
Ronald Haentjens Dekker
Huygens Institute for the History of the Netherlands
Royal Netherlands Academy of Arts and Sciences

ronald.dekker@huygens.knaw.nl

Dirk van Hulle
University of Antwerp

dirk.vanhulle@ua.ac.be

Gregor Middell
Universität Würzburg
gregor@middell.net

Vincent Neyt
University of Antwerp

vincent.neyt@gmail.com

Joris van Zundert
Huygens Institute for the History of the Netherlands
Royal Netherlands Academy of Arts and Sciences

joris.van.zundert@huygens.knaw.nl

Computer supported collation of modern manuscripts:

CollateX and the Beckett Digital Manuscript Project

Interoperability is the key term within the framework of the European-funded research project Interedition,1

whose aim is ‘to encourage the creators of tools for textual scholarship to make their functionality available

to others, and to promote communication between scholars so that we can raise awareness of innovative

working methods.’ The tools developed by Interedition’s ‘Prototyping’ working group needed to be tested by

other research teams, which formulate strategic recommendations. To this purpose, the Centre for

Manuscript Genetics (University of Antwerp), the Huygens Institute for the History of the Netherlands (The

Hague) and the University of Würzburg have been working together within the framework of Interedition.

One of the concrete results of collaboration is the development and fine-tuning of the text collation tool

CollateX.2 In this paper we would like to investigate how the architecture of a digital archive containing

modern manuscripts can be designed in such a way that users can autonomously collate textual units of their

choice with the help of the collation tool CollateX and thus decide for themselves how this digital

architecture functions – as an archive, as a genetic dossier, or as an edition. The first part introduces CollateX

and its internal concepts and heuristics as a tool for digitally supported collation. How this tool can be

integrated in the infrastructure of an electronic edition is discussed in part two. The third and final part

examines the possibility of deploying CollateX for the collation of modern manuscripts by means of a test

1 http://www.interedition.eu/ [accessed February 7, 2013)]
2 CollateX is an open source Java collation engine, developed, maintained, and supported by an international open

source development community (OSDC) of developers active in the digital humanities community. Having
originated and finding a number of applications in several projects of the Huygens Institute for the History of the
Netherlands, the final coordination of development currently rests with this institute. However the code is in the
public domain: https://github.com/interedition/collatex [accessed February 7, 2013)]

case: the Beckett Digital Manuscript Project (www.beckettarchive.org).

1. Computer supported collation with CollateX

Following John Unsworth’s textual scholarship workflow typology of scholarly primitives (Unsworth, 2000),

it is clear that text comparison is pivotal to any kind of textual scholarship. The role of text comparison

becomes paramount in any scholarly editing project that involves critical enquiries about the edited text

witnessed in multiple versions. Conducting such a comparison of a text’s versions manually or – to use the

proper terminology of the field – ‘collating them’ classifies as tedious and error-prone work,3 especially as

the required attention to detail is highly demanding when measured against the repetitive and (sometimes)

mechanical nature of the task. From that perspective, this type of work seems an ideal candidate for

automation, not only because computers can support users in tedious, error-prone duties rather efficiently,

but specifically because the number of versions is often so large that it is simply not feasible anymore to

compare each witness against another manually.4

The application of computers or other apparatuses to support the collation of texts already has a

long-standing tradition in and of itself (Smith, 2000), reaching back at least to the usage of opto-mechanical

devices like those pioneered by Charlton Hinman. Since then, the semi-automatic collation of texts has been

a well-established area for the application of software, offering support in managing large text traditions, in

comparing predetermined passages of different versions as well as in storing and rendering the results. But it

continued to be the user’s duty to orchestrate the whole process and guide the computer in comparing

relevant passages by manually calibrating the complex input in order to make it fit rather basic comparison

algorithms.5 Recent advancements in the field of computational biology, a field closely related when viewed

from the mere computational perspective, resulted in renewed attempts to further the degree of automation

achieved thus far in the comparison of natural language texts.6 Protein sequences – not unlike texts in natural

language – can be modeled as sequences of symbols, whose differences can be understood as a set of well-

defined editing operations (Levenshtein, 1966), which transform one sequence into another and can be

computed. The analogy goes even further as the consecutive evaluation of assumed editing operations

between protein sequences on the one hand and texts on the other hand bears striking similarities as they

often provide the basis for further stemmatic analysis and genetic reasoning (Spencer and Howe, 2004). The

3 Cf. Shillingsburg, 2006, 110. Scholarly editors consistently overestimate their ability to produce error-free

apparatuses, as Dr. T.L. Andrews also showed by reverse-engineering a multiple witness apparatus of a classical
text. Due to ambiguity in the conventional apparatus system and errors in the optical collation process an original
witness cannot be reliably reconstructed from textual apparatus. (Presentation during Interedition Schooling
programme - Part II: Stemmatic, stylistic, linguistic analysis of collated text - Critical edition, representation,
publication. Leuven, September 7, 2012; Comparative Oriental Manuscript Studies – Oriental Textual Traditions
and 21st-Century Philology: New challenges. Katholieke Universiteit Leuven, September 5-7, 2012.)

4 For example the currently ongoing International Greek New Testament Project edits text passages witnessed by up
to a hundred manuscripts, at which point the comparison of the versions written on them, if indeed it would be
performed manually, could only be very selective, which would mean a major constraint for a project concerned
about the relationships between all the manuscripts.

5 Examples of such early software solutions, which despite their comparable lack of algorithmic complexity have their
undisputed merits as practical tools, are Robinson’s Collate or TUStep’s collation module, cf. Oakman, 1984..

6 Mapping this field and assessing its influence on computer-supported collation in a way that would do justice to its
relevance is beyond the scope of this article. For a very good overview and one such attempt (see Schmidt, 2009).

only subtle but crucial problem with this analogy is that, while biologists can afford to leave aside

methodological questions about the intentionality of assumed ‘editing operations’ on protein sequences,

philologists cannot always base their reasoning on computed differences between texts. The prime example

for this kind of difference is a transposition of two passages, which has been explicitly marked by the author

in the manuscript (for instance via arrows or a numbering scheme) and interpreted as such by the editor, but

the intentionality of which cannot be computed deterministically by collation software, even if the

transposition itself can be detected.

In addition to this dilemma there are numerous workflow-related challenges to surmount when

proper integration of collation software with a digital editing environment becomes a concern. It makes

computer-supported collation not only a computationally complex, but also an architecturally challenging

problem for software developers. As in the traditional trilogy of recensio, examinatio (including collatio) and

emendatio (see for instance Grafton, Most and Settis, 2010, p. 506) the collation of digital texts is again

central to the editorial workflow, with consecutive architectural dependencies on many adjacent building

blocks of the editing environment. The workflow may apply specific modeling and encoding of text versions

as well as possible automatic linguistic annotation like part of speech (POS) tagging to be able to compare

texts in a more expressive fashion than on plain character string level. This might be the case for instance

where lemmatization is applied. Also specific workflows might require the ability of a human interacting

with the collation result or process. Certain idiosyncrasies of witnesses and their texts for instance might

have to be modeled and/or encoded by human intervention where optical character recognition (OCR) does

not serve well – e.g. in the case of visual poetry. Or researchers may need to intervene in the process of

automatic linguistic annotation of textual versions to make them comparable in a more sensible way. For

instance in supervised learning methods, or in cases of languages that are poorly supported by the current

state of the art in natural language processing (NLP), such as medieval Dutch or neo-Latin. Or it may be

necessary to manually annotate the output of densely marked-up and interconnected text versions as a result

of their comparison yielding differences previously unnoticed. Many newer approaches to the problem of

collation offer interesting solutions to the computational challenge, but most of them do not fully address the

architectural challenges; nor do they approach the problem as one which can only be solved semi-

automatically given the methodological framework of its domain.

Consequently, existing solutions either remain within the realm of decision-support systems, which

mainly help scholars keep the overview while producing essentially hand-crafted collation results and

transforming them into a commented critical apparatus,7 or they automate the collation in a way that is

tailored to a specific use case and/or runtime environment. The general applicability of the latter approach

can then only be approximated via quantitative properties of its specific input and the accuracy of the

achieved results.8 In contrast, we would like to offer a third, rather pragmatic approach, in which we first

dissect the problem of collation into smaller, more manageable subproblems and then show by an example

how each of these subproblems can be addressed in a way that is more fitting to its application domain and

with a higher chance of applicability to the variety of requirements stipulated by the many different scholarly

environments in which the collation of texts and its adjacent scholarly tasks have to be performed.

7 Again Robinson’s Collate or TUStep’s modular approach are examples for this kind of collation software.
8 Schmidt’s Nmerge or Ganascia’s MEDITE are examples for such automated solutions.

Comparing existing solutions

Our example for this approach is CollateX, a prototypical collation tool, developed in the context of

Interedition. Shortly after the project started, it became clear that a proper requirements analysis for a

versatile collation tool would need input from a range of stakeholders as wide as possible, including users

and interested developers as well as implementers of existing solutions. A collation summit and a collation

workshop were held in Gothenburg and Brussels in 2009, co-organized by the European COST Action 32

‘Open Scholarly Communities on the Web’,9 which invited implementers of three collation tools – literary

scholars, digital humanists and developers of XML database software – to discuss conceptual commonalities

between their fields of expertise as they relate to the collation of texts. The immediate result was the

agreement on a modularization of the digital collation process into a couple of well-defined steps, which – if

applied in order and/or iteratively – allows the collation of texts to be supported more flexibly by

implementations adhering to this separation of concerns.10

Fig. 1: Schematic representation of the tokenization (left), alignment (middle), and analysis (right) phases of a collation

workflow.

The basic steps that were defined are 1) the tokenization of digital texts to be compared, 2) the alignment of

tokens from different texts which essentially identifies where the texts match and where they differ, implying

or assuming edit operations in those places, 3) the analysis of a computed alignment introducing the

interpretative aspect into the process and 4) the output/visualization of collation results. This workflow has

since become informally known as the ‘Gothenburg model’.

While any collation software can compare texts on a character-by-character basis, in the more

common use case before collation each text (or comparand) is normally split up into segments or tokens and

compared on the level of the token rather than on the character-level. This familiar step in text (pre-

)processing, called tokenization, is performed by a tokenizer and can happen on any level of granularity, for

instance on the level of syllables, words, lines, phrases, verses, paragraphs, text nodes in a normalized XML

DOM instance or any other unit suitable to the texts at hand. Another service provided by tokenizers as

defined in our model relates to marked-up texts. As most collators compare texts primarily based on their

textual content, embedded markup would usually get in the way and therefore needs to be filtered out – but

must be kept as stand-off annotations during tokenization – so the collator can henceforward operate on

9 http://www.cost-a32.eu/ [Acessed May 22, 2013].
10 Separation of concerns is an important principle for subdividing and decoupling complex problems in IT

development to reduce the effect of dependencies between solutions. The division between XML (data), XSLT
(transformative logic), and XHTML (presentation) is an excellent example of the same principle at work.

tokens of textual content. Annotations must be kept because it might be valuable to have the markup context

of every token available, for example if one wants to make use of it in the comparison of tokens during the

alignment step (see below). The schematic diagram on the left in figure 1 depicts this process: the upper line

represents a comparand, each character a, b, c, d an arbitrary token and the XML tags e1 and e2 are examples

of embedded markup. A tokenizer transforms this marked-up text into a sequence of individual tokens, each

referring to its respective markup/tagging context. From now on, a collator can compare tokenized

comparands to others based on its tokenized content and does not have to deal with its specific notational

conventions anymore, which are often rather specific to a particular markup language, dialect or project.

During the tokenization step it is also possible to normalize each token so the subsequent comparison can

abstract from certain specifics, such as case-sensitivity or even morphological variants. In most use cases we

have found that abstracting away from such specifics yields useful collation results. It should be noted,

however, that there is no principal methodological or technical reason to enforce such abstraction. In cases

where specifics would turn out to be useful as information for alignment of comparands, the model allows us

to take into account such specifics.

When the comparands have been tokenized, a collator will align the tokens of all comparands

involved. Aligning comparands implies the matching of equal tokens and the insertion of ‘empty’ tokens (so-

called gap tokens) in such a way that the token sequences of all comparands line up properly. As mentioned

before, this specific task of a collator is computationally very similar to the problem of sequence alignment

as it is also encountered e.g. in computational biology. Looking again at an example (figure 1, center

diagram), we assume that three texts (each depicted in its own column) are being compared: the first consists

of the token sequence ‘abcd’, the second reads ‘acdb’ and the third ‘bcd’. A collator might align these three

comparands as depicted in a tabular fashion. Each comparand occupies a column, matching tokens are

aligned in a row, necessary gaps as inserted during the alignment process are marked by means of a hyphen.

Depending on the perspective from which one translates this alignment into a set of editing operations, one

can conclude for example that the token ‘b’ in the second row was omitted in the second comparand or that it

was added in the first and the third. A similar statement can be made about ‘b’ in the last row by just

inverting the relationship of being added/omitted.

In addition to atomic editing operations computed in the alignment step, a further analysis of the

alignment, conducted by the user and supported by the machine, can introduce additional interpretative

preconditions into the process. Repeating the previous example in figure 1 (right diagram), one might

interpret the token ‘b’ in columns 2 and 5 as being transposed instead of as being simply added and omitted.

Whether these two edit operations actually can be interpreted as a transposition ultimately depends on the

judgement of the editor and can at best be suggested, though not conclusively determined, via unambiguous

heuristics. That is why an additional analytical step, in which the alignment results are augmented (and

optionally fed back as preconditions into the collator), appears as essential to us in order to bridge the

methodological ‘impedance’ between a plain computational approach to the theoretical problem and the

established hermeneutical approach taken in practice. In some cases even human interpretation may of

course not determine decisively if an actual transposition took place. We may have to conclude that some

cases of potential transposition cannot be determined with absolute certainty.

The obvious remaining step is the output of the collation results, which is again a complex task. The

requirements here range from the encoding of the results according to various conventions, markup dialects

and formats required by other tools to the visualization of results in multiple facets, be it in a synoptic form,

either as a rendering focusing on one particular text and its variants, or as a graph-oriented, networked view,

offering an overview of the collation result as a whole.

After establishing this separation of concerns, implementers of collation-related software can

henceforth focus on specific problems. The collation tool Juxta,11 for example, has a feature-rich tokenizer

for XML-encoded texts since version 1.4, which has been extended constantly in consecutive versions, now

also has support for larger comparands as well as stand-off annotations and is available as a self-contained

software library12 for reuse in other tools. Comparable work is ongoing to generalize Juxta’s visualization

components.13

Comparing alignment algorithms

The main emphasis of CollateX’s development is on improving the alignment step. As mentioned in the

introduction, aligning sequences of symbols is a well-known problem in computer science having many

applications, notably in the field of computational biology. It has also been noted that the adoption of

existing sequence alignment algorithms for use in the context of philology poses several problems, some of

conceptual, methodological nature, some of practical, technical nature. Rather than providing a complete

account of the pros and cons of particular algorithms, for which this article is not the right place, we would

like to draw attention to three recurring criteria, on which the quality of recent alignment algorithms is

evaluated:

1. Transposition detection

Detecting arbitrarily transposed passages in versions of a text is a much harder problem when done

in the context of sequence alignment than computing insertions, deletions and substitutions. Schmidt

concludes his analysis of this problem (Schmidt, 2009) with a pragmatic solution by stating that,

given an NP-complete computational problem and no guaranteed correspondence between an

optimal computational result and the outcome desired by the user, a heuristic algorithm might be the

best solution. Accordingly, algorithms that try to detect transpositions do so heuristically and refer to

benchmarks measuring computationally detected transpositions against manually predetermined

ones.

2. Support for flexible token matching

The well-known distinction between substantial vs. accidental variants as well as other factors, like

orthographic variation, require alignment algorithms to match tokens more flexibly than just via

exact character matching. Some algorithms use edit-distance-based thresholds for this purpose (e.g.

Spencer/Howe’s or Juxta’s), whereas others rely on lookup-tables predefined by the user, which list

possible mappings of tokens to match them despite their differing character content.

11 http://www.juxtasoftware.org/ [Accessed May 14, 2013]
12 https://github.com/interedition/text [Accessed February 7, 2013]
13 Development is organized within the open source community and lead by the University of Virginia’s NINES

project, see http://code.google.com/p/juxta/ [Accessed May 14, 2013]

3. Base-Text-/Order-Independence

Alignment algorithms like Juxta’s compare versions one-on-one, so that as soon as more than two

versions are to be compared, the task has to be reduced to pairwise comparison of two versions at a

time and consecutive merging of the pair wise results. Spencer and Howe have shown the potential

functional dependence of such a unified result on the order in which pairwise comparisons are

merged. This poses a problem for genetic research based on such results, since a suitable order, in

which the pairwise comparisons should be merged, depends on a hypothesis about which texts are

closer related to each other and whose comparison results should consequently be merged first

(Spencer and Howe, 2004).

CollateX’s aligner tries to tackle all of these problems by following the modularization outlined in the

section above and by finding ways to align tokens that do not inherit the trade-offs of existing sequence

alignment algorithms. As such it has to be characterized as experimental, but at the same time it already

yields promising results.

Comparing texts with CollateX

This section gives an overview of the major concepts by which CollateX aligns tokens of comparands. We

begin by explaining the basic challenge of aligning two comparands including the detection of transpositions

and extend the challenge stepwise up to the alignment of multiple versions.

Most alignment algorithms work on the basis of the following editing operations: insertion, deletion

and substitution. These operations are well defined e.g. via Levenshtein’s concept of the edit distance. A

frequently recurring problem when comparing two versions of a text is the phenomenon that a passage of a

text has been moved between them (i.e. transposed). Moreover transposed passages of a text usually are not

transposed literally, but contain small changes on their own, which makes the challenge to detect these even

harder. Alignment algorithms that are constrained to the editing operations just mentioned will regard a

transposition either as a deletion and an insertion or, in case two passages have been swapped, as two

substitutions. CollateX releases this constraint by handling transpositions as an additional kind of editing

operation and trying to detect those operations.

To start with a trivial case: detection of transpositions is easy when all tokens in the compared

versions are unique (figure 2).

Fig. 2: Trivial case of transposition.

When we look at the different tokens from the two versions in each position, then it is easy to see that ‘a’ is

transposed with ‘c’ and ‘c’ with ‘a’. Apart from all tokens being unique, the previous example also assumes

that moved passages of text are exactly one token long. In the next example (cf. figure 3) we drop this

constraint as well.

Fig. 3: Less trivial case of transposition.

The desired result would be that the sequence ‘a b c d’ is transposed with ‘z’. The trivial approach described

above for the detection of transpositions would not work in this case. Real-world cases of transposition

involve arbitrary length sequences of tokens moving over seemingly arbitrary distances in text, in the process

more often than not also changing the internal order of the sequence to various extents. To solve this problem

we need a more elaborate form of token matching. To this purpose, we use a match table, which is a

document-to-document matrix, allowing us to compare two variant witnesses, each word to each word. Let

us first consider a case where there is no variation (cf. figure 4). We put the tokens of witness 1 as the

column headers of the matrix, and the tokens of the identical witness 2 as the row headers of the matrix. We

then simply mark cells that have identical row and column headers.

Fig. 4: Document-to-document matrix applied as a match table, cells representing tokens coinciding between two

witnesses are marked (‘scored’), in this case with red dots.

This simple case reveals an essential aspect of document-to-document matrices for variant detection: in

general the ‘path’ from the upper left corner to the bottom right corner that deviates the least from the exact

diagonal corresponds to the similarity a reader would assume between two texts. A reader would not assume

for example that the first ‘the’ in the horizontally depicted witness is actually to be identified with the second

‘the’ in the vertically represented witness, or vice versa. Thus we assume the ‘conclusion’ depicted for the

generalized case in figure 5a to be invalid, and the solution in figure 5b is preferred. This case also gives us a

hard constraint for any algorithm design: we cannot select more than one token for each row and/or column,

i.e. we cannot have two tokens simultaneously in one position.

Fig. 5a (left), and b (right): Unrealistic alignment conclusion (a) vs. natural, elegant, or reader’s common sense solution

(b).

Now consider a case of transposition. Text A is a six-sentence (or 97-word) quote from Samuel Beckett’s

Stirrings Still. When we compare two identical copies of this text in a matrix as explained above, we arrive

on the result as depicted in figure 6a. Now we copy text A but we deliberately move the last sentence to the

start of the text. In this way we effectively create an artificial transposition. We now compare the original

text to the copy containing the artificial transposition. The result is depicted in figure 6b. The displaced

sentence is clearly indicated by a red diagonal in the top right corner, attesting that the last sentence of the

original (horizontal direction) coincides with the start of the altered copy. If we created multiple

transpositions we would get a result as depicted in figure 6c. Instead of a clear diagonal all the way through

we find a rather broken-up path of smaller diagonals:

One night as he sat at his table head on hands he saw himself rise and go. One night or day.

For when his own light went out he was not left in the dark. Light of a kind came from the one

high window. Under it still the stool on which till he could or would no more he used to mount

to see the sky. Why he did not crane out to see what lay beneath was perhaps because the

window was not made to open or because he could or would not open it.

Text A: excerpt from Samuel Beckett’s Stirrings Still.

Fig. 6a (left), b (center), and c (right).

It will be clear from this example that in fact any changes (or ‘edits’ as they are called in computer science,

be they intentional or not) in an initially identical copy of a text will result in a deviation from a perfect

diagonal in the document-to-document matrix – even the substitution of a single character. Many such edits

cause the visible diagonal of a perfect alignment to be broken up in a large collection of longer and shorter

diagonals, similar to what is shown in figure 6c (but many times larger for real-world texts). These dispersed

diagonals we call match phrases. Like the much simpler case represented in figure 5, in a real world case it

remains CollateX’s task to determine what sequence of match phrases corresponds to the ‘natural’ alignment

of two texts or witnesses. Of course, being a computer program, CollateX has no conception of the kind of

alignment a human reader would infer, and to further complicate matters human readers can actually differ of

opinion on what the ‘best’ alignment is. CollateX therefore has to rely on a mathematical approximation of

the inferences human readers might make. Congruent to the argument of Bourdaillet and Ganascia

(Bourdaillet and Ganascia, 2007) the approach of CollateX for this is to determine the set of match phrases

that corresponds to the smallest number of edits between two witnesses. In other words: the algorithm

determines the smallest set of longest match phrases that accounts for all variation between two texts, as

conceptualized in figure 7.

Fig. 7: Vectors describing alignment of two witnesses in a document by document matrix.

Theoretically, this process can be applied to an n-dimensional matrix. This would facilitate comparing an

arbitrary amount of witnesses, or in other words: support for multiple witness alignment. However, the time

needed to compute the n-dimensional case is not linear, but probably in the order of an n-exponential

function of the text length, making it computationally unattainable in a reasonable amount of time.

Therefore, multiple witness alignment must be supported in another way, as explained in the remainder of

this section.

To register the alignment and variation between witnesses traced by the algorithm, an efficient way

to store the algorithm’s results is needed. To this end CollateX adopts Schmidt and Colomb’s concept of a

variant graph (Schmidt and Colomb, 2009). We will demonstrate this process using the case of a variant

token. In figure 8a we see the algorithm determining the first alignment. The algorithm traverses all cells that

represent aligned tokens and adds a vertex for each, the edges of which are indexed for both witnesses.

However, in the case of the token ‘i’ we traverse an empty column. This means that we hit a token that is

represented in one witness but that does not have a corresponding token at that location in the other witness.

Instead the other witness has ‘j’. In this case we add two vertices with indexed edges, one for each witness

(cf. figure 8b). This process ultimately results in the situation depicted in figure 8c.

Fig. 8a (left), b (center), and c (right): Storing alignment results using a variant graph.

CollateX’s variant graph is a directed acyclic graph in which each vertex represents a token in one or more

versions. Each edge in a variant graph is annotated with one or more identifiers for each version.

Additionally, a variant graph has a start and an end vertex (the #-vertices in figure 8) that do not represent

any tokens. By proceeding in this way, variation at the start or the end of a version can be recorded. When

one reads the variant graph from left to right, following only the edges annotated with the identifier of a

certain version, the complete token sequence of this version can be reconstructed. When transpositions are

detected, a duplicate of the transposed vertex is created and the two copies are linked together (cf. figure 9).

Fig. 9: Capturing a transposition in a variant graph.

By applying a variant graph we can also extend the applicability of the described algorithm from pairwise

comparisons to the alignment of more than two versions. To this end we apply the same approach of matrix-

wise comparison, but instead of a two-dimensional matrix a three-dimensional matrix is used. This allows us

to compare a new witness to the entire variant graph constructed so far. This process is conceptualized in

figure 10 where a new witness ‘t’ (with a reading identical to witness ‘u’) is added to the comparison. Red

‘cubes’ visualize alignment between the existing graph and the new witness. (Lighter red ‘cubes’ are for the

readers’ orientation within the 3d-matrix only.) Eventually, in this case, the process leads to the addition of

an index ‘t’ to all edges in the graph that had an index ‘u’. Of course, when a new reading is found that has

not been recorded in the graph, a new vertex would be inserted.

Fig. 10: Visualization of multiple witness comparison using a three dimensional matching matrix.

In this way the graph represents a serialization of the variation between the documents of a steadily growing

set. The serialization contains all the variation that is recorded during the alignment of previous comparisons

and is derived from the variant graph by arranging the tokens of all vertices in topological order. Note that a

variant graph ultimately describes variation between witnesses; it does not – nor does CollateX – interpret or

infer the type or cause of variation. Thus in a graph such as depicted in figure 11 there is no given

interpretation whether the ‘j’ results from an addition in one witness or has been deleted in another. Of

course, whenever there is additional knowledge on the provenance and the date of the witnesses, this

inference becomes a trivial task in most cases.

Fig. 11: Variant graph recording a variant that is either a deletion in witness ‘u’ or an addition in witness ‘v’.

As we noted above, CollateX’ development as a whole is still in an experimental stage, but the

current version (as of the time of writing version 1.3 is available on http://www.collatex.net) yields

convincing results. Inspection of a 10% sample of a real-world test collating the first chapter of Darwin’s

Origin of Species (Bordalejo, 2009) yielded a 100% correct detection rate for textual variation, and 87.5%

correct rate of transposition identification (i.e. 1 false positive and 7 correct identifications of transpositions,

judged by human control) within the sample. CollateX’s performance as to speed may leave something to

wish for. Currently sentence to paragraph sized collations are executed in less than a second, virtually

independent of the amount of witnesses. Collation of chapter sized texts is feasible (seconds), but at larger

sizes (‘book length’) the speed degrades rapidly to unfeasible. To this end chunking, or breaking larger

bodies of texts into smaller parts, is an effective solution. A number of identified problems remain to be

addressed in future work. Most importantly, the independence of the alignment results from the order in

which the versions are aligned needs more testing. Although no dependence on the order could be witnessed

in test cases found in other publications addressing the issue (Spencer and Howe, 2004), it is possible that for

example a combination of repeated tokens in versions and a change in the order of their comparison might

cause different results. Another issue is testing and benchmarking. CollateX’s algorithm is tested against an

ever growing set of real-world use cases varying from simple and constructed cases such as ‘the black cat

and the white dog’ vs. ‘the white cat and the black dog’ to elaborate fragments of Armenian, medieval

Dutch, and Hebrew prose and verse. This yields good use-case-based evidence that CollateX is indeed

capable of tracing complicated examples of real-world textual variation. The development methodology used

(‘agile’14) implies an ever growing set of such real-world cases as new users request test runs of previously

unseen material. However, there is also a need for a mathematically/computationally constructed larger test

corpus of variant texts of which the variation is exactly known and modeled on real-world textual variation,

so that future releases of CollateX can be benchmarked for accuracy and performance to a certain standard.

Creating such a test corpus is an important step in future research and development.

2. Integrating CollateX within the infrastructure of a digital edition

Now that the conceptual framework and algorithm have been mapped out, we would like to address the issue

of possible integrations of CollateX into electronic editions. The Beckett Digital Manuscript Project proved

to be a suitable test case since its software infrastructure is rather typical for the way in which many digital

14 See http://en.wikipedia.org/wiki/Agile_software_development [Accessed February 7. 2013]

editions are currently composed. It uses Apache Cocoon,15 a publishing framework which is based entirely

on XML-oriented technologies. As XML and its adjacent standards are almost ubiquitous in today’s Digital

Humanities landscape, ranging in their application from the encoding of source material to the publication in

multiple XML-based formats like XHTML or PDF via XSL-FO, Apache Cocoon is widely deployed among

the projects in this field. The framework is built around the idea of configurable transformation scenarios.

Such scenarios are mapped flexibly to the URI namespace of a project’s web site and are triggered as soon as

a web client sends a request to any of the mapped URIs. Cocoon then

1. takes input parameters from the request;

2. pulls additional, relevant data from a variety of data sources (e. g. XML databases, relational

databases, web services or a server’s file system);

3. converts all data into an XML document;

4. pushes the data through a chosen transformation scenario, configurable by the site’s developer as

well as the user, and

5. returns the transformation result in the response to the web client (figure 12).

Fig. 12: Usual blueprint for Apache Cocoon architecture based web services.

The Beckett Digital Manuscript Project follows this pattern in as much as it

1. receives requests for specific textual resources in the edition, selected via an appropriate URI;

2. pulls those resources, encoded in TEI-P5 compliant XML, from the server’s file system;

3. applies an XSLT-based transformation to the XML-encoded text resource that is fitted to the desired

output format (often (X)HTML) and the current site context in which the user requests the resource,

and

4. delivers the transformation result along with any static resources (images, stylesheets, client-side

script code) to the requesting client (often a web browser).

In order to seamlessly integrate CollateX’s functionality in this site architecture, it was deemed to be the

most elegant approach to think of the collator module as another transformation scenario, which transforms

data from a selected set of text versions into an intermediary XML-based format encoding the collation

15 http://cocoon.apache.org/ [Accessed October 27, 2011]

result. As described above in the section on CollateX’s design, the modularity of CollateX allows us to

uncouple the preprocessing of input data and the post-processing of collation results from the core of its

functionality, the alignment. Because of this flexibility, it was comparatively easy to embed CollateX into

Apache Cocoon as another transformer module. All that was needed was

1. a pre-processing step, which transformed an XML-encoded set of versions into tokenized input to

the alignment module of CollateX, and

2. a post-processing step, which renders the results of the alignment step in an XML-based format, so it

can be further processed by Apache Cocoon’s components and ultimately delivered to the user in the

form desired (cf. figure 13).

Fig. 13: Blueprint of the integrated Apache Cocoon and CollateX architecture based web service for the Beckett Digital

Manuscript Project.

More specifically, the transformer module looks for so-called ‘data islands’ in provided XML input

documents, which resemble the following snippet:

<cx:collation xmlns:cx="http://interedition.eu/collatex/ns/1.0" cx:outputType="tei">

 <cx:witness>...</cx:witness>

 <cx:witness>...</cx:witness>

 <cx:witness>...</cx:witness>

 ...

</cx:collation>

Whenever the transformer encounters such an island in an input document, it substitutes it with the resulting

alignment of the given versions/witnesses in the output while just copying the surrounding data. The

encoding of the output can be controlled via the attribute “cx:outputType”. Currently a proprietary, tabular

data format and TEI P5 parallel segmentation markup are supported. By assembling these data islands,

dynamically based on the user’s request (parameterized for instance via the input of an HTML form; see e.g.

figure 14), and by adding consecutive transformation modules after the collation has been performed, the

Beckett Digital Manuscript Project can provide for the described personalization of its critical apparatus.

Fig. 14: The Beckett Digital Manuscript Project

Thanks to the modular design of CollateX a seamless integration of its functionality with the site

infrastructure of the Beckett Digital Manuscript Project has been achieved. The amount of work was

comparatively limited because the CollateX team was able to reuse most of the already developed

components and the Beckett project’s team was able to build the integration entirely on their existing code

base and platform.

The integration did not come without trade-offs though. Particularly the synchronous on-line

execution of the collation limits the amount of textual data to be collated considerably. This constraint and

the requirement of more complex request/response choreographies than the ones Cocoon provides out of the

box as soon as larger texts are collated, makes this a solution which cannot simply be adopted without prior

adjustments by any edition with arbitrarily large text traditions. But projects such as NINES, with its

collation software Juxta,16 and the Interedition project itself develop web-service-based solutions, which aim

to overcome scalability issues related to the synchronous on-the-fly collation in use today. Therefore, the

adoption of these solutions and again their integration with existing infrastructures like Apache Cocoon

16 http://www.juxtasoftware.org/ [Accessed October 27, 2011]

offers a promising perspective.

3. CollateX, modern manuscripts, and the digital scholarly editorial process

Among all the interoperable tools developed within the Interedition framework CollateX takes a special

place, as it realizes interoperability not just in a technical sense but also in a scholarly sense. Following

textual scholars such as McGann (2001), Buzzetti (2002), Bryant (2002), and genetic critics such as de Biasi

(2004), Ferrer (2011), Grésillon (1994), Hay (2002), and Lebrave (1993) we have come to appreciate text in

its essential fluidity and its forms as a process rather than a static object. The dynamic aspect of text has

caused especially McGann to argue that any electronic edition – or for that matter any attempt in that

direction – should be based on dynamic processes, ideally implementing ‘flexible and multi-dimensional

views of the materials’ (McGann, 2001). Originally, McGann envisaged such editions in the form of

hypermedia editions backed by relational databases, on top of which adaptable transformational logic would

cause archived digital texts to be represented according to specific editorial practices and views of different

editorial or literary communities. Of course, CollateX does not fully answer to such an ambitious

perspective. However, it is interesting to note that CollateX represents at least one aspect of such a

transformational logic as McGann pointed to. CollateX effectively dynamically ‘reverse engineers’ the

variation present in textual tradition or genesis. The process is dynamic because the basic process is

independent of tedious scholarly manual labor, causing CollateX’s transformations to be repeatable. The

process is also dynamic as it is adaptable. By adding witnesses, present in the database-backed electronic

archive, to the analysis (or by removing some of them from it) the effect and perspective on the collation

may change. In this sense, the application of CollateX in editorial processes takes us one step further in our

abilities to express the dynamics of text production, editing, and reception. At this point, the software can be

serviceable in the preparation of a scholarly edition, since it can also output TEI parallel segmentation XML,

which an editor can then transform and visualize the way he or she wants within the edition. Projects such as

‘manuscript archives’ that do not envisage the development of a full ‘historical-critical’ edition, could still

offer their users an alternative to a traditional ‘critical apparatus’. Comparable with aspects of what is

currently often labeled social editing (Siemens, 2012), embedding CollateX in the Beckett Digital

Manuscript Project enables the user to make his or her own selection of textual versions that need to be

collated and leave out the ones he or she is not immediately interested in.

From the vantage point of editorial theory, this development has interesting consequences regarding

the scholarly editor’s role, whose focus may shift from the collation to a more interpretive function. In this

way, the integration of a collation tool may be consequential in terms of bridging the gap between scholarly

editing and genetic criticism. From the perspective of editorial practice, the application of CollateX is still at

an experimental stage, but it already shows that the modular and service-oriented approach used by

Interedition has the potential to be useful, both to the specialized field of digital scholarly editing and to a

more general audience.

Pushing the collation envelope: modeling genetic stages

Apart from facsimiles, topographic and linear transcriptions (encoded in XML), the Beckett Digital

Manuscript Project provides the option to compare the different preparatory versions of the text – from the

earliest draft stages to the page proofs. To avoid getting lost, the user is able to compare a particular segment

in one version to the same segment in another version, or in all the other versions. The size of such a segment

is determined by the user, the smallest unit being the sentence.

Fig. 15: Synoptic survey of various version of one textual segment in the Beckett Digital Manuscript Project

The user is offered a synoptic survey of all the extant versions of the segment of his or her choice, showing

each version in its entirety with the variants highlighted (cf. figure 15). The syntactical context of each

segment remains intact, but in order for the variants to be highlighted, they had to be encoded first. In view

of the large amount of manuscript materials still to be transcribed, the project would not have been able to

include the option of encoding an apparatus in all of the transcriptions. As an alternative to that manual

encoding task, we tested the possibilities of digitally supported collation by means of the CollateX

algorithm.17 One of the complicating elements of this test case is the rather large number of versions in

combination with the presence of deletions and additions in almost all of them.

To find solutions for the latter complicating element, there are several ways of looking at the challenge

17 The Beckett Digital Manuscript Project publishes Beckett’s manuscripts, organized in a series of modules, published

on a yearly basis. The first module, published in 2011, does not yet contain the full Cocoon integration of CollateX
as discussed above, but works with a more basic integration by means of a REST service. The full Cocoon
integration is in a demo-stage and will possibly be included from the publication of the next module. In the case of
both integrations, the collation happens on the fly and the output may take several forms, one of them being a table
in which columns with invariant passages and variant passages are aligned.

of collating modern manuscripts. One way would be to regard it as a form of collation that does not only

collate versions of a text, but even stages within versions. For one manuscript version can often be

subdivided into several writing stages. A writing stage is defined, according to the suggestions of the TEI

Special Interest Group (SIG) on ‘Genetic Editions’, as ‘The a reconstructable stage in the evolution of a text,

represented by a document or by a revision campaign within one or more documents, possibly assigned to a

specific point in time.’18 Ideally, this would require that the editor can identify not only different stages in the

writing process, but also the writing sequence within each writing stage. If these sequences and stages can be

discerned unequivocally, it would be theoretically possible to treat each stage as a version (or ‘witness’) to

be collated.

The TEI SIG on Genetic Editions suggests working with ‘stageNotes’ to describe the composition

stages that have been identified in the genesis of a text. These ‘stages’ relate to the relatively large unit of the

textual version as a whole (‘Textfassung’). Within a stage (say, an author writing a block of text in black ink,

deleting and adding words in the same writing tool) it is often difficult, if not impossible, to further discern

different ‘sub-stages’. Still, a genetic critic might be interested in a collation tool that brings to the fore

precisely this kind of moment in the writing process, when the writer did not immediately find the right

words. In the case of a simple example, ‘The ^black^ cat ^dog^ is alive ^dead^’ – assuming all deletions ()

and additions (^) are made in the same handwriting and writing tool – all of the following combinations are

theoretically possible:

W1a: the cat is alive

W1b: the black cat is alive

W1c: the cat is dead

W1d: the black cat is dead

W1e: the dog is alive

W1f: the black dog is alive

W1g: the dog is dead

W1e: the black dog is dead

The TEI SIG ‘Genetic Editions’ developed the ‘stageNote’ element for the documentary level. According to

the TEI SIG’s guidelines, ‘A genetic editor needs to be able to assign a set of alterations (deletions,

additions, substitutions, transpositions, etc.) and/or an act of writing to a particular stage.’19 But some authors

always use the same writing tool, not only for the ‘first stage’ of their draft, but for all subsequent revision

campaigns. Moreover, in the TEI guidelines for genetic editions the ‘stageNote’ element was developed for

the documentary level (related to what Hans Zeller called ‘Befund’, the record, as opposed to ‘Deutung’, its

interpretation), not for the textual level. Collation, however, is a text-related operation. In order to collate

modern manuscripts it may therefore be beneficial – for the purpose of designing digitally supported

collation tools for modern manuscripts – to conceive of the manuscript as ‘a protocol for making a text’,

according to Daniel Ferrer’s definition (Ferrer, 1998).

18 http://www.tei-c.org/Activities/Council/Working/tcw19.html
19 http://www.tei-c.org/Activities/Council/Working/tcw19.html [Accessed October 27, 2012]

A relatively straightforward application of this protocol model is to work with the ‘uncancelled text’

of each manuscript (that is, a ‘clean’ transcription or reading text of a draft, without the deleted passages, i.e.

by ignoring the passages marked by … tags). This ‘uncancelled text’ is usually an author’s last

‘protocol’ or instruction to himself when he is on the verge of fair-copying or typing out the text on another

document. We tried to apply this ‘uncancelled text’ system to test the first research results of CollateX. All

versions of a segment are computed and their data is handed over to CollateX for comparison. The

segmentation of the textual material (see above) can now serve an extra purpose: apart from reducing the

danger for the user to get lost in the jungle of manuscripts, it also determines the speed of the collation. Since

the most frequently chosen textual unit in the project is the smallest segment (usually the unit of a sentence),

the number of versions can be relatively high (in the test case: about twenty versions) without slowing down

the instant collation.

As an intermediary step, the ‘uncancelled text’ system is useful, but it does reduce the complexity of

the manuscript to a textual format. In a way, this pragmatic solution ‘de-manuscripts’ the manuscript. In

order to try and refine the computer-assisted collation of modern manuscripts, it would be helpful if the

collation software were XML-aware in order for the input to be derived directly from the XML-encoded

transcription, and to record changes not only between the stages, but also between substages within one

stage. The test case provided us with the following example: a passage in one of Beckett’s manuscripts (UoR

MS 2934, 9v-10r, written in Beckett’s hand in black ink), with two consecutive substitutions within the same

writing stage:

and then again faint ^hoarse from long silence ^faint^^ from far within

In XML, this could be transcribed as follows:

and then again <subst xml:id="subst1"><del xml:id="del1">faint

<add xml:id="add1"><subst xml:id="subst2"><del xml:id="del2">hoarse from long silence

<add xml:id="add2">faint</add></subst></add></subst> from far within

The subst, del and add tags suffice to cover all stage information, which could be expressed in the

‘augmented’ variant graph of figure 16.

Fig. 16: Conceptual CollateX variant graph capturing genetic stages of authoring.

Each path in the graph represents a witness. For the purposes of the collation of modern manuscripts, a new

type of node has been introduced (in the example: S1 and S2, corresponding to respectively subst1 and

subst2. This writing stage (a) then needs to be compared with other stages or other versions, i.e. with

multiple witnesses, say, (b) and (c):

(a) and then again faint ^hoarse from long silence ^faint^^ from far within

(b) and then again nothing from far within

(c) and then again faint from far within

In CollateX’s internal model, this would be presented as follows:

Fig. 17: Conceptual CollateX variant graph capturing genetic stages of authoring as well as witness variation.

An advantage of this model is that it can support several collation options. By default, CollateX would use

only the ‘uncancelled text’ of each witness, but whereas the ‘uncancelled text’ model (described above) only

took the final protocol into account, this model takes in all the extra information about the cancelled words,

saves it and enables us to ‘port out’ these data again at the visualization stage. For instance, if for whatever

reason, one would prefer to compare (b) and (c) to substage2 of (a), rather than to its ‘uncancelled text’, the

algorithm can optionally be instructed to collate [(b) nothing] and [(c) faint] against [(a’) hoarse from long

silence], rather than against [(a’’) faint]. All the information stored in the XML transcription passes through

the collation process untouched, so that it can be retrieved for visualization purposes.

 In terms of visualization, an option ‘hide cancellations’ (as one of the ‘Tools’ in the menu) could

simplify the alignment table, reducing it to a visualization of the different versions’ ‘uncancelled text’ only:

w1 and then again faint from far within
w2 and then again nothing from far within
w3 and then again faint from far within

But we can imagine that genetic critics and other researchers interested in modern manuscripts might want to

have an overview of all the cancallations and substitutions in the manuscripts. Undoing the same ‘hide

cancellations’ option in the menu could offer these users a more complete picture:

 faint
 hoarse from long silence
w1 and then again faint from far within
w2 and then again nothing from far within
w3 and then again faint from far within

The advantage of having introduced the new type of node (S1 and S2 in the variant graph above) is that the

‘hoarse from long silence’ variant can be treated as one unit during the computer-supported collation and

also be presented as such at the visualization stage.

In closing

The collation of modern manuscripts involves the treatment of cancelled text. A classical problem in this

area of study is the division of a modern manuscript into ‘stages’ or even ‘sub-stages’, for especially if an

author uses the same writing tool for all the text on the document (including cancellations and additions) it is

often almost impossible to discern separate stages. It is possible to work with the ‘uncancelled text’ of the

documents in order to compare the different versions, but researchers working in modern manuscripts are

usually especially interested in the cancellations and substitutions. We therefore tried to find a solution for

computer-supported collation of modern manuscripts, including cancellations. We have explored how this

complex research problem in the application of computers in the humanities could be approached by

breaking it down into a community supported and well-defined set of sub problems, which each on its own

can be solved in a more flexible and efficient way. Looking beyond the specific problem of computer-

supported collation, such an approach does not only appear suitable to us because it is a well-established

practice in the construction of complex software systems in general, but also because it allows for effective

collaboration among researchers and developers from many different backgrounds and projects. From this

perspective, it is not by accident that the development of a modularized collation solution took shape within

the context of the research project Interedition, whose aim it is to foster such collaboration and to address the

organizational and architectural issues associated with such an approach as well, issues which point beyond

the development of singular software tools for singular use cases.

References

Bordalejo, B. (2009). Introduction to the Online Variorum of Darwin's Origin of Species. Avialable at:

http://darwin-online.org.uk/Variorum/Introduction.html [Accessed February 7, 2013]. In John van Wyhe
(ed.) 2002, The Complete Work of Charles Darwin Online. Available at http://darwin-online.org.uk/
[Accessed February 7, 2013].

Bourdaillet, J. and Ganascia J.-G. (2007). Practical block sequence alignment with moves. LATA 2007 -

International Conference on Language and Automata Theory and Applications, 3/2007. Available at
http://www-poleia.lip6.fr/~ganascia/Medite_Project?action=AttachFile&do=view&target=LATA+2007
[Accessed May 13, 2013].

Bryant, J. (2002). The Fluid Text: A Theory of Revision and Editing for Book and Screen, University of

Michigan Press. Available at: http://books.google.nl/books?id=1w4wpOdPbu4C [Accessed February 7,
2013]

Buzzetti, D. (2002). Digital representation and the text model. New Literary History, 33(1): 61–88.

de Biasi, P.-M. (2004), Toward a Science of Literature: Manuscript Analysis and the Genesis of the Work,

in Jed Deppman, Daniel Ferrer, and Michael Groden (eds.), Genetic Criticism: Texts and Avant-textes.
Philadelphia: University of Pennsylvania Press, pp. 36-68.

Ferrer, D. (1998). The Open Space of the Draft Page: James Joyce and Modern Manuscripts. In George
Bornstein and Theresa Tinkle (eds.), The Iconic Page in Manuscripts, Print, and Digital Culture. Ann
Arbor: University of Michigan Press, pp. 249-67.

Ferrer, D. (2011), Logiques du brouillon: Modèles pour une critique génétique. Paris: Éditions du Seuil.

Grafton, A., Most, G.W. and Settis, S. (2010). The Classical Tradition, Harvard University Press.

Available at: http://books.google.nl/books?id=LbqF8z2bq3sC, pp. 506.

Grésillon, A. (1994). Éléments de critique génétique: Lire les manuscrits modernes. Paris: Presses

universitaires de France.

Hay, L. (2002). La Littérature des écrivains. Paris: José Corti.

Lebrave, J.-L. (1993). L’édition génétique. in Anne Cadiot and Christel Haffner (eds.), Les manuscrits des
écrivains, Paris: CNRS/Hachette, pp. 206-223.

Levenshtein, V. (1966). Binary codes capable of correcting insertions and reversals. Soviet Physics:

‘Doklady’. 10 (8): 707–710.

McGann, J. (2001). Radiant Textuality. Literature Since the World Wide Web. New York: Palgrave/St

Martins.

Oakman, R.L. (1984). Computer methods for literary research. University of Georgia Press, pp. 118-137.

Schmidt, D. and Colomb, R. (2009). A data structure for representing multi-version texts online.

International Journal of Human-Computer Studies, 67.6: 497-514.

Schmidt, D. (2009). Merging Multi-Version Texts: a Generic Solution to the Overlap Problem. In:

Proceedings of Balisage: The Markup Conference 2009. Balisage Series on Markup Technologies, vol. 3.

Shillingsburg, P.L. (2006). From Gutenberg to Google: Electronic Representations of Literary Texts

reprint., Cambridge University Press, p.110.

Siemens, R. (2012). Toward modeling the social edition: An approach to understanding the electronic

scholarly edition in the context of new and emerging social media. In Literary and Linguistic Computing
27(4): 445–461. doi: 10.1093/llc/fqs013 Available at: http://llc.oxfordjournals.org/content/27/4/445.full
[Accessed November 7, 2012]

Smith, S.E. (2000). The Eternal Verities Verified. Charlton Hinman and The Roots of Mechanical Collation.

In: Studies in Bibliography 53: 130–162.

Spencer, M. and Howe, C.J. (2004). Collating Texts Using Progressive Multiple Alignment. In: Computers

and the Humanities 38: 253-270.

Unsworth, J. (2000). Scholarly Primitives: what methods do humanities researchers have in common, and

how might our tools reflect this? In Symposium on ‘Humanities Computing: formal methods,
experimental practice’. London: King’s College. Available at:
http://people.lis.illinois.edu/~unsworth/Kings.5-00/primitives.html [Accessed February 7, 2013].

