Computer Vision:
Algorithms and Applications

Richard Szeliski

September 7, 2009

3.1

3.2

33

34

3.5

3.6

3.7

Chapter 3

Image processing

Local operators e e 104
3.1.1 Pixeltransforms L 106
3.1.2 Colortransforms 107
3.1.3 Compositingand matting 108
3.1.4 Histogram equalization 110
3.1.5 Application: Tonal adjustment 114
Neighborhood operators 114
3.22.1 Linearfiltering e 114
3.2.2 Non-linear filtering 125
323 Morphology e 130
3.2.4 Distance transforms oL L Lo 132
3.2.5 Connected cOmponents vt e e 133
Fourier transforms 135
33.1 Wienerfiltering 143
3.3.2 Application: Sharpening, blur, and noise removal 147
Pyramids and wavelets 148
3.4.1 Interpolation and decimation 148
3.4.2 Multi-resolution representations 153
343 Wavelets oL e 159
3.4.4 Application: Imageblending, 165
Geometric transformations L. oL 166
3.5.1 Parametric transformations Lo oo 168
3.5.2 Mesh-based warping 175
3.5.3 Application: Feature-based morphing 178
Global optimization 179
3.6.1 Regularization 180
3.6.2 MarkovRandomFields. L. 185
3.6.3 Application: Image restorationo 197
Additional reading L e 198

102 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

Figure 3.1: Some common image processing operations: (a) original image; (b) increased con-
trast; (c) change in hue; (d) “posterized” (quantized colors); (e) blurred; (f) rotated.

3. Image processing

3.8 Exercises

104 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

Now that we have seen how images are formed through the interaction of 3D scene elements,
lighting, and camera optics and sensors, let us look at the first stage of most computer vision
applications, namely the of use image processing to preprocess the image and convert it into a
form suitable for further analysis. Examples of such operations include the exposure correction and
color balancing, the reduction of image noise, an increase in sharpness, or straightening the image
by rotating it (Figure 3.1). While some may consider image processing to be outside the purvue
of computer vision, most computer vision applications such as computational photography or even
recognition require the careful design of image processing stages in order to achieve acceptable
results.

In this chapter, we review standard image processing operators that map pixel values from
one image to another. Image processing is often taught in electrical engineering departments as a
follow-on course to a more introductory course in signal processing (Oppenheim and Schafer 1996,
Oppenheim et al. 1999). Popular textbooks for image processing include (Crane 1997, Gomes and
Velho 1997, Jihne 1997, Pratt 2001, Gonzales and Woods 2002, Russ 2007).

We begin this chapter with the simplest kind of image transforms, namely those that manipulate
each pixel independently of its neighbors §3.1. Such transforms are often called local operators or
point processes. Next, we examine neighborhood (area-based) operators, where each new pixel’s
value depends on a small number of neighboring input pixel values §3.2. A convenient tool to an-
alyze (and sometimes accelerate) such neighborhood operations in the Fourier Transform, which
we cover in §3.3. Neighborhood operators can be cascaded to form image pyramids and wavelets,
which are useful for analyzing images at a variety of resolutions (scales) and for accelerating cer-
tain operations §3.4. Another important class of global operators are geometric transformations
such as rotations, shears, and perspective deformations §3.5. Finally, we introduce global opti-
mization approaches to image processing, which involve the minimization of an energy functional,
or equivalently, optimal estimation using Bayesian Markov Random Field models §3.6.

3.1 Local operators

The simplest kinds of image processing transforms are local operators, where each output pixel’s
value only depends on the corresponding input pixel value (plus, potentially, some globally col-
lected information or parameters). Examples of such operators include brightness and contrast
adjustments (Figure 3.2) as well as color correction and transformations. In the image processing
literature, such operations are also known as point processes (Crane 1997).

We begin this section with a quick review of simple local operators such as brightness scaling
and image addition. Next, we discuss how colors in images can be manipulated. We then present
image compositing and matting operations, which play an important role in computational pho-

3.1. Local operators 105

peak=034(1200) ,061(1190) ,006(1845)

(a) (b)

peak=030(1145) ,067 (1171) ,254(2358)

Figure 3.2: Some local image processing operations: (a) original image along with its three color
(per-channel) histograms; (b) brightness increased (additive offset, b = 16; (c) contrast increased
(multiplicative gain a = 1.1); (d) gamma (partially) linearized (v = 1.2); (e) full histogram
equalization; (f) partial histogram equalization.

106 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

45| 60] 98 | 127] 132] 133 137 133
46 | 65] 98 | 123] 126] 128 131 133
47 | 65196 | 115] 119] 123 135 137
47| 63191 | 107 113 122]138] 134
50 | 59| 80 [97 [110]123]133] 134
49 |1 531 68| 83| 97 | 113]128133
50| 50| 58] 70| 84 [102]116] 126
50| 50] 52) 58| 69| 86 [101]120

(b) ©) (d)

Figure 3.3: Visualizing image data: (a) original image; (b) cropped portion and scanline plot using

an image inspection tool; (c) grid of numbers, (d) surface plot. For figures (c)—(d), the image was
first converted to grayscale.

tography §10 and computer graphics applications. Finally, we describe the more global process
of histogram equalization. We close with an example application that manipulates tonal values
(exposure and contrast) to improve image appearance.

3.1.1 Pixel transforms

An image processing operator is a function that takes one or more input images (signals) and
produces an output image. In the continuous domain, this can be denoted as

g(®) = h(f(z)) or g(x) = h(fo(z),..., fu(x)), 3.1

where x is the D-dimensional domain of the functions (usually D = 2 for images), and the func-
tions f and g operate over some range, which can either be scalar or vector-valued (e.g., for color
images or 2D motion). For discrete (sampled) images, the domain consists of a finite number of
pixel locations, x = (i, j), and we can write

9(i,4) = h(f(i, 7). (3.2)

Figure 3.3 shows how an image can be represented either by its color (appearance), as a grid of
numbers, or as a two-dimensional function (surface plot).
Two commonly used point processes are multiplication and addition with a constant,

g(x) =af(x)+0. (3.3)

The parameters a > 0 and b are often called the gain and bias parameters; sometimes these param-
eters are said to control contrast and brightness, respectively (Figures 3.2 b—c).! The bias and gain

! An image’s luminance characteristics can also be summarized by its key (average luminanance) and range (Kopf
et al. 2007b).

3.1. Local operators 107

parameters can also be spatially varying,

9(®) = a(z)f(x) + b(x), (3.4)

e.g., when simulating the graded density filter used by photographers to selectively darken the sky.
Multiplicative gain (both global and spatially varying) is a linear operation, since it obeys the
superposition principle,

h(fo + f1) = h(fo) + h(f1)- (3.5)

(We will have more to say about linear shift invariant operators in §3.2.1.) Operators such as image
squaring (which is often used to get a local estimate of the energy in a band-pass filtered signal
§3.4) are not linear.

Another commonly used dyadic (two input) operator is the linear blend operator,

g(x) = (1 —a)fo(x) + afi(z). (3.6)

By varying o from 0 — 1, this operator can be used to perform a temporal cross-dissolve between
two images or videos, as seen in slide shows and film production, or as a component of image
morphing algorithms §3.5.3.

One highly used non-linear transform that is often applied to images before further processing
1s gamma correction, which is used to remove the non-linear mapping between input radiance and
quantized pixel values §2.3.2. To invert the gamma mapping applied by the sensor, we can use

glz) = [f(z)"", 3.7)

where a gamma value of v ~ 2.2 is a reasonable fit for most digital cameras.

3.1.2 Color transforms

While color images can be treated as arbitrary vector-valued functions or collections of indepen-
dent bands, it usually makes sense to think about them as highly correlated signals with strong
connections to the image formation process §2.2, sensor design §2.3, and human perception §2.3.2.
Consider, for example, brightening a picture by adding a constant value to all three channels, as
shown in Figure 3.2b. Can you tell if this achieves the desired effect of making the image look
brighter? Can you see any undesirable side-effects or artifacts?

In fact, adding the same value to each color channel not only increases the apparent intensity
of each pixel, it can also affect the pixel’s hue and saturation. How can we define and manipulate
such quantities in order to achieve the desired perceptual effects?

As discussed in §2.3.2, chromaticity coordinates (2.103) or even simpler color ratios (2.115)
can first be computed and then used after manipulating (e.g., brightening) the luminance Y to

108 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

(b) (c) (d)

Figure 3.4: Image matting and compositing (Chuang et al. 2001): (a) source image; (b) extracted

foreground object I'; (c) alpha matte o shown in grayscale; (d) new composite C.

re-compute a valid RGB image with the same hue and saturation. Figure 2.35g—i in the previous
chapter shows some color ratio images, multiplied by the middle gray value for better visualization.

Similarly, color balancing (e.g., to compensate for incandescent lighting) can be performed by
either multiplying each channel with a different scale factor, or by the more complex process of
mapping to XYZ color space, changing the nominal whitepoint, and mapping back to RGB, which
can be written down using a linear 3 x 3 color twist transform matrix. As mentioned in §2.3.2,
Exercise 2.8 has you explore some of these issues, as does Exercise 3.1.

Another fun project, best attempted after you have mastered the rest of the material in this
chapter, is to take a picture with a rainbow in it (Figure 3.71) and enhance the strength of the
rainbow.

3.1.3 Compositing and matting

In many photo editing and visual effects applications, it is often desirable to cut a foreground object
out of one scene and put it on top of a different background (Figure 3.4). The process of extracting
the object from the original image is often called matting (Smith and Blinn 1996), while the process
of inserting it into another image (without visible artifacts) is called compositing (Porter and Duff
1984, Blinn 1994a).

The intermediate representation used for the foreground object between these two stages is
called an alpha-matted color image (Figure 3.4b—c). In addition to the three color RGB channels,
an alpha-matted image contains a fourth alpha channel o (or A) that describes the relative amount
of opacity or fractional coverage at each pixel (Figures 3.4c and 3.5b). The opacity is the inverse
of the transparency. Pixels within the object are fully opaque (o = 1), while pixels fully outside
of the object are transparent (o« = 0). Pixels on the boundary of the object vary smoothly between
these two extremes, which hides the perceptual visible jaggies that occur if only binary opacities
are used.

To composite a new (or foreground) image on top of an old (background) image, the over oper-
ator, first proposed by Porter and Duff (1984) and then studied extensively by Blinn (1994a)(1994b),

3.1. Local operators 109

x (1

|
_) +
Ty,

B aF C

() (b) ©) (d)

Figure 3.5: Compositing equation C = (1 — «)B + «F'. The images are taken from a close-up of

the region of the hair in the upper right part of the lion in Figure 3.4.

1s used,
C=(1-a)B+aF. (3.8)

This operator attenuates the influence of the background image B by a factor (1 —«), and then adds
in the color (and opacity) values corresponding to the foreground layer [, as shown in Figure 3.5.

In many situations, it is convenient to represent the foreground colors in pre-multiplied form,
i.e., to store (and manipulate) the aF' values directly. As Blinn (1994b) shows, the pre-multiplied
RGBA representation is preferred for several reasons, including the ability to blur or resample
(e.g., rotate) alpha-matted images without any additional complications (just treating each RGBA
band independently). However, when matting using local color consistency (Ruzon and Tomasi
2000, Chuang et al. 2001), the pure un-multiplied foreground colors /' are used, since these remain
constant (or vary slowly) in the vicinity of the object edge.

The over operation is not the only kind of compositing operation that can be used. Porter
and Duff (1984) describe a number of additional operations that can be useful in photo editing and
visual effects applications. In this book, we only concern ourselves with one additional, commonly
occurring case (but see Exercise 3.2).

When light reflects off of clean transparent glass, the light passing through the glass and the
light reflecting off the glass are simply added together (Figure 3.6). This model is useful in the
analysis of transparent motion (Black and Anandan 1996, Szeliski et al. 2000), which occurs when
such scenes are observed from a moving camera §8.5.2.

The actual process of matting, i.e., recovering the foreground, background, and alpha matte
values from one or more images, has a rich history, which we will study in §10.4. Smith and
Blinn (1996) have a nice survey of traditional blue-screen matting techniques, while Toyama et al.
(1999) review difference matting. More recently, there has been a lot of activity in computational
photography relating to natural image matting (Ruzon and Tomasi 2000, Chuang et al. 2001),
which attempts to extract the mattes from a single natural image (Figure 3.4a) or from extended
video sequences (Chuang et al. 2002). All of these techniques are described in more detail in

110 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

Figure 3.6: An example of light reflecting off the transparent glass of a picture frame (Black and
Anandan 1996). You can clearly see the woman’s portrait inside the picture frame superimposed
with the reflection of a man’s face off the glass.

§10.4.

3.1.4 Histogram equalization

While the brightness and gain controls described in §3.1.1 can improve the appearance of an image,
how can we automatically determine their best values? One approach might be to look at the
darkest and brightest pixel values in an image, and to map these to pure black and pure white.
Another approach might be to find the average value in the image and push this towards middle
gray and to expand the range so that it more closely fill the displayable values (Kopf ez al. 2007b).

How can we visualize the set of lightness values in an image in order to test some of these
heuristics? The answer is to plot the histogram of the individual color channel as well as the
luminance values, as shown in Figure 3.7b.> From this distribution, we can compute relevant
statistics such as the minimum, maximum, and average intensity values. Notice, however, that the
image has both an excess of dark values and light values, but that the mid-range values are largely
underpopulated. Would it not be better if we could simultaneously brighten some dark values and
darken some light values, while still using the full extent of the available dynamic range? Can you
think of a mapping that might do this?

One popular answer to this question is to perform histogram equalization, i.e., to find an in-
tensity mapping function f(/) such that the resulting histogram is flat. The trick to finding such
a mapping is the same one that people use to generate random samples from a probability density
function, which is to first compute the cumulative distribution function shown in Figure 3.7c.

2 The histogram is simply the count of the number of pixels at each gray level value. For an 8-bit image, an
accumulation table with 256 entries is needed. For higher bit depths, a table with the appropriate number of entries
(probably fewer than the full number of gray levels) should be used.

3.1. Local operators 111

350000
—B
300000 1
—G
250000 + —R
—Y
200000 +
150000
,/ 100000
d 50000 |
1=ﬂﬂﬂ‘ﬂﬂﬂﬂﬂﬂ)max(2522h8255) [0 e s L [0 e L
auq=(076, 887, 065) med=(868, 082, 032 0 50 100 150 200 250 0 50 100 150 200 250

Figure 3.7: Histogram analysis and equalization: (a) original image (b) color channel and in-
tensity (luminance) histograms; (c) cumulative distribution functions; (d) equalization (transfer)
functions; (e) full histogram equalization; (f) partial histogram equalization; (g) another sample
image; (h) block histogram equalization; (i) locally adaptive histogram equalization.

112 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

Think of the original histogram h(/) as the distribution of grades in a class after some exam.
How can we map a particular grade to its corresponding percentile, so that the students at the
75% percentile range scored better than 3/4 of their classmates? The answer is to integrate the
distribution h(I) to obtain the cumulative distribution ¢(I),

I

c(l) = ;gh(z) =c(I—-1)+]ifh(])’ (3.9
where [V is the number of pixels in the image (oops! I mean students in the class :-). For any given
grade/intensity, we can look up its corresponding percentile ¢(/) and determine the final value that
pixel should take. (When working with 8-bit pixel values, the I and c axes are rescaled to go from
0, 255].)

Figure 3.7d shows the result of applying f (/) = ¢(I) to the original image. As we can see, the
resulting histogram is flat, but so is the resulting image (“flat” in the sense of lack of contrast and
muddy looking). One way to compensate for this is to only partially compensate for the histogram
unevenness, e.g., by using a mapping function f(I) = ac(l)+(1—a)l, i.e., alinear blend between
the cumulative distribution function and the identity transform (straight line). As you can see in
Figure 3.7e, the resulting image maintains more of its original grayscale distribution while having
a more appealing balance.

Another potential problem with histogram equalization (or in general, image brightening) is
that noise in dark regions can be amplified and become more visible. The exercise on histogram
equalization Exercise 3.6 suggests some possible ways to mitigate this, as well as alternative tech-
niques to maintain contrast and “punch” in the original images (Stark 2000, Larson et al. 1997).

Locally adaptive histogram equalization

While global histogram equalization can be useful, for some images, it might be preferable to apply
different kinds of equalization in different regions. Consider for example the image in Figure 3.7g,
which has a wide range of luminance values. Instead of computing a single curve, what if we were
to subdivide the image into M x M pixel blocks and perform separate histogram equalization in
each sub-block? As you can see in Figure 3.7h, the resulting image is far from ideal, exhibiting a
strong patchwork of blocking artifacts (intensity discontinuities at block boundaries).

One way to eliminate blocking artifacts is to use a moving window, i.e., to recompute the
histogram for every M x M block centered at each pixel. This process can be quite slow (M2
operations per pixel), although with clever programming, only the histogram entries corresponding
to the pixels entering and leaving the block (in a raster scan across the image) need to be updated
(M operations per pixel). Note that this operation is an example of the non-linear neighborhood
operations we will study in more detail in §3.2.2.

3.1. Local operators 113

S S
<+> , , > ,
| : | - & 4 .
I I |
i : | t \
t I J\\?\ U i A\ i
R | i i s
I |
i i i
/ ! \J | A\ I
I I |
| | |
g e e e B e
I I | Y r r .
I I |
I I]
o0 l o I o I
U | vy | U]
I I |
[T D I L O L O e L
I T 3 -) 4
I I | I I |
(a) (b)

Figure 3.8: Local histogram interpolation using relative (s,t) coordinates: (a) block-based his-
tograms, with block centers shown as circles; (b) corner-based “spline” histograms. Pixels are
located on grid intersections. The black square pixel’s transfer function is interpolated from the
four adjacent lookup tables (gray arrows) using the computed (s, t) values. Block boundaries are

shown as dashed lines.

A more efficient approach is to compute non-overlapped block-based equalization functions
as before, but to then smoothly interpolate the transfer functions as we move between blocks.
This technique is known as adaptive histogram equalization (AHE), and its contrast (gain) limited
version is known by CLAHE (Pizer et al. 1987).> The weighting function for a given pixel (4, j)
can be computed as a function of its horizontal and vertical position (s, t) within a block, as shown
in Figure 3.8a. To blend the four lookup functions { foo, . . ., f11}, a bilinear blending function,

fsall) = (1= 5)(1 =) foo(Z) + s(1 = 1) fro(I) + (1 = s)t for (1) + st fru(1) (3.10)

can be used. (See §3.4.1 for higher-order generalizations of such spline functions.) Note that
instead of blending the four lookup tables for each output pixel (which would be quite slow), it is
equivalent to blend the results of mapping a given pixel through the four neighboring lookups.

A variant on this algorithm is to place the lookup tables at the corners of each M x M block
(see Figure 3.8b and Exercise 3.7). In addition to blending four lookups to compute the final
value, we can also distribute each input pixel into four adjacent lookup tables during the histogram

3This algorithm is implemented in the MATLAB adapthist function.

114 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

accumulation phase (notice that the gray arrows in Figure 3.8b point both ways), i.e.,
hkz,l(I(Zvj)) += W(i,j,k},l), (311)

where w(i, 7, k, [) is the bilinear weighting function between pixel (i,) and lookup table (k,1).
This is an example of soft histogramming, which is used in a variety of other applications, including
the construction of SIFT feature descriptors §4.1.3 and vocabulary trees §14.3.2.

3.1.5 Application: Tonal adjustment

[Note: Can drop this application if pressed for space |

One of the most widely used applications of point-wise image processing operators is the ma-
nipulation of contrast or fone in photographs, to either make them look more attractive or more
interpretable. You can get a good sense of the range of operations possible by opening up any
photo manipulation software and trying out a variety of contrast, brightness, and color manipula-
tion options, as shown in Figures 3.2 and 3.7.

Exercises 3.1, 3.5, and 3.6 have you implement some of these operations, in order to become
familiar with basic image processing operators. More sophisticated techniques for tonal adjust-
ment, e.g., (Reinhard et al. 2005, Bae et al. 2006), are described in the section on high dynamic
range tone mapping §10.2.1.

3.2 Neighborhood operators

Locally adaptive histogram equalization is an example of a neighborhood operator, which uses
a collection of pixel values in the vicinity of a given pixel to determine its final output value
(Figure 3.10). In addition to performing local tone adjustment, neighborhood operators can be
used to filter images in order to remove noise, sharpen details, accentuate edges, or add soft blur
(Figure 3.9b—d). In this section, we describe both linear and non-linear neighborhood operators,
which include as a special case morphological operators that operate on binary images. We also
describe semi-global operators that compute distance transforms and find connected components
in binary images (Figure 3.9f-h).

3.2.1 Linear filtering

The most commonly used type of neighborhood operator is a linear filter, in which an output
pixel’s value is determined as a weighted sum of input pixel values,

g(i,) =>_ fli+k,j+Dh(k,1) (3.12)
k,l

3.2. Neighborhood operators 115

()

S

(g (h)
Figure 3.9: Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened; (d)

smoothed with edge preserving filter; (e) binary image; (f) dilated; (g) distance transform; (h)
connected components. For the dilation and connected components, black (ink) pixels are assumed
to be active (1).

116 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

451 60 | 98 | 127 132] 133 137 133

46 | 65| 98 | 123|126 128 131] 133 69 | 95 | 116] 125|129 132
471 65| 96 | 115|119 123 135] 137 0.1]10.1]0.1 68 | 92 | 110] 120 126 132
47163] 91 |107]113]122]138] 134 * 0.1]02]0.1 = 66 | 86 | 104 114 124 132
501 59| 80| 97 | 110] 123 133] 134 0.1]10.1]0.1 62| 78 | 94 | 108| 120] 129
49| 53] 68| 83| 97 | 113]128]133 571 69| 83 98 |112] 124
501 50| 58] 70| 84]|102|116] 126 531 60) 71| 85 (100] 114
501 50| 52]58]69] 8 |101]120

fxy) h(xy) gxy)

Figure 3.10: Neighborhood filtering (convolution). The image on the left is convolved with the filter
in the middle to yield the image on the right. The light blue pixels indicate the source neighborhood
for the light green destination pixel.

(Figure 3.10). The entries in the weight kernel or mask h(k, 1) are often called the filter coefficients.
The correlation operator can be more compactly notated as

g=f®h (3.13)
A common variant on this formula is
k,l

where the sign of the offsets in f has been reversed. This is called the convolution operator,
g=1rxh (3.15)

and h is then called the impulse response function.* The reason for this name is that the kernel
function, h, convolved with an impulse signal, 6(¢,) (an image that is 0 everywhere except at the
origin) reproduces itself, h x 0 = h, whereas correlation produces the reflected signal. (Try this
yourself to verify that this is so.)

In fact, (3.14) can be interpreted as the superposition (addition) of shifted impulse response
functions h(i — k,j — [) multiplied by the input pixel values f(k,!). Convolution has additional
nice properties, e.g., it is both commutative and associative. As well, the Fourier transform of two
convolved images is the product of their individual Fourier transforms §3.3.

* The continuous version of convolution can be written as g(z) = [f(z — u)h(u)du.

3.2. Neighborhood operators 117

72
88
: 62
1 52
2 37

— N

— N =

(72]82[62[52[37 |« u[1|] & §

— N = -
[SE O SO

Figure 3.11: One dimensional signal convolution as a sparse matrix-vector multiply, g = H f.

Both correlation and convolution are linear shift-invariant (LSI) operators, which obey both
the superposition principle (3.5),

ho(fo+ fi)=ho fo+ho fi, (3.16)

and the shift invariance principle,
9(,J) = fli+k,j+1) < (hog)(i,j) = (ho)itk j+1), (3.17)

which means that shifting a signal commutes with applying the operator (o stands for the LSI oper-
ator). Another way to think of shift invariance is that the operator “behaves the same everywhere”.
Occasionally, a shift-variant version of correlation or convolution may be used, e.g.,

k,l

where h(k,l;i,j) is the convolution kernel at pixel (7, 7). (Think for example of modeling the
spatially varying blur in an image that is selectively defocused depending on depth.)

Correlation and convolution can both be written as a matrix-vector multiply, if we first convert
the two-dimensional images f (i,) and ¢(7, j) into some raster-ordered vectors f and g,

g=HFf, (3.19)

where the (sparse) H matrix contains the convolution kernels. Figure 3.11 shows how a one-
dimensional convolution can be represented in matrix-vector form.

Padding (border effects)

The astute reader will notice that the matrix multiply shown in Figure 3.11 suffers from boundary
effects, i.e., the results of filtering the image in this form will lead to a darkening of the corner
pixels. This is because the original image is effectively being padded with O values wherever the
convolution kernel extends beyond the original image boundaries.

To compensate for this, a number of alternative padding or extension modes have been devel-
oped (Figure 3.12):

118

Computer Vision: Algorithms and Applications (September 7, 2009 draft)

zero wrap clamp mirror

blurred: zero normalized zero clamp mirror

Figure 3.12: Border padding and the results of blurring the padded image. Top row: padded

images, bottom row: blurred padded image. The image below wrapping is the result of dividing

(normalizing) the blurred zero-padded RGBA image by its corresponding soft alpha value.

2.

. zero pad: set all pixels outside the source image to 0 (good choice for alpha-matted cutout

images);

constant pad (aka border color): set all pixels outside the source image to a specified border
value;

. clamp (aka replicate or clamp to edge): repeat edge pixels indefinitely;

(cyclic) wrap (aka repeat, or tile): loop “around” the image in a “torroidal” configuration;

. mirror: reflect pixels across the image edge;

extend: extend the signal by subtracting the mirrored version of the signal from the edge
pixel value

In the computer graphics literature (Akenine-Moller and Haines 2002, p. 124), these mechanisms

are known as the wrapping mode (OpenGL) or texture addressing mode (Direct3D). The formulas

for each of these modes are left as an exercise in Exercise 3.8.

Figure 3.12 shows the effects of padding an image with each of the above mechanisms, as well

as the result of blurring the resulting padded image. As you can see, zero padding darkens the

edges, replication padding propagates border values inward, reflection padding preserves colors

near the borders, and extension keeps the border pixels fixed (during blur).

3.2. Neighborhood operators 119

BB] 114161411
112 2181128 |2 —1/0]1 1 |-2]1
L ! Liol4al2] 2162436 [24|6| L|—1]0|1] %|—=2| 4 |=2
K2 . 16 256 6 4
1 112 2181128 |2 —1/0]1 1 -2 1
11 1 1141641
ST 400201) s[ifafela1] &[=i[o[1] i[[=2]1]

d B B

(a) box, k=5 (b) bilinear (¢) “Gaussian” (d) Sobel (e) “Laplacian”

Figure 3.13: Examples of separable linear filters. Top row: 2D filter kernels; middle row: their
corresponding horizontal 1-D kernels; bottom row: filtered images. The filtered Sobel and “Lapla-
cian” images are signed images, and are scaled up by 2x and 4, respectively, and added to a
gray offset before display.

An alternative to padding is to blur the zero-padded RGBA image and to then divide the result-
ing image by its alpha value to remove the darkening effect. The results can be quite good, as seen
in the blurred image below cyclic replication in Figure 3.12.5

Separable filtering

The process of performing a convolution requires K2 (multiply-add) operations per pixel, where
K is the size (width or height) of the convolution kernel (e.g., the box filter in Figure 3.13a).
In many cases, this operation can be significantly sped up by first performing a one-dimensional
horizontal convolution followed by a one-dimensional vertical convolution (which requires a total
of 2K operations per pixel). A convolution kernel for which this is possible is said to be separable.

It is easy to show that the two-dimensional kernel K corresponding to successive convolution
with a horizontal kernel h and a vertical kernel v is the outer product of the two kernels,

K = vh’ (3.20)

> One can think of this as a very simple but special version of bilateral filtering §3.2.2.

120 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

(see Figure 3.13 for some examples). Because of the increased efficiency, the design of convolution
kernels for computer vision applications is often influenced by their separability.

How can we tell if a given kernel K is indeed separable? This can often be done by inspection,
or by looking at the analytic form of the kernel (Freeman and Adelson 1991). A more direct
method is to treat the 2D kernel as a 2D matrix K and to take its singular value decomposition,

K =) ouwv] (3.21)

(see Appendix A.l.1 for the definition of the SVD). If only the first singular value o is non-zero,
the kernel is separable and /gouo and /oo provide the vertical and horizontal kernels (Perona
1995). For example, the Laplacian of Gaussian kernel (3.26,4.23) can be implemented as the sum
of two separable filters (4.24) (J. S. Wiejak and Buxton 1985).

What if your kernel is not separable, and yet you still want a faster way to implement it? Perona
(1995), who first made the link between kernel separability and SVD, suggests using more terms
in the (3.21) series, i.e., summing up a number of separable convolutions. Whether this is worth
doing or not depends on the relative sizes of K and the number of significant singular values, as
well as other considerations such as cache coherency and memory locality.

Examples of linear filtering

Now that we have described the process for performing linear filtering, let us examine a number of
frequently used filters (Figure 3.13).

The simplest filter to implement is the moving average or box filter, which simply averages the
pixel values in a K x K window. This is equivalent to convolving the image with a kernel of all
ones and then scaling (Figure 3.13a). For large kernels, a more efficient implementation is to slide
a moving window across each scanline (in a separable filter) while adding the newest pixel and
subtracting the oldest pixel from the running sum. (This is related to the concept of summed area
tables, which I will describe shortly.)

A smoother image can be obtained by separably convolving the image with a piecewise linear
“tent” function (also known as a Bartlett filter). Figure 3.13b shows a 3 x 3 version of this filter,
which is called the bilinear kernel, since it the the outer product of two linear (first order) splines
§3.4.1.

Convolving the linear tent function with itself yields the cubic approximating spline, which
is called the “Gaussian” kernel (Figure 3.13c) in Burt and Adelson’s (1983a) Laplacian pyramid
representation §3.4. Note that approximate Gaussian kernels can also be obtained by iterated con-
volution with box filters (Wells 1986). In applications where the filters really need to be rotationally
symmetric, carefully tuned versions of sampled Gaussians should be used (Freeman and Adelson
1991) (Exercise 3.10).

3.2. Neighborhood operators 121

The kernels we just discussed are all examples of blurring (smoothing) or low-pass kernels
(since they pass through the lower frequencies while attenuating higher frequencies). How good
are they at doing this? In §3.3, we use frequency-space Fourier analysis to examine the exact
frequency response of these filters. We also introduce the sinc ((sinz)/z) filter, which performs
ideal low-pass filtering.

In practice, smoothing kernels are often used to reduce high-frequency noise. We will have
much more to say about using variants on smoothing to remove noise later in this book §3.2.2,
§3.3, and §3.6.

Surprisingly, smoothing kernels can also be used to sharpen images using a process called un-
sharp masking. Since blurring the image reduces high frequencies, adding some of the difference
between the original and the blurred image makes it sharper,

Jsharp = f + V(f - hblur * f) (322)

In fact, before the advent of digital photography, this was the standard way to sharpen images in
the darkroom: create a blurred (“positive”’) negative from the original negative by mis-focusing,
then overlay the two negatives before printing the final image, which corresponds to

Junsharp = f(l - ’)/hblur * f) (323)

(This is no longer a linear filter, but still works well.)

Linear filtering can also be used as a pre-processing stage to edge extraction §4.2 and interest
point detection §4.1 algorithms. Figure 3.13c shows a simple 3 x 3 edge extractor called the Sobel
operator, which is a separable combination of a horizontal central difference (so called because the
horizontal derivative is centered on the pixel) and a vertical box filter (to smooth the results). As
you can see in the image below the kernel, this filter effectively emphasizes horizontal edges.

The 5-point “Laplacian” operator next to it looks for simultaneous horizontal and vertical
derivatives (or rather, derivatives at different orientations). It is a simple example of what is some-
times called a “corner detector” §4.1, since, it responds well at rectangle and triangle corners, while
largely ignoring oriented edges.

Band-pass and steerable filters

The 5-point Laplacian and Sobel operators are simple examples of band-pass and oriented filters.
More sophisticated kernels can be created by first smoothing the image with a (unit area) Gaussian
filter,

1 22442

G(ﬁ,y, 0) e 2%, (3.24)

2mo?

122 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

SN
"‘-.-"' " i { I .
] s |

AR

A
=

—=
e
~
=

>

(a)

Figure 3.14: Second order steerable filter (Freeman 1992): (a) original image of Einstein; (b)
orientation map computed from the second order oriented energy; (c) original image with oriented

structures enhanced.

and then taking the first or second derivatives (Marr 1982, Witkin 1983, Freeman and Adelson
1991). Such filters are known collectively as band-pass filters, since they filter away the low
frequencies (see Tables 3.2 and 3.3).

The (undirected) second derivative of a two dimensional image,

Vif =2+ 2 (3.25)

is known as the Laplacian operator. Blurring an image with a Gaussian and then taking its Lapla-
cian is equivalent to convolving directly with the Laplacian of Gaussian (LoG) filter,

2 2 1

_> G(%,y;O’), (326)

ot o2

VG i) -

which has certain nice scale space properties (Witkin 1983, Witkin et al. 1986). The 5-point
Laplacian is just a compact approximation to this more sophisticated filter.

Likewise, the Sobel operator is a simple approximation to a directional or oriented filter, which
can obtained by smoothing with a Gaussian (or some other filter) and then taking a directional
derivative V 5 = %, which is obtained by taking the dot product between the gradient field V
and a unit direction @ = (cos 6, sin),

U-V(Gxf)=Vu(Gx*f)=(VyG)* f. (3.27)

The smoothed directional derivative filter,

Gg = uG, +vG, :u%—l—vaG

5 Uy (3.28)

3.2. Neighborhood operators 123

I 5 i . L

- & oo o
S NN RN
T T T T recdheedpedpes
T T ; “§ -3 -8
o Eem W e B o .Qmaﬂgw,{}.
%] & = SERANY
(a) (b) (©) (@

Figure 3.15: Fourth order steerable filter (Freeman and Adelson 1991): (a) test image containing
bars (lines) and step edges at different orientations, (b) average oriented energy, (c) dominant

orientation; (d) oriented energy as a function of angle (polar plot).

where @ = (u,v), is an example of a steerable filter, since the value of an image convolved with
G, can be computed by first convolving with the pair of filters (G, () and then steering the filter
(potentially locally) by multiplying this gradient field with a unit vector & (Freeman and Adelson
1991). The advantage of this approach is that a whole family of filters can be evaluated with very
little cost.

How about steering a directional second derivative filter V, - Vi, G, which is the result of
taking a (smoothed) directional derivative, and then taking the directional derivative again? (For
example, (G, is the second directional derivative in the x direction.)

At first glance, it would appear that the steering trick will not work, since for every direction
u, we need to compute a different first directional derivative. Somewhat surprisingly, Freeman and
Adelson (1991) showed that for directional Gaussian derivatives, it is possible to steer any order of
derivative with a relatively small number of basis functions. For example, only 3 basis functions
are required for the second order directional derivative,

Gaa = U G + 20vGoy + Gy, (3.29)

Furthermore, each of the basis filters, while itself not necessarily separable, can be computed using
a linear combination of a small number of separable filters (Freeman and Adelson 1991).

This remarkable result makes it possible to construct directional derivative filters of increas-
ingly greater directional selectivity, i.e., filters that only respond to edges that have strong local
consistency in orientation (Figure 3.14). Furthermore, higher order steerable filters can respond to
potentially more than a single edge orientation at a given location, and they can respond to both
bar edges (thin lines), as well as the classic step edges (Figure 3.15). In order to do this, however,
full Hilbert transform pairs need to be used for second order and higher filters, as described in
(Freeman and Adelson 1991).

124 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

312171213 511211417 3|5 |12(14|17

1151]3]|4 4 1111192431 4 [11]119(24] 31

S11]13]15]1 17 | 28 | 38 | 46 9117283846

413121116 13]124]37]48]62 1324 (37[48]| 62

2141418 15]30]44]59] 81 15]30]44]59] 81
(a) S= 24 (b) s= 28 (c) S= 24

Figure 3.16: Summed area tables: (a) original image; (b) summed area table; (c) computation
of area sum. Each value in the summed area table (red) is computed recursively from its three
adjacent (blue) neighbors (see (3.31)). Area sums (green) are computed by combining the four
values at the rectangle corners (purple) (3.32). Positive value are shown in bold and negative

values in italics.

Steerable filters are often used to construct both feature descriptors §4.1.3 and edge detectors
§4.2. While the filters developed by Freeman and Adelson (1991) are best suited for detecting
linear (edge-like) structures, recent work by Koethe (2003) shows how a combined 2 x 2 boundary
tensor can be used to encode both edge and junction (“corner”) features. Exercise 3.12 has you
implement such steerable filters and apply them to finding both edge and corner features.

Summed area tables

If an image is going to be repeatedly convolved with different box filters (and especially filters
of different size at different locations), you can precompute the summed area table (Crow 1984),
which is just the running sum of all the pixel values from the origin,

= zz: Z]:f(k;,l). (3.30)

k=01=0

This can be efficiently computed using a recursive (raster-scan) algorithm,

To find the summed area inside a rectangle [ig, i1] X [jo, j1], we simply combine four samples from
the summed area table,

i1
S(io...i1,00..-J1) = > Z s(i1, j1) — s(i1,Jo — 1) — s(io — 1, 71) + s(io — 1,50 — 1). (3.32)

1=t0 j=Jo

3.2. Neighborhood operators 125

A potential disadvantage of summed area tables is that they require log M + log N extra bits in
the accumulation image compared to the original image, where M and N are the image width
and height. Extensions of summed area tables can also be used to approximate other convolution
kernels (see (Wolberg 1990, §6.5.2) for a review).

In computer vision, summed area tables have been used in face detection (Viola and Jones
2004) to compute simple multi-scale low-level features. Such features, which consist of adjacent
rectangles of positive and negative values, are also known as boxlets (Simard et al. 1998). In
principle, summed area tables could also be used to compute the sums in the sum-of-squared
difference (SSD) stereo and motion algorithms §11.4. In practice, separable moving average filters
are usually preferred (Kanade er al. 1996), unless many different window shapes and sizes are
being considered (Veksler 2003).

Recursive filtering

The incremental formula (3.31) for the summed area is an example of a recursive filter, i.e., one
whose values depends on previous filter outputs. In the signal processing literature, such filters are
known as infinite impulse response (IIR), since the output of the filter to an impulse (single non-
zero value) goes on forever. (For the summed area table, an impulse generates an infinite rectangle
of 1s below and to the right of the impulse.) The filters we have previously studied in this chapter,
which involve the image with a finite extent kernel, are known as finite impulse response (FIR).

Two-dimensional IIR filters and recursive formulas are sometimes used to compute quantities
that involve large area interactions, such as two-dimensional distance functions §3.2.4 and con-
nected components §3.2.5.

More commonly, however, IIR filters are used inside one-dimensional separable filtering stages
to compute large-extent smoothing kernels, such as efficient approximations to Gaussians and edge
filters (Deriche 1990, Nielsen ef al. 1997). Pyramid-based algorithms §3.4 can also be used to
perform such large-area smoothing computations.

3.2.2 Non-linear filtering

The filters we have looked at so far have all been linear, i.e., their response to a sum of two signals
is the same as the sum of the individual responses. This is equivalent to saying that each output
pixel is a weighted summation of some number of input pixels (3.19). Linear filters are easier to
compose and are amenable to frequency response analysis §3.3.

In many cases, however, better performance can be obtained by using a non-linear combination
of neighboring pixels. Consider for example the image in Figure 3.17a, where the noise, rather
than being Gaussian, is shot noise, i.e., it occasionally has very large values. In this case, regular

