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I. INTRODUCTION

The qualitative similarities between water and silica have long been appreci-
ated [1,2]. The molecular structure of both substances is dominated by tetrahedral
bonding arrangements under ambient pressure, in both the liquid and the solid
states. As a consequence, several of the low-pressure ice phases have isomorphic
analogs among the crystalline phases of silica (e.g., ice Ih and tridymite).

The similarities between water and silica also extend to the properties of
the liquid and amorphous solid forms. Water and silica are both members of a
small set of substances that exhibit a density maximum in the liquid phase [1,2].
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In addition, for both substances, when the amorphous solid formed at ambient
pressure is compressed, the material collapses to a higher density amorphous solid
over a relatively narrow range of pressure [3–5]. Such “polyamorphic” behavior of
the amorphous solid has been interpreted, in the case of water, as a subglass transi-
tion manifestation of an underlying thermodynamic instability in the supercooled
liquid, specifically, a liquid–liquid phase transition (LLPT) occurring without a
change in the chemical composition [6–8].

As a consequence of these similarities, silica was one of the first substances to
be examined for an LLPT after the initial proposal that such a phenomenon occurs
in supercooled water [9]. Because of the considerable challenges associated with
the determination of the equation of state of real molten silica over the required
range of pressure P and temperature T , computer simulations of silica-like models
have played a central role in addressing the question of whether an LLPT might
occur in this system.

Here, we review the findings of simulation studies of silica related to the phe-
nomena of polyamorphism and LLPTs. As we discuss below, these simulation
studies provide ample evidence that the thermodynamic and dynamical behavior
of liquid silica follow the pattern of anomalies that are well known in the case of
water. However, simulations have yet to provide unequivocal evidence for an LLPT
in silica. Hence, there remains important work to be carried out on this system.

II. SIMULATIONS: RIGID-ION MODELS OF SILICA

A large number of interaction potentials have been formulated for modeling silica
interactions in computer simulations. In this review, we will focus primarily on
results obtained using so-called ‘rigid-ion’ models, in which silicon and oxygen
atoms are modeled essentially as charged soft spheres. These interaction potentials
consist of a sum of Coulombic interactions and repulsive interactions of the Born–
Mayer–Huggins form [10]. The long-range nature of the Coulombic interactions
are typically treated using Ewald summation. The specific parametrizations of the
rigid-ion approach that we will discuss below are that of Wookcock, Angell, and
Cheeseman (WAC) [11] and van Beest, Kramer, and van Santen (BKS) [12].

The WAC and BKS potentials ignore the polarizability of the O and Si atoms.
These potentials also ignore the covalent nature of the bonding occurring in silica,
and thus lack, for example, any explicit three-body interactions such as bond-angle
bending terms. As a consequence, significant quantitative discrepancies occur be-
tween the behavior of these models and the real silica. However, the simple form
of these potentials has a practical advantage in that they facilitate the long simula-
tions required to model the supercooled liquid state, especially as T decreases and
relaxation times increase dramatically. These models also provide a stark contrast
to the models most commonly used to simulate water, in which O and H atoms
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are connected into rigid molecular units, with a nearly perfect tetrahedral angle
built into the shape of the molecule. The WAC and BKS models have no explicit
propensity for tetrahedral bonding built into the potential. The ability of these
models to form tetrahedral structures arises spontaneously from the combined in-
fluences of the relative charge, stoichiometry, and size of the O and Si ions. The
fact that rigid molecular models of water and rigid-ion models of silica can both
produce a common pattern of thermodynamic and dynamic behavior is a striking
demonstration of the robustness of the phenomena common to both systems, and
strongly suggests that the common origin of these phenomena is the occurrence
of tetrahedral structure, regardless of the details of how this structure arises.

III. AMORPHOUS SOLID BEHAVIOR

Figure 1 shows the characteristic behavior associated with polyamorphism of a
glassy substance. The experimental curve is taken from Ref. [3] and shows the
response of the density ρ of silica glass to increasing P at ambient T . In the vicinity
of 10 GPa, the density increases relatively quickly over a small range of P , while
at both lower and higher P , the compressibility of the material is significantly less.
Similar behavior is observed during experimental compression of amorphous ice,
and suggests the existence of two distinct forms of the amorphous solid, usually
termed simply as the “low-density” and “high-density” amorphous forms [5,13].

Figure 1 also shows the results of simulations of the WAC model of silica, in both
the liquid and the amorphous solid forms [9]. When the simulated amorphous solid
is compressed isothermally, the characteristic-inflected shape of the P-ρ isotherms
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Figure 1. Pressure-volume
isotherms for WAC and real
silica. Experimental data are
from Ref. [3]. The liquid data
are shifted upward by 8 GPa to
facilitate comparison with the
other curves. The protocol for
generating the simulated data is
described in Ref. [9]
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found in experiments on silica glass is qualitatively reproduced, demonstrating the
ability of simple rigid-ion models to generate the signature of polyamorphism.

Other simulation studies have aimed at uncovering the structural processes that
accompany the compression of silica glass. Experimentally, densification is re-
versible for a maximum compression of up to 9 GPa. For compressions beyond
12 GPa, decompression back to ambient P results in glass roughly 20% denser than
the original. The experiments of Grimsditch showed that the resulting high-density
glass is not only denser but also has a different structure from the low-density
form [4]. Using another rigid-ion model [14], Lacks suggested that a kinetically
hindered first-order amorphous–amorphous transition is responsible for the ex-
perimental observations, and that the experiments at higher T may allow direct
observation of the first-order transition [15]. Huang and Kieffer, in their detailed
structural analysis of a potential incorporating three-body terms and charge trans-
fer [16], found that reversible densification is accomplished by the twisting of Si–O
rings, similar to changes accompanying the �–� transition in cristobalite [17]. On
the other hand, they found that irreversible densification requires bond rearrange-
ments and is aided by compression at higher T ; the P required for the irreversible
change is lower for higher T [18].

IV. WATER-LIKE THERMODYNAMIC AND DYNAMIC ANOMALIES

Figure 1 also shows a P-ρ isotherm for the liquid phase of WAC silica. Notably, this
isotherm also exhibits an inflection, indicating the presence of a compressibility
maximum in the liquid state [19]. In simulations of supercooled liquid water,
the same thermodynamic feature occurs, and as T decreases, the compressibility
maximum in simulated water grows into a divergence at a critical point [20]. Below
the temperature of this critical point, two thermodynamically distinct liquid phases
of simulated water occur, each with a distinct density, reflecting the occurrence of
a first-order LLPT.

The thermodynamic behavior of both WAC and BKS silica have been examined
in the region of the compressibility maximum, and in both cases, the pattern of ther-
modynamic anomalies that occur have been found to be the same, and analogous
to those found in simulation studies of water. An example is shown in Figure 2,
that compares the equation of state features of ST2 water [7] with WAC silica [9]
in the P–T plane. In both cases, a retracing line of density maxima occurs above a
monotonic spinodal boundary. The qualitative similarity of these features, despite
the widely different T and P scales, is striking, and certainly suggests that a search
for an LLPT in these silica models, of the kind found in water simulations, is
justified. This is discussed in the next section.

With regard to dynamical properties, the behavior of silica and water models
has also been shown to be in correspondence. A useful concept for studying the
relationship between thermodynamics and dynamics, and testing the universality
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Figure 2. Equation of state features of (a) ST2 water and (b) WAC silica, projected into the P–T

plane. Density maxima (dashed lines) and liquid spinodal boundaries (dot-dashed lines) are shown.
Isochores of P as a function of T are shown as symbols joined by thin solid lines. Equally spaced
isochores are shown from bottom to top in (a) from ρ = 0.8 to 1.1 g/cm3, and in (b) from ρ = 1.8 to
2.4 g/cm3.

of such relations across liquids, is the potential energy landscape (PEL) formal-
ism [21]. At sufficient supercooling, a liquid system can be thought of as a point
hopping between local basins in a 3N-dimensional potential energy hypersurface.
Each basin is associated with a local minimum in potential energy, also termed an
inherent structure (IS). In Fig. 3a, the average IS energy eIS is plotted as a function
of T for three isochores spanning a wide density range in a slightly modified ver-
sion of BKS silica [22,23]. The shapes of the curves at the two highest densities are
typical of fragile liquids, with eIS ∼ T−1, behavior that has been shown to result
from a Gaussian density of states [24]. A further implication of a Gaussian dis-
tribution of IS energies is that the configurational entropy Sc, which is essentially
the logarithm of the number of ISs of a given energy, becomes a steeply falling
function of T and appears to approach zero at some finite T (Fig. 3b). Through the
Adam–Gibbs (AG) relationship [25]

D

T
= A exp

(
− B

TSc

)
, (1)

a rapidly decreasing Sc accounts for the super-Arrhenius dynamics of fragile
liquids, as observed for high-density silica (Fig. 3c and d).
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Figure 3. The potential energy landscape and its connection to dynamics. Shown are (a) inherent
structure energy eIS, (b) configurational entropy Sc, and (c) diffusivity D as functions of T for three
isochores at ρ = 3.90 g/cm3 (5.13 cm3/mol, triangles), ρ = 3.01 g/cm3 (6.65 cm3/mol, squares), and
ρ = 2.36 g/cm3 (8.50 cm3/mol, circles). In panel (c), Sc is given per, SiO2 unit. Panel (d) shows a test
of the Adam–Gibbs relationship. Molar quantities are per mole ions.

For the low-density isochore shown in Fig. 3, eIS exhibits an inflection, arising
from a departure from a Gaussian density of states as the liquid approaches a
low-energy cutoff [26] associated with a perfect random tetrahedral network. This
flattening of the energy produces an inflection in Sc(T ), which then presumably
approaches a finite value at T = 0. This slower variation of Sc with T in turn is
responsible for nearly Arrhenius dynamics at low T through Eq. (1). Thus, the
inflection in eIS , which is associated with a specific heat peak, is responsible for a
crossover in dynamics from super-Arrhenius at high T to Arrhenius at low T . In
so far as a locus of specific heat maxima emanates from a possible liquid–liquid
critical point located at lower T , it is thus reasonable to expect that the emergent
high- and low-density liquid phases associated with this critical point each exhibit
distinct dynamics and landscape properties.
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While Eq. (1) holds for both water [27] and silica, the density dependence
of the diffusivity also tracks that of Sc(ρ) for both liquids [23], though perhaps
more strikingly so for water. It would be interesting to compare the dynamics of
the two liquids in the tetrahedral regime at lowT and low density. For water [28], the
dynamics appear to be governed by energy excitations (i.e., bond breaking) above
an amorphous ground state, just as in the case of a simpler model network-former,
for which the determining nature of bond breaking on dynamics was carefully
studied [29,30].

While the above illustrates the similarity in the connections among thermo-
dynamic, structural, and dynamic quantities for silica and water, there are also
significant differences, as pointed out by Shell et al. [31]. For example, silica’s re-
gion in the density–temperature plane of anomalous diffusive behavior (diffusion
coefficient increasing with compression) encompasses the structurally anomalous
region (translational and tetrahedral order parameters decreasing with compres-
sion). The opposite is the case for water. Measures of structural order in silica do
not presage the onset of anomalous dynamics as they do for water. The authors of
Ref. [31] attribute this difference to the atomic, rather than molecular nature of the
potential for silica, and the inherent flexibility in local geometry it confers.

In addition, and despite the similarities in the pattern of thermodynamic and
dynamic anomalies displayed by both silica and water models, there remains a sig-
nificant question relating to the interpretation of the density maximum observed in
silica simulations. The density maximum found at ambient P in water simulations
is typically within 15% of the experimental value (277 K). However, the temper-
atures at which a density maximum is observed in silica simulations at ambient P

are much higher that the experimental value (1823 K) [1,2]. In the case of BKS
silica, the density maximum is approximately 3 times higher in T ; in WAC silica
it is nearly 5 times higher [19]. Furthermore, the high temperature of the density
maximum in simulated silica places it in a regime far above the melting lines for
the crystalline phases [32], where the tetrahedral structure of the liquid is highly
disrupted, and where the liquid-state dynamics are fragile in character [22,23]. On
the other hand, the experimentally observed density maximum in silica occurs in
a regime where tetrahedral structure of the liquid is well established, and where
the liquid dynamics are decidedly strong.

One explanation of this situation might be that the “water-like” density maxi-
mum of silica is not in fact the density maximum that is observed experimentally,
but is instead a thermodynamic feature that exists in the high T regime beyond the
range of previous experiments. However, such an explanation then implies that the
observed density maximum at 1823 K is a distinct feature associated with a well-
structured random tetrahedral network. There is precedence for such a possibility,
in the fact that a low-temperature density maximum occurs in both ice Ih and LDA
ice at approximately 50 K [33]. In addition, if there are two density maxima in
liquid silica, they must necessarily be separated by a density minimum. Again, the
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analogous behavior may be found in water, where a density minimum has been
reported both in simulations [34] and experiment [35]. Clearly, resolution of these
questions will require further investigation.

V. EVIDENCE FOR A LIQUID–LIQUID PHASE TRANSITION

While the thermodynamic and dynamical properties of silica and water models
are very similar across wide ranges of P and T , the evidence for an LLPT is
more highly developed in the case of water models. The evidence for an LLPT
is probably most convincing for the case of the ST2 model. The EOS of liquid
ST2 water has been extensively studied, and evidence of nonmonotonic isotherms
of P versus V , characteristic of behavior in a liquid–liquid coexistence region,
have been presented [28]. Most importantly, several evaluations of the free energy
surface of ST2 water have confirmed the existence of an LLPT [20,36], although
this has recently been challenged [37]. No such direct thermodynamic evidence for
a LLPT in silica models has yet been presented, mainly because the temperature
range in which a liquid–liquid critical point might be expected is below that which
can be reached in straightforward simulations, due to the rapid increase of the
relaxation time with decreasing T .

However, several indirect approaches have shown that an LLPT is plausible for
silica. For example, Ref. [19] presents an evaluation of the EOS of liquid silica
for both the WAC and the BKS models over a wide range of T and P , and then
exploits a physically plausible form for extrapolating the isochoric energy to lower
T , into the regime in which the liquid cannot be studied in equilibrium by direct
simulations. The results provide estimates for the location of the LLPT in WAC
and BKS silica that are consistent with the thermodynamic anomalies that occur
at higher T and provide a basis for searching for direct evidence of the LLPT in
future work.

Another analysis consistent with the occurrence of an LLPT is based on struc-
tural properties. Ref. [19] discusses the behavior of g5(r), defined as the contri-
bution to the usual Si–Si pair distribution function g(r) resulting from Si atoms
that are fifth nearest-neighbors (nn) of a given Si atom. In a tetrahedral liquid with
an LLPT, the low-density phase is expected to have a local structure in which the
fifth nn is excluded from the first coordination shell, while in the high density
phase, the fifth nn will be found at distances comparable to the first four nns. An
analogous definition for g5(r) in terms of the fifth nn O atom of a given Si atom
should show similar behavior. Plots of g5(r) evaluated for simulations conducted
at constant volume should display a bimodal shape when the system is undergoing
phase separation into regions of high- and low-density liquid. Such an analysis is
shown for the BKS model in Fig. 4 [38]. This plot shows that g5(r) does indeed
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Figure 4. (a) Distributions of distances between a Si atom and its fifth nn O atom at T = 3000 K.
Subpanels are labelled with molar volumes (cm3/mol). (b) Projection onto the V–T plane of the
coexistence lines for BKS silica separating the liquid (L), quartz (Q), coesite (C), and stishovite (S)
phases, obtained as described in Ref. [32]. Density maxima are given by filled circles, and maxima of
the isochoric specific heat by open squares. The star locates the position at which evidence for liquid–
liquid phase separation was reported in Ref. [19]. (c) A configuration taken from an unequilibrated
run at T = 2000 K and V = 6.72 cm3/mol [the star in (b)]. Shown are Si atoms, with dark shading
indicating a high-density environment where the fifth nn Si atom is within 0.355 nm, the location of
the minimum in the Si–Si g5(r) [19].

become bimodal in the density range that is predicted for the coexistence region
of the LLPT.

The above analysis of g5(r) is not conclusive evidence for an LLPT, because
local regions having different structures could form in an isotropic, homogeneous
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Figure 4. (Continued )

liquid phase without bulk phase separation. Whether or not these local regions
phase separate macroscopically depends on the existence of cooperativity in their
formation, and how this cooperativity grows as T decreases. A recent study of ST2
water in the vicinity of its LLPT showed that in this case the behavior of g5(r) is
consistent with the location of the LLPT in that model, and provides a practical
local order parameter for distinguishing the two liquid phases, and for interpreting
the behavior of the liquid above the T of the LLPT in terms of a modified regular
solution theory [39]. A similar analysis of the structure of BKS should yield an
estimate for the location of the LLPT that could then be searched for in future
simulations studies.

VI. OUTLOOK

As discussed above, the behavior of silica as found in simulations provides a ratio-
nal basis for anticipating the occurrence of an LLPT in this system, and estimates
of the location of the associated critical point have been reported for several silica
models. At the same time, the LLPT, if it exists, is located in a challenging regime
where the liquid-state relaxation time is large compared to the longest time scales
studied in current simulations, and so it may be some time until the question can be
addressed definitively. In the meantime, related silica-like systems, such as BeF2,
have significant potential for exploring these phenomena, as has been demon-
strated by Angell and coworkers [40] and Chakraborty and coworkers [41]. It also
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remains entirely possible that no LLPT occurs in silica (real or simulated) and that
this substance exhibits water-like thermodynamic anomalies but without any un-
derlying discontinuities in the thermodynamics of the deeply supercooled liquid.
This case would be a realization of the so-called singularity-free scenario [42] for
accounting for water-like anomalies. While not as dramatic as an LLPT, confirm-
ing singularity-free behavior in silica would do much to deepen our understanding
of the range of behavior possible in materials with tetrahedral structure.
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