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Chapter 1

Background

1.1 What is Performance Evaluation?

Performance evaluation is concerned with making quantitative statements about the behavior of
computer systems. In practical terms this can mean making predictions about response time,
throughput, or other metrics based on knowledge of CPU, disk, or other resource demands.

To this end we’ll use three types of tools: analytic (mathematical) models (mainly applied
probability), simulation, and measurement/experimentation.

The goal of this course then is to provide two related sets of skills:

� Practical tools for making predictions about the performance of real or imagined computer
systems; and

� Insight into how computer systems behave as we vary their workloads and designs.

The first goal emphasizes sound formulations for calculations and measurement (more often)
and analysis (sometimes). The second goal emphasizes drawing conclusions from calculations
(sometimes) and analysis (more often).

An example of the first goal would be: capacity planning for the upgrade of a banking infor-
mation system. Examples of the second goal would be answering questions like: “What causes
delays in computer systems?;” “Which is better, one fast server or two slower ones?;” and “What
scheduling policy is most fair to all customers?”

Throughout we will usedmodels to aid our discussion. We use the term model to apply to
simplified versions of a system under consideration. A model could be a mathematical expression,
or a set of equations that can be solved, or a simulation. Models necessarily leave out some details
of the real system. As such, “all models are wrong, but some are useful.”

3



4 CHAPTER 1. BACKGROUND

1.2 Probability and its Uses

What is probability? First, make sure to distinguish two common uses of the word: 1) subjective
confidence in an event’s occurrence; 2) frequency of occurrence of an event. We are concerned
with the latter.

Suppose an experiment under consideration can be repeated any number of times, so
that, in principle at least, we can produce a whole series of “independent trials under
identical conditions” in each of which, depending on chance, a particular event A of
interest either occurs or does not occur. Letn be the total number of experiments
in the whole series of trials, and letn(A) be the number of experiement in which A
occurs. Then the ration(A)=n is called the relative frequency of the event A. It turns
out that the relative frequencies observed in different series of trials are virtually the
same for largen, clustering about some constantP [A]; which is called the probability
of the event A.

From [Roz69].

This description captures the notion of probability intuitively. Note however that it is only an
intuitive definition: we must use our judgement to verify or decide what is meant by “independent
trials under identical conditions.”1

1.2.1 The Use of Models

There two roles that data models play in computer systems research, and their purposes can be
confused. To get there, let’s ask what a model is, actually.

We will refer to a data model as a succinct description of a generative process that gives rise to
an output (ie, a dataset) of interest. We’ll just call them “models” in what follows.

We can come up with models two ways, starting from a real computer system or from measured
data. These are “white box” and “black box,” or “constructive” and “descriptive” approaches. In
the first approach, one starts with a real system and simplifies it somehow - for example, one starts
with a real network and constructs anns simulation. This then becomes the model. This is often
done, eg, in performance evaluation.

In the second approach, one starts with real data and “fits” a model to it, in the way one “fits”
an story to a set of facts. The idea is that the model “could have” generated the observed data.

1Aside: People tend in general to be good at estimating probabilities of certain kinds of events. It seems that our
cognitive capabilities have been shaped by evolution to provide us with excellent skills at assessing potential dangers
and opportunities. Nonetheless, for the same reasons, these probability estimation skills may be fooled in striking
ways (witness the popularity of various lotteries, and the fact that people fear plane travel more than car travel). For
an interesting discussion, see Chapter 5 of “How the Mind Works,” by Steven Pinker.
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Ususally the model is a random one, and so we can speak quantitatively about whether the model
“could have” generated the observed data. This approach is more often used in “measurement”
papers.

Since it is clear in both cases that model outputs are not exact matches for reality (ie, our
datasets) we can speak of “better” or “worse” models in terms of how closely model outputs agree
with measured data.

Both approaches have drawbacks.

Drawbacks to descriptive approach: such approaches do not explain “why”, “what if system
changes”. They can be difficult to interpret. Such models generally do not use all the available
information (we may know something about how data was generated that is not reflected in model).
As a result we have to choose models carefully, to encourage maximum interpretability.

Drawbacks to constructive approach: generalization is difficult (too many parameters), output
may not match data in important respects.

These two approaches an be used together: working toward the middle.

That is: System! model data. In this case we gain confidence when the two forms of
analysis suggest the same model.

Turning back to the roles models play, the analogy of fitting a story to a set of facts becomes
important. The problem becomes clear when one askswhy a model is desired. Some motivations
are:

� the description will be used to generate more data, perhaps by others (one can use a model
as a source of data for testing or evaluating systems).

� the description has parameters that are interpretable (Interpretation: relating effects to causes)

� the description can be used to interpret real data (fitting a model to data results in parameter
values that may be interpretable).

Example parameters that are interpretable: mean, variance,� of an exponential RV,� (tail
shape) of a power-law RV. These are interpretable in the sense that as these parameters change, we
understand how something in the real system changes (like performance).

Interpreting data: here we try to understand what is happening in the underlying system by
using the model to constrain the possibilities.

For more details see [SF03].
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1.2.2 The Use of Probability Models

Probabilistic models are abstractions. We use probabilistic models because, in general, there are
things we don’t want to model, or don’t know how to model.

Quote from Matheron:

In a serious work ... an expression such as “this phenomenon is due to chance” consti-
tutes simply, an elliptic form of speech. ... It really mean “everything occurs as if this
phenomenon were due to chance,” or, to be more precise: “To describe, or interpret or
formalize this phenomenon, only probabilistic models have so far given good results.”

It is important therefore to very sharply distinguish between the properties of a model and the
properties of the data. Data properties are observable quantities by definition. The model may well
contain assumptions that are not operationally testable or directly observable, and therefore cannot
actually be said to apply to the data. For example, mean, variance, stationarity, independence, etc,
are all properties of models, not data. Some of these concepts can be given operational interpreta-
tions, such as the mean, which we can identify with the long-run arithmetic average. However we
must be careful not to assume that the data is “truly” stationary, or “truly” independent, etc. These
are properties that only models can have.

Making a clear distinction between properties of models and data can help avoid much con-
fusion, and for example endless debates about whether data “is stationary.” Rather, a meaningful
statement would be “a stationary model is useful for describing this data” or “this data is consistent
with a stationary model for the problem at hand.”

We use probabilistic models because they help us answer questions. There is no real use, or
even meaning, for a probabilistic model apart from a set of questions that it can help to answer.
(Remember that most of the phenomena we are concerned with are not really random; they are just
incompletely specified.) Thus another class of debates which we seek to avoid surrounds whether
a model is the “correct” one for a set of data. We cannot answer this question as posed. Rather
we should ask: “Does this model give useful answers to the questions for which it is employed?”
Keeping this distinction in mind will also help us avoid another set of endless debates.

For more details see [Mat89].

1.3 Time and Event Views

There’s a time and the time is now and it’s right for me,
It’s right for me, and the time is now.

– Time and a Word, Yes
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Much of what we will study in this course concerns the distinction betweentime andevent
views of a system. The central issue is this: the behavior of computer systems is generallydefined
in terms of events. At the most fundamental level, computers are finite-state machines and their
behavior is defined in terms of transitions between states. Even at higher levels (programming
languages, or applications) a computer system’s behavior is conceived and defined in terms of
events (execution of instructions, execution of lines of a program, etc). And at even higher levels
we generally specify system behavior in terms of events (what happens when a customer arrives
at a queue, how a system responds to a request for service, etc).

But what people experience is thetime view of the system. The time view is the state of the
system at a random time. For most systems, we can treat the “random time” view of the system as
representative of either what one one user sees over a long duration, or what a randomly chosen
user sees at any instant. That is, the “random time” view is essentially theperformance of the
system.

Aside: The formal notion that links “a random time” with “what a random
customer sees” is calledergodicity. We’ll define ergodicity later, but it captures
the idea that observing many separately operating “copies” of a system at any
instant can yield the same answers as observing a single system over a period
of time. We will usually assume that systems are ergodic, and therefore we
will be concerned with the time view as our main way of representing system
performance.

This distinction is often stated as being one ofevent averages versustime averages. This is a
good way to think about it, but not a complete one. We are not just concerned with averages, but
in fact the entire distribution of behaviors.

As explained above, we introduce probability to avoid specifying unimportant details. This
turns our event view of the system (“from state A, if E happens, then go to state B”) into acon-
ditional probability: “from state A, go to state B with probabilityp.” To make the connection
clearer, we would usually state this as :

P [ current state is Bj last state is A] = p:

In contrast, the time view is essentially an unconditioned view. It is represented by a statement
like:

P [ current state is B] = q:

This tells us “the system spendsq fraction of its time in stateB” which is a very different and
usually more useful statement than the conditional one.

This translation between the specification of a system in terms of events and the description of
a system in terms of time is at the heart of many aspects of performance evaluation. We will use
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a number of tools to address this challenge, but the two main tools we will use arePalm Calculus
andMarkov Chains. Both are sets of techniques that allow us to start with conditional probabilities
(the event view) and derive unconditional probabilities (the time view).

“I just the other day got, an internet was sent by my staff at 10 o’clock in the
morning on Friday and I just got it yesterday. Why?

Because it got tangled up with all these things going on the internet
commercially...

They want to deliver vast amounts of information over the internet. And again,
the internet is not something you just dump something on. It’s not a truck.

It’s a series of tubes.

And if you don’t understand those tubes can be filled and if they are
filled, when you put your message in, it gets in line and its going to be delayed
by anyone that puts into that tube enormous amounts of material, enormous
amounts of material.”

— U.S. Senator Ted Stevens



Chapter 2

Probability Refresher

2.1 Probability, Formally

Despite the difficulty of working with probability at the intuitive level, we can nonetheless work
with a formal definition of probability that allows us to reason precisely about probabilities.1 This
formal definition follows.

Definition. For a sample space
 a probability measure P is a function defined on all the subsets
of 
 (the events) such that:

1. P [
] = 1

2. For any eventA � 
, P [A] � 0:

3. For any eventsA;B � 
 whereA \B = ;, P [A [B] = P [A] + P [B].

Some things we can immediately conclude are as follows. You should make sure that you can
use the definition to prove that these are true:

Example 1. P [A] = 1� P [ �A]:

Example 2. For any two setsA andB, P [A [B] = P [A] + P [B]� P [A \B]:

1It can be shown that the framework built up using this definition can capture an intuitive sense of probability; this
fact is called the “law of large numbers”.

9
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2.2 Conditional Probability

Conditional probability refers to how probability changes if we restrict our attention to a subset of
events. Here’s an example:

Example 1. Let the sample space
 be the set of all days on which CS 470
meets. Assume that the probability that I give a test on any day is 0.3, and that
the probability that a day is cloudy is 0.5.

Now, I might never give a test on a cloudy day. Or I might be more likely to give a test if the
day is cloudy. Or the fact that it is cloudy might have no effect on whether I give a test.

We can give precise expressions for these possibilities using the notion of conditional proba-
bility. Let the event of a day with a test beT . Let the event of a cloudy day beC. ThenP [T jC] is
“the conditional probability of event T given C”.

How should we defineP [T jC]? Intuitively, this should be a measure of the number of times
a T event occurs given that a C event occurs ... that is, the proportion of cloudy days on which I
give a test.

So, more generally,P [AjB] is the probability of an eventA given that only outcomes which
are in eventB are considered. That is,P [AjB] is a probability measure in which the universe

has been restricted to eventB:

This is a probability measure, soP [BjB] = 1:Now if B is a proper subset of
; thenP [B] < 1.
So we have rescaled our probability measure so thatP [BjB] = 1: This leads to our definition:

Definition. The conditional probability of an eventA given that eventB (hav-
ing positive probability) is known to occur, is

P [AjB] =
P [A&B]

P [B]
whereP [B] > 0

Continuing our example, let’s say that you notice that out of 24 class days, I give a test on 6
cloudy days and 3 clear days. Furthermore, 18 class days are cloudy. Let’s assume that the fraction
of cloudy days is equal toP [C] and the fraction of clear days is equal toP [ �C].
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What isP [T jC]? Answer:P [C] = 18=24 = :75, and
P [T&C] = 6=24 = :25; so
P [T jC] = :33.

What isP [T j �C]? Answer: 3/24 / 6/24 = 3/6 = .5

What is the probability of a test on a random day? Answer:P [T ] = 9=24 = 3=8 = :375

One way to think about conditional probability is that, by restricting attention to a subset of
all possible events, you are really adding more information to the setting. That is, a conditional
probability reflects an “updated” estimate of probability given some new information. In our
example, knowing that today is cloudy “decreases” the probability of a test from .375 to .33.
(Actually, it decreases yourestimate of the probability of a test.) Likewise knowing that today is
sunny “increases” the probability of a test from .375 to .5.

2.2.1 Uses of Conditional Probability

Often the conditional event is easier to calculate than the compound event. In fact, this is one of the
main uses of conditional probability: it is easier to determine a bunch of conditional probabilities
than it is to dctermine a compound probability.

Example 2: a bucket contains two red and three white balls. Calculate the
probability that you would draw, one at a time and without replacement, two
white balls.

LetA be the event of drawing a white ball on first draw, andB be the event of drawing a white
ball on second draw. Then:

P [BjA] = P [A&B]=P [A]

So:P [B&A] = P [A]P [BjA]
Now:P [A] = 3=5

and:P [BjA] = 1=2

So:P [B&A] = 3=10

Consider how you would have solved this problem in a more direct manner (.e.g., by enumer-
ating all 120 possible orderings of the 5 balls) and note how much more complicated that approach
is.
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2.3 Independence

Returning to Example 1: notice how the probability of a test changed when we learned something
new (the weather). Of course, this might not always be the case.

Again, considerP [T jC]: Remember 18/24 days are cloudy. Let’s say I give tests on 6 cloudy
days and 2 sunny days. Then:

P [T jC] = P [T&C]=P [C] = 6=18 = :333

and:P [T ] = 8=24 = :333

SoP [T jC] = P [T ]: Then for this case, I have not “told you anything” about test likelihood by
telling you today is cloudy. More precisely, the type of weather doesn’t affect the probability of a
test. This is calledindependence. Two eventsA andB are independent ifP [AjB] = P [A].

Note that sinceP [AjB] = P [A&B]=P [B] thenP [A] � P [B] = P [A&B]:

So, we conclude that if two events are independent, the probability of both occurring is the
product of the individual probabilities. These are equivalent definitions of independence.

2.4 Random Variables

So far we’ve been considering events. In reality we are usually more interested in numeric values
associated with events. When a random event has a numeric value we refer to it as a random
variable. Technically we say that a random variable is a function that assigns a real number to
each possible outcome in a sample space. Note that a single experiment (throwing a dart at a
sheet of paper) may have many random variables associated with it (different measurements of the
outcome).

Notation: Random variables use CAPITALS. Values use lowercase.

Now, we’d like to collect information about what values of the random variable are more
probable than others.

Definition. The cumulative distribution function (CDF) F for a random vari-
ableX is equal to the probability measure for the event that consists of all
possible outcomes with a value of the random variableX less than or equal to
x, that is,F (x) = P [X � x]:
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Some facts: the domain of the CDF is�1 to +1: F (�1) = 0: F (1) = 1: F is nonde-
creasing.

Question: What is the range of the CDF?

Exercise: Consider the roll of a die. The obvious random variable here is the
number of points showing. Plot the CDF.

Exercise: Consider throwing a dart at a dartboard, with no “bullseye” so the
dart hits anywhere on the dartboard with equal likelihood. Let the random
variable be the distance the dart hits from the left edge of the paper. Plot the
CDF.

Random variables can be discrete (taking on a finite or countably infinite set of values) or
continuous (taking on an uncountably infinite set of values). The CDF of a discrete RV is piecewise
linear. The CDF of a continuous RV is everywhere differentiable.

Continuing the example, consider how use the CDF to calculate the probability
of a dart hitting the center third of the dartboard.

Given a set of observations of a random variable, one estimates the shape of the RV’s CDF
using the Empirical Distribution Function (EDF), which is a plot analagous to the CDF, but con-
structed from the values of the observations.

2.5 Probability Density Functions

Consider a sigmoid shaped CDF. What does it mean that the slope is steep in the middle? Answer:
lots of values are probable there.

The slope tells us how likely values are in a particular range. It’s important enough that we
use it very often; it’s called theprobability density function (PDF). By definition, the PDF is the
derivative of the CDF:

f(x) =
dF (x)

dx

So note that the CDF can be expressed in terms of the PDF:

F (x) =
Z x

�1
f(t)dt
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You should be able to derive: Z +1

�1
f(x)dx = 1

f(x) � 0

What does the absolute value of the PDF mean? Nothing but the slope of the CDF. Do not
interpret it as a probability.

Now, if an RV is discrete, its CDF is nondifferentiable. Therefore we need a different defini-
tion.

2.5.1 PDFs of discrete RVs

For the PDF of discrete RVs, we simply plot the probability function of each value. That is, we
plot P [X = x] for the various values ofx.

Another way to think of the PDF is that it consists of impulses at the points of discontinuity of
the CDF.

As an example, plot the PDF and CDF of the roll of two dice.

Be sure you understand the distinction between the discrete PDF and the continuous PDF. They
are different!

2.6 Expected Value

Definition: Theexpected value E[X] of a random variableX is the weighted sum (integral) of all
possible values of the R.V. For a discrete random variable, this is:

E[K] �
+1X
�1

kP [K = k] (2.1)

and for a continuous random variable with pdf p():

E[K] �
Z +1

�1
kp(k)dk (2.2)

The expected value is also called the average or the mean, although we prefer to reserve those
terms for empirical statistics (actual measurements, not idealizations like these formulas). The
expected value is in some sense the “center of mass” of the random variable. It is often denote�.
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� is an idealized notion, like the random variable itself. If we are dealing with a real dataset,
all we can do isestimate what� might be. For this purpose we use theempirical mean or average,
denoted�x, which is (of course):

�x = 1=n
nX
i=1

xi

for observationsxi; i = 1::n.

The mean may not be very informative, or important. In some cases a random variable may not
ever even take on the mean as a possible value. In other cases the notion of average isn’t useful,
as for the person with their head in the oven and feet in the freezer who claims “on average I feel
fine.” The mean may not be very important when observations are highly variable.

2.7 Variance

In fact, the variability of random processes is a central issue in performance evaluation. To describe
variability we most commonly usevariance. Variance is the average squared difference of the
random variable from its mean. It is defined as:

V ar(X) � E[(X � E[X])2]

so for a discrete R.V. withE[X] = � this would be:

V ar(X) =
+1X

x=�1

(x� �)2P [X = x]:

The units of variance are the square of the units of the mean. To compare variance and mean,
we take the square root of the variance. This is called thestandard deviation and is denoted�. So
variance is denoted�2.

We can form a good estimate ofV ar(X) for a sample dataset using this formula:

S2 =
1

n� 1

nX
i=1

(xi � �x)2

And sample standard deviation (S) is the positive square root ofS2.

A crucial point is that the importance of variability depends on the magnitude of typical values.
If I tell you that a particular species of animal typically varies over a range of plus or minus 10
pounds this is a lot more surprising if the animal weighs 15 pounds on average than if it weighs
150 pounds on average. That is, in the first case some individuals are five times larger than others
(25 vs 5) while in the second case, we would consider most animals to be about the same in size.

Thus, we often need to normalize the standard deviation by the mean. This is called the
Coefficient of Variation (cv) and is defined as�=�. Thus is someone tells you that a RV has a cv
of 1/5, you know that the variability is small, while if the cv is 5, variability is large.
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2.8 Probability Laws.

2.8.1 Law of total probability.

LetA1; A2; :::; An be events such that

1. Ai \ Aj = ; if i 6= j

2. P [Ai] > 0; i = 1; 2; :::; n:

3. A1 [ A2 [ ::: [ An = 


(Such a family of events is called apartition of 
.)

Then for any event A,

P [A] = P [A1]P [AjA1] + P [A2]P [AjA2] + :::+ P [An]P [AjAn]

2.8.2 Law of total expectation.

Conditional expectation is defined as follows:

E[XjY = yj] =
X
xi

xi P [X = xijY = yj]

(Note that this definition follows directly from the definition of expectation we have already
seen.) The the law of total expectation states:

E[X] =
X
yi

E[XjY = yi]P [Y = yi]

Note that the setyi forms a partition over the possible values ofY .

2.8.3 Bayes’ Rule.

Suppose thatA1; A2; :::; An form a partition of
. Then for any eventB with P [B] > 0,

P [AijB] =
P [BjAi]P [Ai]

P [A1]P [BjA1] + P [A2]P [BjA2] + :::+ P [An]P [BjAn]
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You should be able to see how to derive this; steps are 1) expand into a fraction using the
definition of conditional probability; 2) denominator then follows from law of total probability; 3)
numerator is based on rewritingP [Ai&B] using definition of conditional probability again.

Note how we are updating our estimate of the probability of eachAi based on the new informa-
tion, namely, thatB is true. This update transforms theprior probabilitiesP [Ai] into theposterior
probabilitiesP [AijB].

This is useful because often the probabilitiesP [BjAi] can be estimated.

Example. Empirical evidence suggests that amongs sets of twins, about 1/3 are identical. Assume
therefore that probability of a pair of twins being identical to be 1/3. Now, consider how a couple
might update this probability after they get an ultrasound that shows that the twins are of the same
gender. What is their new estimate of the probability that their twins are identical?
Let I be the event that the twins are identical. LetG be the event that gender is the same via
ultrasound. The prior probabilities here areP [I] andP [�I]. What we want to calculate are the
posterior probabilitiesP [IjG] andP [�IjG]:
First, we note:

P [GjI] = 1

(Surprisingly, people are sometimes confused about that fact!) Also, we assume that if the twins
are not identical, they are like any two siblings,i.e., their probability of being same gender is 1/2:

P [Gj�I] = 1=2

And we know from observing the population at large that among all sets of twins, about 1/3 are
identical:

P [I] = 1=3

Then:

P [IjG] =
P [GjI]P [I]

P [GjI]P [I] + P [Gj�I]P [ �I]
=

1 � 1=3
(1 � 1=3) + (1=2 � 2=3) =

1

2

So we have updated our estimate of the twins being identical from 1/3 (prior probability) to 1/2
(posterior probability).

Note how easy it was to determineP [GjI] andP [Gj�I], while the other caseP [IjG] was not so
obvious – hence the utility of Bayes’ rule.
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Exercises

Reasoning about Models

2-1. For two independent eventsA andB, P [A] = 0.2 andP [B] = 0.3. What is the probability
P [A [B]?

2-2. One of the most common assumptions made in performance analysis is that two events (or
more) are independent.

(Rozanov) LetA1 be the event that a card picked at random from a full deck is a spade, and
A2 be the event that it is a queen. AreA1 andA2 independent events?

2-3. Marks on the number line.

(a) Draw the number line from 1 to 10. For each integer position, I choose to place a mark
with probabilityp (by flipping a coin which comes up heads with probabilityp). Now:
sum the marks from 1 to 5, and from 6 to 10. Are the two sums independent?

(b) Draw the same number line. Now pick an integer at random from 1 to 10. Place a mark
there. Do this (in an independent manner)N times. Now construct the same two sums
as before. Are the two sums independent?

2-4. (Rozanov) In throwing a pair of dice, letA1 be the event that the first die turns up odd,A2
the event that the second die turns up odd, andA3 the event that the total number of spots
is odd. AreA1 andA2 independent? AreA1 andA3 independent? AreA1; A2; andA3 all
independent?

2-5. Consider two mutually exclusive events,A andB, each with positive probability (i.e., P [A[
B] = P [A] + P [B] andP [A] > 0; P [B] > 0 ). Are A andB independent? Why or why
not?

2-6. (Rozanov) A motorist encounters four consecutive traffic lights, each equally likely to be red
or green (and these traffic lights canonly be red or green). Let� be the number of consecutive
green lights passed by the motorist before being stopped by a red light or passing through
all lights. What is the probability distribution of�, expressed as a formula?

2-7. Prove that ifP [AjB] > P [A], thenP [BjA] > P [B].

Reasoning about Data

2-8. Consider the following situations. Analyze for independence.

At the campus trolley across from Warren towers. Consider the sample space the set of items
that a customer might order (felafel, hummus, tabooli, fajita).
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� Two customers are chosen at random. Is is reasonable to model their orders as being
independent?

� Two customers arrive one after the other. Is it reasonable to treat their orders as inde-
pendent?

� A customer orders two items. Is it reasonable to assume that the first item ordered is
independent of the second item?

� A customer orders an item at 10am. Is reasonable to assume the time the order is made
independent of the item ordered?

� A customer orders items on consecutive days. Is it reasonable to assume the orders
independent?

Working With Data

2-9. You are to write four programs that you will use in subsequent assignments.

(a) mean - calculate the mean of a dataset

(b) variance - calculate the variance of a dataset

(c) hist <nbins> - calculate histogram of a dataset usingnbins bins.

(d) cdf - calculate the CDF of a dataset.

Each program should accept an arbitrary-sized dataset. It should assume all datasets consist
of real numbers separated by linefeeds. The programshist andcdf should output data in
a form that can immediately be plotted (e.g., by gnuplot). This means that the program
outputs should bex, y pairs separated by linefeeds.

In producing a histogram, one must construct some number of equal-sized bins, and then
count how many observations fall in each bin. To do this, calculate the max and min of
the dataset, and divide the difference intonbins-1 equal sized bins with cutoff valuesxi,
i = 1:::nbins� 1. For each bin bounded byxi andxi+1, count the number of data pointsx
such thatxi � x < xi+1: Finally you will have to deal with the “fencepost” problem: there
will be a number of values not allocated to any bin because they are the maximum values in
the dataset. Create one more bin fromxnbins to xnbins+1 to hold these values.

Also note that if the dataset consists of discrete values (like integers) then you should make
sure your bins each include the same number of discrete values (like, 1 value per bin) and
the bins should be suitably labeled.

In producing the CDF, you should not simply sum up the histogram, because (for a continu-
ous random variable) the histogram is only an approximation to the PDF. Instead, make sure
that each distinct value in the input dataset results in a distinct point on the CDF. That is, for
the case of a continuous-valued dataset, the CDF should be a smooth curve.
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There are three datasets on the course web page namedds1, ds2, ds3. Run all four
programs on the datasets and collect the output. Also calculate the coefficient of variation
for each dataset. For the histogram, you must decide (by inspecting the results) on the proper
number of bins to make the output as meaningful as possible.



Chapter 3

Important Distributions

3.1 The “Independent Events” Distributions

Canonical experiment: flipping a weighted coin; coin comes up “heads” (success) with probability
p. Fundamental assumption isindependence. These distributions are about independent events.

Trials or Time until SuccessNumber of Success in Fixed Time or # Trials

Discrete Trials Geometric Binomial
Continuous Rate Exponential Poisson

3.2 Discrete Distributions

3.2.1 Geometric

Experiment: flip a weighted coin until first success. How many flips does it take to get a success?

Note: q = 1� p.

P [X = k] = p(1� p)k�1 = pqk�1

F (k) =
kX

n=1

P [X = n]

=
kX

n=1

p(1� p)n�1

=
k�1X
n=0

pqn

21
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= p
k�1X
n=0

qn

= p
1� qk

1� q

= 1� qk

The mean of this distribution is1=p: Note that the mean number of failures before the first
success is 1 minus this value,i.e., 1=p � 1 = 1 � p=p. Also note that sometimes we will work
with p (prob. of success) and sometimes withq (prob. of failure); for example, the mean number
of failures before a success, in terms of the probability of failure, isq=1� q.

Variance:(1� p)=p2

C.V. = 1� p
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Figure 3.1: Geometric Distributions

3.2.2 Binomial

Experiment: precisely N coin flips;k is the number of successes.p is the probability of a success.

P [any particular sequence of N trials with k successes] = (p)k(1� p)N�k:

But there are many different such sequences:CN
k of them in fact.

SoP [# successes= k] = CN
k (p)k(1� p)N�k

CDF.F (k) =
Pk

n=0 P [# successes= n]. Note: no closed form.

Mean =pN

Variance =Np(1� p)

CV is less than 1
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Figure 3.2: Binomial Distributions withN = 25

3.2.3 Poisson

Limiting form of binomial, when the number of trials goes to infinity, happening at some rate�.

P [k successes in timeT ] = (�T )k
e��T

k!

CDF: no closed form

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.02
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Figure 3.3: Poisson Distribution with�T = 12:5

mean:�T

variance:�T

cv : 1=
p
�T (ie,< 1)
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3.3 Continuous Distributions.

3.3.1 Uniform

On some range(a; b), the Uniform distribution simply states that all possibilities are equally likely.
So:

p(x) = 1=(b� a) a � x � b

Exercise: Compute the mean, variance, and CV of this distribution as a func-
tion of a andb.

3.3.2 Exponential

This distribution is the analog of the geometric in the continuous case,i.e., the situation in which
a success happens at some rate�. This distribution measures the time until a success occurs.

p(x) = �e��x

F (x) =
Z x

0
�e��y dy

= �e��yjx0
= 1� e��x

E[X] =
Z 1

0
x�e��x dx

= ��
Z 1

0
(
d

d�
e��x) dx

= �� d

d�

Z 1

0
e��x dx

= �� d

d�

�
�1

�
e��x

�
j10

=
�
�x� 1

�

�
e��xj10

=
1

�



3.3. CONTINUOUS DISTRIBUTIONS. 25

(Can also solve the expectation using integration by parts, withu = �e��x andv = x, so
du = �e��x dx anddv = dx, then following the rule that

R
v du = uv � R u dv.)
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Figure 3.4: Exponental Distributions

So mean:1=�

Likewise, variance:1=�2

So cv: 1

3.3.3 Normal.

Important properties of the normal distribution:

1. The sum ofn independent normal variates is a normal variate. Thus normal processes remain
normal after passing through linear systems. (X1 = aX2 + bX3 is normal ifX2; X3 are.)

2. The sum of a large number of independent observations from any distribution with finite
variance tends to have a normal distribution. This is the Central Limit theorem.

Thus we can see that one way of thinking of the Normal is that it is the limit of the Binomial
whenn andp are large, that is, the limit of the sum of many Bernoulli trials. However many other
sums of random variables (not just Bernoulli trials) converge to the Normal as well.

Normal is widely used; often asserted to be most common distribution - but it’s not so in
computer systems. Gaussian distributions have extremely “light” tails.

For example, under a Gaussian model, the typical deviation ofx from � is �. However, the
respective probabilities of thatx deviates from� by more than2�, 3�, 4�, and5� are 0.046, 0.003,
6�10�5, and 6�10�7. Thus deviations from the mean of5� should not be seen in practice; but
this is actually not uncommon in computer systems data.

From [Mac03, p.312]:
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-3 -2 -1 1 2 3
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Figure 3.5: Normal Distribution with� = 0; � = 1

... if a variable that is modelled with a Gaussian actually has a heavier-tailed distri-
bution, the rest of the model will contort itself to reduce the deviation of the outliers,
like a sheet of paper being crushed by a rubber band.

3.4 Heavy-Tailed Distributions

The “light-tail” assumption is often not true for computer systems.

A particularly important part of a distribution is the shape of its upper tail. Tail shape deter-
mines the likelihood of large observations, which in the case of network measurements can often
dominate system performance.

Many of the most commonly used distributions have tails which decline exponentially or faster.
The Normal distribution, the Exponential distribution, and the Uniform distribution all fall in this
category. For such distributions, the likelihood of an extremely large observation (e.g., many
standard deviations above the mean) is negligible or zero.

Supplemental Material: In contrast, a distribution whose upper tail declines
more slowly than any exponential is referred to as asubexponential distribu-
tion [GK98]. This distributions have very high, or even infinite, variance. The
practical result is that samples from such distributions show extremely large
observations with non-negligible frequency. Formally we define a subexpo-
nential distribution as one for which

(1� F (x))eax !1 asx!1 for all a > 0:
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A special case of the long-tailed (or subexponential) distribution is theheavy-tailed distribu-
tion. Such distributions have tails that asymptotically approach a hyperbolic (power-law) shape.
Formally these are distributions for which

1� F (x) � x��

wherea(x) � b(x) means thatlimx!1a(x)=b(x)! c for some constantc.

Heavy tailed distributions behave quite differently from the distributions more commonly used
in performance evaluation (e.g., the Exponential). In particular, when sampling random variables
that follow heavy tailed distributions, the probability of very large observations occurring is non-
negligible. In fact, under our definition, heavy tailed distributions haveinfinite variance, reflecting
the extremely high variability that they capture; and when� � 1, these distributions haveinfinite
mean.

Thus the fact that a distribution is subexponential or heavy-tailed depends only on the shape of
the upper tail and not on the body of the distribution.

Note that subexponentiality and heavy tails are properties of models, not data. However a
given dataset may be consistent with a subexponential or heavy tailed distribution, meaning that
for practical purposes we get good answers to engineering questions if we use such distributions
as a model for the data. This phenomenon in data is known aslong tails. The phenomenon is often
generically called “heavy tails” but we will reserve that term specifically for distributions (having
power-law tail shape).

Subexponential distributions and heavy tails are reviewed in [AFT98].

There are many examples of long-tailed data found in computer systems.

The evidence for heavy-tailed distributions in a number of aspects of computer systems is now
quite strong. The broadest evidence concerns thesizes of data objects stored in and transferred
through computer systems; in particular, there is evidence for heavy tails in the sizes of:

� Files stored on Web servers [AW97, CB97];

� Data files transferred through the Internet [CB97, Pax94];

� Files stored in general-purpose Unix filesystems [Irl94]; and

� I/O traces of filesystem, disk, and tape activity [GMR+98, PG95, Pet96, PA96]

Next, measurements ofjob service times or process execution times in general-purpose com-
puting environments have been found to exhibit heavy tails [GLR92, HBD97, LO86].
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A third area in which heavy tails have recently been noted is in the distribution ofnode degree
of certain graph structures. Faloutsoset al. [FFF99] show that the inter-domain structure of
the Internet, considered as a directed graph, shows a heavy-tailed distribution in the outdegree of
nodes. Another study shows that the same is true (with respect to both indegree and outdegree)
for certain sets of World Wide Web pages which form a graph due to their hyperlinked structure
[AJB99]; this result has been extended to the Web as a whole in [BKM+00].

In practice, random variables that follow heavy tailed distributions are characterized as exhibit-
ing many small observations mixed in with a few large observations. In such datasets, most of the
observations are small, but most of the contribution to the sample mean or variance comes from
the rare, large observations. This means that those sample statistics that are defined converge very
slowly. This is particularly problematic for simulations involving heavy tails, which many be very
slow to reach steady state [CL99].

3.4.1 Zipf’s Law.

Finally, a phenomenon related to heavy tails is the so-calledZipf’s Law [Zip49]. Zipf’s Law relates
the “popularity” of an object to its location in a list sorted by popularity. More precisely, consider
a set of objects (such as Web servers, or Web pages) to which repeated references are made. Over
some time interval, count the number of references made to each object, denoted byP . Now sort
the objects in order of decreasing number of references made and let an object’s place on this list
be denoted byr. Then Zipf’s Law states that

P = cr��

for some positive constantsc and�. In its original formulation, Zipf’s Law set� = 1 so that pop-
ularity (P ) and rank (r) are inversely proportional. In practice, various values of� are found, with
values often near to or less than 1. Evidence for Zipf’s Law in computing systems (especially the
Internet) is widespread [ABCdO96, CBC95, Gla94, NHM+98]; a good overview of such results
is presented in [BCF+99].

Thus Zipf’s Law is an analog of the long tails phenomenon occuring in categorical (non-
numeric) data. One can form an analog of the histogram for categorical data by counting the
number of occurrences of items in each category, and sorting the result in decreasing order.

Note the relationship between Zipf’s law and an actual distribution. In Zipf’s Law, if you rank
the objects by popularity (or rate) then the popularityx(r) as a function of rankr is approximately
rx(r) = constant or more generallyr�x(r) = constant; � > 0.

This then can be used as a distribution by normalizing to unit sum. That is, assuming there are
N possible values:

p(x(r)) =
r��P

i=1;:::;N i��
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This is called theZipf distribution.

Since high variance (indeed, long tails) is a common characteristic of computing systems data,
we often some additional distributions (other than the Zipf) that can be used to model such data.

3.4.2 Pareto

The Pareto distribution is the simplest continuous heavy-tailed distribution. It is the continuous
analog of the Zipf distribution. It declines hyperbolically (i.e., polynomially). It is given by:

p(x) = �k�x���1 k � x; 0 < � � 2:

It takes on values in the range[k;1]. Note that if� > 2, this is still a distribution, but it is not
heavy-tailed and generally not referred to as a “Pareto” distribution.

Pareto was an Italian economist who studied income distributions. (In fact, income distribu-
tions typically show heavy tails.)

Its CDF is particularly simple:

F (x) = 1� (k=x)� k � x; 0 < � � 2:

3.5 Coxian Distributions

A number of distributions can be “constructed” from exponentials. These are useful because often
it is particularly easy to work with exponentials. So, for example, rather than using a polynomially-
tailed distribution, it may be an acceptable model to use a hyperexponential.

3.5.1 Hyperexponential

The Pareto is often a good fit to computer systems data , but it can sometimes be hard to work with
in practice. A distribution that is easier to work with, and yet can be constructed with arbitrarily
large variance is thehyperexponential. It takes three parameters:�1 > 0, �2 > 0, and0 < q < 1.

is given by:

p(x) = q�1e
�1x + (1� q)�2e

��2x
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Thus it is amixture of two exponentials. It can be though of as follows: flip a coin with
probability of heads= q. If the coin comes up heads, take a sample of an exponential distribution
with parameter�1; otherwise, take sample of an exponential distribution with parameger�2.

The variance of the hyperexponential is:

�2 =
2q

�2
1

+
2(1� q)

�2
2

�
 
q

�1
+

1� q

�2

!2

Since there are three free parameters, there are many ways to get a distribution with a given
mean and variance. One way is as follows:

Given1=� (the desired mean) andC2 (the desired squared coefficient of variation, i.e.,�2�2,
let:

q =
1

2

0
@1�

"
C2 � 1

C2 + 1

# 1
2

1
A

�1 = 2q�

�2 = 2(1� q)�

This particular choice ofq; �1; �2 has the property of “balanced means”:

q

�1
=

1� q

�2

Mixtures of (larger numbers of) exponentials can in fact be used to approximateany distribu-
tion function. In particular, for approximating a Pareto using mixtures of exponentials see [FW97].

3.5.2 Erlang-k

There are also situations in which we are interested in low-variance distributions. One useful
distribution in this regard is the Erlang-k. An Erlang-k random variable is the sum ofk exponential
random variables each with parameter�.

As one sums random variables, eventually the Central Limit Theorem takes hold. Thus for
largek, the Erlang-k is approximately normal, while fork = 1 it is exponential.

A. K. Erlang was a Danish mathematician who contributed immensely to the design of early
telephone networks and switching systems.
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It has distribution function:

p(x) =
�k(�kx)k�1

(k � 1)!
e��kx x > 0:

One can think of the Erlang-k distribution as the time required by a customer to pass through
k service centers, each of which requires time given by an exponential distribution with rate�k.

The mean of this distribution is1=�. Thus it has the same mean as an exponential distribution
with rate�.

The variance of this distribution is:

�2 =
1

k�2

.

As can be seen, for a given mean, the variance of the Erlang-k decreases in inverse proportion
to k.

3.6 Approximations

If n is large andp (= prob success) is small, the poisson is a good approximation for the binomial.

Figure 3.6 shows this. It shows the Binomial with largen and smallp compared to the Poisson
with same mean (1). Note how similar the figures look.
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Figure 3.6: Comparing Binomial and Poisson with Small Mean (E[X] = 1), Large No. of Trials
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Figure 3.7 shows how both distributions change as we increase the mean to 2.5. Note how the
figures both become more symmetric.

In fact, eventually for large mean, they become completely symmetric, and well approximated
by the Normal distribution! Figure 3.8 shows the same two distributions with mean of 5, alongside
the Normal with same mean and variance. In the limit of large number of trials and large mean,
both Poisson and Binomial are well approximated by Normal.
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Figure 3.7: Comparing Binomial and Poisson with Larger Mean (E[X] = 2:5), Large No. of
Trials
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Figure 3.8: Comparing Binomial, Poisson, and Normal with Large Mean (E[X] = 5), Large No.
of Trials

The variance of the Binomial isnp(1� p), so for these values that yields a standard deviation
of 2, which is what is used to find the matching Normal distribution.

However, ifn is small, one cannot do good approximations using the Poisson or the Normal;
in that case, one must use the Binomial itself. See Figure 3.9 for a comparison of Poisson and
Binomial in the case wheren = 3. Note how bad the match is.
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Figure 3.9: Comparing Binomial and Poisson with Same Mean, Small No. of Trials
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Exercises

Reasoning about Models

3-1. Prove the Law of Total Expectation.

3-2. If X andY are independent random variables, prove thatE[XY ] = E[X]E[Y ].

3-3. Which of these distributions would you use to describe ...

� the number of processors that are up in a multiprocessor system?

� the number of bits successfully transmitted in a row?

� number of requests to a server in a given time intervalT?

� the number of local requests to a Web page between remote requests to a Web page?

� the number of packets that reach a destination without loss?

� the number of queries to a database inS seconds?

� the number of bits in a packet that are unaffected by noise?

� the number of processor failures in an hour?

3-4. Given a random variableX that is exponentially distributed with parameter�. What is the
probability that any particular observation ofX will be greater than its mean?

3-5. (Allen) A certain airline has found that approximately 5% of all persons holding reservations
on a given flight do not show up. The plane holds 50 passengers and the airline takes
reservations for 53 (this is calledoverbooking). What is the probability that every passenger
who arrives on time for the flight will have a seat? (Assume there are no walk-ins.)

3-6. (Allen) Personnel of a certain engineering company use an online terminal to make routine
engineering calculations. If the time each engineer spends in a session at a terminal has an
exponential distribution with an average value of 36 minutes, find

(a) The probability that an engineer will spend 30 minutes or less at the terminal,

(b) The probability that an engineer will use it for more than an hour.

(c) If an engineer has already been at the terminal for 30 minutes, what is the probability
that he or she will spend more than another hour at the terminal?

(d) Ninety percent of the sessions end in no more thanR minutes. What isR?

3-7. A programmer submits jobs to a system as follows: she first submits a job of size 1. With
probability1=2, she is satisfied with the result and stops there; however with probability1=2
she is not satisfied, and proceeds to submit a job of size 2. The process then repeats; with
probability 1/2 she stops, and with probability 1/2 she goes on to submit a job of size 4, and
so on. Once the whole process completes, she starts over again with a job of size 1. Let the
random variableX be the size of a job.
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(a) IsX discrete or continuous?

(b) What are the possible valuesX may take on?

(c) What is the probability distribution ofX?

(d) What is the expected size of a job?

3-8. ABernoulli random variable is one that takes on only the values 0 or 1. Consider a Bernoulli
random variableB in which the probability of taking on the value 1 isp.

(a) What is the expected value ofB?

(b) What is the variance ofB?

(c) For what value(s) ofp is the variance ofB maximized?

(d) For what value(s) ofp is the variance ofB minimized?

Working with Models

3-9. On a single plot, show:

� An exponential pdf with�1 = 1

� An exponential pdf with�2 = 0:2

� A hyperexponential pdf withq = 0:5; �1 = 1; �2 = 0:2.

3-10. � On a single plot, show:

– A pdf (histogram) of the Binomial distribution withN = 40; p = 0:6

– A pdf (continuous curve) of a Normal distribution that you have chosen as a good
approximation to this Binomial.

� State the parameters of the Normal that you used and how you got them.

� State the parameter(s) of the Poisson distribution you would use to approximate this
Binomial.
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Chapter 4

Exponentials and the Poisson Process

4.1 Stochastic Processes

A stochastic process fX(t); t 2 Tg is a collection of random variables. That is, for eacht 2 T ,
X(t) is a random variable. The indext is often interpreted as time, and we refer toX(t) as the
state of the process at timet.

The setT is the index set of the process. WhenT is a countable set the stochastic process is
said to be adiscrete-time process. WhenT is an interval of the real line, the stochastic process is
said to be acontinuous time process.

So for example we can have the discrete time processfXn; n = 0; 1; :::g or the continuous
time processfX(t); t � 0g.

An equivalent view of a stochastic process is a set ofrealizations: fx1; x2; :::g; each realization
occurs with probability equal to the joint distribution of all individual observations. The set of all
realizations forms anensemble.

The RVs themselves (X(t)) may be continuous valued or discrete valued. These are called
continuous state space anddiscrete state space systems (or chains).

Relationship between counting process and interarrival process.

Still to cover: ergodicity, stationarity.

4.2 Memoryless Property of the Geometric Distribution.

Consider the canonical coin-flipping experiment, in which we are counting the number of trials
up to and including the first success. Suppose we are given that there were no successes during

37
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the firstm trials. We wish to calculate the probability that there will bek more trials up to and
including the first success, that is,P [T = k +mjT > m] for k = 1; 2; :::.

By the definition of conditional probability, we have:

P [T = k +mjT > m] =
P [(T = k +m)&(T > m)]

P [T > m]

but

fT = k +mg&fT > mg = fT = k +mg

sincek > 0, and

P [T > m] = 1� P [T � m] = qm

so

P [T = k +mjT > m] =
pqm+k�1

qm
= pqk�1 = P [T = k]

This is called the Markov or memoryless property of the geometric distribution. This should
make sense to you if you think about coin flipping as the canonical experiment for the geometric
distribution ... the coin doesn’t know what happened in the past.

4.3 Properties of the Exponential RV

4.3.1 Comparing Two Exponential Random Variables

Suppose we have two independent random variablesX1 andX2 that are each exponentially dis-
tributed, with respective parameters�1 and�2. Let us determine the probability thatX1 is less
thanX2.

We can attack this problem by conditioning onX1:

P [X1 < X2] =
Z 1

0
P [X1 < X2jX1 = x]p(x)dx

=
Z 1

0
P [X1 < X2jX1 = x]�1e

��1xdx

=
Z 1

0
P [x < X2]�1e

��1xdx
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=
Z 1

0
e��2x�1e

��1xdx

=
Z 1

0
�1e

�(�1+�2)xdx

=
�1

�(�1 + �2)
e�(�1+�2)xj10

=
�1

�(�1 + �2)
(0� 1)

=
�1

�1 + �2
:

4.3.2 Minimum of n Exponential Random Variables

Suppose thatX1; X2; :::; Xn are independent exponential random variables, withXi having rate
�i; i = 1; :::; n: Now let us define a new random variableY = minimum(X1; :::; Xn):

Make sure you are clear about what is meant here:Y is a random variable that takes whatever
value happens to be the minimum when we sample each of theXi once.

It turns out thatY is also an exponential random variable, with rate equal to the sum of the�i.
This is shown as follows:

P [Y > x] = P [minimum(X1; :::; Xn) > x]

= P [X1 > x;X2 > x; :::; Xn > x] (this is the key step; why is it valid?)

=
nY
i=1

P [Xi > x] (by independence)

=
nY
i=1

e��ix

= e�(
P

n

i=1
�i)x

4.3.3 Poisson Processes

Consider again the canonical experiment which gives rise to the Exponential distribution: we are
flipping a coin infinitely fast, with a probability of success such that the expected time until a
success is1=�. Then the rate of successes is�.

Now let us assume that as soon as we get a success, we immidiately start the process all over
again. Then we have a sequence of successes separated by exponentially distributed lengths of
time. This is called aPoisson process.
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We have already seen that the number of successes in timeT of a Poisson process with rate�
is described by the Poisson distribution with parameter�T .

We can denote a Poisson process asN(t) whereN counts the number of successes that have
occurred at timet. (Counting is assumed to start at time 0).

Superposition of Poisson Processes

Now let us consider two Poisson processesN1(t) having rate�1 andN2(t) having rate�2.
Suppose wesuperpose the two processes, meaning: at each timet, count the total number of
successes that have occurred inboth N1 andN2. That is,NS(t) = N1(t) +N2(t).

In this superposed process, a success occurs whenever a success occurs ineither N1 or N2.
How can we describe the processNS(t)?

Consider an arbitrary point in time, and ask: “what is the distribution of time until a success
occurs inNS?”. Clearly, this time is equal to theminimum of the time to the next success in
eitherN1 or N2. The time to next success inN1 is distributed exponentially with parameter�1,
and correspondingly forN2. So by the minimum-of-exponentials rule above, the time to the next
success inNS is also distributed exponentially, and the parameter is�S = �1 + �2.

So a remarkable fact about Poisson processes is that the superposition of two Poisson processes
is also a Poisson process, with rate equal to the sum of the rates of the two components.

Splitting of Poisson Processes

It can be shown as well that probabilisticsplitting of a Poisson process yields Poisson pro-
cesses. That is, given a Poisson processN(t) having rate�, suppose that each time an event
occurs it is classified as either a type I or a type II event. Suppose further that each event is clas-
sified as a type I event with probabilityp and a type II event with probability1� p independently
of all other events. LetN1(t) andN2(t) denote respectively the number of type I and and type
II events occurring in[0; t]. Note thatN(t) = N1(t) + N2(t). ThenN1(t) and)N2(t) are both
Poisson processes having respective ratesp� and(1 � p)�. Furthermore, the two processes are
independent.

4.4 Path to the Poisson Process

How valid is the Poisson process as an assumption for arrivals? In fact there are some valid reasons
for assuming that arrivals can often be approximated as a Poisson process.

The first evidence is empirical. Lots of random processes have been shown to be well modeled
by a Poisson process. For example, the number of

� Prussian cavalry officer deaths by horsekick
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� flying-bomb hits on London in World War II

� accidents on a given stretch of road

� newspaper misprints on a page

� occurrences of the word ’and’ in President Bush’s state of the union speeches (seehttp:
//www.nytimes.com/ref/washington/20070123_STATEOFUNION.html)

are all well described as Poisson processes.

The general reason that this occurs is as follows. The limit of a large number of indepen-
dent stationary renewal processes (each with arbitrary distribution of renewal time) will tend to a
Poisson process.

That is, when the arrival process can be thought of as the superposition of a very large number
of processes each occurring at a very low rate, the resulting process tends to a Poisson process.

When does this assumption fail? When finiteness of population is significant. That is, when
the number of superimposed processes is not so large. In this case, the arrival of a customer can
decrease the probability that a new customer will arrive. These are calledfinite population or
closed queueing systems.

Poisson Arrivals See Time Averages (PASTA).

The “time average” state of a system means the average one sees if one chooses a time to ob-
serve at random, with uniform probability over some interval. This is distinct from the “arriving
customer average” (i.e., what an arriving customer typically sees) which could be very different
from the time average. Consider the case in which customers arrive periodically with some fixed
interarrival time. Then if the system also has some periodicity, it may happen that the arriving
customer consistently sees the system in some “unusual” state. Or, for example, consider what
happens when batches of customers arrive. The later-arriving customeralways sees other cus-
tomers in the system, even if this is not the typical state of the system.

So, what does observing the “time-average” mean? Pick any interval[t; t + s] out of [0; T ].
Then the probability of the observation falling in the interval should bes=T . We now show that
the a Poisson process generates events uniformly over the interval[0; T ].

Divide the interval[0; T ] into k subintervalsh1; h2; :::; hk. We will show that the probability
that exactly one Poisson point occurs in each of the subintervals is the same as the probability of
uniformly selectingk points and finding exactly one in each of the subintervals.

The probability that exactly one of thek randomly selected points would falling each of the
subintervalshi is calculated as follows. The probability that a particular point hits a intervalhi is
simplyhi=T and there arek! ways this could happen, so:

P [one point falls in each interval] =
k!

T k
h1h2:::hk
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Now, in the case of the Poisson process, we reason as follows. The Poisson process is mem-
oryless, so each start of a subinterval can be considered a starting point for the Poisson process.
This means that the probability ofn points in any given interval is simply given by the Poisson
distribution. What happens in each interval is independent, so the probability that precisely one
Poisson arrival occurs in each interval is:

P [one point in each interval] = P [one point inh1] � P [one point inh2] � ::: P [one point inhk]

and the probability that precisely one Poisson arrival occurs in each interval given thatk Poisson
arrivals occurred is:

P [one point in each intervaljk points in total]

=
P [one point inh1] � P [one point inh2] � ::: P [one point inhk]

P [k points inT ]

=
�h1e

��h1 �h2e
��h2 ::: �hke

��hk

�ke��TT k=k!

=
k!

T k
h1h2:::hk

So we have the same probability assuming Poisson arrivals as we do when we assume random
selection. Since we did not restrict the number of the intervals of their size, the result must be true
for an arbitrary set of intervals positioned in an arbitrary way. So the location of those Poisson
arrivals must be uniformly distributed in the interval[0; T ].

4.4.1 Timeseries; Dependence and Autocorrelation; SRD and LRD

TBD.

4.4.2 Mean Residual Life

Note: superseded by Palm Calculus approach of PE x11.

It often happens that we want to know the mean value of a random variable, given that we know
the RV is greater than some value. This is a conditional mean, calledresidual life. For example:
how long do I expect this lightbulb to burn, given that it has already been burning for 100 hours?

Now let us consider the mean residual life; that is, the average residual life, where the average
is taken over all possible starting times. For example, for a set of a large number of lightbulbs that
have all been burning for different (random) times, what is the average time that a bulb will keep
burning? This ismean residual life.

We know how to form the probability distribution of X given that it is greater than some value:
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P [X = k + sjX > k] =
P [X = k + s]

P [X > k]

So to determine residual life after timek, we can write:

E[XjX > k] =

R1
k xp(x)dxR1
k p(x)dx

Then the mean residual life is the expectation of this over allk:

�r = E[E[XjX > k]] =
Z +1

�1
p(k)

 R1
k xp(x)dxR1
k p(x)dx

!
dk

We can determine that this yields:

�r =
E[X2]

2E[X]

That is, the second moment over twice the first moment.
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(not required material)
To see this, we reason as follows: Denote byJ the total processing-time of the job which the new
arrival finds in service, and letY be the amount of processing-time remaining for that job at the
instant of arrival. Let us first ask, what is the distribution ofJ?

LetG(p) be the processing-time distribution function, andE[X] be its expectation. Then:

P [p � J � p+ dp] =
p dG(p)

E[P ]

or alternatively,

F (x) = 1=E[X]
Z x

0
p dG(p)

This can be seen by realizing that the desired probability should be proportional to the long-run
portion of time devoted to processing times of lengthp. This, in turn, should be proportional to
the product of the processing-timep and the frequencydG(p); with which such intervals occur.
The denominator,E[X] is a normalizing factor required to make the integral of this probability
equal to one, since

R1
0 p dG(p) = E[X].

Now to determine the distribution ofY , note that the conditional distribution ofY given
thatJ = p, is the uniform distribution. That is, the observation point will fall anywhere within the
processing-time interval with equal probability. So:

P [y � Y � y + dyjJ = p] =
dy

p
for 0 � y � p

The joint probability of landing at spot Y within an interval of length J is then:

P [y � Y � y + dy; p � J � p+ dp] =
dG(p)

E[X]
for 0 � y � p; 0 � p � 1

The marginal distribution ofY is obtained by integrating over the allowable values ofp. This
yields the density function ofY as

P [y � Y � y + dy] =
Z 1

p=y

dG(p)

E[X]
dy =

1�G(y)

E[X]
dy for 0 � y � 1
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To get the expectation ofY (our actual goal!) we calculate:

E[Y ] =
Z 1

y=0
y p(y) dy =

Z 1

y=0
y
1�G(y)

E[X]
dy

= 1=E[X]
Z 1

y=0
y
Z 1

x=y
p(x) dx dy

which is integration over a triangular area, so we can interchange the integration order as follows:

E[Y ] =
1

E[X]

Z 1

y=0
y
Z 1

x=y
p(x) dx dy

=
1

E[X]

Z 1

x=0

Z x

y=0
y p(x) dy dx

=
1

E[X]

Z 1

x=0
p(x)

Z x

y=0
y dy dx

=
1

2E[X]

Z 1

x=0
p(x)x2 dx

=
E[X2]

2E[X]

Example. For the Exponential distribution, the mean residual life would be

�r =
2=�2

2=�
=

1

�

Does this make sense? Why?



46 CHAPTER 4. EXPONENTIALS AND THE POISSON PROCESS

Exercises

4-1. Prove that the Exponential Distribution is memoryless.

4-2. Given two Pareto random variablesX1 andX2, with equal location parametersk and corre-
sponding scale parameters�1 and�2,

(a) write a simple closed formula for the distribution ofmin(X1; X2):

(b) What type of distribution doesmin(X1; X2) have?
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Chapter 5

Statistical Analysis of Data

“When you can measure what you are speaking about, and express it in num-
bers, you know something about it; but when you cannot express it in numbers,
your knowledge is of a meager and unsatisfactory kind; it may be the begin-
ning of knowledge, but you have scarcely in your thoughts advanced to the
state of science.”
— Lord Kelvin

5.1 Confidence Intervals

Definitions. CIs for the median and the mean.

5.1.1 Confidence Intervals for the Median

Based on LeBoudec.

5.1.2 Confidence Intervals for the Mean

Because it is a random variable, we generally try to characterize it using mean and variance. Mean
tells us what to expect, and variance tells us how much variability to expect from run to run.

Assume that there is a true value (some output parameter) that we are trying to find. This could
be average value of waiting time, instantaneous queue length, etc. The metrics that we get out of
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the simulation are samples of a random variable, so they are drawn from some distribution. We
will focus on the mean of that distribution.

We would like to find a range within which we are 90% sure that the true mean lies. What
does this loose phrase “90% sure” mean? It means that we estimate that the probability that the
true mean lies in the interval to be 0.9. This interval is then called the 90% confidence interval.

So based on some measurements of the metrics, we calculate a 90% confidence interval. What
does this mean in practice?

90% of the confidence
intervals include
the true mean

observations from a normal distribution,
mean is unknown

f(x)

(after Jain, Fig 13.1)

The true mean could beanywhere in the confidence interval range. There is no “more likely”
region in the confidence interval for the mean to fall. Anotherwards, if we did this 100 times, 90
times the mean would be within the range we calculate.

Thus if two confidence intervals overlap, we cannot be sure that the means are different. The
two cases therefore are indistinguishable at the confidence level we are using.

Now, how can we construct confidence intervals? We need to assess the variability of our
measurements of the parameter of interest.

Can you use variance of individual measurements during a simulation run to estimate their
variability? No, because the metrics are correlated over short distances as occur during a simula-
tion run. However if we observe the simulation over long intervals, the metrics for separate long
intervals will be independent. How long is long enough? Long enough for the initial state at the
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beginning of the interval to have little or no effect on the average metric over the interval. That is
to say, long enough for a startup transient to be unimportant. The best way to achieve this is to do
separate runs, each time eliminating the startup transient.

We can form an estimate of the mean of the distribution as the empirical average over all
replications, and can calculate the sample variance of the respective measurements.

Now, the Central Limit Theorem tells us that the sum of a large numbern of random variables,
each with mean� and variance�2, yields a normally distributed random variable with meann�
and variancen�2. So the distribution of the average would also be normal with mean� and
variance�2=n. That is,

�x � N(�; �=
p
n)

We usually assume that the number of samples should be 30 or more for the CLT to hold.
However this is a rather shaky rule of thumb – if the samples have particularly high variance, this
may not be enough.

The standard deviation of the sample mean is called the standard error. The standard error
is different from the population standard deviation. If the population standard deviation is�, the
standard error is only�=

p
n. Because of the relationship onn, the variability of�x decreases as

we increase the number of samplesn. Thus, it will turn out that using�x, we can get increasingly
“tight” estimates of� as we increase the number of samplesn.

Now, remember that the true mean� is a constant, while the empirical mean�x is a random
variable. Let us assume for a moment that we know the true� and�, and that we accept that�x has
aN(�; �=

p
n) distribution. Then it is true that

P [�� k�=
p
n < �x < �+ k�=

p
n] = P [�k < S < k]

whereS is the unit normal random variable (having distributionN(0; 1)).

We writez1��=2 to be the1� �=2 quantile of the unit normal. That is,

P [�z1��=2 < S < z1��=2] = 1� �:

So to form a 90% probability interval forS (centered on zero) we choosek = z0:95. Turning back
to �x, the 90% probability interval on�x would be:

�� z0:95�=
p
n < �x < �+ z0:95�=

p
n:

(These unit normal quantiles are tabulated in many books, for examplez0:95 � 1:65; z0:975 �
1:95; andz0:995 � 3:27:)

This is pretty straightforward so far. Now comes a tricky step. Note that the following two
expressions define the same events:

�� k�
p
n < �x < �+ k�=

p
n
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and
�x� k�

p
n < � < �x+ k�=

p
n:

What we are saying is, that the sample mean is in some fixed-size interval centered on the true
mean, if and only if the true mean is also in a fixed-size interval (of the same size) centered on the
sample mean. (Envision this geometrically.)

Note however, that in the first case, we are expressing the event that a random quantity falls
between two constant bounds. In the second case we have described the same event in terms of
a constant falling between two random bounds. But they are the same, and their probabilities are
equal, so

1� � = P [�� z1��=2�=
p
N < �x < �+ z1��=2�=

p
N ]

= P [�x� k�
p
N < � < �x+ k�=

p
N ]:

This latter expression defines the1� � confidence interval for the mean.

We are done, except for estimating�. We do this directly from the data:̂� = s (wheres is the
sample standard deviation,s =

q
1=(n� 1)

P
(xi � �x)2).

To summarize: by the argument presented here, a 100(1-�)% confidence interval for the pop-
ulation mean is given by

�x� z1��=2 s=
p
n:

Dealing With a Small Number of Samples

To do this for less than 30 samples, Let us assume that the output means are normally distributed.
We have already shown that they are independent. Then we need to use Student’s t distribution,
which describes how asmall number of samples from a Normal distribution tends to behave. The
sample mean has a Normal distribution and the sample variance has a�2 distribution. The result
is thet distribution.

An interval +/-� within which the the true mean would fall with probabilityp is given by

� =
t(n� 1; p)sp

n

Again, s=
p
n is called thestandard error. It describes how the variance of the sample mean,

as a random variable, behaves (which comes from the fact that variances sum).

In general,n = 5 or 7 are reasonable for many cases. For homework, usen = 5 and use 90%
confidence intervals.

The web page uses a one-sided table, so you should use the column for 0.05 to get a 90%
confidence interval.
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Remember: to use Student’st distribution, you must have (approximately) normally distributed
outputs. Can check this using histogram ... is it bell-shaped?

Special Topic: Dealing With Autocorrelation A complication in construct-
ing confidence intervals is the presence of autocorrelation in system behavior.
Networks and endsystems are not memoryless: they contain buffers and con-
trol algorithms that maintain past history in a way that affects current behavior.
For example, when a network link is running at high utilization, routers may
build up large queues which take a long time to drain. Thus the departure of a
packet from the router can be delayed because of events that took place long
in the past. This leads to autocorrelation in system behavior — the system’s
current behavior is very similar to its behavior in the recent past.
The effects of autocorrelation can be good and bad. Autocorrelation makes
the near future more predictable: one can have increased confidence that if
packet delays were high in recent past, they will still be high at the present
time. However they also decrease the amount of information that is obtained
in measurement. If one is interested in estimating the value of a system prop-
erty that is strongly autocorrelated, confidence intervals will be larger than
had the property been uncorrelated. Worse yet, if one constructs confidence
intervals using statistical formulas that assume independence of observations,
the confidence intervals will be misleadingly small leading to a false sense of
precision in the results.
This can be illustrated as follows, based on the exposition in [Rou05] (which
has additional valuable observations and examples). Assume we wish to es-
timate the mean of a process given measurementsfXt; t = 1; 2; :::; ng. The
expected value of the estimator̂X = 1=n

Pn
t=1Xt is the true meanE[X].

However, thevariance of this estimator depends on the correlation present in
the measurements.
The usual Central Limit Theorem concerns independentXt, and states that:

p
n(X̂ � E[X])! N (0; �2)

(where! here means “converges in distribution for largeT ”). On this ba-
sis one can form confidence intervals forX̂ which are proportional to�=

p
n.

However, whenXt are not independent, the estimator converges to a distribu-
tion with higher variance:

p
n(X̂ � E[X])! N (0; s2)

wheres2 is theasymptotic variance. The asymptotic variance is larger than
sigma2 due to the influence of autocorrelation in theXts. The appropriate
confidence intervals are correspondingly larger, proportional tos=

p
n:



54 CHAPTER 5. STATISTICAL ANALYSIS OF DATA

One can quantify this inflation in estimator variance using the autocorrelation
function r(k) of the underlying (continuous) process being sampled. If the
process is being sampled at uniform periodic intervalsÆt, then:

s2 = �2

"
1 +

1X
k=1

r(k Æt)

#

and if the process is samped at Poisson intervals with rate�:

s2 = �2
�
1

�

Z 1

0
r(u) du

�

The autocorrelation present in network measurements can arise from a number
of sources; an instuctive example is queueing delays. For an M/M/1 queue (a
FIFO queue with Poisson arrivals and exponentially distributed service times),
the resulting asymptotic variance is:

s2 � 4�2

(1� �)4

where� is the utilization of the queue (arrival rate times mean service time).
This expression exposes an important principle: autocorrelation, and therefore
asymptotic variance, increases with increasing system load. The relationship to
system load is very sensitive, as shown by the fourth power in the denominator.
When load is high, large queues build up, and queueing delays lead to larger
autocorrelation at greater time lagsk. As a result, esimates of system mean
have higher variance (perhaps much higher) and are less reliable.

5.2 Interpreting Confidence Intevals

From the discussion above it should be clear that the confidence interval states that the mean could
beanywhere within the interval. It isnot necessarily true that the mean is more likely to be in the
middle of the interval than the edges — that depends on the distribution of the estimator, which
may not be symmetric. To see this, look at the figure above.

Now consider the three cases below. In each case we are plotting the output of a simulation on
they axis against some simulation input or parameter on thex axis. We wish to determine whether
there is a trend in the relationship ofx andy; i.e., whenx increases doesy also increase?

In Case 1 each point represents a single run of the simulation. In this case onecannot conclude
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x

y

Case 1 Case 2 Case 3

x

y

x

y

that there is any relationship betweenx andy, because we don’t know how variable they values
are. To conclude there is a relationship here would be the same as rolling a dice three times,
observing a 1, 2, and 3, and concluding that the next roll will be 4, then 5, etc.

To address this question we add confidence intervals to our data points, resulting in Case 2.
Now is it fair to conclude that there is a relationship betweenx andy? No! Because of the way
the confidence intervals overlap, the mean could in fact be declining just as easily as increasing —
remember, the mean might beanywhere in the confidence interval.

Finally we come to Case 3, in which we can in fact conclude there is a relationship. This
is because, no matter where the mean is in each confidence interval, because the intervals don’t
overlap, the mean must be increasing as we increasex.
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Chapter 6

Palm Calculus

Palm calculus is a set of tools for reconciling the time and event views of a system.

We will cover Palm calculus results for both descrete and continuous time, but we will go into
detail and provide proofs only for the discrete time case.

6.1 The Inversion Formula

In working with the inversion formula, it is helpful to remember the following fact:

Let N be a random variable assuming positive integer values 1, 2, 3, ... LetXi be a sequence
of independent random variables which are also independent ofN and withE[Xi] = E[X] the
same for alli. Then:

E

"
NX
i=1

Xi

#
= E[N ]E[X]

6.2 Time View of a Sequence of Intervals

Also the byte view of a collection of files. Based on LeBoudec.

Introduce the notationpw(x) andFw(x) for random variableX. Define:

pw(x) =
x p(x)

E[X]

and:

Fw(x) =

R x
0 u p(u) du

E[X]
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Perhaps these should be ps and Fs to avoid ’waiting time’ association.

6.3 Residual Lifetime

IncludingFeller’s Paradox.

6.4 Mean Residual Lifetime
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Exercises

Using Palm Calculus

6-1. A TCP-like Protocol. The TCP protocol, among other things, attempts to gradually increase
its sending rate over time to achieve high throughput. A simplified version is the following:

� Packets are sent inrounds.

� The first round, one packet is sent.

� If no packets are lost in a round, then in the next round the number of packets sent is
increased by 1.

� If any packets are lost in a round, then in the next round one packet is sent.

This algorithm is calledadditive increase.

After sending the packets in a round, the protocol waits for an acknowledgement from the
receiver specifying whether all packets were received (not lost). The time it takes for this
acknowledgement after the first packet is sent is the round-trip time (RTT). We can treat
each round as lasting one RTT since the RTT is generally larger than the time it takes to
send the packets.

Thus we can treat the number of packets in a round as a discrete time stochastic process
fXt; t = :::;�1; 0; 1; :::g The events in our analysis will be the loss of one or more packets
in a round.

The time instants where one or more losses occur arefTn; n = :::;�1; 0; 1; :::g with T0 �
0 < T1.

For now, we assume that all of the packets arriving in the window during which a loss takes
place are considered as arriving successfully, i.e., contributing to throughput.

So some of the quantities that we will work with areE[X0]; E[T0]; E
0[X0]; E

0[T0]; E
0[T1];

etc.

Show your work for each answer.

(a) Which of the quantities should be interpreted as thethroughput of the protocol?

We’ll denote the average number of rounds until a loss asn. That is, if losses occur in rounds
1,5,9 thenn = 4.

(b) Which of the quantities should be interpreted asn?

(c) Use the inversion formula to compute the throughput in terms ofn. You can assume
thatn is an integer here and in what follows.

Assume that packets are lost independently with probabilityp.
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(d) Now, treat the packets in the last round that arrive before the loss as arriving success-
fully, while all the packets arriving after the loss as not received successfully, and so
not contributing to throughput. Assume that exactly one packet in the last round is lost.
Adjust the result you obtained in the last question for this correction.

(e) We make the following observation:

losses per unit time
packets per unit time

= losses per packet:

Use this observation to derive an expression forn in terms ofp.

(f) What is the throughput of this protocol expressed in terms ofp?

(g) Plot the throughput of this protocol in bytes/second as a function ofp, for p in the range
of 0.1 to 0.001, withp on a log scale. These are typical loss rates in today’s Internet.
Assume an RTT of 100 ms and an average packet size of 1500 bytes (which are also
typical values for the Internet). How rapidly does throughput increase with decreasing
loss rate? For example, if loss rate is cut by a factor of 10, does throughput increase by
the same factor?

6-2. Same problem as the last one, but we will change the protocol. Assume that instead of
adding one to the round size on successful transmission, wedouble the round size. This
is calledmultiplicative increase. Compute the resulting throughput (no need to make the
last-window correction in this case), plot again as in the last question, and comment on the
differences with the additive case.

6-3. Consider a network link carrying traffic for a set of users. Each user makes a request for
a file, which is then sent over the link at a constant rate. Assume that the traffic demands
are much less than the capacity of the link, so that every file is sent at the same rate ofR
bytes/second, regardless of the number of files that are simultaneously in transit.

Assume that users make requests for files according to a Poisson process with rate�. File
sizes are drawn from a distribution with densityp(x) having mean�x bytes.

(a) What is the average time a file spends passing over the link?

Consider the time view of the link, that is, what one would see at a randomly chosen time
t = 0.

(b) What is the average number of files in transit at timet = 0?

(c) State the distribution of file sizes you expect to find passing over the link at timet = 0.

(d) Consider the byte flowing over the link at time 0. What is the probability it comes from
a file of sizes or less?

6-4. Consider a Poisson process with rate�.
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(a) What is the most frequent (most likely) interarrival time?

(b) Consider an observation of the process at a random time. What is the most likely size
of the interarrival time during which the observation falls?

6-5. (Based on [MSAHB04].) A particular database system implements task preemption. When
a high priority task arrives, it can interrupt a low priority task. (Tasks in this system corre-
spond to individual database queries, updates, and so forth.)

Measurements show that when a low-priority task is interrupted, the amount of work it has
done is, on average, between 75% and 90% of its service demand.

(a) Explain why this is surprising. What would you have expected?

Upon further investigation, you learn more about the preemption mechanism. It turns out
that tasks acquire locks as they progress, and that a task gets interrupted by a higher priority
task that needs one of its locks.

(b) Assume that tasks acquire locks at a constant (uniform) rate, that all locks are held
until the task completes, and that each lock is equally likely to cause a task interrup-
tion. State the expected fraction of its work that a task will have completed when it is
interrupted.

(c) Compare your answer to the empirically measured value of 75% to 90%. What do you
conclude about how tasks typically acquire locks? That is, are locks more likely to be
acquired toward the beginning or the end of the task?

6-6. A crossover statistic is a rule is a rule thatp fraction of the mass is contained in the1 � p
fraction of the largest objects. For example, “80% of the bytes are contained in the largest
20% of the files.” This is sometimes called an “80/20” rule (or “90/10” etc.) It’s a convenient
way of expressing the tendency for a dataset to be dominated by large objects. The reason
for selectingp and1� p as the cutoff values may be that it’s not hard to remember: you can
switch the sense and it is still true (i.e., “20% of the bytes are contained in the 80% smallest
files.”)

Find the crossover statistic (p) for a set of files if we assume that file sizes are drawn from:

(a) a uniform distribution on(0; 1] i.e.,

p(x) = 1; 0 < x � 1

(b) a Pareto distribution with� > 1, i.e.,

p(x) = �k�x���1 x � k; � > 1

Give a solution for� = 2.
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(c) Using the analytic results of the last part, prepare plots of the cumulative size-weighted
distributionFw(x) vs the regular CDFF (x) for the Pareto distribution withk = 2 and
� = 1:5; 1.4, 1.3, 1.2, and 1.1. That is, the plots will show the fractiony of bytes
contained in the fractionx smallest files, withx andy varying from 0 to 1. Use these
plots to estimate the crossover statistics for each distribution.

(d) What happens if the distribution has� � 1?

6-7. What is the mean residual lifetime for a Pareto distribution with� > 2?

6-8. You are given two Pareto random variablesX1 andX2, with equal location parametersk
and corresponding scale parameters�1 > 1 and�2 > 1. Using the results of Exercises 4-2
and 6-7, what is the mean residual lifetime formin(X1; X2)?
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Chapter 7

Simulation

7.1 Generating random numbers.

Fromxkcd. http://xkcd.com/c221.html

Problem: no real source of randomness in a computer (because that’s the way we like them!).
Solution:Pseudo-random number generation == PRNG.

Goals of a PNRG:

1. fast,

2. long period, and

3. the “appearance” of randomness.

By the “appearance” of randomness we usually mean: the appearance of independence, and
uniform distribution.

Independence is an abstract notion and can never actually be proven. Even the “appearance”
of independence can only be interpreted as the ability to pass some set of statistical tests. Usually
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the most important test is serial correlation, so we desire our PRNG to show little correlation from
one sample to the next. This is a local property.

Uniform distribution is tested for using a goodness of fit test list chi-square or K-S test. This
is a global property.

The generation of random numbers is too important to be left to chance.
— R. Coveyou, Oak Ridge National Laboratory

7.2 Uniform PRNG

The main approach we consider is thelinear congruential method.

Xn+1 = (aXn + b) mod m

a; b; andm are parameters of the PRNG. These are usually chosen quite carefully and it is best
to use values that have been carefully studied. For our purposes we will usedrand48() which
is a linear congruential PRNG with 48 bits of internal state.

Look at the manpages fordrand48(), srand48() andseed48().

Xn is the internal state of the PRNG. It completely determines what the next value output
by the PRNG will be. Thus a PRNG will start repeating itself if it ever happens to return to a
previously visited state.

Sometimes the output of the PRNG is notXn+1 but some functionXn+1. For example,
drand48() outputs a 32 bit value, which is obtained from the internally stored 48 bit value
Xn+1.

Period of a PRNG = longest nonrepeating sequence. Maximum possible period of a linear
congruential PRNG is obviouslym, though it could well be shorter.

Seed-setting (e.g,srand48()): allows control over sequence of random values used in a
simulation. When debugging, it makes sense to use a particular seed for each run, to obtain
identical behavior from run to run. When using simulation to get answers, need to use a different
seed for each run.

Serial correlations. There is usually some slight correlation between successive values of a
PRNG. A simplistic example would be the function

xn = 3xn�1 mod 31
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(this is a bad PRNG! don’t use it!). If you take the output of this PRNG and plot points
consisting of(xn; xn+1), you will see that they fall on three staight lines defined by:xn = 3xn�1,
xn = 3xn�1 � 31, andxn = 3xn�1 � 62. Clearly we should not treat successive values as
completely independent.

This is important because it shows that we need to avoidstream-splitting. Many times a sim-
ulation will include more that one random quantity: say, a queuing simulation in which both
interarrival times and service times are random. We must not use a single PRNG stream to gen-
erate both sequences of random values, because it would introduce correlations between arrival
times and service times, which would lead to erroneous results.

Another important implication is that we need to use non-overlapping streams for independent
simulations as well. If we were to use overlapping streams, the simulations would repeat each other
identically. So one needs to output the seed at the end of a simulation (e.g., usingseed48())
and use it as the starting (input) seed for the next simulation run.

The most convenient way to maintain separate random number streams is using the function
erand48(). This function accepts the current state as an argument; so you can keep multiple
states around, and feed whichever state you like toerand48() based on the particular stream
you are generating.

7.3 Nonuniform RNG

7.3.1 The Inversion Method

Consider CDFF (y) for RV Y . What is the distribution ofZ == F (Y )?

G(z) = P [Z � z] = P [F (Y ) � z]

AssumeF�1 exists, then the eventF (y) � z is the same as the eventY � F�1(z), so

G(z) = P [Y � F�1(z)]

butP [Y � y] = F (y), so

G(z) = F (F�1(z)) = z 0 � z � 1

Therefore, sinceY is distributed according toF (y), Z will be uniformly distributed on the
interval (0; 1]. So if we wish to generate random numbers with a given distributionF (y), we
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need only generat uniformly distributed random numbers and apply the inverse function ofF (y),
namelyF�1(z), to those numbers.

Example: Generating Exponential Variates.

We wish to simulate sampling a random variableY that is exponentially distributed, that is,
has CDFF (y) = 1� e��y:

Invert the CDF.

z = 1� e��y

e��y = 1� z

��y = ln(1� z)

y = �(1=�) ln(1� z)

y = �(1=�) ln z

SoF�1(z) = �(1=�) ln z. So we generate uniform random variatesz on the interval [0, 1) and
return�(1=�) ln z.

Not all distributions have a CDF that can be inverted.

First, if the RV is discrete, there will be flat portions of the CDF. For this case, a convention
suffices: ifx1 <= urn < x2, then return x1 as value.

Second, the RV may not have a closed form CDF (like the Poisson, Binomial, and Normal).
For some such cases we can use thecomposition method.

7.3.2 The Rejection Method

Assume that pdff(t) can be majorized by some functioncg(t) whereg(t) is a pdf of a RV that we
can generate.

For example: normal distribution, which can be (effectively) majorized by a scaled-up uniform
distribution.

Then:

1. generatey with densityg(t) (using known method) (for example, uniform distribution)

2. generateu with uniform density on (0,1)

3. if u � f(y)=(cg(y)) then acceptY
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7.3.3 Managing RNGs

In summary:

1. use a good one

2. do not subdivide a single stream ... can lead to correlations

3. use nonoverlapping streams ... manage your seeds

4. avoid using low-order bits

5. do not use unknown initialization: unknown starting point

7.4 Simulation

In discussing simulation it’s important to distinguish between simulation time and run time.

The key idea behind almost all computer-based simulation is the notion of adiscrete-event
simulation.

In this context, an event is any occurrence that changes thestate of the simulated system. This
begs the question: what is the appropriatestate of the simulated system? The state of the simulated
system should clearly be smaller and simpler than the state of the true system. So the answer to
this is a key modeling question, requiring judgement: what aspects of system state are relevant to
the problem at hand? Remember: all models are wrong, but some are useful.

As an example, let us consider modeling a disk drive. The disk drive responds to I/O requests:
reads and writes. Describing a request, one might include, among other things: the time the request
is made, the location on disk, the nature of the request (read or write), the associated buffer to be
emptied or filled, and in the case of the write, the particular contents of the buffer. Let us assume
one is interested in the performance of the drive, but not the correctness of its operation. Then a
typical modeling decision in this case would exclude the contents of the buffer is being not highly
relevant: the time taken by a write operation is fairly insensitive to the actual data being written.
So, in the discrete event simulation, one would not include the buffer contents as part of the state
of the system being modeled.

The discrete-event appraoch suggests a particular model for organizing a simulation. Since
only certain events change the state of the system, one need not simulate the system’s behavior in
between those events. So the basic operation of a discrete event simulation is to take “jumps” in
time between events. This implies a key invariant: at the end of processing each event, it must be
known exactly what the next event is that will affect the state of the system. It is not generally
possible to process events out of time order.
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This appraoch implies two key organizational components of a discrete event simulation: a
“clock” to maintain the current simulated time, and an event queue to maintain a list of all of the
known future events in time order. In such a scheme, the “firing” (simulated execution) of an event
can cause events to be added or deleted from the event queue. (For an particular application of
course, other data structures may be necessary as well.)

General structure of the control loop of a discrete event simulation:

1. Select the event with smallest time (te)

2. Set simulation time tote

3. Gather any necessary statistics

4. Fire the event,ie, change simulation state, possibly adding or deleting other events.

7.5 Startup Transients.

We now need to distinguish between “transient” and “steady” state. Transient: system’saverage
behavior is changing; steady state: system’saverage behavior is staying nearly constant. Note:
average behavior is a tricky notion here.

Usually the average statistics of the system will be changing rapidly early in the simulation
run. (One way to think of this is that the system is unlikely to be starting in a “typical” state.) So
metrics may take a while to reach “average” state.

A number of approaches are possible:

1. Start in, or close to, a “typical” state.

2. Wait until system reaches a “typical” state.

Need to plot metrics and decide when they reach steady state.

The problem is that it is not possible to define exactly what constitutes transient state vs. steady
state.

Note that some variability at steady state is still likely, but decreasingly so.

So: need to do an initial run to gauge where steady state arises, and what point is OK to use as
standard measurement. This should be a long run.

Then: decide based on looking at the data where to start steady state. The best simple method
to do this is the truncation method:
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Given a sample ofn observations, the truncation method consists of ignoring the firstl ob-
servations, and calcaulting the min and max of the remainingn � l observations. This step is
repeated forl = 1; 2; :::n � 1 until the(l + 1)th observation is neither the minimum nor the max
of the remaining observations. The value ofl at this point gives the length of the transient state.

7.5.1 Perfect Simulation

TBD, based on Hwk2

7.5.2 Independent Runs

Remember, you need to use nonoverlapping PRNG streams from one run to the next if you want
separate runs of the simulation to be independent.

7.5.3 Interpreting Output

The output of a simulation is a random variable. Say this three times: the output of a simulation
is a random variable. The output of a simulation ...

Therefore we must characterize simulation outputs; it is not sufficient or correct to simply
accept the output of a simulation is “the answer” (implying determinism). That is like saying “the
result when I spin a roulette wheel is the number 32.”

7.6 Pseudo-code for a simple simulation

Here is pseudocode for a simple simulation. Note that there is no “event queue” for this example
because there are only two possible next events: a departure and an arrival. However in a general
discrete event simulation, you need an event queue to keep track of the set of possible next events.

three variables:

current_time
next_arrival
next_departure

/* loop until simulation is done */
while(1)
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{
if (next_arrival < next_departure)
{

/* next event is an arrival */

/* skip forward in time to arrival instant */
current_time = next_arrival;

/* determine when the next arrival will take place */
next_arrival = current_time + exprv(lambda);

/* handle the arrival */
if (a task is in service)

put newly arrived task at end of queue
else
{

place task in service
next_departure = current_time + exprv(mu);

}

}
else
{

/* next event is a departure */

/* skip forward in time to departure instant */
current_time = next_departure;

/* handle the departure */
if (a task is in the queue)
{

remove next task from front of queue
place it in service

/* determine when it will depart */
next_departure = current_time + exprv(mu)

}
else

/* there is no task waiting or in service */
next_departure = infinity;

}
}
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Exercises

Generating Random Variates

7-1. Write a program that generates samples of a random variable drawn from an exponential
distribution with parameter�. Your program should accept� andn as parameters, and out-
putn values, each separated by a linefeed. You may want to check whether the output looks
right by using yourmean, variance, hist, andedf functions from Homework 1.

7-2. Modify your program from step 1 to generatesums of exponentials (also calledErlang-k
random variables). LetEk be the random variable that is the sum ofk exponential random
variables each with parameterk�. Generate 10,000 samples each from theE1, E2, E5, and
E10 distributions for� = 2. For each dataset, calculate its mean d variance, and plot its
histogram. Also, plot all the edf’s on a single graph.

7-3. Modify your program from step 1 to generatehyperexponential random variables. A two-
stage hyperexponential is constructed as follows: with probabilityp1, a sample is taken
from an exponential distribution with parameter�1; otherwise (i.e, with probability1� p1)
a sample is taken from an exponential distribution with parameter�2.

Generate 10,000 hyperexponential random variables for each of the following combinations
of parameters:

p1 �1 �2

0.5 1/2 1/2
0.5 1/2 1/4
0.5 1/2 1/8
0.5 1/2 1/16

For each dataset, calculate its mean and variance, and plot its histogram. Also, plot all the
edf’s on a single graph.

7-4. Comment on the following questions:

(a) For sums of exponentials, how do the mean, variance, and coefficient of variation
change with increasingk?

(b) For hyperexponentials, how do the mean, variance, and coefficient of variation of the
random variable change with decreasing�2?

(c) Try varying thep1 parameter of the hyperexponential, and watch how the mean changes.
What is the relationship between the mean of the two exponential distributions and the
mean of the resulting hyperexponential?

7-5. Write code to generate points uniformly distributed over a unit disk. Assume that you have
a routinerand() which generates a random number in the range(0; 1].
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(a) Use polar coordinates and the inversion method. That is, the program should generate
two numbers: a random angle�; 0 < � � 2�, and a random radiusr, 0 < r � 1. Use
a uniform distribution for�, and use the inversion method to generate ther variate.

(b) Use cartesian coordinates and the rejection method. That is, the program should gen-
eratex andy such thatx2 + y2 � 1 and the resulting points are uniformly distributed
in the disk.

(c) Analyze the relative efficiency of the two methods.

Simulation

7-6. Write an discrete-event simulation of a system in which tasks arrive at a server, and are
serviced in first-come-first-served order.

If a task arrives when a task is already in service, the new task is placed at the end of a
service queue. When the task currently in service completes, the first task in the queue is
removed and begins to recieve service immediately.

Task interarrival times are independent and identically distributed. Interarrival times are
drawn from an exponential distribution with parameter�. Thus, the arrival process is a
Poisson process.

Task service times are independent and identically distributed. Service times are drawn from
any of the distributions above (i.e, exponential, Erlang-k, or hyperexponential). We will use
1=� to denote the mean service time (for whichever distribution is used).

Your program should take� and� as input, along with random number seeds for both
streams. You will want to output the random number state at the end of the program in order
to use them in later runs.

Your program should collect the following statistics:

� �Wq: the average time spent by a task waiting in the queue

� �W : the average time spent by a task in the system

� �Q: the average number of tasks in the queue at arrival instants

� �̂: the fraction of time the server was busy

Make sure that your simulation reaches steady state, and describe what you did to ensure
this.

You must provide 90% confidence intervals on your results. Therefore you will need to run
your simulation multiple times (at least 5) which will provide indepedent estimates of the
parameters. As discussed in lecture, you will need to use Student’st distribution to calculate
confidence intervals, sincen is small. There is a table of the distribution on the courseinfo
page.
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7-7. Simulate an M/Ek/1 queue for varying values ofk, and plot the results. Specifically, simulate
the following queues:

M/E1/1 (This is really an M/M/1 queue!) Set mean service time to be1=� = 1=10 and vary
� to obtain� = 0:1; 0:2; 0:3; :::0:9.

M/E2/1 Set mean service time to be 1/10; this implies that service times are the sum of two
exponentials each with mean 1/20. Vary� as before.

M/E5/1 Mean service time of 1/10; vary� as before.

M/E10/1 Mean service time of 1/10; vary� as before.

For each of the four cases plot mean time in system versus utilization (four plots), using
error bars to show the confidence intervals.

7-8. Simulate an M/H2/1 queue, and plot the results. In this queue, service times are drawn from
a two-stage hyperexponential distribution. Simulate three cases:

p1 1=�1 1=�2

1/3 1/5 1/20
3/7 1/5 1/40
7/15 1/5 1/80

Note that you have already measured the mean of hyperexponentials and determined how
to compute the mean of such a random variable. Using this fact, find values of� to obtain
each� in 0.1, 0.2, ... 0.9. For each case, simulate the corresponding M/H2/1 queue for these
values of�. Plot average time in system as a function of system utilization for all three cases
(3 plots), using error bars to show confidence intervals.

7-9. Create a summary plot, showing experimental results (all 7 curves for time in system as a
function of utilization.) Label each line with thecoefficient of variation of the service time.

7-10. Modify your M/M/1 simulation so that itstarts in steady state. This is called ‘perfect simu-
lation.’ For a good discussion of perfect simulation see [BV05].

The basic idea is that a typical (non-perfect) simulation starts in some fixed state, which is
(1) often an unlikely state (e.g., system is empty) and (2) the same for each independent
trial, which introduces bias. For example, a typical simulation starts with an empty system.
This means that the initial part of each simulation run is influenced by the same (potentially
unlikely) starting condition each time.

The usual response to this situation is to run the simulation for a “long” time, and tohope
that the simulation is then in steady state, after which statistics are taken. However there is a
more elegant and reliable way to address this problem, namely, to start the system in a state
which corresponds to a sample at a random time of its steady-state behavior.

Most simulation parameters are defined in terms of Palm probabilities. For example, the time
between arrivals, the service times, etc, are all given from the event standpoint. However to
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take a sample of a system at a random instant, we must know the steady-state distribution of
its parameters from a time-average standpoint.

Your task is to start your M/M/1 simulation in the steady state (also called the stationary
regime). To do so, answer these questions:

� What are the state variables of the M/M/1 simulation?

� What are the Palm probabilities of these random variables? (Give formulas).

� What are the time-average probabilities of these random variables? (Give formulas).
Clearly explain how you got each of these answers (this is important).

� To demonstrate the effects of perfect simulation, proceed as follows. Initialize your
simulation by sampling the state variables from their time-average distributions. Note
that all state variables are independent so we can sample a random simulation state by
sampling the state variables separately.

– Run your original (non-perfect) simulation for 100 arrivals, and compute the four
summary statistics. Do this for� in 0.1, 0.2, ..., 0.9, as before. Construct confi-
dence intervals and plot the results on a single plot. Also plot the analytic predic-
tions obtained from the classic M/M/1 formula.

– Run your perfect simulation the same way – 100 arrivals, and compute statistics
in the same manner. Plot the results and compare to analytic results as before.

� Comment on the differences you see between the two plots.

� Finally, assume you wanted to construct a perfect simulation for a M/H2/1 queue. What
challenges would you face?
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Chapter 8

Open and Closed Systems

Recall the basis for using the Poisson process as a model of arrivals: an effectively infinite popu-
lation each generating renewals at an infinitesmal rate.

When does this assumption fail? When finiteness of population is significant. That is, when
the number of superimposed processes is not so large. In this case, the arrival of a customer can
decrease the probability that a new customer will arrive. These are calledfinite population or
closed queueing systems.

8.1 Setting: Networks of Queues

We work at a high level, considering systems that are comprised ofcollections of queues. We
assume the system consists ofM queues numbered 1 toM .

Such systems can be closed or open. If they are open, we can refer to the arrival rate� of
customers to the system, and we can relate the arrival rate at each queue�i; i = 1; ::;M to the
overall system�.

In contrast, a closed queueing network has no external arrivals or departures, only some fixed
number of customers that circulate through the network. As a result, we usually make some queue
thereference queue and express the arrival rate to all other queues in terms of the�i at the reference
queue.

We will make some assumptions about how customers move between queues. Upon leaving a
queue, a customer either join anothers queue immediately or leaves the system. Routing between
queues isprobabilistic, meaning that if a customer has a choice of more than one possible queue
to move to next, that choice is made at random and indendently of all other routing choices.

Another assumption we will make isjob flow balance. This means that over time, the number
of jobs that arrive to the system is equal to the number that depart; furthermore, the same is true
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for each queue in the system. This is equivalent to assuming that the system is in steady state.

8.2 M/M/1/K/K

The simplest closed system to analyze is the M/M/1/K/K “machine repair” model. In this system
customers cycle between obtaining service and waiting in a “holding area”. Service is FCFS and
there is a queue for customers waiting for service; service time is exponential with mean1=�.
Customers waiting in the holding area are not queueed; rather, each customer independently waits
some period of timeO which is exponentially distributed with mean1=�.

This is a good model for lots of closed systems: online transaction processing, timesharing a
CPU among a set of processes, and of course “machine repair.” In the machine repair scenario we
imagine that each customer is a machine having mean time to failure of1=�. There is a single
repairperson (the server) and the time it takes to repair a machine has mean1=�.

We can model this with a finite CTMC withK + 1 states. The state of the CTMC captures
the number of customers in the queue or obtaining service. Transitions to the left have rate� and
transitions to the right from statei have rate(K � i)�.

This model is a birth-death model so we can immediately write down the expressions for�i:

�n =
K!

(K � n)!

 
�

�

!n
�0

and

�0 =

 
KX
n=0

K!

(K � n)!

 
�

�

!n!�1

Connection to Fault-Tolerance. Consider the machine repair scenario. Sup-
pose that the multiple machines are redundant. That is, the reason there are
multiple machines is to increase fault-tolerance, by increasing the likelihood
that at least one machine will be available. What is the probability that at any
point in time there will be no machine available? Answer:�K . For this reason
1� �K is called theavailability of such a system.

Now, at this point we know everything about this system (all the�n’s) and so we could solve for
the mean number of customers in the queue using the usual approach based on the�n’s. However
instead of doing that, we will use a new kind of argument that will be very valuable for closed
systems in general, and will shed some insight into how closed systems work. This is thecycling
customer argument. This argument is only concerned with average values (not entire distributions,
like the�n’s provide).
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8.3 The Cycling Customer Argument

Consider what happens to any given customer. The customer 1) queues for service, 2) obtains
service, 3) goes into “holding”, and then repeats these three steps (forever). Then the average time
it takes to complete one of these cycles is the sum of the averages of the three component steps:

average cycle time= E[O] + E[Wq] + E[X] = E[O] + E[W ]

where we are using the usual notation thatWq is time waiting in the queue,X is service time,
andW is total time waiting in the (queue + server) system.

Now, consider any point in this cycle (e.g., entering the queue, entering the server, or starting
to wait in the holding area). What is therate at which this customer passes any such point? It is

cycling rate of a customer=
1

average cycle time
=

1

E[O] + E[Wq] + E[X]
=

1

E[O] + E[W ]

Then what is the arrival rate of customers to the queue? This is the same as the overall rate at
which customers cycle through the system, which is the sum of the component rates:

� =
K

E[O] + E[W ]

From this we can solve for waiting time:

E[W ] =
K

�
� E[O]

These last two equations are the heart of the “cycling customer” argument.

The point is, at any point in this closed loop, customers are passing at the same rate. If we can
calculate the rate they pass at some particular point, that value applies everywhere.

Note that to use the cycling customer argument, we need to know eitherE[W ] or � to obtain
the other. One way to obtain� is to go back to our CTMC solution of the system, and note that
the server’s utilization is

� = �E[X]

How can we obtain�? Well,� is just1� �0 (as always for a single server system). So we need to
know�0 to use the cycling customer argument to obtainE[W ].

Note that calculating�0 is computationally expensive: it involves summing over allK states
of the system an expression that involves a factorial inK. This gets very expensive asK gets
large, and in general it is true that closed systems get more computationally expensive to evaluate
as the number of customers goes up.
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Example ([5.2.6] from Allen). Consider a data entry shop. There are 20 operators, each with
a terminal, sharing a single communication channel that is buffered. The average time to key an
entry in is 80 seconds; this is approximately exponential. The average time to transmit over the
shared line is 2 seconds (again, exponentially distributed). Calculate the rate at which transactions
are processed, and the mean response time (time an operator spends waiting for an entry to be
transmitted).
Answer. The hard part here is calculating�0:

�0 =

 
KX
n=0

K!

(K � n)!

 
�

�

!n!�1

=

 
20X
n=0

20!

(20� n)!

�
2

80

�n!�1

= 0:521

So we can obtain� = 1 � �0 = 1 � 0:521 = 0:479. Thus transaction rate is� = �=E[X] =
0:479=2 = 0:239 entries per second.
Using the cycling customer argument to obtainE[W ]:

E[W ] =
K

�
� E[O] =

20

0:239
� 80 = 3:68 secs

This response time is judged to be adequate by the management, because each operator only
spends3:68=(3:68 + 80) = 4:4% of their time idle waiting for order transmission.
Now, your manager tells you that they are considering adding 30 more operators to the shop, but
the manager doesn’t know whether this is a good idea from a productivity standpoint. Management
doesn’t want operators spending more than 10% of their time idle.
Let us solve the system forK = 50:

�0 = 0:0187

� = 0:981

� = 0:490

W = 21:9 seconds

So with 50 operators, each operator spends 21.9/(21.9+80) = 21.5% of their time waiting for order
transmission. Your boss thanks you for saving the company from this productivity pitfall and gives
you the rest of the week off.
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8.3.1 Extremes of the Cycling Customer Argument

Let’s think about what happens in the limit cases of very many or very few customers. We can in
fact analyze this without any consideration of service or think time distributions. So, this analysis
applies toall closed single-server systems.

First, very many customers. As the number of customers goes up, the throughput (�) must go
up, but is there a limit? If there is an arbitrarily large number of customers, the server is always
busy. So the rate at which they leave the server is1=E[X]. This tells us the rate at which customers
enter the queue:� = 1=E[X].

What about response time? If we know�, we can solve for it as before:

E[W ] =
K

�
� E[O] =

K

1=E[X]
� E[O] = K E[X]� E[O]

Note what this is saying: the waiting time is proportional to the number of customers in the
system. In fact, it implies that every additional customer adds one mean service time to the wait
experienced by every other customer. So, for a large number of customers, throughput is nearly
constant (saturation) and response time is proportional toK.

Next, consider the case of very few customers. In this case, we expect that there is essentially
no queueing taking place: any arriving customer finds the queue empty and immediately gets
service. So thenE[W ] = E[X]: Solving for throughput:� = K=(E[X] + E[O]). That is,
throughput is proportional to the number of customersK. Thus, for a small number of customers,
response time is nearly constant and throughput is proportional toK.

To summarize:

Throughput (�) Response Time (E[W ])

Small No. of CustomersK=(E[X] + E[O]) E[X]
Large No. of Customers 1=E[X] K E[X]� E[O]

Table 8.1: Asymptotes of the closed single-server system.

These relationships are shown graphically in Figure 8.1.

Note the special valueK�. This can be considered to be approximately where the system
becomes “overloaded.”

8.3.2 Example: The Apache Web Server

Figure 8.2 shows the performance of the Apache Web Server. The system studied is a 200 MHz
Pentium Pro PC; the workload is generated by a closed system, with think time chosen to match
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Figure 8.1: Asymptotes of the closed single-server system. Left: Throughput; Right: Response
Time

empirical measurements (the workload is described in detail in [BC98]). The data in Figure 8.2 is
from [BC99].

The figures show different curves for systems with varying amounts of main memory (RAM).

The throughput curves (left) show the two asymptotes:1=E[X] andK=(E[X] + E[O]). Con-
sidering the case for 128MB (or 256MB) of RAM, we can estimate that the mean service time for
a Web request in this workload mix using the many-customer asymptote as:

1=E[X] = 250=second

or
E[X] � 4ms:

Furthermore, we can estimate that the mean “think” time in this workload using the few-customer
asymptote as

slope� 1=2 = 1=(E[X] + E[O])

so
E[O] � 2sec:

What happens as we decrease the amount of RAM in the system? The mean service time goes
up, because of the decreased buffer space available for file caching, leading to increased number
of disk accesses per file, which increases mean service time. This leads to smallerK�, meaning
that the server saturates at a smaller population of customers.
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Chapter 9

Operational Analysis

“Genius is one percent inspiration and ninety-nine percent perspiration.”
—Thomas Edison
“If Edison had a needle to find in a haystack, he would proceed at once with the
diligence of the bee to examine straw after straw until he found the object of
his search.... I was a sorry witness of such doings, knowing that a little theory
and calculation would have saved him ninety per cent of his labor.”
—Nicola Tesla, on Thomas Edison

To get started analyzing queueing networks, we will explore a very useful method calledop-
erational analysis. The philosophy of operational analysis is that considerable insight into system
behavior can be gained by working only with measurable quantities (as opposed to mathematical
idealizations like probability distributions). This naturally leads to a set of tools that work with
average values (and so don’t concern themselves with complete distributions of system metrics).

Let us assume that we can monitor and measure the system for some period of timeT . During
that time we can measure the following quantities for each queuei; i = 1; :::;M :

� Ai = number of arrivals to queuei during period[0; T ).

� Bi = amount of time serveri is busy during period[0; T ).

From these measurable quantities we can define some average metrics:

� �i = Ai=T = arrival rate at queuei. Assuming job flow balance, arrival rate = departure rate
= throughput.

� �i = Bi=T = utilization of queuei.
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� Xi = Bi=Ai = mean service time at queuei.

9.1 Operational Analysis Laws

Based on these definitions we can define and derive a number of useful quantities. These deriva-
tions are usually grouped into so-called “laws.”

9.1.1 The Utilization Law

�i =
Bi

T
=
Ai

T
� Bi

Ai

= �iXi

This is a restatement of the familiar principle; however it proceeds directly from our definitions.

9.1.2 The Forced Flow Law

Consider some number of arrivals to the reference queue (in a closed system) or from the external
arrival stream (in an open system). Call this arrival setA0.

Then it becomes useful to define thevisit ratio, which is:

Vi =
Ai

A0
i = 1; :::;M

The visit ratio tells you, for each customer (either external arrival or arrival to queue 0), how
many times it visits queuei.

Then

Ai = A0Vi

� = A0=T

so

�i =
Ai

T

=
Ai

A0
� A0

T
= �Vi

So we find that arrival rates throughout the system are in constant proportion, as defined by the
visit ratios.
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9.1.3 Bottleneck Analysis

Bottleneck analysis is a very useful way to quickly determine some basic facts about a queueing
network — in particular, the maximum throughput a particular queueing network can achieve.

We start by noting that the expression for utilization

�i = �iXi

can be rewritten as
�i = �ViXi

which shows that utilization at any node is proportional to arrival rate�. The constant of propor-
tionality isViXi which represents the average total demand placed on a particular node by a single
customer. That it, for each arrival to the system (or to the reference queue) a customer requires

Di = ViXi

total service from nodei. Then we can write

�i = �Di:

This expression shows that increasing� will increase all nodes’ utilizations in proportion. As
we increase�, eventually some node will reach utilization 1. It is not possible to increase that
node’s utilization any more, so the system at that point is saturated.

Which node will reach saturation first? The one with highest demandDi. That is, nodej
where

j = argmax
i

Di

is thebottleneck node.

What is the throughput of the system when it is saturated? The rate at which customers are
serviced by the bottleneck node,i.e., 1=Dj.

9.1.4 Little’s Law

Little’s Law is an operational law as well. Let us define

� Wi = average waiting time of a customer at nodei = average time from when a customer
enters queuei to when it completes service.

� Ni = average number of customers at queuei, including the customer in service if any.

Then for each queuei,
Ni = �iWi
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9.1.5 Memoryless Service Centers

Our last law applies to memoryless service centers. Strictly speaking this is not an operational
law since the memoryless property can’t be directly measured (it’s a property of service time
distribution). However it is a simple and useful argument, and it applies to a large set of service
centers.

We will define a memoryless service center as a service center with the following property:
for service centeri, the average waiting time of a customerWi is Xi(1 + Ni). This is true for
(among other cases) FCFS queues with exponential service times, and processor-sharing queues
with general service times.

For FCFS, we use a “tagged job” argument to reason as follows. Consider the average waiting
time of a customer at nodei. The customer must wait for the customers in the queue and the
customer in service (if any). The average value of this quantity isNi. Now, we argue that the
time spent waiting for these customers that are already present upon arrival isNiXi. This is true
because we will have to wait timeXi for each customer in the queue,and we will have to wait
timeXi for the customer in service because the service center is memoryless. So the total time
between arrival and departure of our tagged customer is

Wi = Xi(1 +Ni)

because the tagged customer also requires one average service time.

For PS, the argument is even simpler. After the customer arrives, there are are(1 + Ni)
customers in the system. So the service rate that customer gets is1=(1 +Ni) and the time it takes
until the customer completes service is

Wi = Xi(1 +Ni):

Now let us use this expression along with Little’s Law to solve forNi.

Ni = �iWi (Little’s Law)

= �iXi(1 +Ni) Substituting expression forWi

= �i(1 +Ni)

=
�i

1� �

So, concerning ourselves only with mean values,Ni = �i=(1 � �i) whenever service centers
are memoryless. Note that this is the same expression as for the M/M/1 queue; however our
assumption here is much more general: only a memoryless service center.
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9.2 Bottleneck Analysis of Closed Systems

Looking at the output of the MVA algorithm (next section)� or W as a function of number of
customersN it is clear that for largeN and smallN there are certain asymptotes. In fact, these
asymptotes apply toany closed system, and so are quite useful.

The general style of this analysis is similar to the M/M/1/K/K analysis in which we used the
“cycling customer” argument.

We can formulate this argument as an operational law. Divide the system into two parts: the
part in which there is load-dependent delay (like queueing) and the part in which there is only
load-independent delay (like “think time”). For example, in the BCMP system the load-dependent
service centers would the FCFS, LCFS, and PS centers; and the load-independent part would be
the IS centers.

The mean delay a user encounters is the load-dependent part of the system is calledW (“re-
sponse time”) and in the load-independent part of the system is calledZ.

The operational law is called the “interactive response time” law. We start by observing that a
single user cycles once through the system in time1=(W + Z). Then theN users are cycling at
rateN=(W + Z).

9.3 Analyzing Closed Systems with MVA

The previous techniques for calculating average values of response time apply to open systems in
which the arrival rate of custoemrs is known. However, for closed systems, calculating response
time is more difficult, because circulation rate of customers is not necessarily known (only number
of customers in system is known).

The difficulty in deriving response time in a closed system is due to the fact that response time
is a function of circulation rate, and vice versa. We can analyze the limiting cases of very many
customers, and very few customers, but for intermediate cases the problem is difficult.

There are methods for complete solution of closed systems (i.e.,, calculating the joint proba-
bility distribution of the states of each of the queues in the system) but they are beyond our scope.
One issue is that in a system withK customers andN queues the state space is of sizeCN+K�1

N�1

which grows exponentially in K, and so often precludes computational solution.

Fortunately, there is a simply way to build up to the intermediate cases, if we restrict ourselves
to working only with average metrics. The method is calledmean value analysis or MVA.

MVA is concerned with networks of queues that arememoryless. There are four queueing
systems that are memoryless:



94 CHAPTER 9. OPERATIONAL ANALYSIS

1. exponential service times and FCFS service;

2. exponential service times and LCFS service;

3. general (any) service times and PS service;

4. infinite-server models (pure delay systems) with exponential service times.

This is by no means all the possible queues one might encounter in practice (in particular
M/G/1/FCFS is out) but it is a useful set nonetheless. The most important case is PS, because
PS is a good model for lots of real world systems and in the case of PS, service time distribution
doesn’t matter.

When a queueing network is composed of memoryless service centers and uses probabilistic
routing, it is called aproduct form network.

There are two key ideas in MVA:

1. Little’s Law can be applied to each queue in the network, but also to the network as a whole

2. The Mean Value Theorem (due to Lavenberg and Reiser), which states that a customer
arriving to a queue in a product form network sees the same distribution of customers as an
outside oberserver would see if one less customer were circulating in the network.

The idea then of MVA is: to compute the behavior of a system withK customers, start from
the case of an empty system and add customers one by one. ForK customers:

1. For each queue, note the average queue length if one less customer were present (i.e., use
the results from stepK � 1). Turn this into average waiting time using mean service time.

2. Total waiting time for a customer is then weighted average of waiting times in each queue.
That is, calculate the average throughput (cycling rate) for the system by applying Little’s
Law to the entire network; and

3. Calculate the average number of customers in each queue by applying Little’s Law to the
average throughput and average waiting time from steps 1 and 2.

Here is the MVA algorithm more precisely.
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The Basic MVA Algorithm

Inputs:

� n (the number of customers)

� m (the number of servers)

� for each server:

– �xi (mean service time for queuei)

– Vi (visit ratio for queuei)

– ti (type of service discipline at queuei: FCFS, PS, IS or LCFS)

Outputs:

� � (throughput whenn customers)

� R (response time whenn customers)

Variables:

� li(n) (the average number of customers at queuei when there aren customers in the system)

� wi (the mean time spent waiting in the queue at nodei)

Algorithm:

1. Let li(0) = 0 for all i

2. Forj = 1 to n:

(a) For alli:

wi =

(
0 for IS
�xili(j � 1) for FCFS, PS, LCFS

(b)

R =
mX
i=1

(wi + �xi)Vi
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(c)

� =
j

R

(d) For alli:
li(j) = Vi�(wi + �xi)
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Exercises

Operational Analysis

9-1. Consider a queueing network with the following characteristics. The network consists of a
CPU and two disks (Disk A and Disk B). We observe the system for one hour (3600 seconds)
and make the following measurements:
Jobs passing through the system: 10,800
CPU busy time: 1728 seconds
Disk A busy time: 1512 seconds
Disk B busy time: 2592 seconds
I/Os at A: 75,600
I/Os at B: 86,400

Jobs route through the system such that each entering job first visits the CPU; then it visits
one of the two disks. After each visit to a disk, the job returns to the CPU. Jobs leave the
system after one of their visits to the CPU.

Questions to answer about this system:

(a) Basics. What is the throughput�; visit ratiosVA; VB; andVCPU ; per-job demand at
each nodeDA; DB; andDCPU ; utilization of each node�A; �B; and�CPU ; and mean
service time at each nodeXA; XB; andXCPU?

Assume the CPU scheduling is processor-sharing, and that service at the disks is FCFS with
exponential service times.

(b) Response time. What are the per-node response timesWA;WB; andWCPU and the
system response timeW?

We will call this system thebase case. Now consider three possible modifications of the
base case:

(c) Assume load goes up by 1/3,i.e., �new = 4=3�. What is the new response time?

(d) What if Disk B were to fail so that all requests go to Disk A? What is the new response
time?

(e) Let us say we add a cache to speed up Disk B. The cache hit rate is 50%. Using the
cache increases CPU time by 30% and increases I/O time on Disk B by 10%.VCPU
does not change, nor doesVA; howeverVB goes down by 50%. What is the new
response time?
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Part VI

Markov Chains
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Chapter 10

Discrete Time Markov Chains

Now interested in mathematical models of systems that can capture essential behavior. We will
focus on discrete-valued random processes, i.e., chains. Recall definitions in Section 4.1.

The values that the random variables in the chain can take on will be (as usual) denoted in
lower case (e.g., x, x0, etc.). These values will be referred to asstates. Therefore a realization
of a discrete state space process is a sequence of states. We think of a chain as passing through a
sequence of states. Passing from one state to the next is called atransition.

What kind of structure can a stochastic process have? A stochastic process is distinguished
from an arbitrary set of RV’s by its ordering, so we should think about the effect of order on the
RVs. The simplest structure is i.i.d. RVs, in which order is irrelevant (why?). However in most
cases, this model is insufficient for capturing essential behavior, because a real system’s evolution
forward in time depends on its current state.

Consider the most general form of stochastic process: complete dependence on past,e.g., for
a discrete-valued process:

P [Xn+1 = xkjXn = xi; Xx�1 = xj; :::; X1 = xl]

In this case, to determine the probability of a particular statexk being the next state, we would
need to know all of the previous states. This case, while very general, is very hard to work with
analytically.

A common compromise is to consider so-calledMarkov processes. Consider the sequence of
statesxi that the system passes through.

101
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Definition. If the conditional probability

P [Xn+1 = xkjXn = xi; Xn�1 = xj; :::; X1 = xl] = P [Xn+1 = xkjXn = xi];

for anyxi; :::xl thenfXng is aMarkov Chain (Markov 1856-1922).
The chain is said to have theMarkov property.

The Markov property refers to the fact that the next state dependsonly on the current state.
The Markov property means that the future behavior of the system is independent of the past, and
affected only by current state.

Furthermore, ifP [Xn+1 = jjXn = i] = Pij does not depend on timen, it is called ahomo-
geneous Markov chain (or a MC w/ constant transition probabilities). We will restrict ourselves
to this case and soPij will always be defined. This means that the system “behaves the same”
regardless of what time it is.

Question. What is the difference between homogeneity and stationarity? Is
every homogeneous Markov Chain stationary? Is every stationary Markov
Chain homogeneous?

The model is general enough to handle many interesting things. Why? Because for many
computer sytems, the Markov property is a good approximation to system behavior. Consider a
communication network that is carrying traffic for some number of usersKn at timen. It’s a
good assumption that knowledge ofKn gives some information about the likelihood of possible
values ofKn+1. However, knowledge ofboth Kn andKn�1 probably doesn’t give much more
information aboutKn+1 than does just knowledge ofKn.

Aside. Informally, such systems are considered to haveno memory (or “very
little” memory). Recall our (earlier) discussion of autocorrelation and mem-
ory. Measurements of a system with little memory will show low levels of
autocorrelation. This makes clear when the Markov property is an inappro-
priate model: when a system shows long memory. For example, consider the
instantaneous utilization of the communication network at timen, sayRn. Be-
cause utilization of a communication network often shows long memory (as
explained earlier) the Markovian assumption is probably a bad one forRn.

Note that a Markov Chain is defined in terms of the event view. That is, the Markov Chain
is defined in terms of conditional probabilities, where the condition is the arrival in a particular
state (an event). Once again, we will be defining a system in terms of the event view, while the
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fundamental questions we will ask will concern the random or time-average view.

Discrete Time

For discrete time, each transition is a step; transitions can occur back to the same state.

Some examples in graphical representation: vertices and arcs.

P00
0

1

2

P02

P01

We model evolution of the chain as a series of steps. At each step,some transition must occur
therefore

P
j Pij = 1.

Stochastic Matrices

Another representation of a discrete time MC is as a matrix, called thetransition probability matrix
and denoted̂P .

P̂ =

2
66666664

P00 P01 P02 : : : P0j : : :
P10 P11 P12 : : : P1j : : :

...
...

...
...

...
...

Pi0 Pi1 Pi2 : : : Pij : : :
...

...
...

...
...

. . .

3
77777775

This is not an arbitrary matrix:

1. All entries are non-negative.

2. All rows sum to 1. A square matrix in which rows sum to 1 is called astochastic matrix.

Question. Do the columns sum to 1? Why or why not?
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Note that since all rows sum to 1, so if you were givenn � 1 columns you could compute the
missing column.

Definition. n-step transition probabilitiesPn
ij are defined as follows:

P n
ij = P [Xn+m = jjXm = i] n � 0; i; j � 0

Of courseP 1
ij = Pij.

Example Markov Chains

Random walk. Set of states is all integers. Probability of moving to the right isp, to the left is
q = 1� p.

Pi;i+1 = p; Pi;i�1 = q (i = 0;�1;�2; :::)

Two representations: as set of states, or as a matrix:

P̂ =

2
66666664

. . . : : : : : : : : : : : : : : : : : :
: : : q 0 p 0 0 : : :
: : : 0 q 0 p 0 : : :
: : : 0 0 q 0 p : : :
...

...
...

...
...

...
. . .

3
77777775

This matrix is infinite with a particular structure: two nonzero diagonals.

Question. Is this Markov Chain stationary? Under what conditions?

Random walk with absorbing barriers. Similar case as before, but the chain is finite. NotesN
and�N have self-loops with probability 1. So:

Pi;i+1 = p; Pi;i�1 = q (i = 0;�1;�2; :::;�N � 1)

PNN = P�N�N = 1

P̂ =

2
66666664

1 0 : : : : : : : : : : : : 0
q 0 p : : : : : : : : : 0
...

...
...

...
...

...
...

0 : : : : : : : : : q 0 p
0 : : : : : : : : : : : : 0 1

3
77777775
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�N;N are called absorbing states.

Question. Is this Markov Chain stationary? Under what conditions?

Definition. If Pii = 1, statei is an absorbing state.

More complicated example.

P̂ =

2
6666664

1
2

1
2

0 0 0
1
2

1
2

0 0 0
0 0 1

2
1
2

0
0 0 1

2
1
2

0
1
4

0 1
4

0 1
2

3
7777775

Try drawing this. How does the structure of the matrix relate to the structure of the chain as a
graph?

10.1 Chapman-Kolmogorov Equations

We can calculate then-step transition probabilities using theChapman-Kolmogorov equations:

P n+m
ij =

1X
k=0

P n
ikP

m
kj

This can be understood by noting thatP n
ikP

m
kj representse probability that starting in statei the

process will go to statej in n +m transitions through a path which takes it into statek at thenth
transition. Hence, summing over all intermediate statesk yields the probability that the process
will be in statej aftern+m transitions.

If we let P (n) denote the matrix ofn-step transition probabilities,Pn
ij, then these equations tell

us that

P (n+m) = P (n) � P (m)

where the dot represents matrix multiplication.
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Example. (Ross) Suppose the chance of rain tomorrow depends on previous weather conditions
only through whether or not it is raining today;i.e., past weather conditions do not influence
tomorrow’s weather. Suppose then that if it rains today, then it will rain tomorrow with probability
0.7; and if it does not rain today, then it will rain tomorrow with probability 0.4.
We will let state 0 represent rain and state 1 represent no rain. Then the associated Markov Chain
looks like:

P̂ =

"
0:7 0:3
0:4 0:6

#

Now, calculate the probability that it will rain four days from today, given that it is raining today.
By definition,

P (1) = P̂ =

"
0:7 0:3
0:4 0:6

#

So,

P (2) = P (1) � P (1) =

"
0:61 0:39
0:52 0:48

#

And,

P (4) = P (2) � P (2) =

"
0:5749 0:4257
0:5668 0:4332

#

So the desired probabilityP (4)
00 equals 0.5749.

Numerical Example:

>> P = [[0.7 0.3];[0.4 0.6]]

P =

0.7000 0.3000
0.4000 0.6000

>> Pˆ2

ans =

0.6100 0.3900
0.5200 0.4800

>> Pˆ4

ans =
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0.5749 0.4251
0.5668 0.4332

>> Pˆ8

ans =

0.5715 0.4285
0.5714 0.4286

>> Pˆ16

ans =

0.5714 0.4286
0.5714 0.4286

Does this work for any matrix? Let’s try a random stochastic matrix. (Note the steps below;
why do we need the second and third?)

>> R = randn(5,5)
>> R = abs(R)
>> for i = 1:5
R(i,:) = R(i,:) / sum(R(i,:))
end

>> R
>> Rˆ2
>> Rˆ16

Unconditioning using Initial State

So far we have been considering only conditional probabilities,e.g., P (n)
ij is the conditional prob-

ability of being in statej at timen given that the initial state at time 0 isi. We can find the
unconditional probability of being in the state at timen, if we know the initial probability of being
in each state at time 0. Let us say the initial probability of being in statei at time 0 is�i.

The set of states forms a partition of all possible cases at time 0. So by the law of total
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probability,

P [Xn = j] =
X
i

P [Xn = jjX0 = i]P [X0 = i]

=
X
i

P
(n)
ij �i

For instance, in our previous example, if�0 = 0:4 and�1 = 0:6, then the (unconditional)
probability that it will rain four days after today is

P [X4 = 0] = 0:4P
(4)
00 + 0:6P

(4)
10

= (0:4)(0:5749) + (0:6)(0:5668)

= 0:5700

Looking at these examples, the question arises, what is the nature ofP
(n)
ij asn goes to infinity?

Does it approach some value? Does that value depend oni? To answer these questions we must
lay more groundwork.

State Classification

Communication; Classes; Irreducibility.

If P n
ij > 0 for somen > 0, thenj is accessible from i. This implies that statej is accessible

from statei if and only if, starting ini, it is possible that the process will ever enter statej.

If the reverse is true as well, theni andj communicate.

Communication is a transitive property, so all communicating states form a class. So the
concept of communication divides the state space up into a number of separate classes. If whole
chain forms one class, then it is calledirreducible.

Recurrence.

For any statei we let fi denote the probability that starting in statei, the process will ever
re-enter statei.

Statei is recurrent if fi = 1 andtransient if fi < 1: Note that if statei is recurrent then the
process will re-enter statei an infinite number of times.

On the other hand, suppose statei is transient. Each time the process enters statei, there will
be a positive probability, namely1� fi; that it will never again enter that state. Therefore, starting
in statei; the probability that a process will be in statei for exactlyn future time periods has a
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geometric distribution with parameterfi. So if a state is transient then the expected number of
visits to that state is finite.

Finite chains must have some recurrent state. On the other hand, an infinite chain can have all
states transient.

If one state in a class is recurrent, then all must be recurrent (can you prove this?). So recur-
rence/transience is a class property: all states in a class either have it or don’t.

Periodicity.

Statei is said to haveperiod d if Pn
ii = 0 whenevern is not divisible byd, andd is the largest

integer with this property.

For example, starting ini, it may be possible for the process to enter statei only at times 2, 4,
6, 8, ... in which case statei has period 2.

A state with period 1 is calledaperiodic. It can be shown that periodicity is also a class
property. That is if statei has periodd, and statesi and j communicate, then statej also has
periodd.

Positive Recurrence.

If state i is recurrent, then is it is said to bepositive recurrent if, starting in i, the expected
time until the process returns to statei is finite. It can be shown that positive recurrence is a class
property.

Positive recurrence of statei means that, not only do the probabilities of returning to statei
sum to 1 (recurrence):X

n>0

P [going fromi to i in n steps, but no less] = 1;

but also that the expected number of steps until the chain returns is finite:X
n>0

nP [going fromi to i in n steps, but no less] <1:

Informally, if we watch the chain for a fixed duration, we expect it to return to statei some number
of times that is proportional to the duration of observation.

It can be shown that in a finite-state Markov chain all recurrent states are positive recurrent.
Only an infinite state Markov chain can lack this property, and then only if the probability of
returning in exactlyn steps (and not before) declines very slowly inn — which will not be the
case for any of the chains we consider.

Finally, we can state the key property: positive recurrent, aperiodic states are calledergodic.
Ergodicity is therefore a class property. If the Markov Chain is irreducible and ergodic, then the
chain itself is ergodic. As we have seen, this means that ensemble properties (properties of a
representative random variable) are the same as properties of a single realization over time. So, to
study time averages of such a chain we can study the averages of representative random variables.
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The Bottom Line. In summary, we are concerned with ergodic Markov chains. These are those
in which one will always eventually go from any given state to any other state (in finite expected
time), and which don’t show any periodic (cyclical) behavior.

10.2 Limiting Probabilities

Now let’s return to the question of in what cases will the rows of a Markov Chain become similar
for a large number of transitions, as seemed to be happening in the rainy / not rainy example.

Theorem. (stated without proof.) For an ergodic Markov chain,limn!1 P
(n)
ij exists and is inde-

pendent ofi. Furthermore, letting

�j = lim
n!1

P
(n)
ij ; j � 0

then�j is the unique nonnegative solution of

�j =
1X
i=0

�iPij; j � 0

1X
j=0

�j = 1:

This can be expressed as

�TP = �T ;

�T1 = 1:

Linear Algebraic Refresher: The equation�TP = �T is called theeigen-
problem. This can be also be written asP T� = �. The vector� is called an
eigenvector of the matrixPT . Associated with each eigenvectorei of P T is a
corresponding eigenvalue�i such thatP Tei = �iei.

Note that these equations do not uniquely determine the values of the steady-state probability
vector�. However if we add the constraint that

P
� = 1 then the set of equations has a unique

solution.
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Aside. The eigenproblem-view is not the only way to look at this. One can
also think of it as a set of simultaneous linear equations:

�T (I � P ) = 0

This view of the Markov Chain at steady state emphasizes that thenet proba-
bility change from any state to the set of all other states is zero. We will return
to this idea in more detail later.

The Numerical View

All of this can be cast in a numerical framework based onPT� = �. We can construct any finite
m-state DTMC and express it as anm �m matrixP . This can then be solved using a numerical
package (e.g., matlab, mathematica, octave, Splus, R, ...).

In solving the eigenproblem for the matrixP T , one obtains a full set ofm � 1 eigenvectors.
The vector� is the principal eigenvector, that is the eigenvector corresponding to the largest
eigenvalue. Clearly� needs to be an eigenvector, but why this particular one? The answer comes
from the action ofP as a linear operator.

Let’s take some random starting pointx1 2 Rm. SinceP is of rankm it hasm distinct
eigenvectorsei 2 Rm. Let’s expressx1 in terms of those eigenvectors:x1 =

P
i21::m �iei Now

take “one step forward” in the Markov chain, ie, setx2 = x1P . Now by the action ofP , x2
will be x2 =

P
�i�iei where�i is the eigenvalue corresponding to eigenvectorei. Repeating this

process will yieldxn = x1P
(n) =

P
�ni �iei. In this sum, obviously the term with the largest�i

will dominate asn grows large. (This is the so-calledPower method for constructing the principal
eigenvector).

So the limiting distribution� is the principal eigenvector ofP . To obtain this in,e.g., matlab
or octave:

P = [[0.7 0.3];[0.4 0.6]]
PT = P’
[V, Lambda] = eig(PT)
pi = V(:,1)/sum(V(:,1))

ThisP matrix corresponds to the rainy / not-rainy example.

One has to transpose P first because these packages define the eigenproblem asMe = �e, ie,
they assume vectors are column vectors. Likewise the columns ofV are the resulting eigenvectors.
The last step normalizes the eigenvector to sum to 1 (i,e., enforces the law of total probability).



112 CHAPTER 10. DISCRETE TIME MARKOV CHAINS

Note that any square matrix with rankm will have m nonzero eigenvalues. However, it is
only matrices corresponding toirreducible ergodic Markov chains that will have asingle largest
eigenvalue with value 1.

Example: TCP’s Window Size

As a first numerical example, let’s consider the following problem. TCP is the transport protocol
used in the Internet; all data flowing reliably in the Internet (e.g., Web pages) is sent via TCP.
One of TCP’s jobs is to control the rate of data flow, so that if congestion arises, TCP reduces its
sending rate, until the traffic jam clears. On the other hand, TCP tries to send as fast as it can when
there is no congestion. TCP’s sending rate is controlled by itswindow size which is the number of
packets that are “in flight” between the sender and receiver at any time.

A (very) simplified view of TCP’s control algorithm to do this is as follows:

1. Start with window size = 1

2. Send a window’s size number of packets

3. Did they all arrive at the recipient?

(a) If so, have we reached the maximum window size?

i. If so, keep the window size the same, and go to Step 2.

ii. If not, increase the window size by 1, and go to Step 2.

(b) If not, go to Step 1.

Let’s assume that the probability that an entire window’s worth of packets doesnot arrive
at the recipient isp. Sop is the probability that at least one packet in a window’s worth is lost.
(Question: is this a good model?) Furthermore, let’s assume that these loss events are independent.
Then TCP’s control algorithm can be modeled as a Markov Chain.

The states of the chain correspond to window sizes. Let’s assume that the maximum window
size is 6. Here is a picture of the DTMC. Arcs to the right have probability1 � p and arcs to the
left have probabilityp.

3 4 521 6
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The first question we’ll ask is: what is the steady-state distribution of window sizes?

Here is some Matlab/Octave code to answer that question, forp = 0:01.

makep = @(p) [[p 1-p 0 0 0 0];
[p 0 1-p 0 0 0];
[p 0 0 1-p 0 0];
[p 0 0 0 1-p 0];
[p 0 0 0 0 1-p];
[p 0 0 0 0 1-p]]

P = makep(0.1)

[V, lambda] = eig(P’)

% Note that in this case, lambda==1 shows up in column 6
pi = V(:,6)/sum(V(:,6))

bar(pi)

Now let’s ask this: what is the average window size?

Answer:E[window size] =
P6

i=1 i � �i
Which in matlab is just:

[1 2 3 4 5 6] * pi

Now think about this: assume that each window’s worth takes the same amount of time to send
(this is not a bad approximation). Let’s call this timeR. Typical values ofR are from 0.1 sec to
0.5 sec. Then the rate that TCP is sending is equal to the window size divided byR. What is the
average rate in packets per second that TCP sends whenp = 0:01 and whenp = 0:10?

Example: Google’s Page Rank Algorithm

From [BP98]:

We assume page A has pages T1:::Tn which point to it (i.e., are citations). The
parameter d is a damping factor which can be set between 0 and 1. We usually set d
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to 0.85. There are more details about d in the next section. Also C(A) is defined as the
number of links going out of page A: The PageRank of a page A is given as follows:

PR(A) = (1� d) + d(PR(T1)=C(T1) + :::+ PR(Tn)=C(Tn))

Note that the PageRanks form a probability distribution over web pages, so the
sum of all web pages’ PageRanks will be one.

PageRank or PR(A) can be calculated using a simple iterative algorithm, and
corresponds to the principal eigenvector of the normalized link matrix of the web.
Also, a PageRank for 26 million web pages can be computed in a few hours on a
medium size workstation. There are many other details which are beyond the scope of
this paper.

[...]
PageRank can be thought of as a model of user behavior. We assume there is a

“random surfer” who is given a web page at random and keeps clicking on links, never
hitting “back” but eventually gets bored and starts on another random page. The
probability that the random surfer visits a page is its PageRank. And, the d damping
factor is the probability at each page the “random surfer” will get bored and request
another random page. One important variation is to only add the damping factor d to
a single page, or a group of pages. This allows for personalization and can make it
nearly impossible to deliberately mislead the system in order to get a higher ranking.
We have several other extensions to PageRank, again see [Page 98].

Another intuitive justification is that a page can have a high PageRank if there are
many pages that point to it, or if there are some pages that point to it and have a high
PageRank. Intuitively, pages that are well cited from many places around the web are
worth looking at. Also, pages that have perhaps only one citation from something like
the Yahoo! homepage are also generally worth looking at. If a page was not high
quality, or was a broken link, it is quite likely that Yahoo’s homepage would not link
to it. PageRank handles both these cases and everything in between by recursively
propagating weights through the link structure of the web.

To interpret this in terms of the language we have been using in this course, please read the
first five pages of [LM05], available from the courseinfo page.

Example from Deeper Inside PageRank [LM05]:

Step 1.

>> P = [[0 1/2 1/2 0 0 0];
[0 0 0 0 0 0];
[1/3 1/3 0 0 1/3 0];
[0 0 0 0 1/2 1/2];
[0 0 0 1/2 0 1/2];
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[0 0 0 1 0 0]]

Step 2.

P(2,:) = [1/6 1/6 1/6 1/6 1/6 1/6];

or

P(2,:) = ones(1,6)/6;

Step 3.

E = ones(6,1)
M = E * E’
M = M / 6

alpha = 0.90

Pbar = alpha * P + (1 - alpha) * M

What is steady state?

[V, lambda] = eig(Pbar’)

% Note that in this case, lambda==1 shows up in column 6
pi = V(:,6)/sum(V(:,6))

>> pi= V(:,1)/sum(V(:,1))

pi =

0.0372
0.0540
0.0415
0.3751
0.2060
0.2862
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10.3 The Reversed Chain

Imagine that you observe a particular realization of an ergodic DTMC. For example, let us say that
the DTMC has states denoted by integers1 � n � 10. After the chain has been running for a long
time (so that its current state is idependent of the starting state, ie, it is in the stationary regime)
you observe a long sequence, eg,:

:::; 3; 9; 8; 8; 1; 2; 1; 7; 3; 4; 3; 5; :::

Clearly, one can inferPij by counting the relative frequency of transitions fromi to j (this is
the case due to the ergodicity of the chain).

Now imagine that you looked at the same sequence in reverse order. Does it always correspond
to a realization of some Markov Chain?

More formally, given a (forward) Markov Chain

:::; Xn; Xn+1; Xn+2; Xn+3; :::

is the reversed stochastic process

:::; Xn+3; Xn+2; Xn+1; Xn; :::

also a Markov Chain?

The answer is yes, and the reason is intuitive: since the current state of the Markov Chain is
independent of the past, the future state of the reversed chain must be independent of the current
state. For the reversed chain, this is a Markov property.

Again, more formally, let’s establish the Markov property for the reversed chain:

P [Xn = jjXn+1 = i;Xn+2 = k; :::] = P [Xn = jjXn+1 = i]

Let’s just consider one step in the past:

P [Xn = jjXn+1 = i;Xn+2 = k] = P [Xn = jjXn+1 = i]

P [Xn = j;Xn+1 = i;Xn+2 = k]

P [Xn+1 = i;Xn+2 = k]
=

P [Xn = j;Xn+1 = i]

P [Xn+1 = i]

Interchanging the top right and bottom left terms:

P [Xn = j;Xn+1 = i;Xn+2 = k]

P [Xn = j;Xn+1 = i]
=

P [Xn+1 = i;Xn+2 = k]

P [Xn+1 = i]

P [Xn+2 = kjXn+1 = i;Xn = j] = P [Xn+2 = kjXn+1 = i]
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which is true by the Markov property of the original chain. We can establishP [Xn = jjXn+1 =
i;Xn+2 = k; :::] = P [Xn = jjXn+1 = i] for arbitrarily far forward in time the same way.

We denote the reversed chain byQij = P [Xn = jjXn+1 = i].

What are the transition probabilities of the reversed chain? From the definition:

Qij = P [Xn = jjXn+1 = i]

=
P [Xn = j;Xn+1 = i]

P [Xn+1 = i]

=
P [Xn+1 = ijXn = j]P [Xn = j]

P [Xn+1 = i]

=
Pji �j
�i

and indeed we can interpretQij�i = Pji�j as saying “the rate of transitions fromi to j seen when
watching the original chain is equal to the rate of transitions fromj to i seen when watching the
reversed chain.” Note that in general,Pij 6= Qji. The chain usually behaves differently when
viewed in reverse!

One of the useful aspects of the reversed chainQ is that it is adifferent chain fromP , but its
steady-state probilities are the same as those ofP . (The fraction of time the chain spends in any
state doesn’t change if we view the chain in the reverse direction.)

So, sometimes by thinking backwards, we can either explicitly constructQ, or guess at a
possibleQ, and use it to help find the�is. The reason we can do this is the following:

Fact. Consider an irreducible DTMC with transition probabilitiesPij. If one can find positive
numbers�i; i � 0, summing to one, and a set of transition probabilitiesQij such that

�iPij = �jQji

for all i andj, then theQij are the transition probabilites of the reversed chain and the�i are the
stationary probabilities of both the original and reversed chain.

Example: TCP’s Window Size, Continued

In our previous study of TCP’s window size, we were forced to study a finite chain in order to
evaluate it numerically. Can we remove the upper limit on the window size, and study the chain
analytically?

Let Xn equali if the window size isi at timen. Let us denote byL the size of the window
when a loss occurs. Then in our example,L has a geometric distribution with parameterp. That
is,

P [L = i] = (1� p)i�1p:
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In the forward direction, the chain always either increases by 1, or goes back to 1. So in the
reverse direction, when the state is not 1, the chain always decreases by 1. That is:

Qi;i�1 = 1 i > 1

What about state 1? There are transitions from state 1 to every other state, with probability
P [L = i] (Why?). So:

Q1;i = (1� p)i�1p i � 1

To determine stationary probabilities, we must see if we can findf�ig such that

�iPij = �jQji:

First, forj = 1:
�iPi1 = �1Q1i

which is

�ip = �1(1� p)i�1p

�i = �1(1� p)i�1

To find�1:

1X
i=1

�i = 1

1X
i=1

�1(1� p)i�1 = 1

1X
i=1

(1� p)i�1 = 1=�1

1=p = 1=�1

�1 = p

So�i = p(1� p)i�1 for all i.

To finish the proof, we have to show that the remaining transition rates are also equal. That is:

�iPi;i+1 = �i+1Qi+1;i

Which is true because:

p(1� p)i�1 � (1� p) = p(1� p)i � 1
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So what can we say about the average window size?

Can this be extended to a given maximum sizeN?

Exercise: Consider more general options for the distribution ofL. In that case
pi = P [L = i]=P [L � i]. Note also that

P1
i=1 P [L � i] = E[L].

10.4 Markov Modulated Process

We can use DTMCs to model slightly more complicated situations as follows. Let us define a
functionY (s) for all statess of the DTMC.
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Exercises

DTMCs

10-1. A search for Web pages containing a particular keyword returns 13 pages. The links between
the pages are shown below. Compute the score that PAGERANK would assign to each page
and rank the pages in order.

3 410

11

12

5 7

6 2

8 13

9 1

Figure 10.1: Pages for Exercise 1

10-2. Describe the HITS/Clever model of Kleinberg. Apply it to the graph in the previous problem
and state how the HITS algorithm would rank the pages. Compare to PageRank and discuss
the differences.

10-3. Consider the TCP modeling example in this chapter. Our modeling assumption that each
window size has the same probability of being delivered intact (1 � p) is obviously a bad
one. A better model is that each packet has the same probability of being lost. Assume
packet loss is independent, and that packets are lost with probabilityp.

(a) What probabilities should we assign to the edges of the Markov chain to incorporate
the independent packet loss assumption?

(b) Construct a DTMC for this model and compare the it with the model developed in
Exercise 6-1.

(c) Compare their predictions over the rangep =0.5 to 0.005. How do the predictions
differ? Explain why there is a difference.

(d) What changes might you make to improve the less-accurate model?

(e) Comment on which model lends moreinsight into the performance of the protocol.
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Continuous Time Markov Chains

11.1 Definition

We now consider a Markov process that evolves in continuous time.

We say that a processfX(t); t � 0g is a continuous time Markov chain (CTMC) if for all
s; t � 0 and nonnegative integersi; j; x(u); 0 � u < s;

P [X(t+ s) = jjX(s) = i;X(u) = x(u); 0 � u < s] = P [X(t+ s) = jjX(s) = i]

That is, this process has the Markovian property that the future depends only on the present
state and is independent of the sequence of past states.

Let us assume that the process enters statei at some time. LetTi be the time process stays in
this state before transitioning to a new state (this is called thesojourn time. We can see from the
CTMC definition that

P [Ti > s+ tjTi > s] = P [Ti > t]:

Hence the random variableTi is memoryless and so must be exponentially distributed (since
the exponential distribution is the only continuous distribution that is memoryless).

Note that the process cannot “transition” directly from one state to the same state since that
would be the same as simply remaining in that state.

Thus we can define the CTMC in another way. Let us call the expected time spent in statei
1=vi. Then

1. vi is the rate of leaving statei, and the distribution of time spent in statei is exponential, that

121
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is, it is given by
p(x) = vi e

�vix:

2. when the process leaves statei, it goes next to statej with probabilityPij. As expected,

Pii = 0;

and X
j

Pij = 1:

Now it may seem that the CTMC has more parameters than the DTMC because it involves
both thevis and thePijs. However let us define

qij = viPij:

The interpretation ofqij is as the rate of transitioning from statei to statej. Then the CTMC is
completely described by theqijs alone, because:

vi =
X
j

qij;

and
Pij = qij=vi:

So we think of the CTMC as captured by the matrixQ, which is a matrix ofrates of transition-
ing from i to j. Note that this is different from the DTMC case, in whichP was a matrix of
probabilities.

11.2 Recall!

Before proceeding with analysis of the CTMC, let us recall some important properties of the
Exponential distribution and of Poisson Processes (from Module 4).

Comparing Two Exponential Random Variables: Suppose we have two independent ran-
dom variablesX1 andX2 that are each exponentially distributed, with respective parameters�1
and�2. ThenP [X1 < X2] =

�1
�1+�2

:

Minimum of n Exponential Random Variables: Suppose thatX1; X2; :::; Xn are indepen-
dent exponential random variables, withXi having rate�i; i = 1; :::; n: Now let us define a new
random variableY = minimum(X1; :::; Xn): ThenY is also an exponential random variable, with
rate equal to the sum of the�i.

Superposition of Poisson Processes: Now let us consider two Poisson processesN1(t) having
rate�1 andN2(t) having rate�2. Then the superposition of these two processes is a Poisson
process with rate�S = �1 + �2.
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Splitting of Poisson Processes: Probabilistically split a Poisson process into two substreams.
Then if the splitting is done independently at each step, the two substreams are Poisson processes.

11.3 Limiting Probabilities

Does such a process have limiting probabilites like the discrete case? That is, is there a�j =
limt!1 Pij(t) that is independent ofi?

The answer is: yes, under the same conditions as for the DTMC case: when the associated
chain is irreducible and ergodic. In this case,�j exists and has the interpretation of the long-run
proportion of time that the process is in statej.

To derive a set of equations for�j, let us reason as follows. Assume that the CTMC has a
steady-state occupancy distribution vector�, and consider an arbitrary statej. Now, over any
interval of time(0; t) the number of transitions into statej must be equal to within 1 of the number
of transitions out of statej. Hence, in the long run, the rate of transitions into statej must equal
the rate of transitions out of statej.

Now when a process is in statej, it leaves with ratevj. Since�j is the proportion of time that
the process spends in statej, then

�jvj = rate at which the process leaves statej:

Similarly, when a process is in statek, it entersj at a rateqkj. Since�k is the proportion of time
in statek, we can see that the rate at which transitions fromk to j occur is�kqkj. So:

X
k 6=j

�kqkj = rate at which process enters statej:

So we can derive an equation involving the�js by setting the rate entering each state to the
rate leaving each state. This equation is:

�jvj =
X
k 6=j

�kqkj for all statesj:

This is called aflow balance equation.

Now let us form the matrixQ as follows. For entries(i; j) with i 6= j, we setQij = qij; that is,
the off-diagonal entries are equal to the rate (when in statei) of transitioning from statei to state
j. Let us set the diagonal entriesQii = �vi, namely, the negative of the rate of leaving statei.
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The structure ofQ is then:

Q =

2
66666666664

�v0 q01 q02 : : : q0j : : :
q10 �v1 q12 : : : q1j : : :
q20 q21 �v2 : : : q2j : : :
...

...
...

. . .
...

...
qi0 qi1 qi2 : : : �vi : : :
...

...
...

...
...

. . .

3
77777777775

Then we can rearrage the previous equation as follows:X
k 6=j

(�kqkj)� �jvj = 0 for all statesj;

which in terms of our matrixQ can be expressed as:

�Q = 0;

which along with the normalizing equationX
j

�j = 1

can be solved for the limiting probabilities.

11.3.1 Numerical View

Again, all of this can be cast in a numerical framework, this time based on�Q = 0 and
P

j �j = 1.
We can construct any finite CTMC and express it as a matrixQ. This can then be solved using
a numerical package. A completely linear algebraic approach to queueing theory is called the
“matrix geometric” or “linear algebraic queueing theory” approach. A good book that takes this
tack is [Lip92].

The equation�Q = 0 states that� is a vector in the nullspace ofQ; the equation
P

j �j = 1
tells us which one it is. (Note that the rank of the nullspace ofQ is 1, for the same reason thatP ’s
rank ism� 1 in the DTMC case.) To obtain� in, e.g., matlab or octave:

PT = P’
S = null(PT)
pi = S(:,1)/sum(S(:,1))

In what follows we will primarily use analysis rather than numerical solution for two reasons:
we will mainly look at infinite Markov chains, for which it is more accurate to work with analytic
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expressions; and we desireinsight which is much more easily obtained from analytic expressions
than numerical results.

However for most actual problems involving performance analysis via Markov Chains, the
numerical approach is more practical. Furthermore, it is arguable whether equations or plots give
more insight in any given situation. In the cases where we are using infinite CTMC models in
a practical application, it is usually sufficient to use a large finite CTMC in place of the infinite
CTMC. We will see that often in infinite CTMCs the probability of occupancy of most states is
infinitesimally small and can be ignored in a practical setting.

11.4 Birth-Death Systems

Definition of a Birth-Death system: State of the system is represented by the number of people
in the system at any time. Suppose that whenever there aren people in the system, new arrivals
enter the system at the exponential rate�n and leave the system at the exponential rate�n. This is
a birth-death system.

The key idea is that all state changes can only occur between adjacent states. That is, in passing
from staten to statem, the system must pass at least once through all intermediate states.

This is a CTMC. What are the ratesvi and transition probabilitiesPij?

v0 = �0

vi = �i + �i; i > 0

P01 = 1

Pi;i+1 =
�i

�i + �i
; i > 0

Pi;i�1 =
�i

�i + �i
; i > 0

Example. Consider a birth-death process for which

�i = 0; i � 0

�i = �; i � 0:

This is the Poisson Process.

Now let us solve the flow balance equation�Q = 0 for the Birth-Death system.
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State Rate at which leave = Rate at which enter
0 �0�0 = �1�1
1 (�1 + �1)�1 = �2�2 + �0�0
2 (�2 + �2)�2 = �3�3 + �1�1
...

...
...

n (�n + �n)�n = �n+1�n+1 + �n�1�n�1
...

...
...

We find that we can solve this system in terms of�0:

�1 =
�0

�1
�0

�2 =
�0�1

�1�2
�0

�3 =
�0�1�2

�1�2�3
�0

...

�n =
�0�1 � � � �n�1

�1�2 � � ��n �0

Now, to solve for�0 the flow balance equations alone are not enough. However we can employ
the fact that

P
n �n = 1 to obtain:

1 = �0 + �0
1X
n=1

�0�1 � � ��n�1

�1�2 � � ��n

so:

�0 =
1

1 +
P1

n=1
�0�1����n�1
�1�2����n

Note that it is necessary for
P1

n=1
�0�1����n�1
�1�2����n

to be finite in order for�0 (and thus all limiting
probabilities�j) to exist.



11.4. BIRTH-DEATH SYSTEMS 127

Exercises

11-1. The Web Server at NetVapor, Inc. has two bugs. When these bugs are encountered, the
Server crashes. Each time the server is rebooted, it remains up for an exponentially dis-
tributed time with rate�. It then crashes, either due to Bug 1 or Bug 2. If it is due to Bug
1, it takes the system staff time to restart the system that is exponential with rate�1. If it
crashes due to Bug 2, it takes time to restart that is exponential with rate�2. Each crash is
due to Bug 1 with probabilityp and due to Bug 2 with probability1� p.

(a) What proportion of time is the server down due to Bug 1?

(b) What proportion of time is the server down due to Bug 2?

(c) What proportion of time is the server running?
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Queues

129





Chapter 12

Queueing Theory

We now have the necessary tools to address the performance of queues.

12.1 Definitions

There are many different types of queues, so we taxonomize them usingKendall notation, which
takes the formA/B/C/D/E, in which the various parts mean:

A Distribution of time between arrivals

B Distribution of time to service a customer

C Number of Servers

D Number of Customers that can wait in the queue (storage size)

E Number of Customers that are available (in system; population size)

When specifyingA andB (this distributions) we use the following symbols:
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M Exponential (M is for “Markovian”)

D Deterministic (Constant)

Er Erlang-r

Hk Hyperexponential-k

G General (no specific distribution; any distribution)

When the last two entries are1 we leave them off, so for M/M/1/1/1 we just write M/M/1.

Sometimes we also note the service discipline being used by the server, for example, FCFS,
LCFS, Round-Robin, Random, Priority, etc.

12.1.1 System Utilization

Generally we will use� to denote arrival rate (not necessarily corresponding to exponential inter-
arrivals) and�x to denote average service time.

We definesystem utilization � to be fraction of time the server is busy (or probability that the
server is busy at any instant).

Now for the most fundamental fact about any computing system. Given a set ofN interarrivals
an and service timesxn, we have:

� = P [server is busy] = limN!1

PN
n=1 xnPN
n=1 an

= limN!1

1
N

PN
n=1 xn

1
N

PN
n=1 an

=
�x

1=�

= ��x

That is, we have the basic identity� = ��x.

12.1.2 Little’s Law

We will now derive the most useful fact in all of queueing theory.
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For a system with arrival rate�, and mean time in systemT , the mean number in systemN is
given by:

N = �T

This is true for any work-conserving queue,regardless of the distribution of service times, the
distribution of interarrival times, and the service discipline. Thus this law has amazingly general
applicability.

Here is an intuitive look at why this might be the case. Consider a drive-up Margarita stand.
Let us observe a “typical” customer. The typical customer joins the end of the line, and in time
T eventually makes it to the front of the line. During this time,�T customers have arrived, and
�T customers have departed. Also, there are no customers in the system who arrived before our
special customer. So clearly there were�T customers in the system when our customer arrived
(and departed).

Of course, this simple example only seems to work when service is FCFS. The amazing thing
about Little’s Law is that it works forany service discipline.

12.2 M/M/1

We begin by analyzing the simplest (and yet incredibly useful) queueing system, the M/M/1 queue.

We will model this queue with a CTMC, in which each state models the corresponding number
of customers in the system. That is, state 0 corresponds to an empty system, state 1 to a single
customer (in service), state 2 to a customer in service and one in the queue, etc.

This CTMC is clearly a birth-death system. In this system,�n = � and�n = �. So the system
is particularly simple:

�0�1 � � ��n�1 = �n

and
�1�2 � � ��n = �n:

So using these facts and the Birth-Death equations we can solve for�0:

�0 =
1

1 +
P1

n=1
�0�1����n�1
�1�2����n

=
1

1 +
P1

n=1
�n

�n

=
1

1 +
P1

n=1 �
n
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=
1

1 + �
1��

= 1� �

Question: Why should it be intuitively obvious that�0 = 1� �?

Next, now that know�0, we can solve for the other�k’s:

�1 =
�

�
�0 = �(1� �)

�2 =
�

�
�1 = �2(1� �)

�3 =
�

�
�2 = �3(1� �)

... and so on. From the pattern here, we can see that�k = (1 � �)�k: This is the geometric
distribution withp = 1� �.

Well, actually, this isalmost the geometric distribution. As we defined it in Module 3, the
geometric distribution took on valuesk > 0. (Recall that the geometric distribution isP [X =
k] = p(1 � p)k�1, with k > 0, and thatE[X] = 1=p.) Here, we havek � 0. For that reason, the
formula for�k here differs from the one given in Module 3 by a factor of�.

At this point, we should pause and consider. We have found the steady-state distribution� of
the underlying CTMC for the M/M/1 queue. We have all the information we need to obtain any
performance measure we want at this point.
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Question: What if � had been greater that 1? How would this have changed
the analysis?

You can answer this question two ways: First, if� > 1, then
P1

n=1 �
n

would be1, so�0 would be zero. This leads to the conclusion that all�k’s are
zero, an obvious impossibility. You can see that it was essential that� < 1 in
order for this sum to be finite, given that Markov Chain itself is of infinite size.

Another way to look at it is to ask whether steady state even exists if
� > 1. In fact, it does not: the CTMC would not be ergodic, because it
would not berecurrent. (Why not?) This explains the impossibility in the last
paragraph – the assumptions underlying the use of the CTMC are violated
when� > 1.

Note how these observations depend on the infinite size of the CTMC.
If the CTMC had been finite, then steady state could exist for� > 1.

12.2.1 Mean Number of Customers in System

The number of customers in the system when the CTMC is in statek, isk. SoE[k] is the expected
number of customers in the system — including the customer in the queue.

What is the mean of this distribution (remembering that it’s not exactly geometric, having
k � 0)? Suppose wedid have a RV X distributed geometrically withp = 1 � �. Then�k =
P [X = (k + 1)] for k > 0. So

E[k] =
1X
k=0

k �k

=
1X
k=0

k P [X = (k + 1)]

=
1X
k=1

(k � 1)P [X = k]

=
1X
k=1

k P [X = k]�
1X
k=1

P [X = k]

= E[X]� 1

=
1

1� �
� 1

=
�

1� �
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SoE[k] = �=(1� �). This is theaverage number of customers in the system.

12.2.2 Waiting Time

Immediately then by Little’s Law we have the mean time spent in the system:

�W =
N

�
=

�=�

1� �
=

�x

1� �

We can see this another way, using the “tagged customer” argument (covered in the next chap-
ter). Since Poisson arrivals see time averages, the state of the system that an arriving customer sees
is the same as the time average. So an arriving customer sees�=(1 � �) customers in the system
when it arrives. Then the time the customer spends in the system, on average, is:

time spent for customers in system on arrival+ customer s own service time

which is:

�x
�

1� �
+ �x = �x

 
�

1� �

!
=

�x

1� �
:

12.2.3 Mean Number in Queue

Now, the probability a customer is in service can also be seen as the average number of customes
in service (since this is a Bernoulli RV). So:

E[number in queue] = E[number in system]� E[number in service]

that is:
�Q =

�

1� �
� � =

�2

1� �

Question: What is the utilization of an M/M/1 queue that has 4 customers in the queue on average?

4 =
�2

1� �

�2 + 4�� 4 = 0

� = 2
p
2� 2 � 0:82
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12.3 What “Causes” Queueing?

Now, we start to ask a fundamental question: why does the queue build up as utilization increases?
What causes queueing, anyway?

Consider a D/D/1 queue. Assume� < �x Then�1 = ��x = �. What is�2? Clearly, zero. So
�k = 0 k � 2. So�0 = 1� �1 = 1� �: Sono queueing ever occurs, regardless of the value of�!

12.4 M/M/1/K

A more realistic model of a real system would include the fact that queue space is finite: the
M/M/1/K queue models this.

There are at mostK customers in system: 1 in service, and K-1 waiting. WhenK are present,
arriving customers are turned away,i.e., lost.

Then:

�n =

(
� n = 0; 1; 2; � � � ;K � 1
0 n � K

and

�n =

(
� n = 1; 2; � � � ;K
0 n > K

Note that� 6= ��x because system isnot work conserving. So instead we will define symbol
a = �=�.

This is a Birth-Death system. So, using the B-D formulas:

�n =

 
�

�

!n
�0 = an�0

What is�0?

1 =
KX
n=0

�n

So:

1 = �0(1 + a+ a2 + � � �+ ak)
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= �0
KX
i=0

ai

= �0
1� ak+1

1� a

So

�0 =
1� a

1� ak+1

Note the above equations do not hold when� = �. However using the B-D equations we can
find that in this case,�n = 1=(K + 1) for n = 0; 1; :::; K.

So

�n =

(
an(1�a)
1�aK+1

� 6= �
1

K+1
� = �

So, we have the complete state probability distribution for this queue. Now, so far we have not
assumed that� < �. Is this OK? In the case of the M/M/1 queue, we had to assume� < � in
order for the underlying CTMC to be ergodic, because the system would not be positive recurrent
if � > �. (That is, the system state would tend to increase without limit.)

In the case of the M/M/1/K queue, the situation is different because the queue is finite. Re-
member that any finite CTMC must have at least one recurrent state (and therefore class). Since
this chain is irreducible, the entire chain is recurrent and so ergodic. So a steady state exists for
any values of� and�; even when� > �.

Now: what is the rate at which customers are lost? This is the rate at which customers arrive
when the system is full. So the loss rate is��k.

What is the average number in system,E[N ]?

E[N ] =
KX
n=0

n�n

=
1� a

1� aK+1

KX
n=1

nan

=
a

1� a
� (K + 1)aK+1

1� aK+1

So if � < �, (that is,a < 1), thenE[N ] is less than in the M/M/1 case, which makes sense,
since some arriving customers were lost.
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What about mean waiting timeE[W ]? The usual approach we have taken is to calculate the
mean number of customers in the system and then use Little’s Law. However we have to be careful
here, because Little’s Law only applies to a work-conserving system. Since some customers are
turned away, this system is not work conserving.

However, we can imagine a work-conserving system “inside” this system. If we were to only
consider those arriving customers whodo receive service, and imagine the system as if only those
customers arrived, the system performance (that is,E[N ]) would be exactly the same. That system
would be work-conserving, and so we could apply Little’s Law.

To do this we need the arrival rate of customers thatdo receive service. This is clearly�(1 �
�K). So we can calculate the mean waiting time for this queue as:

E[W ] = E[N ]=(�(1� �K))

Note how important�K is. This value is called theloss probability of the system. It tells us
how often the system loses incoming customers.

Example: Loss Rate at a Router. Assume we have a router serving packets that are arriving as
a Poisson process, and assume that packet service time is exponentially distributed. We measure
the router and note that the arrival rate times mean service time is 0.80 (where arrival rate includes
also those packets that are dropped.) How many packet buffers should we allocate to limit the
packet loss to 1/2%?

To solve this, we want the loss probability to be 0.005, and to solve forK. So:

0:005 =
aK(1� a)

1� aK+1

=
(1� 0:8)0:8K

1� 0:8K+1

(0:8)K = 0:005=(1� 0:8 + 0:8 � 0:005) = 0:0245

This yieldsK � 16:6, so buffer space for 17 packets will be sufficient to keep the loss rate below
1/2%.

12.5 M/M/c

Now we consider the case in which there are multiple servers, fed by a single queue. Some
example applications include multiprocessors, cluster based servers, bank tellers.
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The number of servers isc. When there are up toc customers in the system, there is no queue.
If there aren customers in the system, andn > c, thenn� c customers are in the queue.

We will define� = �
c�

. As before, we will use the symbola to mean�=�.

This is a birth-death system withload-dependent service rate.

In this system,
�n = �

�n =

(
n� n = 1; 2; :::; c
c� n � c

Plugging these into to our birth-death formulas yields:

�n =

(
an

n!
�0 n = 1; 2; :::; c

�n�c a
c

c!
�0 n > c

To solve for�0:

1 = �0 +
1X
n=1

�n

= �0(1 +
1X
n=1

�n=�0)

��1
0 = 1 +

1X
n=1

�n=�0

= 1 + a+
a2

2!
+
a3

3!
+ � � � + ac�1

(c� 1)!
+
ac

c!
(1 + �+ �2 + � � �)

=
c�1X
n=0

an

n!
+
ac

c!

1X
n=0

�n

=
c�1X
n=0

an

n!
+

ac

c!(1� �)

So

�0 =

 
c�1X
n=0

an

n!
+

ac

c!(1� �)

!�1

Thus we have completely solved the M/M/c system. We can now proceed to calculate statistics
of interest: mean waiting time, mean number of customers in system, mean queue length.

First, however we start with a simple question: What is the probability that an arriving cus-
tomer will have to wait for service? This is calledErlang’s C formula: C[c; a]:
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C[c; a] = P [N � c]

=
1X
n=c

�n

= 1�
c�1X
n=0

�n

= 1� �0
c�1X
n=0

an

n!

= 1�
Pc�1

n=0
an

n!Pc�1
n=0

an

n!
+ ac

c!(1��)

=
ac

c!

(1� �)
Pc�1

n=0
an

n!
+ ac

c!

Next we note thatP [Q = 0] = 1� C[c; a]:

Now, to get started on performance measures, we start with the average number of customers
in the queue:

E[Q] = �Q =
1X
n=c

(n� c)�n

=
1X
k=0

k�c+k

= �0
ac

c!

1X
k=0

k�k

noting that:
1X
k=0

k�k =
�

1� �
we get:

= �0
ac

c!

�

(1� �)2

= C[c; a]
�

1� �

Now we can apply Little’s law to the queue itself:

E[Wq] = E[Q]=� =
C[c; a]�x

c(1� �)

And, finally, we can observe that the total expected waiting time of a customer is the expected
waiting time in the queue plus the expected service time:

E[W ] = E[Wq] + E[Ws] =
C[c; a]�x

c(1� �)
+ �x
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Example: One queue or two? One server or two?. Consider the case in which we are going to
upgrade an existing system, and have three options: we can double the service rate of the queue,
or double the number of servers. Furthermore, if we double the number of servers, we could have
both servers draw from a single, shared queue, or we could have the servers each draw from their
own, private queue. Quantitatively speaking, which of the three options is best? (Ignoring issues
of cost).

In this scenario, we have� = �=2�, anda = 2�:

To start, let us findC[2; a].

C[2; a] =
a2

2!

(1� �)(1 + a) + a2=2!
=

2�2

1 + �

Then

E[Q] =
�C[2; a]

1� �
=

� 2�2

1+�

1� �
=

2�3

1� �2

So

E[N ] =
2�3

1� �2
+ 2� =

2�

1� �2

So

E[W ] =
E[N ]

�
=

�x

1� �2

Now let us compare three cases. For clarity, in each case we will consider a total arrival rate of2�
and a total service rate of2�:

Two M/M/1 queues. In this case, there are two separate queues, each with its own server, serving
at rate�. The customers arriving with rate2� are split equally (probabilistically) between
the two queues, such that each queue has an input rate of�. Thus we can analyze just one
of the queues, as any particular customer only encounters one queue.

M/M/2. In this case, there are two servers, each serving with rate�, drawing from a single shared
queue. Customers arrive at rate2�.

Single M/M/1, fast server. In this case, customers arrive to a single server queue at rate2� and
are served at rate2�.

Let us consider the corresponding expressions for mean waiting time in each case.
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Case E[W ]
Two M/M/1 queues �x

1��

M/M/2 queue �x
1��2

Faster M/M/1 queue �x
2(1��)

So we see that the difference between these cases depends on the load on the system. The
worst case is Case 1, in which one server may be idle even when there is work to be done,
because it cannot draw from the other server’s queue. Case 2 is faster than Case 1 by a factor of
E[W1]=E[W2] = 1 + �, and Case 3 is faster than Case 1 by a factor of 2. When� is small, Case 2
is about like Case 1; as� gets bigger (closer to 1), Case 2 becomes like Case 3.

Why is Case 2 worse than Case 3? Case 3 is faster than Case 2 by a factor of
E[W2]=E[W3] = 2=(1 + �). When there are many customers in the system, (� � 1) both
systems are about the same, serving at rate2�. However, when there is only one customer in
the system, Case 2 serves at rate� while Case 3 serves at rate2�. So when system load is low
(� � 0), Case 3 spends much of its time serving twice as fast as Case 2. This is the difference
between the two.

The idea that a single queue is better than two queues is called multiplexing efficiency. In Case
2, two servers are “multiplexing” or sharing the queue, avoiding the problems of Case 1 in which
work exists but cannot be serviced because it is in a queue that is not accessible to an idle server.
This notion underlies the idea of packet-switched networks like the Internet, in which channels
(queues) arenot pre-allocated to connection. Each link in the network is free to serve a packet
from any connection, leading to mulitplexing gains over the case in which each connection has
pre-allocated resources.

12.6 M/M/1

Let us now consider (mainly for later use, and for modeling insight) a system with aninfinite
number of servers. Each arriving customer gets their own server right away! Clearly there is no
queue at all here. This is called apure delay system. It is useful for modeling cases where there
is a finite customer population, and a server for each customer. For example, consider a bunch of
users sitting at terminals, reading email or chatting online. Each time a new message arrives, a
user reads the message, then replies. Each user is having only one conversation, so there is never
a message waiting.

This is a birth-death system. Let’s construct the Markov Chain. Let arrival rate be� and
service time be exponential with mean1=�. Thus if there arek customers in the system, service
rate isk�.

Under what conditions is the system ergodic? And, since mean delay in system is just equal
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to mean service time, the interesting question is: what is the mean number of customers in the
system?

By B-D equations:

�k =
�k

k!�k
�0

and

�0 =
1

1 +
P1

k=1(1=k!)(�=�)
k
=

1P1
k=0(1=k!)(�=�)

k

Now, using the identity:

1X
k=0

(1=k!)xk = ex

we obtain:

�0 = e��=�

So

�k =
(�=�)k

k!
e��=�

That is, the number of customers in the system is distributed according to the Poisson distribu-
tion, with expected value�=�.

Time in system: using Little’s lawL = �W :

W = 1=�

of course.

12.7 M/Er/1

We have already mentioned the question “what causes queueing?” The issue can be highlighted
as follows. Consider a D/D/1 system with� < 1. How many customers are in the queue?
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Now, as a comparison case we have the M/M/1 system in which we know that there are�2=(1�
�) customers in the queue on average.

So queueing could be caused by variability in service times, or interarrival times, or both.

To understand and separate the effects of these two things, we’d like to study the M/D/1 queue.
However it doesn’t lend itself to simple representation as a CTMC since service times don’t have
the memoryless property.

However we can study the M/Er/1 queue. This is useful because as we varyr, the coefficient of
variation changes. The Central Limit Theorem tells us that for larger, the CV of the Er distribution
goes like1=

p
r. In the limit of r !1 the CV is zero, and the distribution is a constant (which is

what we want to get to M/D/1).

Customers arrive with rate� and have mean service time1=�. Thus the mean service time for
a stage is1=r� and the service rate for a stage isr�.

The Er distribution is not memoryless, but is the sum of memoryless “stages”. So we will
build a CTMC in which the states correspond to stages rather than customers in the system. We
will think of each customer arrival as bringingr stages for service.

In this CTMC, transitions to the left are at rater�. Transitions to the right jumpr states and
are at rate�.

This is not a birth-death system, since there are jumps to states that are not immediately adja-
cent. So we can’t use the B-D equations. However, as for all CTMCs, the key equations�TQ = 0
and�T1 = 1 still hold. So we will build flow balance equations based on flow in to a state = flow
out of a state.

These are:

��0 = r��1

(�+ r�)�k = r��k+1 0 < k < r

(�+ r�)�k = r��k+1 + ��k�r k � r

Rearraging as usual, to solve in terms of�0:

�1 =
�

r�
�0

�k+1 =
�+ r�

r�
�k 0 < k < r

�k+1 =
�+ r�

r�
�k � �

r�
�k�r k � r
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Note that the last equation is an r-th order difference equation. Such equations can be solved
using advanced methods (thez-transform). Using those methods, we find the following:

E[K] =
(r + 1)�

2(1� �)

which tells us the expected number of stages in the system. This quantity is composed of two
things: the expected number of stages in service, and the expected number of stages corresponding
to customers in the queue. That is:

E[K] = E[C] + rNq:

We can findE[C] as:

E[C] =
rX

c=1

c�=r = �
r + 1

2

So

Nq =
E[K]� E[C]

r
=

�2(r + 1)

2r(1� �)
:

This tells us what we wanted to know. Whenr = 1 service times are exponential and the
expression agrees with the M/M/1 queue. Whenr ! 1, service times are constant and the
epression tells us:

lim
r!1

�2(r + 1)

2r(1� �)
=

�2

2(1� �)

In other words, half of the queueing in the M/M/1 case is due to variability in service times. So
we can “assign blame” for queueing delays in the M/M/1 system equally to service time variability
and interarrival time variability.

A general conclusion from this analysis is that “smoothing” out interarrival times can reduce
delays. This done,e.g., on some highways systems in California, and various versions of it are
frequently proposed for dealing with congestion-related delays in Internet traffic.

12.8 M/G/1

We now turn to the study of queues with general service times: the M/G/1 system. In this case,
service time can be drawn from any distribution.

The M/G/1 system is much harder to analyze than M/M/1, so instead of fully analyzing the
system using CTMCs, we’ll focus exclusively on theaverage behavior of the system (mean wait-
ing time, mean queue length, etc.). In order to do this kind of analysis, we will use the PASTA
principle.
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Review “PASTA” from Module 4.

Review “Mean Residual Life” from Module 4.

M/G/1. Now we can analyze the M/G/1 queue. This is a much more general queue than any
we have seen before. It allows any kind of service time distribution, so we won’t be able to solve
this using a Markov Chain approach. As a result we won’t be able to derive the�ns that would
completely characterize the system. Instead we’ll only be able to solve foraverage statistics.

The first thing to realize is that if we are interested in the average case, then what an arriving
customer experiences is the same as the time-average behavior of the system. This is because
customers arrive according to a Poisson process, so we rely on the PASTA principle.

This means that we can consider what happens to a “typical” customer, who we will call the
“tagged” customer. That is, we can calculate the average values a typical customer would see as
equal to the time-average values of the system.

The time a customer spends in the queue has two parts: a) waiting time for the customer that is
in service when the tagged customer arrives, and b) waiting time for the customers that are ahead
in the queue.

Considering b) first, this can be written as

NqE[x]

whereNq is the time-average number of customers in the queue. Each customer in the queue will
take aE[x] = �x time to be served (on average), so that much time must elapse before the “tagged”
customer can start service.

Considering a), the expected service time remaining for the customer currently in service when
the tagged customer arrives is just the mean residual life of the service time distribution, times the
probability that a customer is in fact in service. That is,

(1� �) � 0 + �(mean residual life)

So

Wq = NqE[x] + �
E[x2]

2E[x]

We can then apply Little’s Law to the queue to determine:

Nq = Wq�

So

Wq = Wq�E[x] + �
E[x2]

2E[x]
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So

Wq � �E[x]Wq = �
E[x2]

2E[x]

So

Wq(1� �) = �E[x]
E[x2]

2E[x]

So

Wq =
�E[x2]

2(1� �)

This is the famous Pollaczek-Kinchin (P-K) equation.

Then total waiting time in system is

E[W ] = Wq +Ws = E[x] +
�E[x2]

2(1� �)

and, by Little’s Law (again!) we have

E[N ] = �E[W ] = �+
�2E[x2]

2(1� �)

Note that queueing time is proportional to the second moment of service time. That is, in-
creased service time variability causes increased queueing even for constant�.

Example: (Check) M/M/1: Exponential Service Times. E[X] = 1=�;E[X2] = 2=�2.

Example: (Check) M/D/1: Constant Service Times. E[X] = 1=�;E[X2] = 1=�2.
In this case,

Wq =
�E[x2]

2(1� �)
=

�=�2

2(1� �)
=

1

2
E[x]

�

1� �

This agrees with our previous analysis of the M/Er/1 queue in the limit of larger. Once again,
compare to queue in M/M/1:

Wq =
�2

�(1� �)
= E[x]

�

1� �

Which “confirms” that half of the delay in the M/M/1 system can be said to be due to variability
in service times.
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Exercises

Queues

12-1. M/G/1 queue. It is known that, regardless of the service time distribution, the number of
customers in service in the M/G/1 system has a Poisson distribution. In particular, if mean
service time is�x and arrival rate is�, the number of customers in serviceN is given by:

P [N = k] =
(��x)k

k!
e���x:

Use this fact and the results of Exercise 6-3 to describe how you would initialize a perfect
simulation of an M/G/1 queue.

12-2. One queue or two. (Uses results from Exercises 4-2 and 6-8). You are in the grocery
store and you notice that while most customers carts are nearly empty, a small number of
customers have very full carts. You decide to model the number of items in a cart (and
therefore the checkout time) by a Pareto random variable with parametersk and� > 2.

(a) When you arrive at the checkout, you notice that there are two clerks, and each clerk
is serving a customer. There are no customers in line and you can’t see the contents of
either customer’s cart. Assume you have to pick one of the two lines to stand in, as is
usual at the grocery store, and that you can’t switch lines once you’ve chosen. Plot a
graph of the time you expect to wait as a function of� between 2 and 3.

(b) Now assume that instead, the grocery store has organized things so that you can stand
in a single line and wait for whichever clerk becomes free first. On the same graph as
before, plot the amount of time you expect to wait.

(c) What if 1 < � � 2? Compare the two-line case to the single-line case qualitatively.
How are they different?

12-3. Given an M/M/1 queue at steady state, with mean interarrival time of 0.25 seconds and mean
service time of 0.20 seconds. answer the following questions:

(a) What is the probability that an arriving customer will be able to begin service immedi-
ately after arriving?

(b) What is the probability that an arriving customer will find more than 5 customers al-
ready in the system?

(c) What probabilitydistribution would you use to model the waiting time for a customer
that arrives to find exactly 5 customers already in the system?

12-4. Traffic to a network router arrives according to a Poisson process with rate of 14400 packets
per second. The router can transmit 22 Mbits/second. Packet sizes are exponentially dis-
tributed with a mean of 176 bytes. Assume that a very large number of packet buffers is
provided, and the packets are processed in FCFS order. Calculate:
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� the average number of packets in the router,

� the average number of packets in buffers, and

� the average delay experienced by a packet passing through the router, and

� the fraction of time that the router is busy.

12-5. Using the analytic results we have developed for theM=M=1 queue, plot the predicted
values of �W and �Q as a function of� for 0 < � < 1. To do this, perform the calculations for
finely spaced values of� so as to create visually “smooth” curves.

Plot the analytic results and the results you obtained via simulation in Exercise ** on the
same set of axes. Does the analysis agree with simulation?

12-6. Requests arrive to the Microsomething Web Server as a Poisson process at a rate of one
arrival per 20 seconds. The Web server can only accept a request if there are no more than
two requests already present (this is bug that is expected to be fixed in the upcoming release,
scheduled for late next year). Requests are served in first-come-first-served order (i.e., one
request is completely served before the next one begins to get service. Suppose that the
amount of time required to service a request is exponentially distributed with mean of five
seconds.

(a) What fraction of the server’s time will it be busy satisfying requests?

(b) What fraction of Web requests are rejected?

(c) For requests that are accepted, how long must they wait on average before they are
completed?

Now suppose that the amount of time required to service a request is exponentially dis-
tributed with mean of twenty seconds. Answer the same three questions as before.

12-7. On your first day as capacity planner at Random Engineering Ltd., you are presented with
the following problem. Engineers at Random rely on an expensive visualization system to
inspect the quality of their designs for next generation Internet-ready toasters (the system
is called “ToasterViz”). Only one engineer can use the ToasterViz system at a time, and
engineers wait in line for the system if it is busy when they need it.

It appears that engineers arrive at the system at a Poisson rate of� arrivals per second, and
the amount of time each engineer spends on the system is exponentially distributed with
mean1=� seconds.

Lately demand for the ToasterViz system has been growing. Your boss claims that engineers
now have to wait too long and so is considering buying another system if it will make a big
difference to the engineers. To best allocate her scarce computer budget, she poses a number
of questions and asks for the solutions.
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(a) Assume we decide to put the new system in the same room as the existing system.
Now engineers will wait in one line that feeds both ToasterViz systems. In answering
these questions let� = �=2� be the utilization of the entire system.

i. Using Kendall notation, what sort of queueing system is this?

ii. Draw a picture of the Markov Chain that models this system.

iii. Is this any special kind of Markov Chain? Give an expression for�k in terms of
�0 and�.

iv. Solve for�0 in terms of�. (Note that since there are two servers,�0 6= 1� �).

v. Now solve for the steady state number of engineers in the system (i.e., using the
system, or waiting in line). In doing so, remember that

1X
k=0

kpk =
p

(1� p)2
:

Also solve for the average number of engineers in line.

vi. Now solve for the average time an engineer spends in the new system as a function
of � andWs (Ws = 1=�). Also solve for the amount of time an engineer waits in
line.

vii. On one plot, show the average time an engineer will wait in line for the old system,
and the new system, as a function of� for the old system. Note that for the old
system,� = �=� while for the new system� = �=2�. Your plot should in units of
mean service time,i.e., you should normalize the results by1=� before plotting.

(b) Engineers claim that currently they wait in line 70 minutes on average, and that they
use the system for 30 minutes on average.

i. What is the percent of time the current (old) system is being used?

ii. What will the utilization be of the new system?

iii. How long will engineers have to wait in line on average for the new system?

(c) The engineers make a suggestion: if there are going to be two systems, why not put
them on opposite sides of the plant? Then, engineers could go to the system closest
to their desk and they wouldn’t have to walk as much. They figure that they can save
15 minutes of walking time this way for each time they use the system. Assume the
placement is such that half of the engineers use each system.

i. On one plot, show the average time an engineer will wait in line under the central-
ized system and the decentralized system, as a function of�.

ii. Given current utilization, how long will engineers have to wait in line on average
under this scheme?

iii. Under what circumstances it this a good idea? Consider the case in which utiliza-
tion may increase over time.
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12-8. Using the analytic results we have developed for theM=G=1 queue, plot the analytic results
and the results you obtained via simulation in Exercise ** (forM=Ek=1 andM=H2=1 queus)
on the same set of axes. Does the analysis agree with simulation?



Chapter 13

Service Disciplines

It’s considered good manners to let someone ahead of you in line if they have only a few items, and
you have many; why? Now consider that many operating systems distinguish (or try to distinguish)
between interactive and batch jobs; why?

These questions relate toservice order. We will now consider what happens when customers
arenot served in FCFS order.

In our analysis so far, we have only considered FCFS service. However queueing theory can
also shed a lot of light on the performance of other service disciplines.

For all of our examples we will study the M/G/1 queue. This is a very useful model, which
applies (to varying degrees) to a wide range of systems and settings. In keeping with our M/G/1
analyses so far, we will focus only on average performance measures.

Note that in this chapter, waiting time will refer to waiting timein queue, ie.,
what we have been callingWq elsewhere.

13.1 Priorities

The simplest case to consider in one in which each customer has some priority; lower number
priorities are given preferential service.

We can distinguish two cases: preemptive and non-preemptive scheduling. In non-preemptive
scheduling, each task, once begun, continuously receives service until it is completed. In preemp-
tive scheduling, an incoming task of higher prioritysuspends the current task and immediately
begins service. In what follows, we will always assume nonpreemptive scheduling. (It is only a

153
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little more difficult to analyze preemptive scheduling.)

We define a set of priorities1; 2; :::; P with 1 the highest (more preferred) priority. We as-
sume that customers of each priority form classes that have different arrival rates and service time
distributions, so we have�i; E[xi]; andE[x2i ]; i = 1; 2; :::; P .

Each class has an associated system utilization that describes how much of the service capacity
of the system is being used for jobs of this class:�i = �iE[xi]; i = 1; 2; :::; P:

As we did with M/G/1 FCFS, we will take advantage of the fact that Poisson arrivals see the
same average behavior as the time average behavior of the system, so we will use a “tagged”
customer argument as we did for M/G/1 FCFS. Furthermore, we will assume that each job class
arrives as a Poisson process; then the merger of all job classes clearly is also a Poisson process.

As a warmup, we’ll start by noting that highest priority customers are not affected by lower
priority customers in the queue. In addition, an arriving priority 1 customer has to wait for a
whatever customer is in service to finish service before it can begin service.

So priority 1 customers see an M/G/1 queue, with the residual lifetime of the customer in
service equal to the average residual lifetime of the mixture of all jobs.

What about lower priority customers? In this case, there is an additional source of delays:
customer of higher priority that arrive after the tagged customer, but before the tagged customer
either starts service (non-preemptive) or leaves the system (preemptive).

We will now derive the mean waiting time in the queue for a customer of classm (Wm), under
nonpreemptive scheduling.

From the arguments above it is clear that in general there are three components toWm:

1. The mean residual lifetime of the customer currently in service.

2. Service times for customers of equal or higher priority thanm in the queue. Note that for
each classi, Ni = �iWi by Little’s Law.

3. Service times for customers of higher priority thanm that arrive duringWm. Note that the
number of customers of classi arriving duringWm is �iWm:

We will then setWm to be the sum of these three components.

Component 1. We denote byW0 the average delay to our tagged customer due to the customer
in service. Since this system is nonpreemptive, the class of the tagged customer does not matter.
We simply use the law of total expectation, over the set of all classes. The probability that the
customer in service is of classi is �i; and the mean residual lifetime of a customer of classi is
E[x2

i
]

2E[xi]
:

W0 =
PX
i=1

�i
E[x2i ]

2E[xi]
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= 1=2
PX
i=1

�iE[x2i ]

Component 2. There areNi customers of classi in the queue when our tagged customer
arrives, so the total number of customers in the queue that our tagged customer must wait for is:

mX
i=1

Ni =
mX
i=1

�iWi

and the time our tagged customer spends waiting for them is

mX
i=1

�iWiE[xi]

Component 3. Our customer is waiting in the queue for timeWm. So during this time, on
average,�iWm customers of classi arrive. So the customers that arrive while our customer is in
the queue (and so that jump ahead of our customer in line) is:

m�1X
i=1

�iWm

and the time our customer must wait for them is

m�1X
i=1

�iWmE[xi]

Finally, we can develop an expression forwaiting time in the queue for a customer of classm
as:

Wm = time for (customer in service+ customers in queue at arrival+ higher pri arrivals)

= 1=2
PX
i=1

�iE[x2i ] +
mX
i=1

�iWiE[xi] +
m�1X
i=1

�iWmE[xi]

This equation is recursive inm. So to solve it, let us start from the base case,m = 1 (that is,
the highest priority class). Also, for simplicity, we will continue to useW0 for 1=2

PP
i=1 �iE[x2i ].

W1 = W0 + �1W1

=
W0

1� �1
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Now we can solve forW2:

W2 = W0 + �1W1 + �2W2 + �1W2

W2[1� �1 � �2] = W0 + �1W1

= W0 +
�1W0

1� �1

=
W0

1� �1

W2 =
W0

[1� �1 � �2][1� �1]

Repeating this process for largerm, we find that the general solution is:

Wm =
W0

(1�Pm
i=1 �i)

�
1�Pm�1

i=1 �i
� =

1=2
PP

i=1 �iE[x2i ]

(1�Pm
i=1 �i)

�
1�Pm�1

i=1 �i
�

For simplicity we denoteum =
Pm

i=1 �i = the fraction of time the system works on jobs of
sizem or less. Then:

Wm =
W0

(1� um) (1� um�1)
= 1=2

PP
i=1 �iE[x2i ]

(1� um) (1� um�1)

Thus we have the waiting time in the queue for each class. To get the average waiting time in
the system over all classes, we simply use the law of total expectation. Letpi = �i=

P
n �n. Then:

W =
PX

m=1

pm(Wm + E[xm])
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Example. Consider a priority queueing system with 2 job classes:

Class Arrival Rate Service Time Distribution
Priority 1 �1 = 10 tps Erlang-2 withE[X] = 0:04 sec E[X2] = 0:0024 sec2

Priority 2 �2 = 0:5 tps Exponential withE[X] = 0:1 sec (calculate!)E[X2] = 0:02 sec2

(N.B Var1 = 0.0008,C2
1 = 0.02; Var2 = 0.01;C2

2 = 1)
This system has� = 0:45.
Using the above formulas, we find that in this system:

W1 = 0:0283 seconds

W2 = 0:0515 seconds

W = 0:0722 seconds

Now let us add a third job type, at a lower priority than the others:

Class Arrival Rate Service Time Distribution
Priority 3 �3 = 0:01 tps H2 with E[X] = 10:0 sec E[X2] = 500 sec2

(N.B. Variance = 400;C2 = 4)
The new system has� = 0:55.
Then we find:

W1 = 4:195 seconds

W2 = 7:627 seconds

W3 = 10:17 seconds

W = 4:41 seconds

13.2 Size Based Service

Let’s say we know amount of processing time required by a customer when she arrives. Then what
is the best possible service discipline? Here, ‘best’ will mean the service discipline with lowest
expected time in system.

We saw in the previous section that different classes of customers experienced different waiting
times, and that the overall waiting time was a weighted average of what each class experienced.
We can see that a good way to assign priorities is to do so in decreasing order of class processing-
time mean. Doing this will tend to minimize the averageui and therefore minimizeW . In fact this
can be shown to be the optimal assignment of priorities to classes (by an interchange argument).

This suggests that if we know the processing time required by customers, we should assign
customers to classes according to their processing demands, with customers requiring less service
being assigned to higher priority classes. Clearly, this should reduce the average time in system as
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compared to a discipline that does not use knowledge of processing demands (such as FCFS).

13.2.1 SJF

Assume that the processing demands of jobs has CDFF (x); x > 0.

So we are talking about a priority system based on ‘cutoff’ points

0 = d0 < d1 < ::: < dr

with dr so large thatF (dr) = 1. In this system, a customer having processing demandP is
assigned to classj such thatdj�1 < P � dj . This is a kind of size-based service discipline.

Based on results in last section, overall mean waiting time is

E[W ] =
�E[X2]

2

rX
j=1

pj
(1� uj�1)(1� uj)

Clearly we can improve performance (mean time in system) by increasing the number of
classesr, since that will make finer distinctions between customers of different sizes.

When we take the limit of this approach forr ! 1 we get theShortest Job First1 discipline.
This is a non-preemptive discipline in which, upon completion of each job, the next job chosen for
service is the one with the least service demand.

Since we are working in the limit ofr !1 we need to switch to PDFs. We denote the pdf of
service demand asp(x). We assume the pdf is continuous, and get

E[W ] =
�E[X2]

2

Z 1

x=0

p(x)

(1� �
R x
0 t p(t) dt)

2 dx

or, usingFw:

E[W ] =
�E[X2]

2

Z 1

x=0

p(x)

(1� �Fw(x))
2 dx

For example. Working with uniform distribution,p(x) = 1; 0 < x � 1. For this distribution,
Fw(x) = x2; E[X] = 1=2; andE[X2] = 1=3.

Munif.m:
function y = Munif(x,rho)
y = 1 ./ ((1 - rho .* (x.ˆ2)).ˆ2);

1or Shortest Processing Time



13.2. SIZE BASED SERVICE 159

 0

 5

 10

 15

 20

 25

 30

 35

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

W
ai

tin
g 

T
im

e 
E

[W
]

Utilization ρ

SJF
FCFS

Figure 13.1: SJF and FCFS for Uniform Service Demands

WSJF.m:
function y = WSJF(fn,lo,hi,rho,firstmoment,secmoment)
y = (0.5 * rho * secmoment / firstmoment) * quad(fn,lo,hi,[],[],rho);

For� = 0:7:

WSJF(@Munif,0,1,0.7,1/2,1/3)
ans = 0.2788

The performance of SJF is compared to FCFS (where waiting time is�E[x2]=2(1 � �) in
Figure 13.1.

Add another example here showing how results are different for a high-variance distribution.

13.2.2 SRPT

One problem with SJF is that when a “long” customer is being serviced, “short” customers that
arrive have to wait. We can improve the mean time in system even more if we allow short jobs to
pre-empt long jobs.

Two kinds of preemptive disciplines exist: preemptive resume and preemptive repeat. In the
first case, when a preempted customer returns to service, work starts where it left off. That is, work
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performed is never re-done. In the second case, when a preempted customer returns to service, the
customer’s task must be restarted from the beginning.

Preemptive resume is more common in computer systems and so we will focus on that. The
modifications for preemptive repeat are relatively straightforward.

We will still be concerned with the delay experienced by a customer, apart from its service
demand. This includes waiting time, the time until a customer begins service. However, since
a customer can be interrupted while in service, there is additional component of delay that is
important. Residence time is the time between when a customer begins service and completes
service. We are concerned with total delay, that is, waiting time plus residence time minus service
time.

To achieve our goal of minimizing average response time, we must be careful about when we
allow preemptions. In general we want the system to be working at all times with the goal that a
customer can leave the system as soon as possible. Thus, if we implement a size-based preemption
policy, for the customer in service it should be based on theremaining demand (rather than, say,
the customer’s original demand before it began service). Thus we want a preemptive resume policy
in which a customer’s class is based on its remaining processing time. This leads to theShortest
Remaining Processing Time First (SRPT) discipline.

As with SJF, we will approach this by defining a set of cutoff points

0 = d0 < d1 < ::: < dr

with dr so large thatF (dr) = 1. Under SRPT, a customer havingremaining processing demand
P is assigned to classj such thatdj�1 < P � dj. Then a new-arriving customer will preempt the
customer in service if the new customer has lower demand than the remaining processing for the
customer in service.

Among preemptive policies making use of knowledge of service demand, SRPT is optimal.
This can again be proved by an interchange argument.

We will consider mean waiting time and mean residence time separately.

Mean Waiting Time The class of a customer cannot change during its waiting time. Thus only
difference between SJF and SRPT with respect to waiting time is that in some cases, the arriving
job will preempt the job in service.

However, once a classk customer begins waiting, the waiting time is the same whether the
system is preemptive or non-preemptive. That is because all jobs of class less thank must leave
the system before the tagged job can run in both systems.

Recalling the expression for mean waiting time of customer of classk under a nonpreemptive
policy:

E[Wk] =
1
2

Pr
i=1 �iE[x2i ]

(1� uk�1)(1� uk)
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the numerator represents the mean residual lifetime of the customer in service when a customer
of classk arrives times the utilization of the system — in other words, the expected mean residual
lifetime of the customer in service, as seen by an arriving customer of classk. Denoting this
quantity byMk, we can rearrange:

Mk =
rX
i=1

�i
E[x2i ]

2E[xi]

=
1

2

rX
i=1

�iE[xi]
E[x2i ]

E[xi]

=
�

2

rX
i=1

piE[xi]
E[x2i ]

E[xi]

=
�

2

rX
i=1

piE[x2i ]

=
�

2

k�1X
i=1

piE[x2i ] +
�

2

rX
i=k

piE[x2i ]

=
�

2

Z k

0
p(x)E[x2i ] dx+

�

2

Z 1

k
p(x)E[x2i ] dx

How should we adapt this expression for premption?

Now, as already mentioned the interference experienced by a customer of classk from cus-
tomers of classes lower thank (higher priority customers) is the same for both preemptive and
nonpreemptive policies. This is because in both cases, an customer of classk cannot go into ser-
vice unless all customers of classes less thank, plus all previous classk customers, have left the
system. So the first integral in the above equation is unchanged for SRPT.

However, since the system is preemptive, customers with remaining processing time greater
thandk will be preempted, and there will be no waiting. So the only time that a customer of class
lower thank will not be preempted is when its remaining processing time has been reduced todk
or less. That is, for a customer of class lower thank, only dk of its processing time will not be
preemptible by a classk customer. So from the standpoint of a customer of classk, it is as if all
jobs of class lower thank arrived with demanddk.

Thus, for these classes the second integral becomes:

�

2
d2k

Z 1

dk
p(x) dx =

�

2
d2k (1� F (dk))

Thus, for waiting time of a job of classk we obtain:

E[Wk] =
�
R dk
0 x2 p(x) dx+ � d2k (1� F (dk))

2(1� �Fw(dk))2
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Mean Residence Time The second difference between preemptive and nonpreemptive policies
is that under a preemptive policy, once a customer begins service there may be interruptions before
the customer leaves the system. To compute the mean residence time, we consider how often a
customer is interrupted in each class.

Assume that a customer requiresp units of processing time while it is in classi before it can
move to classi� 1. While the job is in classi it is interrupted by all jobs of higher priority. So the
time it spends in classi is p=(1� ui�1).

The total residence time of a customer that arrives in classk is the sum of the residence times
for 1 � i � k. This is:

E[Rk] =
E[xk]� dk�1

1� uk�1
+

k�1X
i=1

di � di�1

1� ui�1
:

Taking the limit as the number of classes goes to1 anddk � dk�1 goes to zero yields:

E[Rk] =
Z dk

0

dx

1� �
R x
0 t p(t) dt

=
Z dk

0

dx

1� �Fw(x)

Putting it Together The resulting mean delay experienced by a random customer is the weighted
average of the values for each class. When fully expanded, the result is:

E[W ] =
Z 1

0

�

2

R x
0 t

2 p(t) dt + x2 (1� F (x))

(1� �Fw(x))2| {z }
E[Wx]

+
Z x

0

dt

1� �Fw(t)| {z }
E[Rx]

p(x) dx

Continuing our example for the uniform distribution,Fw(x) = x2 and
R s
0 x

2 p(x) dx = s3=3....

13.3 Processor Sharing

A commonly used scheduling strategy is calledround-robin. Round-robin works as follows: Cus-
tomers are kept in a queue. The customer at the head of the queue begins service, and getsÆ time
units of service (or else completes service and leaves). If the customer has not left the system at
the end of its quantum, it goes back to the rear of the queue. Then the customer that is now at the
head of the queue enters service, and the process repeats.

Processor Sharing is an idealization of round-robin scheduling, in which the server switches
between customers infinitely fast. Processor sharing is important because its properties are re-
markably simple, and so it is a good approximation for the many situations in which round-robin
is encountered.

Kleinrock’s Theorem: Let Æ ! 0: (This is called a Processor Sharing system.) Then if
there arek customers in the system on average, each customer gets1=k of the server’s capacity.



13.3. PROCESSOR SHARING 163

Furthermore, the departure process from the queue is Poisson, and the following equations hold:

�k = (1� �)�k

N =
�

1� �

W =
E[x]

1� �

W [t] =
t

1� �

That is, the average system characteristics are exactly the same as for M/M/1! (Note:W [t] is
the time spent in the system for a job of sizet.)

The proof is based on constructing a discrete time Markov Chain, in which each time step
corresponds to a single quantum of durationÆ. Next we construct the reversed chain, in which
arrivals correspond to departures in the forward chain. For the proper arrival process to the reversed
chain, the reversed chain should have the same steady state distribution as the forward chain (as
discussed in Section 10.3).

In fact, we show that if arrivals to the reversed chain are Bernoulli (which will become Poisson
in the limit of smallÆ), then the reversed chain has the same steady state distribution as the forward
chain. We can construct flow equations that relate�k to �k�1 by setting equal corresponding flows
in the forward and reversed chain, allowing us to solve for�k. We confirm that these steady state
probabilities are the same for both forward and reversed chains, proving that departures from the
queue are Poisson and establishing the expression for�k below in the limit ofÆ ! 0.

Proof. Split time into timestep (or quantum) of sizeÆ. Our DTMC will make a transition on
each timestep.

The probability of an arrival in any timestep is�Æ. BecauseÆ will eventually go to 0, the
probability of more than one arrival in a timestep is 0. When a new customer arrives, it immediately
receives a quantum of service. Theith customer arrives with service demandXi, which is an
integer multiple ofÆ. All Xis are i.i.d. according to distributionG(x).

The state of the DTMC will be a vector~s = (m; z1; z2; :::; zm). Customerz1 is currently
receiving service,z2 is next to receive service, and so forth. On each transition, if no new customer
arrives, then thezs rotate to the left.

Notation.f(j) = P [Xi = jÆ]: �F (j) = P [Xi > jÆ]: We useg(j) to denote he probability that
a customer will depart after 1 more quantum, given that the customer has receivedj quanta so far;
i.e.,

g(j) = f(j + 1)= �F (j)

Forward Chain. First, we construct the forward chain to model round-robin. When~s 6= ;,
~s can experience one of four things: (1) no arrival, no departure (~s ! r(~s)); (2) one arrival, no
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departure (~s! a(~s)); (3) an arrival and a departure (~s unchanged); (4) no arrival, just a departure
(~s! d(~s)).

For~s = (m; z1; z2; :::; zm), these are defined as:

r(~s) = (m; z2; :::; zm; z1 + 1)

d(~s) = (m� 1; z2; :::; zm)

a(~s) = (m+ 1; z1; z2; :::; zm; 1)

The case where~s is unchanged occurs when a customer arrives with service demand ofÆ,
recieves service, and leaves.

When~s = ;, there are three possibilities:

~s ! a(~s) = (1; 1) an arrival

~s ! ; an arrival and a departure

~s ! ; no arrival

Assuming~s 6= ;, the probabilities of the forward chain are as follows:

Ps;r(s) = (1� �Æ)(1� g(z1))

Ps;d(s) = (1� �Æ)g(z1)

Ps;a(s) = �Æ(1� f(1))

Ps;s = �Æf(1)

These compound probabilities arise becauseg(z1) is the probability that the current customer
departs,f(1) is the probability that an arriving customer has service demand 1, and�Æ is the
probability that a customer arrives.

When~s = ;,
Ps;a(s) = �Æ(1� f(1))

Ps;s = �Æf(1) + (1� �Æ)

Reversed Chain. Now we construct the reversed chain. The key here is that weguess the
transition probabilities of the reversed chain, and weguess the nature of the departure process,
which is the arrival process for the reversed chain. We will guess that the reversed chain has
Bernoulli arrivals with probability�Æ of having an arrival during a timestep.

Here are our guesses:
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� P �
r(s);s corresponds to the case where there is no arrival in the backward chain. So the forward

chain just served the customer at the head of the queue. So the probability that, if the chain is
in a given state, that it came from the state corresponding to servicing a customer, is1� �Æ.

P �
r(s);s = 1� �Æ:

� P �
d(s);s

� P �
a(s);s

� P �
s;s

Example, Continued. Let’s continue to consider the three-class case. In this system,� = 0:55
andE[x] = 0:07105 soW = 0:157 sec.
Also note:W [1] = 0:0889 sec;W [2] = 0:222 sec;W [3] = 22:22 sec.
Also, for comparison, let us calculateW under FCFS.

E[X2] =
X
i

piE[X2
i ] = 0:479

and
E[X] =

X
i

piE[Xi] = 0:0523

So

W = E[x] +
�E[x2]

2(1� �)
= 0:0523 +

10:51� 0:479

2(1� :55)
= 5:64 seconds

So we have:

FCFS Priorities Processor Sharing
W1 + E[X1] 5.63 sec 4.23 sec 0.0889 sec
W2 + E[X2] 5.69 sec 7.72 sec 0.222 sec
W3 + E[X3] 15.59 sec 20.2 sec 22.22 sec
W 5.64 sec 4.41 sec 0.157 sec

Note that Priority based queueing does better for Class 1 than FCFS, and that mean waiting
time for Priority queueing is better than for FCFS. Mean time will always be improved over FCFS
if priorities are assigned in order of increasing job size. (Why?)

Note that Class 3 does slightly worse under PS than under Priority queueing, while the other
two classes do better. This is an example of Kleinrock’s Conservation Law: improvement in
waiting time for one set of customers must come at the expense of another set of customers. This
rule is usually written: X

i

�iWi = a constant, regardless of schedule
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You may also want to consider what would have happened if priorities had been assigned in
reverse order above. Where would that policy fit in the table?

Finally, it is often felt that this kind of priority based scheduling is “unfair” because it penalizes
the large customers to benefit the small customers. However, this comparison is usually implicitly
made with respect to FCFS. (Somewhere along the line many of us were taught that FCFS is
“fair”!). However, when one asks what “fairness” really means, it is not so clear. If job size is
known, it’s not clear why FCFS is considered fair. Perhaps a better definition of “fair” is in terms
of slowdown, which is defined as

S[t] = W [t]=t

wherS[t] is slowdown of a job of sizet, andW [t] is the total time in system for a job of sizet.
If all jobs had equal slowdown, this would mean that large jobs and small jobs both a delayed in
constant proportion to their service demand.

Let us calculate slowdown for the three scheduling schemes above:

FCFS Priorities Processor Sharing
S1 140 105 2.22
S2 56.9 77.2 2.22
S3 1.55 2.02 2.22
S 135 103 2.22

This gives us a very different picture of “fairness.” In this light, Priority scheduling is more fair
than FCFS, because FCFS dramaticallypenalizes small jobs. Most fair of all (“perfectly fair”) is
PS, which slows all jobs sizes down equally. Perhaps this is why we allow shoppers with nearly
empty shopping baskets ahead of us in line at the grocery store!
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Exercises

Queues

13-1. No exercises as of yet.
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Appendix

Student’s t Distribution

For n degrees of freedom. The values below are one-sided. Thus for a 90% confidence interval,
you want to use the value in the 95% column below.

n 90% 95% 97.5% 99.5%
1 3.07766 6.31371 12.7062 63.656
2 1.88562 2.91999 4.30265 9.92482
3 1.63774 2.35336 3.18243 5.84089
4 1.53321 2.13185 2.77644 4.60393
5 1.47588 2.01505 2.57058 4.03212
10 1.37218 1.81246 2.22814 3.16922
30 1.31042 1.69726 2.04227 2.74999

169
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