggests

strongly that the melting transition of the 2-D OCP is higher order. In
this context it is interesting to note that the phase transition of the 3-D

OCP (46,47,68) is also exceedingly weak. The main reason to believe

that it is first-order is Landau’s theory of second-order phase transi-

tions; if the dense Coulomb fluid were anisotropic, a higher order

solid-fluid transition would also be possible in 3-D.

All the model systems discussed above exhibit simple melting be-

havior. Recently several papers have been published on computer

simulations of model systems that mimic the more complicated melting

behavior of certain real substances at high pressures, such as the melting

curve maximum of cesium [e.g. see Stishov (77)]. A very simple model
system to exhibit a melting curve maximum is the Gaussian core model

-r
2

(d#(r)=~oe ), first analyzed by Stillinger (78). At low densities, 
stable solid phase for the Gaussian core model is FCC, at higher
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densities (0">0.179) BCC is the more stable phase. At finite tempera-

tures such a system will melt at both very high and very low densities.

Molecular dynamics calculations on the Gaussian core model have been

performed by Stillinger & Weber (79). The MD calculations reveal 

drastic drop in the melting temperature as the density is increased from
19"= 0.4 to 19"= 1.0. The phase diagram of this system is, however, not yet

completely known.

Young & Alder (80) performed MD calculations on systems 

particles with a finite-step repulsive interaction if(r)--oo for

r<o, d~(r)=e(o<r<co), @(r)=0, r>co.

The MD calculations revealed melting curve maxima in two-dimensional

systems with c= 1.2 and c= 1.9. These model systems also exhibited

phase transition between solids of the same symmetry but of different
density. Depending on the value of c, these solid-solid coexistence

curves ended either in a critical point or in a solid-solid-liquid triple
point.

Ogura et al (38) have performed MC calculations on a quite realistic

3-D model for a system showing a melting curve maximum. In this

"two-species soft-core model," it is assumed that all particles can exist
in either a "ground-state" with energy (-e) or an "excited state" with

energy (+ e). The particles interact through the well-known r- ~2 poten-

tial, but the size of the excited particles (~re) is smaller than that of

particles in the ground state (o~). The general interaction between 

particles is of the form

Ogura et al choose ~e--0.8oa. The melting curve is located using the

single-occupancy cell method. The phase diagram shows an FCC to

FCC transition at low temperature. The solid-solid coexistence curve
presumably ends in a triple point. The melting curve of the less dense

solid exhibits a maximum. Neither of the models mentioned above

showed any evidence of a liquid-liquid phase transition. To conclude

this section on the thermodynamics of melting, we should devote a few
words to the most common experimental phenomenon, i.e. the melting

and freezing of molecular fluids. Surprisingly enough, very little work

seems to have been done in this direction. We are unaware of any
systematic studies of the melting properties of even the simplest molecu-

lar model fluids, not to mention systems forming plastic crystals [how-

ever, see Reference (78)]. It seems unlikely that this situation will persist

very long.
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THE KINETICS OF FREEZING AND MELTING

The thermodynamics of the sohd-fluid transition tells us httle about the

mechanism of this phase change. In fact, for a first-order transition,

there is nothing special about the properties of either the solid or the

fluid phase at coexistence (and, in a way, this is reflected in the

approximate nature of many of the melting criteria discussed in the

previous section). Experimentally, it is virtually impossible to follow the

actual breakup of a lattice or the nucleation of solid from a homoge-

neous liquid, because such processes typically occur on microscopic
time scales [~9(10-12 s]. This is, however, precisely the time domain that

can be conveniently studied in computer simulations. In this section we
review some of the Molecular Dynamics calculations that have been

done to study melting or homogeneous nucleation. Monte Carlo simula-

tions are of limited value for such studies because both melting and

freezing involve cooperative motions; in an MC calculation, the path of

a system through phase space in no way resembles the actual dynamical

trajectory. That this may indeed affect the melting properties of a
system is demonstrated in a paper by Briant & Burton (81) on the

solid-fluid transition in microclusters. These authors observe that, in an
MD simulation, solid microclusters have to be superheated before they

melt, suggesting a kinetic barrier to melting. MC calculations on the
same systems were found to show no such effect.

Although melting is a very common phenomenon in MD simulations

(after all, most simulations of fluids start out from an overexpanded

solid configuration), relatively few studies have focused on the melting

mechanism. Cotterill and co-workers have made an extensive study of

the role of dislocations in 2-D and 3-D melting [for a recent review see

(82) and references therein]. It was observed that, in a 2-D LJ system,

dislocation pairs proliferate spontaneously at the melting point. As the

(free) energy needed to form a dislocation is a function of the number

of dislocations already present, dislocation-mediated melting may be

expected to be a strongly cooperative phenomenon. This is indeed borne
out by the MD calculations of Cotterill and co-workers. These authors

have also tested some of the predictions of the dislocation-mediated

melting picture (83, 84). In this picture, the fluid phase is considered as 

"solid saturated with dislocations." Many of the equilibrium and trans-
port properties of fluids close to the melting curve can be explained, at

least to within an order of magnitude, using this picture. MD studies of

dislocation-mediated melting have thus far been limited to (2-D and
3-D) Lennard-Jones systems. Some studies were done to assess the

effect of system-size and periodic boundary conditions (83). In 2-D
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microcrystals with free boundaries it was found that dislocation pairs
formed predominantly in the solid-like core (83), but later studies 

3-D crystal slabs (82) showed preferential generation of dislocations 

the surface.

Surface melting in a 3-D LJ crystal has been studied by Broughton &

Woodcock (85). These authors observe melting of the (1,0,0) surface 

LJ crystals at temperatures well below the triple point--the top layer

melts at

T*~0.49; T*rR~eLE= 0.68 -- 0.02.

Premelting phenomena of a somewhat different nature have been

observed by Alder et al (86). These authors observed cooperative

diffusion in hard-disk and hard-sphere solids close to their melting

point. In these infrequent diffusion events, a small number of nearest
neighbors are shifted in a closed loop. Very close to melting the

displacements appear to become more complex.

In contrast to melting, nucleation is not a phenomenon that is readily
observed in computer simulations, at least in 3-D. In the early MD

calculations on the hard-sphere solid-fluid transition, Alder &

Wainwright observed occasional jumping back and forth between the
solid and the fluid branch of the HS equation of state. The fluid to solid

jump became exceedingly rare as the system size was increased, suggest-

ing that the observed phenomenon is closely related to the effect of the

periodic boundary conditions. The first example of solidification in a

fluid with free boundaries is the study by de Wette et al (87) on the

crystallization of a 2-D Lennard-Jones system. In this simulation, the

temperature of a random array of 400 LJ disks, initially at T* = 0, was
allowed to evolve freely (actually, a friction term was included in the

equation of motion to control the temperature). Crystallization occurred
readily. Initially several crystallites formed, which later on merged to

form an almost defect-free triangular lattice. Crystallization in 3-D

systems is much harder to achieve. Nucleation in a 3-D LJ system was

first observed accidentally by Rahman, Mandell & McTague (88) in the

course of an MD study of amorphous LJ systems. Studies of crystal

nucleation were later performed by the same authors (89,90) under

"experimental" conditions that favor crystal nucleation. Even so, it may

take many tens of thousands of time steps before a nucleation event

takes place. The actual nucleation process takes place rapidly--within
6~[~=(mo2/e)~/2]--although subsequent annealing may take a long

time. Several methods of monitoring nucleation were employed by

Mandell et al. It was found that the first sign of nucleation was a rapid

increase of the structure factor S(k) at values of k corresponding to
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reciprocal lattice vectors of the incipient solid. Some 5~" later-the

pressure would start to drop and the temperature would start to in-

crease. Analysis of the main Bragg peak of the resulting solid revealed
that an FCC phase had nucleated in systems of 108 particles, but BCC

phases had formed for N=256 and N= 500 (these BCC phases would

convert to FCC if the system temperature was quenched after the

crystallization had taken place). It should be stressed that FCC and not

BCC is the stable solid phase of the LJ fluid. Nucleation of a BCC

phase is, however, in accordance with Ostwald’s "step rule." In a recent

paper Alexander & McTague (91) have analyzed freezing in the frame-

work of the Landau theory. These authors reach the conclusion that,

close to the melting line, BCC-like fluctuations in the fluid are uniquely

favored on the basis of general symmetry arguments. The Landau

theory suggests that, for "weak" first-order transitions, BCC should be

the stable solid phase at coexistence and, even when other solid phases

are actually more stable, nucleation will occur preferentially into a

metastable BCC phase. It should be added that these arguments are

expected to be valid close to the coexistence curve; they need not apply

for strongly supercooled fluids. In the calculations of Mandell et al

nucleation typically occurred at T*~0.5T~*. It was found that the
"point of no return" for a nucleation event was some 1.4~ after the

onset of the fluctuation in the structure factor. The critical nucleus was

estimated to contain some 40-70 particles, although fairly long-range

structural ordering was observed in the fluid surrounding the nucleus.
Nucleation in a soft-core fluid has been observed by Tanemura et al

(92,93). A somewhat different method of analysis was employed 

these authors, namely the study of the nature of the Voronoi polyhedra

in the nucleated phase. One small (N=108), strongly supercooled

system was observed to form an FCC solid. For larger (N= 500), less

supercooled systems, only the BCC phase was found to nucleate. As in
the LJ case, BCC is not the stable solid phase of coexistence.

Stillinger & Weber (79) have studied the crystallization of a system 

particles with "Gaussian core" interaction, i.e.

~(r) =*0 exp(-- r2).

Nucleation of a BCC phase is observed upon slow cooling at a tempera-

ture some 30% below T,~. In contrast to the cases mentioned above,
BCC is the stable solid phase of the Gaussian core system at the

densities studied by Stillinger & Weber.

Nucleation of liquid "rubidium" (N= 500) has recently been studied

by Hsu & Raman (94). The stable solid phase of Rb at melting is BCC
and this phase was observed to nucleate with considerably greater ease
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than Lennard-Jones. The Voronoi polyhedron method was used to

analyze the nucleated phase. It should be mentioned that in these

calculations the fluid was rapidly supercooled to less than 0.2Tm and

thereupon allowed to evolve freely. The same method of cooling was

recently used by Hsu & Rahman in a study of the nucleation properties

of fluids of 500 particles interacting through Lennard-Jones, truncated
Lennard-Jones, and truncated rubidium potentials (95). In all these

cases it was observed that an FCC solid was eventually formed. Hsu &

Rahman noticed that the full-potential systems tended to nucleate more

easily than the truncated-potential systems. To compare directly with

the results of Mandell et al, Hsu & Rahman also studied an LJ fluid at
about the same density and degree of supercooling as were used in

Reference (90). In this case Hsu & Rahman found that the nucleated
solid has an imperfect FCC structure. It is not obvious at this stage

whether the discrepancy between the results of Reference (90,95) are
due to different methods of analysis or that indeed different phases were

found to nucleate.

All in all there is still alot to be learned about the different factors

that influence nucleation. Clearly the intermolecular potential favors

certain nucleation routes over others, but little is known about the effect

of the rate of cooling or of the degree of supercooling on nucleation.
Virtually nothing is known about homogeneous nucleation in molecular

fluids or about inhomogeneous nucleation in any system.

METASTABLE FLUIDS AND AMORPHOUS

SOLIDS

For most 3-D systems discussed in the last section, an appreciable

degree of supercooling is required in order for nucleation to occur on
the time scale of an MD simulation. In fact, for moderately supercooled

fluids nucleation is the exception and metastability is the rule. As the

temperature is decreased [or the density is increased (96)] the rate 

nucleation will initially increase because the concentration of critical

nuclei increases, while the size of the critical nucleus decreases. As the

temperature is decreased further, the rate of nucleation will eventually

decrease sharply, because at low temperatures it becomes increasingly

difficult to cross the nucleation barrier. [For a discussion of the temper-

ature dependence of the nucleation rate in a Lermard-Jones system, see
(84).] A study of the properties of supercooled fluids is only meaningful

if the time it takes to achieve metastable equilibrium is short compared

to typical nucleation times. The extent (or even existence) of the

metastable branch depends on the nature of the intermolecular forces
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and the dimensionality of the system. If nucleation is nowhere a serious

competitor of structural relaxation (e.g. in the overcompressed hard-

sphere fluid) one may reach a point where the dynamical properties of

the system appear more solid-like than fluid-like on the time scale of a

typical computer simulation. This region is commonly referred to as the

"glass-transition" region, although it remains to be specified what the
nature of the transition or, for that matter, of the "glass phase" is.

In this section we first discuss amorphous solids from a structural

point of view, based on the concept of random dense packing (RDP).

Subsequently we review studies that focus on the glass transition, or, to

be more precise, on the question: What features distinguish the metasta-

ble fluid phase from the amorphous solid? We want to emphasize that

the nature of the glass transition is at present not well understood.

Available simulation data often have been interpreted very differently

by different authors. We realize that under these circumstances even the

way in which we organize the presentation of the relevant material

reflects a personal bias that is not necessarily shared by the authors of

the papers we quote.

As we mentioned in the introduction, mechanical simulation of
many-body systems predates numerical simulation. Yet the most exten-

sive investigation of a mechanical model was undertaken at a time when

machine calculations had already made their debut. Bernal and co-

workers (1-7) and subsequently Scott and co-workers (8-12) studied

large assemblies of randomly packed ball bearings as a model for a

hard-sphere fluid. Although Bernal considered these random close-

packed assemblies as models for a liquid, they probably bear a closer

resemblance to the amorphous solid phase. The most remarkable aspect

of the ball bearing assemblies studied by Bernal and Scott is probably

the very existence of a well-defined density of random dense packing,

pRDe/l%=0.860. The local geometry that corresponds to the RDP state

has been analyzed by Bernal. It was found to be radically different from
that of the regular close-packed solid. The average number of particles

in contact with a given particle is ~6.4 (cf 12 for an FCC lattice). In the

RDP structure, the tetrahedron is by far the most commonly used

(~73%) of the elementary building blocks (the five "canonical" poly-
hedra). It should be noted that the packlng-fraction of a tetrahedron is

some 5% higher than that of a regular close-packed structure, but

structures of tetrahedra are not space filling.

Alternatively, the local geometry of an amorphous solid can be

characterized by means of Voronoi polyhedra. This method has been

used by Finney (13,97). Finney found that in random dense-packed

structures, distorted icosahedra were the most prevalent polyhedra. In
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this context it is interesting to note that Alexander & McTague (91)

observed that icosahedral structures are favored by the Landau theory

whenever the nucleation of a BCC solid is inhibited for some reason.

The fact that a random dense-packed state can be made in a repro-

ducible manner (by "shaking" and "compressing" a heap of randomly

poured ball bearings) suggests that this state may represent the ultimate

structure that can be reached by compressing a metastable hard-sphere

fluid. Although preparing an RDP structure of ball bearings is easy,

analyzing it can be exceedingly tedious. For this reason several algo-

rithms have been proposed to generate RDP structures numerically [this

subject has been reviewed by Finney (97) and, more recently, by Hoare

(25)]. The most straightforward (though not necessarily most economi-

cal) numerical method to generate an RDP structure is to slowly

compress a hard-sphere fluid in an MD simulation. This method has

been pursued by Woodcock (98). For a system of 500 hard spheres, his
calculations yield an estimate of 0*/00=0.8605+_0.003 for the maxi-

mum density of the amorphous branch. This value agrees within experi-

mental error with the best estimate of the RDP density of an assembly
of real spheres: P*nm, = 0.8597 ___ 0.004 (12, 13).

One obvious question is whether the hard-sphere RDP structure is in

any way typical for atomic glasses. The pair distribution function of the

hard-sphere RDP system shows a split second peak similar (but not

identical) to the ones observed experimentally in Ni-P alloys (99). 

has, however, been argued by Hoare (25) that the softness of the

intermolecular potential may introduce qualitatively new features in the

medium-range structure of glasses. Thus far we have been discussing

dense random packing in three-dimensional hard-sphere systems. Very

little is known about dense random packing in other systems. Stillinger

et al (14) estimated the density of random close-packing in a hard-disk

system, using a mechanical model. They obtained: pRoe~0.890o. It is,

however, not obvious whether this state is indeed well defined (unlike in
3-D, the densest local packing in 2-D is also the regular packing). We
are not aware of any mechanical simulations of random dense packing

for nonspherical molecules. Anyone who has ever observed a heap of

needles or a bowl of potato chips will intuitively guess that, unlike the

packing fraction for regular close packing, the random close-packing
fraction will depend strongly on the anisotropy of the molecular shape.

Is the random dose-packing fraction a maximum for spheres? It seems

probable, but "experimental" data are lacking.

Before discussing computer simulations of metastable fluids and

amorphous solids we have to consider once more the possible effect of

system size, periodic boundary conditions, and finite length of the
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simulations. Not only may the system size affect the (metastable)

equilibrium properties of system under consideration, it may also change

the degree of metastability. For instance, Alder & Wainwright observed

that a system of 32 hard spheres can hop back and forth between the

solid and the metastable fluid branches, whereas for larger systems (e.g.

N= 500), transitions from the metastable fluid to the solid branch are
never observed. As has already been indicated in the previous section,

the smallness of a periodic system may not only influence the rate of

nucleation from a metastable fluid but even favor a nucleation route
that is not observed in. a larger system [e.g. FCC instead of BCC for

N= 108 soft-core (92,93) and LJ (89) systems]. It should also be noted

that metastable fluids may nucleate to form misaligned, defect-rich

crystals. For small systems the "equation of state" of such imperfect

crystals may differ appreciably from that of the equilibrium solid and

the imperfect crystal may be mistaken for a distinct phase. Alder &

Wainwright (63) analyzed the configuration of a 32-particle hard-sphere

system on the "extended fluid branch" and found that it was in fact a

misaligned HCP crystal.

The system size also affects the time scales for equilibration of the

metastable fluid. The metastable phase can only have well-defined

"equilibrium" properties if Lvuci~>>’r~ro.<<’rRu~v, where "r~vvci~ and ~’~Q are
the characteristic time scales for nucleation aiad equilibration, and ~’RVN

is the duration of a simulation. As the glass transition is approached, the

condition zEO<<rRtm breaks down and the system starts behaving non-
ergodically. We will come back to this point when we discuss the role of

time scales in the glass transition.

Numerous computer studies (both MC and MD) have been made 

the properties of metastable fluids and amorphous solids. Actually most

studies focused on either the metastable branch close to freezing or the

dense amorphous solid. The region in between has been somewhat

neglected (partly because the risk of nucleation is greatest in this

region). The equation of state of a metastable hard-sphere fluid has

been studied by Alder & Wainwright (63) (MD on 32 particles) 

Wood & Jacobson (28) (NVT-MC on 32 particles) and Wood 

(NPT-MC on 32 particles). MD calculations on a system of 500 hard

spheres in the metastable fluid phase were performed by Woodcock

(98, 100). There seem to be significant differences between the high
density equations of state determined by Woodcock and by Alder &

Wainwright (and Wood’s results are somewhat different from both the

others). This perhaps explains why Gordon, Gibbs & Fleming (101),
who analyzed the Alder-Wainwright data, reach conclusions concerning

the hard-sphere glass transition that are quite different from Woodcock’s.

Gordon et al observe that (p/pkT) -~ shows a break at a density
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0=0.806 Oo. The low density branch extrapolates to zero (=infinite
pressure) at 0=0.883 po, the high density branch goes to zero at

p--0.869 Oo. Gordon et al interpret p = 0.883 Oo as the density of random

close packing of a metastable fluid in equilibrium. The break in slope at

p = 0.806 Po is attributed to the fact that above this density the metasta-

ble fluid can no longer equilibrate during an MD run; i.e. this "transi-

tion" is considered to be purely kinetic in nature. Woodcock, however,

finds no evidence for such a break in the equation of state. Rather, he

suggests that there is change in slope of the excess heat-capacity

CP+[= (OP-~/OP-~)r for hard spheres] at a density 0=0.707 Po. Wood-
cock argues that this change of slope reflects a third-order thermody-

namic transition. The argument for the occurrence of a thermodynamic

transition of higher order is based on the hypothesis that the full virial

equation of state has its first singularity at Po and not at PRop [see

Woodcock (102) and Baram & Luban (103)]. If this is indeed the case,

then any deviations of the "experimental" equation of state of the
hard-sphere system from the full virial equation of state must be due to

a (higher order) thermodynamic transition. As this is, to our knowledge,
the only computer study that suggests a themodynamically well-defined

glass transition, the underlying hypotheses put forward by Woodcock

deserve to be studied carefully. These hypotheses are that (a) the full
virial equation of state does indeed diverge at 0o, (b) the empirical

equation of state proposed by Woodcock (102) is essentially identical 

the full virial equation, and (c) for to > 0.707 Po the hard-sphere system

can still reach metastable equilibrium during an MD run. (This last

point is not obvious, as Woodcock suggests that the fluidity (,/-~) and

self-diffusion constant (D) of the metastable fluid vanish around 
0.707 Oo)- The problem with the analysis by Gordon et al (101) seems 

be that it is based on results for a 32-particle system [which eventually

even crystallized (63)]. Such a system is too sensitive to periodic
boundary effects to be truly amorphous.

Several authors have studied the amorphous phase of continuous

potential systems, in particular the 3-D Lennard-Jones system

(88,96,104-110), the soft-core system (66, 111), and the Gaussian 

system (112). It should be noted that in all these systems crystal

nucleation has also been observed. Consequently, if such systems are

cooled or compressed too slowly, nucleation rather than vitrification

will take place. In fact, in the real world the noble gas liquids (of which
the LJ fluid is supposed to be a fair model) have never been observed to

vitrify. More realistic models of actual glass-forming substances, in

particular molten salts and silicates, have also been studied (108, 113-

115). In the present section we focus on the less realistic but simpler

systems because they exhibit most of the qualitative features of the
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computer glass transition, without the complicating features of an ionic

multicomponent system.

Most MD or MC studies on the amorphous state properties of the
simple potential systems mentioned above seek to give an answer to the

following questions:

1. What properties (structural, transport, or thermodynamical) dis-
tinguish the vitreous state from the metastable fluid?

2. Do the properties of the vitreous state depend on the way in which

it was prepared?

The metastable branch of the soft-core fluid has been studied by

Hiwatari et al (66, 111). It was observed that the diffusion constant 
the metastable soft-core fluid becomes unobservably small for densities

higher than p,~_,l.35(kT/e) 1/4 or, equivalently, T*=0.63T~. Moreover,

beyond this density Hiwatari et al found a marked system-size depen-

dence of the equation of state [see, however, Reference (92), which

discusses nucleation in these systems]. However, no evidence is found

for any dependence of the properties of the amorphous state on the

mode of preparation (cooling or compressing). The radial distribution
function gradually develops a split second peak for p> 1.3 (kT/e)1/4

(but some high density g(r)’s actually suggest that an FCC phase 

formed in the N = 108 system). Hiwatari et al initially identified p* -- 1.35

(kT/e) 1/4 as the glass transition density. However, subsequent analysis

(111), revealed that the diffusion constant at high densities fits well 

an equation of the form

D* -- C exp[ -A/( V* - V*o ) +f(V*)]

with

.57(p = 1.75(kT/e)l/4).

Hiwatari suggests that this latter density should be considered the "real"

#ass-transition density. In that case Tg/T,,~0.24 rather than 0.63! This
observation clearly illustrates that different criteria will yield different

glass-transition points. In the following discussion we distinguish be-

tween Tg, the glass-transition temperature, at which diffusion and
structural relaxation on the time scale of the experiment becomes frozen

in and To the extrapolated temperature at which ~, D-~ etc actually

diverge. The former temperature may be expected to depend on system

size and the duration of a simulation, the latter temperature should be

relatively insensitive to these factors, as long as the system is large

enough to have the essential properties of the amorphous state (whatever
these may be).
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Vitrification in a Lennard-Jones system has been studied by MC

(105,106,109,110) and MD (88,96,104,107) simulation. Raveche 

Streett (105, 106) performed extensive MC calculations on systems 

108 and 256 LJ molecules. The supercooled fluids initially showed
structural features typical for a cold amorphous phase [split second peak

in g(r)] but after several millions of moves many systems crystallized

into a distorted FCC phase. Some other systems did, however, relax to a

(meta) stable amorphous structure. The properties of the amorphous

phase were found to be reproducible to within 4%. Molecular Dynamics
calculations on a supercooled LJ fluid (N--500) were performed 

Rahman, Mandell & McTague (88, 104). The amorphous state was

prepared by rapidly quenching an initially liquid configuration at

0.95 to a temperature T* =0.108. Rahman et al note a clear splitting in
the second peak of g(r), but they observe that the appearance or

disappearance of this "signature" of the cold, amorphous state does not

coincide with the glass-transition temperature, i.e. the splitting disap-

pears on heating because it gets blurred by thermal motions, not

because of some underlying structural changes. In the amorphous solid

studied by Rahman et al diffusion was at least four orders of magnitude

smaller than in the liquid phase. The collective excitations (density

fluctuations and transverse current fluctuations) were found to exhibit
propagating phonon-like behavior, reminiscent of the collective excita-

tions in "cold" (T<<Ooenre) quantum liquids. Vitrification in the

amorphous LJ system took place at T*~0.5 (for p*=0.90). The glass-

transition temperature increased rapidly with increasing density; for

p*= 0.95 the glass transition appeared to be spread out over a tempera-

ture range 0.8 < T* < 0.9.
Hudson & Andersen (116) have investigated whether the vitrification

of the LJ system can be understood in terms of the transition observed

by Woodcock in the metastable hard-sphere fluid. Using the Weeks-
Chandler-Andersen prescription to calculate the density of the hard-

sphere reference fluid (51), corresponding to an LJ system at vitrifica-

tion (T*=0.5, p*=0.90), Hudson & Andersen obtain an estimate 

0*/#0=0.707 for the density of the equivalent hard-sphere fluid. This

estimate agrees well with the density at which Woodcock observed a

break in the excess heat capacity of the hard-sphere fluid.

NPT-MC calculations on the glass transition in a Lennard-Jones

system (N= 108) have been performed by Wendt & Abraham (109) 
Abraham (ll0). Amorphous solids were prepared by rapid cooling,

compression, and cooling and compression. Wendt & Abraham propose

a structural criterion for the glass transition in terms of the ratio
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R=g(rMm)/g(rMAx), similar in spirit to the freezing criterion of

Raveche, Mountain & Streett (56). It is argued that, independent of the

mode of preparation, R~0.14 at the glass transition. The density of the

hard-sphere reference system (determined using the WCA method),

corresponding to a Lennard-Jones fluid with R~0.14, is p*/po,~0.721.

This is in fair agreement with the results of Woodcock (98) and Hudson

& Andersen (116). In a subsequent paper (110) Abraham explores

further criteria for the glass transition. He argues that, irrespective of

the mode of preparation, the density and enthalpy of an (N= 108) 

system exhibit a change in slope at the same point where R does so. If

this point is interpreted as the glass transition, the density of the

corresponding hard-sphere reference system agrees well with the value

quoted by Woodcock. (Abraham notes, however, that, in general, R~

0.14 at this transition.) The pair distribution function of a strongly
supercooled LJ system (T*--0.1, P*= 1.0) is found to exhibit a small

shoulder, at r~ 1.45a [where a is the position of the first maximum of

g(r)]. Abraham considers the presence of this shoulder as evidence for 
distorted FCC-like structure of the Lennard-Jones glass. This observa-

tion runs counter to almost every current picture of the prevalent
geometries of amorphous close packing. Unfortunately, Abraham does

not discuss the possibility of partial crystallization of the system. In

view of the results of Raveche & Streett (105, 106) and of Hsu 
Rahman (95) nucleation would seem a serious possibility, particularly

for such a small (N= 108) system.

Support for the criterion g(rM~N)/g(r~t,~x)~O.14 at Tg comes from
MD calculations by Stillinger & Weber (112) on a Gaussian core model

(N= 432). This system was slowly cooled from the fluid phase down 

T* = 0 (at constant density p*= 1.0). The thermodynamic properties 

the resulting T* = 0 state did not appear to depend systematically on the

cooling rate. It was found that diffusion became negligible at a tempera-

ture Tg* ~0.28~. Particularly puzzling is the fact that a finite latent

heat appears to be associated with this transition. The pair distribution

seems to be quite insensitive to the transition; in particular no second
peak-splitting is observed. For a soft potential like the Gaussian core

this is, however, not surprising (25).

Recently the glass transition in a LJ system (N-216 and N= 864) has
been studied by Clarke (96). This paper focuses on the behavior 

experimetally observable quantities close to the glass transition. Several

different compression and cooling methods were employed for both
N = 216 and N= 864 systems. No significant dependence of the proper-

ties of the resulting amorphous solid on the preparation method was

found (although nucleation was found to occur rather easily in the

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


FREEZING AND SUPERCOOLED LIQUIDS 517

N= 216 system). Amorphous state points were studied along the P* ~0

isobar, A rather sharp drop in the expansivity a-- (0 In V) / (0T) 

observed around T*~0.29 (=0.41Ty). Below this temperature the
amorphous phase a is comparable to a of the crystalline solid. The heat

capacity C*~ also decreases sharply to crystalline values around p*=

0.98, T*~0.42T~. The self-diffusion constant becomes negligible around
this same temperature. For compression at constant temperature (T* 

0.7) the ’diffusion constant vanishes around p*,~l.06. By interpolation

one would expect that the glass-transition density for T* = 0.5 must be
between p*=0.98 and p*=l.06. This is in marked contrast to the

findings of Rahman et al (viz p* =0.90 at T~* =0.5) (88). Clarke makes
the interesting observation that the pressure dependence of the .glass

transition temperature obeys the (pseudo-Ehrenfest) relations for 

second order phase transition. It is found that the temperature depen-
dence of the diffusion constant fits well to the Fulcher law: D~

exp(-B/(T-To) ) with TO estimated to be ~0.22 (i.e. considerably

lower than Tffg ). In view of the rather large discrepancy between the
results of Clarke and those of Rahman et al it is hardly surprising that
Clarke finds that the state of the LJ fluid at the glass transition does not

correspond to a value of p*/po~0.707 in the hard-sphere reference
system. Clarke concludes that the hard-sphere system is not a realistic

reference system for amorphous close-packed phases of systems with

soft repulsive interactions.

In spite of the many contradictory results that have been obtained on

computer "glasses," several quite general remarks can be made. First of

all it appears that glassy states can be prepared with properties that do

not depend strongly on the method of preparation [although some

dependence of the HS glass properties on the rate of densification has

been observed by Woodcock (100)]. The system size apparently affects

the rate of structural relaxation in the metastable system (96) and

nucleation may be a serious problem in small systems (N< 108); but
otherwise no systematic system-size dependence of the thermodynamic

properties of the amorphous phase have been observed. The glass

transition is the point where transport on the time scale of the simula-

tion vanishes. It seems to be associated with a fairly abrupt change in

some of the higher derivatives of the thermodynamic properties of the

system. Of course the definition of the glass transition depends on the

time scale of the experiment and MD(MC) glass transitions may 

expected to occur at temperatures much higher (densities much lower)
than would be observed in hypothetical laboratory experiment on the

same systems. There is no evidence for any structural change at the

glass transition. This last point is important to note because it suggests
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that a clue to the nature of the glass phase may not be found by

comparing the properties of the amorphous phase on both sides of the

glass transition. Anderson (117) has suggested that an important clue

about the nature of the glass phase is contained in the universal

temperature dependence of transport properties in cold and supercooled

fluids:

D, r/- ~etc~exp [ - B/(T- O )].

In Anderson’s words: "The problem of the nature of the glass can be

argued to be identical with the question what To means." He notes that

the universal form of the T dependence of transport properties strongly

suggests a Kosterlitz-Thouless-like theory (118) where the transition 

mediated by some topological defects. The question then becomes:

What is the nature of the defects? A possible candidate suggested by

Anderson is a "dangling bond" in a random network. Chaudhari et al

(119) have recently investigated the stability of different defect types 
an amorphous (T* = 0) LJ system (N = 8000, free boundaries). They 

that edge dislocations are unstable [the same apparently holds for

vacancies (120)] but screw dislocations are stable defects in the
amorphous solid. It should be noted that the picture of a glass as a solid

saturated with dislocations that are trapped has been advocated and

analyzed in some detail by Cotterill and co-workers (84).

Let us conclude this section by pointing out some aspects of the

amorphous state that, in our view, deserve to be studied numerically.

First of all, a much more extensive study of the temperature and density

dependence of transport properties in supercooled fluids seems essen-

tial. Second it may be necessary to search for systems that are less

susceptible to nucleation (thus far, only the hard-sphere fluid appears

to be safe). This may involve studying simple mixtures and possibly

simple molecular fluids (but as noted before, nothing is known about

nucleation in molecular fluids). Finally, there are the still inadequately

understood anomalous properties of glasses at very low temperatures

e.g. (121). MD calculations can make a valuable contribution to the

understanding of the nature of low energy excitations in amorphous

solids.
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