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indices (now 1, 2, 3) or we may have 0, which is the code
for "stop" (see the l-line of Card 3).

The Turing machine operates on a potentially both~ways in-
finite tape, divided into squares, each of which contains a 0 or 1,
At any moment, one of these squares is scanned. and one of the
cards is "in control" in the sense that the instructions on that
card are to be executed, '

The figure below shows a situation where Card 3 is in con~
trolanda 0 is aca.nned (the,., at either end means that all squares
not shown contain 0'6 ). '

ce e JOJIJI]O0]1]0] "
3 .

Now let us start on an all-0 tape with its Card 1 the Turing
.r_nachine described above, We find that we receive the stop in-
struction after four ehifts; the final tape éituation is as follows:

T Jo[i[iJol -~
' 0

Next, consider another 3-card Turing machine given below,

hcd

CARD T CArD 2] [ CARD 3 |
0] 112 0]10 1 0110 2
110 3 111 2 1l110

' Sta_rt_ing this machine on an all-0 tape with its Card 1, we find
- that the stop inétfuc__tion is received after 13 shitta._ The' final
tape situation is |

°--[0T111L111];IIJOL~-"

As a last illuatrat:lon. conaider the 3ucard Turing machine
on the fouowing page.,
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_Starting this machige on an all-0 tape with its Card 1, we find after .

a while that the ma.cbino fails to reach the situation required for
stopping (see the l-line. of Card 1), Now the question is: will
this machine ever stop ? To get better insight, it is convenient to
use the following diagram for the ' operating record' of the Turing
machine,
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- This diagram is obtained by showing the successive tape situations
- individually; it is very suggestive in formulating conjectures about
 the behavior of a machine, Each row of the diagram shows the
tape only to the point. ( right and left) beyond which the tape con-
tains O's only, ‘The subscripts in the various squares show the

" index of the card in control, . The previous diagram shows the op-
erating record through the first twenty shifts,

Looking at the operating record, we note that the tape sit-
uations which are framed there show a certain similarity; and so
we surmise that the machine is in a "loop" and hence will never
stop. . We shall return to this point later on, For the moment, |
we merely observe that it may be difficult {or even impossible)
to determine by inspection whether or not & given machine will
ever stop, | |

As shown in the preceding discussion, the Turing machine,

CARD 1 CARD 2 | CARD 3
o111 2 | o110 1 5T 1 021
1{11 3 1112 1l110

(sta.rtéd on an all-0 tape with its Card 1) prints two ones on the
tape by the time it stops., On the other hand, the Turing machine

CARD 1 CARD 2 CARD 3
ol 11 2 o[ 10 1 o1 0 2
1|10 3 1{11 2 1110

prints out six 1's by the time it stops, The following problem
ariseé: consider, for a fixed positive integex; n, the class K,
of all the n~card binary Turing machines (with the card format
described above), Let M be a Turing machine in this class
K,. Start M, with its Card 1, on an all=0 tape, If M stops
after a while, then M is termed 2 "valid entry" in the BB-n
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contest (the n-card classification of the Busy Beaver logical game),
and its score ¢ (m) is the number of 1's remaining on the tape at
the time it stops, Since K, is a finite class {the number of n-card
binary Turing machines is easily seen to be [4(n + 1)]1%2, the
number of valid entries in the BB-n contest is also finite, Hence,
the scores of these valid entries constitute a non-empty finite set
of non-ueg’afive integers, and thus this set has a (unique) largest
element which we denote by  }'(n), to stress that this largest el-
ement depends upon the card-n\imber n, It is practically trivial
that this function ) (n) is not general recursive (see T, Rado

[2], [3]). Onthe other hand, it may be possible to determine
the value of 3 (n) for particular values of n, It has been con-
jectured that 2(3) = 6, The problem mentioned above is to decide
whether of not this conjecture is valid,

| " The solution of this quite spécial problem was attempted by
. several competent mathematicians and programmers, by means

of increasingly elaborate computer programs, The first definite

solution is contained in the present work, After some experiment-
ing, one will readily observe that the crux of the matter is, for

any card number n, the determination of the function SH(n) de-

fined as follows, Each valid entry M in the BB~n contest per=
forms a certain number s(M). of shifts by the time it stops; the
function SH(n) is the maximum of s(M) for all valid entries in

| the BBen contest. As shown in [2] s the function SH(n) is not
general recursive either,. However, .if for some particular value
of n the value of SH(n) can be deter;nined, then for the same value
of n the value of ) (n) can also be effectively determined. - Indeed,

‘we_merely run each n~card machirie (starting with Card 1 onan

ali-o tape) through ngt more than SH(n) ‘shifts; ‘we note the scores
of those that stop, an& the largest one of these scores is then Z(n). ‘
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On the basis of extensive computer experiments, it has been con-
jectured that SH(3) = 21; and a 3-card Turing frxachine that shifted
21 times by the time it stopped has been found, In the present
work, we verify that this conjectﬁre is also valid,

As observed in Chapter I, the main objective in the present
‘study of such very special issue is to throw light upon the contro-
versial issue of the " effective computébility" of individual welle
defined integers. It is our hope that this study will suggest further

work on this basic issue,



CHAPTER I
THE METHOD

The total number of 3-card Turing machines can easily be
seentobe [4(3 +1 )]® or about 17 million, We reduce this num-
ber by proper normalization (see next section for details) to
82,944 which is then divided into four lots. For each lot, our
‘computer program first geneiates the machines and stores their
conveniently coded descriptions in a table which we call the machine
table, Then the program finds and discards those machines that
stop in not more than tv)enty-one shifts and at the same time takes
note of their scores and shift numbers (when they stop). The
list of the machines that were not discafded is then scrambled up
in the machine table and the first fifty are printed out (the purpose
is to enable us to observe the behavior pattérna of the undecided
v maéh_ines) . Their operating records are then made up and each
is examined for some pattern of behavior indicating that the parti-
cular machine considered will never stop, From these, we obe
served a certain recurrence pattern (caﬂed below the partial re-
currence) which we programmed, As a matter of luck,. it turned
out that this simple recurrence pattern disposed of all but forty
of the machines; W-he.n.the opératihg records of the fbrt.y "hold=
outs ' were examined, it turned out that they all showed patterns
{to be discussed below) which enabled us to decide that all the -
forty "holdouts " were never-stoppers, We n’hy stress here a
_gertain point of interest,. Even though only forty "holdouts " were
le"f_t, it was not clear a j:riori that. they can be decided as to whether

10
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they are never=stoppers or not, for a gi\?en machine may exhibit
such a bizarre operating record or exhibit patterns that occur only
after a prohibitive number of shifts that no human being could be
expected to decide that it will never stop., It is also entirely con-
ceivable that we may have on our.hands‘ a2 machine which is undecid-
able for some logical reason, Luckily this did not happen in this
particular case,. In this manner it was established that those ma-
chines that stopped at all stopped in no more than twenty-one shifts,
Since the program showed us a stopper in twenty-one shifts, we con-
clude that SH(3) = 21 and the BB-3 problem was solved,

We now proceed to some details of our work,

The four lots ‘

The number of binary 3-card Turing machines is (see above)
(4. 4)® = 224 216,777,216, However, in searching for the actual
values of 2(3) and SH(3), it is sufficient to consider a subset of
these machines, obtained by the following considerations, First,
let us observe that all the 3-card machines are of the form

CARD 1 T GARD 2 CARD 3
1) 91P10%10%10] | 9|P20%20%20] | 9 |P30®3030
irntncy | HPartarca)| | 1| Paiaicay|

wh.ere pij =0orl, 835 =0 or .1, cij =0 or 1l or Z-Vor 3. Now
consider one of these machines; denote it by M. Suppose Mo'is
a valid BB-3 entry, with a score ¢ (Mo) and shift number s(Mo);
Let Mo'Il be the "mirror image" of My that is, the machine ob-
tained by replacing (in the cards for Mo“) each right shift by a left
shi_ft gnd each left shift by a right shift, Evidently, Mo* is again
a valid BB-3 entry, and ¢ (My*) = ¢ (Mg), 8(My*) = s(Mo); Ace
cordingly, we can restrict ourselves to consider those 3-card ma=
chines for which |
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{2) 810 1,

Next, we note that if Mo is a valid entry such that

(3) Pyy = Pyg = P39 = 0u: |

then clearly (M) = 0 and  s(M) S 3. Since we know that
Y(3) 2 6 and sn(s) 21,. such a machine can be disregarded in

searching for the actual rvaligp of 5(3) and SH(3). Accordingly, it

is sufficient to consider 3.-card machines for which at least one of

Pio* P2 P3g is equal‘ toone,. It is also clear that if such a mé.-

chine Mo is a valid BB=3 entry, then before M, stops, 3 oard Cj with
Pjp * | must have been used if the situation g (M,) =0, s(M) § |
'is to be avoided, Now let CZi be the card of M0 which is in control

when MO first overprints a 1; then Py = 1, letM 0' be the machine

obtained from MO by renumbering the cards of MO (and adjuqting the
call instructions qij )' so that the original card C, is re-named C 1
Clearly ¢(M,") = T (M), and s(M,) s s(My) + 2. After this
modification, we can assume that

@)y = 1. . | |
Next, if we have now ¢, . = 0, then clearly G‘(MO) =1, a(Mo) = 1;

= 0 can be disregarded, Since then

10
hence any machine with ¢

# 0, by renumberin;othe cards 2 and 3 of M, (and adjusting the
call numbers cu ), we can assume that
LB ey = 20
Finally, if now €9 = 0» then clearly T (M) g 2, s(M,) = 2.
Hence, the machines with €0 = 0 can be disregarded, In view of
(2) (4), (5) we can therefore assume that ‘
6 g =1, 851y ¢y =2, cp K0,
without changing the actual value of 2(3) . As regards SH(3), ;t is
clear from the preceding comments that on denoting by SH*{3) the
ma.:dmum of 8(M) for valid BB«3 entries normalized in the manner

shown in (6),  then SH{3) S SH*(3) + 2.
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Next, let MO be a valid BB-3 entry, Even though there may
be several " stop~lines " in the cards for Mo, clearly only one of
the several stop instructions will actually be used, Accordingly,
we can assume that exactly one of cn, €10 S3p¢ c31 is equal to
zero, Furthermore, the shift instruction in the unique stop-line
of M0 does not affect either q-,(Mo) or s(Mo) ; hence we can as~
sume that the stop-line orders a right shift, Finally, if we specify
that the stop-line should issue the " overprint by i" instruction,

then clearly we do not diminish g (Mo) . Herice, we can assume

+,  that the stop-line has the form 1 1 0, Now the unique stop-line

may occur in just four locations; nainely. as the 1-line of Card 1,
or as the l-line of C;rd 2, or the O-line or l-line of Card 3. It
follows that the machines that we have to investigate can be classi-

fied into four lots as fqllows:

1 CARD 2 CARD 3
Lot 1 112 P05%20 %0 P30530 %0
110 P21%2) 0 P31 %31 70
CARD 1. CARD 2. CARD 3
Lot 2 1 51 io Py 520 #0 ‘930230'.;8
P11 1 10 P31%3)
CARD 1. CARD 2 CARD 3
Lot 3 11 2 P2o%20 70 110
P15 #0 P2152) #O P3183; 70}
CARD 1 CARD 2 CARD 3
Lot 4 11 ;2‘0’ .‘on'“zo’zg P3g830 #0
: Py Py85 11 0

CARD
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A simple computation shows that the number of machines in
each one of these lots is equal to" 20, 736, Thus (as far as 2(3)
is concerned) it is sufficient to investigate the 4. 20,736 = 82,944
machines contained in the four lots. As regards SH(3), a little
more work is involved; we shall return: to this point later,
| In the next section, we proceed to outline the procedures we )
followed in treating these four lots, |
Description of the
computer program A
Each individual Turing machine is identified for the purpose
of the program as follows, Each line of the Turmg card is ched
into a four bit bmary word {(with the '"call" instruction occupying
two bits )." They are then packed in sequence from the O-line of
" Card 1, l-line of Card 1, to the 1-line of Card 3 into a single ma-
chine word, This enables us to identify each machine in terms of

a single word, For example, the machine

CARD 1 CARD 2 CARD 3
oj 112 0y 1 03 0} 111
11113 11110 11 0 0 2

is coded as

[Ti110]1111]1011]1100]J]1101]0010]

For convenience we also use the octal representation of this binary
number in referring to the Turing machine, Thus we identify the

above machine also by its " serial number" 73736322, Since the
number of machines in each lot is still too large to code by hand, we
generate‘these machines in our comiputer program by a generalized
co\mting process and store them in a machine table, Foi each ma-
chme in a fixed lot, we have two fixed lines, namely the 0-line of
Card 1, 112 {(coded 1110) and the stop-line 110 {coded 1100)
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which occupy the same bit positions in every Turing machine coded
in the lot, These are set up first in the storage locations assigned
for the machine table. Each of the four other lines can have twelve
possible cases, The program sets up these twelve cases of one line
in the corresponding bit locationé and "or's" them into the machine
table consecutively, repeating this procedure 1728 times, Then the
second line is set up, this time with each case repeated twelve times
and the whole configuration of 144 entries repéatedly orted into the
machine table 144 times, - The third line is set up with each case
;ﬁx;st répea.ted 144 times and the whole configuratioxi of l728_entrieé'
‘ repefa.ted.ly or'ed into the machine table twelve times, Finally, the
last line.ié‘ set up with each of the twélve passibilitieé repeated 1728
times and or'ed into the machine table, In this way all possible ma-
chines in a lot are obtained and their coded descriptions in the ma-
chine table are now ready for examination, _

- Previous work on the BB~-3 problem led to the conjecture

that SH(3) = 21, We therefore simulate the opefz}tion of each Turing
_ machine in the four lots through twenty-one shifts in our computer,
If a machine stops in less than or equal to tw‘ent&-one shifts, its
shift-number and score are noted in a table aﬂ& the machine is then
discarded, It is our hope that we can show later that all those ma-
chines that do not stop in less than or equal to twenty-one shifts
will never stop. Furthermore, descriptions of machines that score
six (or more) or shifted twenty or twenty?one times are printed
out, The statistics collected reveals the following: . in all four lots,
we 'h'ave 26,073 stoppers in less than or equal to twenty-one shifts
(6‘ut of a total of 82,944), five machines which scored six, one ma-
chine which shifted 'twenty-one times and two machines that shifted
twenty times ( see Flgures 1 and 2 for their descrxptions)

In order to reduce further the machme ta.ble size, we dxscard
all machines ixi Lot 1 wath , nQ 11g in the " ca.ll" posxtxons of Ca.rds 2
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10 05 ) 10, _ 1 0, 0y .

1 031 131 131 10, : 0,

131 1l 031'1 0,0 1 ’ 151 10,
0111 - 02111 051 01 0ol 1 11 03
11511 01111 11,01 051 11 1151
1 1-121 1 121 11 11 031 1 111 1 131 1l
1111, 111511 1111, 11141 . 0,011
; 11160, 11115 1111 03 1111, 1'051 1l
11110 03 11111, 111110 1111¢0 13111
1111 931 11111605 1111110, 1111160 031 111
111 151 1 1111151 11111 131 1111 131 0711111
1141111 111 131 1 11111501 111 121 1 11,1111
1111511 1111 1Y 11111041 1111141 111111

14 shifts 13 shifts 13 shifts 12 shifts 11 shifts
Cy Co 03 Cy Co C} Cy Co C3 Cy Co C3 Cy Co 03

112j013]103/|0f112(101102{|0f1 12103111} (0j112{103111l)j|0j]112|]l13|]101

[
| ol

11 10{112{101) 1103112110 1153110002 111]110J102]1f10 311 0{0 0 2

Figure:l. ~- Score champs and their operating records.
3

‘9T
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0
1 05 0y 0.
1ol 10 1 0o
13 13 10 03
01 0,1 1 051
11, 11, 151 1
10 03 1 0 0y 0,0 11
1 031 1 051 10511
131 1 13171 101z
0111 07111 10401
11311 11511 11051
10131 1013 1101y
10911 10711 110
11151 111, 11160,
1101y 1101y 11100
11051 1101 11103
11115 111 15 111511
111004 111004 11,011
111 0zl 11103 131011
11121311 111511 0311011
11;2112 11;111 11,1011
111511 11151 111001212
Cy Co C5 Cy Co C3 Cq 02 _03
112102103 112003103 112013103
110/013{101 120{013[101 1011{110/001
The 21 shifter 20 shifter 20 shifter

Figure 2. == High shifters and their operdting records.
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and 3, and all machines in lots 3 and 4 with no 3's in the "call"
positions of Cards 1 and 2, These are obvious never-stoppers
since the stdp-line’s can not be reached., In all four lots, 27,774
of these machines are discarded, |

| The next step in the mvest:lgatmn is to dxscard those never-
'stoppera which exhibit a recurrence pattern, The idea may be de-
scribed briefly as follows, Suppose we operate a given Turing ma-
chine M and ohserve that Card i scans a tape square 's,;, containing
the digit d after m shifts, Later, suppose the same Card i scans
a square Sp containing the same digit d after n shifts, If, relative
to the scanned squares Sy, and S, the tape conditions in bbth in-
: stances are identical, it is clear that the same pattern of operation
must repeat from then on and hence the Turing machine M is a
never -stopper, We call this a "total recurrence' (see Figure 3),
Further analysis reveals that we need not have to consider the total
tape conditic.ms,' in most cases, Suppose the aquare S, is to'the
right of the s.quarie Sm- and that, during the operation from m shifts
to n shifts, the leffmost square scanned is S, which is, say k
squares to the left of the square Sm. We call the square which is
k+1 squares to the left of Sm the ' left barrier" relative to Sy,
Similarly, the left barrier relative to Sp Will be the square which
is k + 1 squares to the left of the square S ., It is clear then that
if the tape conditions to the right of thé left barrier relative to S
after m shifts is identical to the tape condition to the right of the
left ba.riier relative to S, after n shifts, the same sequence of
’opera.tions must repeat and the Turing machine M will never stop.
We call this a partial iecurrenc_e pattern,

As an illustration, consider the Turing machine and its oper-

afing record in Figure 4, Card 2 scans a 1 after twelve shifts and

again a 1 after nineteen shiffs. during which the portion of the
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Turing machine

CARD 1
oj112 0
1110

0

Operafing record
1

2 4 . A
2 .

0
1
1
1
1
1
1
021
1

0
11
1
1

after 9 shifts

N

0
1
0
|
1
21
1
1
1
071

1

3
0,1
13
02
03
0;1
J‘ 11, .
11 ¢——— after 19 shifts
0,1 1 |
131
12

1
1
1

51
1
1
1

13
.02
03
011
11;
131 <—— after 29 shifts

Figure 3, -- Operating record of the Turing machine whose
serial number is 73075226 (octal) showing the total recurrence
pattern, '



Turing machine

0

CAR
1
111

D1
1 2 0
10

CAR
1l
110

o olb
w vy
o

Operating record

03
2

0
1
1
1
1
1
1
51
1
1
1 .=
l & ———— after 12 shifts
1
1l
12
3

2

0
10 '

1,1 €———— after 19 shifts
01 ‘

3
0'11
13

1 01

1
1
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
1
1
)
1
1
1
1
1110,

Pt et Pt et et ot e ot et P e Pl et bt Bt Bt et e b b b O
R . W [

Figure 4. -- Operating record of the Turing machine whose
serial number is 73121635 (octal) showmg the partial recurrence
with left barrier,

20
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tape to the‘right of the left bé.rrier. relative to S 1gr We see that the
same sequence of operations must repeat from nineteen to twenty-
éix shifts, and so on, progressiﬁg to the right. It is obvious there~
fore that this machine will never stop,

If S, is to the left of S;;,, we may consider a right barrier
similar to the left barrier described above, An illustration of

~ this case is given in Figure 5, '

If S, happens to be the same square as Sy,, We may use
both the right barrier and the left barrier, If the portion of the
tape Between the right and the left barriers after m shifts is iden~
tical to that after n shifts, then a recurrence must appear and the
machine will never stop.

. Next, we construct a computer routine to discard never-stop-
pers showing the recurrence patterns described above, For the
Turing tape we use a machine word of thirty-six bits with each bit
representing 2 square and the starting square at bit 18, We further
‘identify the squares on the tape by their !"deviation' from the start-
ing square; the starting square has deviation 0, the square to the
right of the starting square has deviation 1, the square to the left
of the starting square has deviation -1, and so on., Thus a square
with a deviation D is represented by the bit 18 + D, After each
shift, the tape condition T, herein represented by a single machine

‘word of thirty-six bits, is stored in an appropriate tape table TB;;
corresponding to the card index i called ard the digit j in the scanned
square, The shift~-number at that time and the deviatibﬁ 6£ the -
 gcanned square are also stored in the accompanying tables. Mean-
while the deviafi;)'ns of the scanﬁed square after each shift are fur-
ther stored in a.nother table (called the dev:atxon table), so tha.t the
maximum devzatxop Dyrax 3nd the minimum deviation DyanN ma.y |
be determined for a.ny portion of the operation of the Turing machine,
say between S; shifts and Sz shifts, This is to find out how far to
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CARD 3

— N
(= =]
- O

CARD 2

T

CARD

Turing machine
Operating record

o~ ;
0.“..11111111111111111111
-4

. 2011@;0000000000000000000
lnvl_h-ll.l...u.l.l.l.llWOOOOOOOOOOOOOOOO00
OllwowﬂllllllmJOOOOOAWaOOOOOOOOOOO
0111,111111100000011111111111
01111111111WJQW.OIIOQJOOOOOWGOOO
O rl rf el el rd 1t OO OO C Ot =

— 2] -t o
O rd g rd ot el S O OO OO

) [32] [y} (23]

O A rd et~ = O
—t o

O i sl el el e

Figure 5, .- Operating record of the Turing machine whose

serial number is 73136623 (octal) showing the partial recurrence

with right barrier,
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the right and to the left the scanning head has moved during this
portion of the operation (for use in findiix_g the right.and the left
barriers). Whenever an entry T is made into a tape table and
the tape table was prev:ously non-empty, tests are made for
recurrence as follows. If Tg is a previous entry in the table with -
agsociated sh1ft-number 8¢ and deviation Dy, and s is the shift-
number and D the deviation associated with the present entry T,

Dy and D are compared, K Dy < D, minimum deviation DN

is determined from the deviation table for the operation between

8¢ and s shifts. T, is shifted left 18 + DMIN bits and T shiftesl
left 18 + Dyyy + D = D bits and compared. If the resulting

logical words are eqﬁal, the Tur‘ing machine operated ‘on is dis=

- carded, Otherwise, T is tested égainst another previous entry

in the same tape table TB;.

ij
table TB;; are checked, If no recurrence pattern is found, the

until all previous entries in the tape
ij
Turing machine is given one more shift and the same procedure
goes on, Symmetrical procedures hold when Dy > D, I
Dg =D, both Dpgax and Dy py are determined and Tg and T are
compared from bits D + Dy to D + Dygay by the use of 2 mask,
A bound of fifty is égt for the shift-number with a check for
spill provided whenever the magnitude of the deviation exceeds
seventeen." This is to insure that the portion of the tape scanned
can be contained entirely in a single machine word; and the both-
ways infinite portions of the tape to the right ah& to the left of the
s(iuares refreeented by the thirty-six bit machine word which
~ have never been scanned can therefore be assumed to contain all
O's ixi all instances, If the machine does not show the recurrence
pattern after fifty shifts, it is retained in the machine table and
printed out later as a "holdout", | ‘ |

~ The results of this modest effort were quite unexpected. .
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In all four lots, only forty holdouts were left. That these forty
holdouts are all never-stoppers will be shown in the next section,
In Figure 6 below, we give the descriptions of these forty hold-

outs in terms of their octal ' serial numbers",

Figure 6, -~ The forty holdouts,

Lot 1 Lot 2 Lot 3 Lot 4
73037233 . 73676261 70537311 © 70513754
73137233 73736122 70636711 70612634

. 73137123 71536037 70726711 70712634
73136523 73336333 72737311 - - 72377034
73133271 71676261 71717312 72377234
73133251 73336133 72211715 72613234
73132742 73236333 72237311
73132542 73236133 72311715
73032532 72317716
73032632 72331715
73033132 72337311
73033271 72337315
73073271
73075221
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-CHAPTER IV
THE FORTY HOLDOUTS

As stated in Chapter 1Il, there remained forty Turiﬁg ma-
chines which the camputer program failed to eliminate, According
to our plan, these forty holdouts were checked by hand, and they |
\':vez'e all recognized to be never-stoppers by inspection of their
, o‘pera.ting records, The Figures 7, 8 and 9 show some typical cases,
To illustrate the methods used to show that they are never-stoppers,
we discuss in detail two additional cases below,

As our first case, we consider the holdout whose operating

record is shown in Figure 10. The cards of thzs machine are as

follows,
CARD 1 CARD 2 CARD 3
oj 11 2 0} 00 3 0]101
t{i110 1111 2 1|10 3

By inspecting its operating record (Figure 10), we observe that the
following tape situation appears repeatedly,

...;111![1 T[13[0]- -~

This leads to the question of what happens next when we have this
type of tape situation. A glance at Card 3 reveals that the string

of 118 is first extended to the left by o(ne.. Let us use the code name
XTNDL for this operation, After this, a left shift is made (code
name GOTOL), and control is transferred to Card 1. Card 1 orders
printing a 1 over 2 0 (MARK); there follows a sequence of shifts to
the right, after which control is transferred to Card 3 at the right

25
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serial number is 7313723_38.
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of the string ( FRE for find right énd of the string of 1's), This
verbal description becomes more intuitive by the use of the follow~

ing " flowchart', which indicated clearly that the machine has

N

E
E)

GOTOL

2

[

' entered into a loop without exit (the string merely gets longer and
longer to the left).

Now let us start this machine, with its Card 1, on an all-0
tape, After the second shift, the tape situation 13 arises where
the length of the string is one, From this point oh»thé s_equené.e <
of events is shown by the above: flowchart and it is clear that this
machine is a néver-stopper., |

As our second illustration, we consider the holdout with the

~ serial number 73033132g and the following card description.

CARD 1 CARD 2 ~CARD 3

oj112 cjo00 3 0ojo1l1
11110 1101 2 11102

To con:xe to a stop, this machine must get a tape situation where
Cardl1scansal, | J11] | . Now Cardlis called only if

Card 3 scans a 0; and in this case, to get the étop situation, 'We

—

should have a I to the right, 053] 1 « Now this situa-

tion cannot occur, Indeed, Card 3 is ca.l_led only if Card 2 scans
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a 0 and as the 0-line of Card 2 shows, it overprints the square by a 0
and shifts to the left, Hence Card 3 will always scan a square with
a 0 to the right, Th\is we see that the stop situation is never reached
by this machirie. _
Let us note that the approaches used in these two illustrations
involve important ideasi("ﬂowcha;rt" and "' back-tracking') of

general use in various fields,



CHAPTER V
SH(3) AND MISCELLANEOUS COMMENTS

As mentioned earlier, the resqlte of our efforts were quite
unexpected, Originally, 3-card Turmg machines showing the
induction patterns of the ""holdouts' were discovered and pro-
grams were devised to eliminate them, This approach proved
to be difficult and of little use, since only a few could be eliminated,

However, if one should attempt to settle the BB-4 or the BB-5
| problem, efficient programs to eliminate the Turing machines
showing these patterns must be devised since they will be neces-
sarily too numerous to check by hand, Also, new patterns must
show up for increasing card numbers, since we know that Z(n)
is non-éomputable [121.

Concerning the conjecture that SH(3) = 21, we note that

SH(3) S SH#%(3) + 2, where SH*(3) is the maximum of s(M) for
valid BB-3 entries M normalized in the manner discussed in Chap-
ter III. We find from our work that SH¥(3) = 21, so that SH(3) & 23,
However, if there is a valid BB-3 entry M with s(M) 2 22, then
‘upon renumbering the cards of M ( readjusting the calling iﬁdices
and considering a mirror image if neceséary); ‘we must have a.
normalized valid BB-3 entry M* in our four lots with either

(i) s(M*) = 21 and at least one of the entries Pyor Ppor equal

P30
to zero; or (ii) s(M¥%) = 20 and at least two of the entries P1o* P2o’
P3o equal to zero, An inspection of the print-outs for the 20 and
21 shifters shows that this does not happen ( Figure 2), and so

SH(3) = 21, -

32



33
A question was raised by some BB-n enthusiasts as to whether
2 maximum scorer in the BB-n game (é valid entry in the BB-n
classification with a score of ) (n)) must alwafs have an unbroken
string of ones in its output tape when it stops; the conjecture being |
that it must. An inspection of the print-outs for the five 6~scorers
shows that this need not be the casge (Figure 1), and this question

_is therefore also settled,



CHAPTER VI
CONC LUSION

Should one attempt to apply ti:e method described above to
the problem BB-1963, for exarhple, then difficulties of prohibitive
character are bound to arise. In the first place, the number of
cases becomes astronomical, and the storage and execution for
the computer programs involved will defeat any efforts to use
existing computers. Even if we assume that somehow we managed
. to squeeze through the Compufer the portion of our approach in-
volw}ing partial recurrence.pa.tterns, the number of '"holdouts "
may be expected to be enormous, Over and beyond such ‘'physical"
difficulties, there is the basic fact of the non-computability of

Z (n), which implies that no single finite computer program
exists that will furnish the value of Y.(n) for every n, Accord-
ingly, there seems to be at present no justiﬁcation for the assump-
tion that Z(n) is effectively calculable for each individual n,
Evidently, these comments suggests a number of questions re~
lating to the BB~-n problem which seem to be beyond the reach
of presently known methods., Thus it appears that clarification
of tite idea of a "given" non-negative integer fnéy be a fruitful

and certainly difficult enterprise, -
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CHAPTER 1
INTRODUC TION

The studies presented in this research originated with the
following observations relafing to general recursive functions (see
Kleene [l] for‘@ermimlogy). Let GRF be the class of general
~ recursive functions. By a basic theorem in Mathematical Logic,
every general recursive function can-be computed by a Turing ma- -
chine, Hence, if we denote by TC the class of functions compixtable
by Turing machine, then
(1) GRF C TC,

Next, it is easy to see that any given Turing machine can be sim-=~
ulated on any general-purpose computer, Hence, if we denote by
CC the class of ' computer~-computable " functions, then

(2) TC cCC, |

Actually, the classes GRF, TC, CC are identical; but for our
present purposes the partial results (1), (2) are. sufficient, As
regards (2), let us note thé'.t a Turing machine operates on a po-
tentially both-ways infinite tape, while an actual computer has only
limited 'fast storage". However, by going on tape if necessa.ry;
an actual computer has also potentially infinite sotrage, and this
fact enables us to state and prove (2).

In view of (1) and (2), every genasal recursive function is
programmable for any given gemsralepurpase computer; acbox'd-.
ingly, problems in Mathematical Logic reléﬂng to cbxﬁputability,
decidability and solvability are accesible to study by means of |
_ computers, Thus it appears that such problems can be formulated




and studied in an entirely concrete manner; namely, as problems
relating to computability by actual computers,

However, .cortain basic issues emaerge if the line of study
suggested by the preceding comments is pursued, Let us first
note that by function we mean in the present context any function
f of any finite number of variables such that the function and the
variables assume only values that are non-negative integefs. Con-
sider now a constant function of a single varjable x; let us denote
such a function by f (x), where q is the constant value of the

'function. By deﬁnition. £ (x} belongs (as a so-called initial
iunction) to the class GRF of genera.l recursive functions, and
hence it should be ¥ computer-computable ", Now. evidently, to
program the computation of £ (x), the constant value q must be
"given'" in a very concrete sense, since it is an input item for the
program, On the other hand, the majority of mathematxcal logi~
cians seem to feel that it is sufficient to know that q is uniquely
determined by some set of conditions, To make this point clefar,
let us consider an extreme illustration, proposed by some mathe;
“matical logicians. Let q be the truth=value of the Riemam hypo-
thesis on the roots of the zeta~function (thet is, q = 1 if the Rie=
mann hypothesis is true, and q = 0 if the Riemann hypothesis is
false ) Then q is uniquely determined; and the constant function
f (x) is also uniquely determined; and it is a member of the class
GRF (since it is a constant function), Hence, there exxsts a Tu-
ring machine M that computes the value of £ (x) for every x; in
particular, it computes q=1f (0). and thus it reveals to us whether
the Riemann hypothesis is true or false,

Mathematicians (as distinguished from mathematical iogi-

- cians) will probably view this method to settle the Riemann hypo-t

thesis with mixed feelings. It is also clear that the truth-value q
of the R.iemann hypothesis is not "given": (at present) in a manner



adequate for use as an input item in a computer program, Thus
there arises the issue of assigning to the term given non-nega=-
tive integer "' a precise meaning that coincides with "usabilify as
an input item in a computer program', In the course of a cor=-
respondence on this type of issues, Kleene stated, essentially,
that as ta.r.as he knows such a precise con'cept'is not a.\}ailable at
present. The purpose of this research is to contribute to the
clarification of the issue so raised by a detailed study of certain
very concrete problems rela.tmg to Turing’ machines, These o
problems arose in connectzon thh the Busy Beaver logical game
{see Rado [2] ) which we ‘shall briefly describe in the next chap-
ter., This quite primitive logical game led to problems which ,
defied the efforts of a number of experts who became interested
in 'it; This group of people ia referred to informally as the In-
ternational Busy Beaver Club; it includes éxpert mathematicians,
logicians, and skilled programmers, Fublished results are con-
tained in references [2]: and [3] . Inthis present work, we
shall discuss and solve the BB=«3 problem (the Busy Beaver lo-
.gical game in the 3-card classification), We hope that this ap-
parently very special is.sue“will help to elucidate the difficulties
involved in'assigning a precise mean.ihg to the intuitive concept

of a "given" non~negative integer,



CHAPTER II
TERMINOLOGY

We assume as background familiarity with the discussion of
Turing machines in Kleene {1] . We shall operate with binary
Turing machines with the alphabet 0, 1; In the way of illustra=
tion, consider the following Turing machine, |

1 CARD 2 C

CARD ARD 3
o111 2 01101 o110 2 |
111 3 1{11 2 1{110

Actually, a Turing machine 'is not 2 machine, but rather a program
( set of instructions’) é%elled out in a fixed format, as illustrated |
above, The instructions are specified on a finite number of "cards";
thus the above figure shows a 3-card Turing machine, The term
“card" geems to be preferable to the term " state " or " internal
configuration', since the idea of a Turing maclune is not depend-
ent upon physical computers, Let us also note that for reasons of -
convenience we deviate from Kleene by not permitting a ' center I'
shift", On each card, the left-most column contains the alphabet
0, 1, The next column to the right .qonta-ina the "overprint by"
instruction, The next column to the right contains the shift instruce
tion, where 0 is the code for left shift, 1 is the code for right -
shift, The right-most column shows the " call" instruction; it
shows the index of the card to which control is tra_nsie‘rred.

‘In the "call" positions, we may have any one of the card

4



