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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Some common image processing operations: (a) original image; (b) increased con-

trast; (c) change in hue; (d) “posterized” (quantized colors); (e) blurred; (f) rotated.
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Now that we have seen how images are formed through the interaction of 3D scene elements,

lighting, and camera optics and sensors, let us look at the first stage of most computer vision

applications, namely the of use image processing to preprocess the image and convert it into a

form suitable for further analysis. Examples of such operations include the exposure correction and

color balancing, the reduction of image noise, an increase in sharpness, or straightening the image

by rotating it (Figure 3.1). While some may consider image processing to be outside the purvue

of computer vision, most computer vision applications such as computational photography or even

recognition require the careful design of image processing stages in order to achieve acceptable

results.

In this chapter, we review standard image processing operators that map pixel values from

one image to another. Image processing is often taught in electrical engineering departments as a

follow-on course to a more introductory course in signal processing (Oppenheim and Schafer 1996,

Oppenheim et al. 1999). Popular textbooks for image processing include (Crane 1997, Gomes and

Velho 1997, Jähne 1997, Pratt 2001, Gonzales and Woods 2002, Russ 2007).

We begin this chapter with the simplest kind of image transforms, namely those that manipulate

each pixel independently of its neighbors §3.1. Such transforms are often called local operators or

point processes. Next, we examine neighborhood (area-based) operators, where each new pixel’s

value depends on a small number of neighboring input pixel values §3.2. A convenient tool to an-

alyze (and sometimes accelerate) such neighborhood operations in the Fourier Transform, which

we cover in §3.3. Neighborhood operators can be cascaded to form image pyramids and wavelets,

which are useful for analyzing images at a variety of resolutions (scales) and for accelerating cer-

tain operations §3.4. Another important class of global operators are geometric transformations

such as rotations, shears, and perspective deformations §3.5. Finally, we introduce global opti-

mization approaches to image processing, which involve the minimization of an energy functional,

or equivalently, optimal estimation using Bayesian Markov Random Field models §3.6.

3.1 Local operators

The simplest kinds of image processing transforms are local operators, where each output pixel’s

value only depends on the corresponding input pixel value (plus, potentially, some globally col-

lected information or parameters). Examples of such operators include brightness and contrast

adjustments (Figure 3.2) as well as color correction and transformations. In the image processing

literature, such operations are also known as point processes (Crane 1997).

We begin this section with a quick review of simple local operators such as brightness scaling

and image addition. Next, we discuss how colors in images can be manipulated. We then present

image compositing and matting operations, which play an important role in computational pho-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Some local image processing operations: (a) original image along with its three color

(per-channel) histograms; (b) brightness increased (additive offset, b = 16; (c) contrast increased

(multiplicative gain a = 1.1); (d) gamma (partially) linearized (γ = 1.2); (e) full histogram

equalization; (f) partial histogram equalization.
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Figure 3.3: Visualizing image data: (a) original image; (b) cropped portion and scanline plot using

an image inspection tool; (c) grid of numbers; (d) surface plot. For figures (c)–(d), the image was

first converted to grayscale.

tography §10 and computer graphics applications. Finally, we describe the more global process

of histogram equalization. We close with an example application that manipulates tonal values

(exposure and contrast) to improve image appearance.

3.1.1 Pixel transforms

An image processing operator is a function that takes one or more input images (signals) and

produces an output image. In the continuous domain, this can be denoted as

g(x) = h(f(x)) or g(x) = h(f0(x), . . . , fn(x)), (3.1)

where x is the D-dimensional domain of the functions (usually D = 2 for images), and the func-

tions f and g operate over some range, which can either be scalar or vector-valued (e.g., for color

images or 2D motion). For discrete (sampled) images, the domain consists of a finite number of

pixel locations, x = (i, j), and we can write

g(i, j) = h(f(i, j)). (3.2)

Figure 3.3 shows how an image can be represented either by its color (appearance), as a grid of

numbers, or as a two-dimensional function (surface plot).

Two commonly used point processes are multiplication and addition with a constant,

g(x) = af(x) + b. (3.3)

The parameters a > 0 and b are often called the gain and bias parameters; sometimes these param-

eters are said to control contrast and brightness, respectively (Figures 3.2 b–c).1 The bias and gain

1 An image’s luminance characteristics can also be summarized by its key (average luminanance) and range (Kopf

et al. 2007b).
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parameters can also be spatially varying,

g(x) = a(x)f(x) + b(x), (3.4)

e.g., when simulating the graded density filter used by photographers to selectively darken the sky.

Multiplicative gain (both global and spatially varying) is a linear operation, since it obeys the

superposition principle,

h(f0 + f1) = h(f0) + h(f1). (3.5)

(We will have more to say about linear shift invariant operators in §3.2.1.) Operators such as image

squaring (which is often used to get a local estimate of the energy in a band-pass filtered signal

§3.4) are not linear.

Another commonly used dyadic (two input) operator is the linear blend operator,

g(x) = (1 − α)f0(x) + αf1(x). (3.6)

By varying α from 0 → 1, this operator can be used to perform a temporal cross-dissolve between

two images or videos, as seen in slide shows and film production, or as a component of image

morphing algorithms §3.5.3.

One highly used non-linear transform that is often applied to images before further processing

is gamma correction, which is used to remove the non-linear mapping between input radiance and

quantized pixel values §2.3.2. To invert the gamma mapping applied by the sensor, we can use

g(x) = [f(x)]1/γ , (3.7)

where a gamma value of γ ≈ 2.2 is a reasonable fit for most digital cameras.

3.1.2 Color transforms

While color images can be treated as arbitrary vector-valued functions or collections of indepen-

dent bands, it usually makes sense to think about them as highly correlated signals with strong

connections to the image formation process §2.2, sensor design §2.3, and human perception §2.3.2.

Consider, for example, brightening a picture by adding a constant value to all three channels, as

shown in Figure 3.2b. Can you tell if this achieves the desired effect of making the image look

brighter? Can you see any undesirable side-effects or artifacts?

In fact, adding the same value to each color channel not only increases the apparent intensity

of each pixel, it can also affect the pixel’s hue and saturation. How can we define and manipulate

such quantities in order to achieve the desired perceptual effects?

As discussed in §2.3.2, chromaticity coordinates (2.103) or even simpler color ratios (2.115)

can first be computed and then used after manipulating (e.g., brightening) the luminance Y to
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(a) (b) (c) (d)

Figure 3.4: Image matting and compositing (Chuang et al. 2001): (a) source image; (b) extracted

foreground object F ; (c) alpha matte α shown in grayscale; (d) new composite C.

re-compute a valid RGB image with the same hue and saturation. Figure 2.35g–i in the previous

chapter shows some color ratio images, multiplied by the middle gray value for better visualization.

Similarly, color balancing (e.g., to compensate for incandescent lighting) can be performed by

either multiplying each channel with a different scale factor, or by the more complex process of

mapping to XYZ color space, changing the nominal whitepoint, and mapping back to RGB, which

can be written down using a linear 3 × 3 color twist transform matrix. As mentioned in §2.3.2,

Exercise 2.8 has you explore some of these issues, as does Exercise 3.1.

Another fun project, best attempted after you have mastered the rest of the material in this

chapter, is to take a picture with a rainbow in it (Figure 3.71) and enhance the strength of the

rainbow.

3.1.3 Compositing and matting

In many photo editing and visual effects applications, it is often desirable to cut a foreground object

out of one scene and put it on top of a different background (Figure 3.4). The process of extracting

the object from the original image is often called matting (Smith and Blinn 1996), while the process

of inserting it into another image (without visible artifacts) is called compositing (Porter and Duff

1984, Blinn 1994a).

The intermediate representation used for the foreground object between these two stages is

called an alpha-matted color image (Figure 3.4b–c). In addition to the three color RGB channels,

an alpha-matted image contains a fourth alpha channel α (or A) that describes the relative amount

of opacity or fractional coverage at each pixel (Figures 3.4c and 3.5b). The opacity is the inverse

of the transparency. Pixels within the object are fully opaque (α = 1), while pixels fully outside

of the object are transparent (α = 0). Pixels on the boundary of the object vary smoothly between

these two extremes, which hides the perceptual visible jaggies that occur if only binary opacities

are used.

To composite a new (or foreground) image on top of an old (background) image, the over oper-

ator, first proposed by Porter and Duff (1984) and then studied extensively by Blinn (1994a)(1994b),
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× (1− ) + =

B α αF C

(a) (b) (c) (d)

Figure 3.5: Compositing equation C = (1 − α)B + αF . The images are taken from a close-up of

the region of the hair in the upper right part of the lion in Figure 3.4.

is used,

C = (1 − α)B + αF. (3.8)

This operator attenuates the influence of the background image B by a factor (1−α), and then adds

in the color (and opacity) values corresponding to the foreground layer F , as shown in Figure 3.5.

In many situations, it is convenient to represent the foreground colors in pre-multiplied form,

i.e., to store (and manipulate) the αF values directly. As Blinn (1994b) shows, the pre-multiplied

RGBA representation is preferred for several reasons, including the ability to blur or resample

(e.g., rotate) alpha-matted images without any additional complications (just treating each RGBA

band independently). However, when matting using local color consistency (Ruzon and Tomasi

2000, Chuang et al. 2001), the pure un-multiplied foreground colors F are used, since these remain

constant (or vary slowly) in the vicinity of the object edge.

The over operation is not the only kind of compositing operation that can be used. Porter

and Duff (1984) describe a number of additional operations that can be useful in photo editing and

visual effects applications. In this book, we only concern ourselves with one additional, commonly

occurring case (but see Exercise 3.2).

When light reflects off of clean transparent glass, the light passing through the glass and the

light reflecting off the glass are simply added together (Figure 3.6). This model is useful in the

analysis of transparent motion (Black and Anandan 1996, Szeliski et al. 2000), which occurs when

such scenes are observed from a moving camera §8.5.2.

The actual process of matting, i.e., recovering the foreground, background, and alpha matte

values from one or more images, has a rich history, which we will study in §10.4. Smith and

Blinn (1996) have a nice survey of traditional blue-screen matting techniques, while Toyama et al.

(1999) review difference matting. More recently, there has been a lot of activity in computational

photography relating to natural image matting (Ruzon and Tomasi 2000, Chuang et al. 2001),

which attempts to extract the mattes from a single natural image (Figure 3.4a) or from extended

video sequences (Chuang et al. 2002). All of these techniques are described in more detail in
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Figure 3.6: An example of light reflecting off the transparent glass of a picture frame (Black and

Anandan 1996). You can clearly see the woman’s portrait inside the picture frame superimposed

with the reflection of a man’s face off the glass.

§10.4.

3.1.4 Histogram equalization

While the brightness and gain controls described in §3.1.1 can improve the appearance of an image,

how can we automatically determine their best values? One approach might be to look at the

darkest and brightest pixel values in an image, and to map these to pure black and pure white.

Another approach might be to find the average value in the image and push this towards middle

gray and to expand the range so that it more closely fill the displayable values (Kopf et al. 2007b).

How can we visualize the set of lightness values in an image in order to test some of these

heuristics? The answer is to plot the histogram of the individual color channel as well as the

luminance values, as shown in Figure 3.7b.2 From this distribution, we can compute relevant

statistics such as the minimum, maximum, and average intensity values. Notice, however, that the

image has both an excess of dark values and light values, but that the mid-range values are largely

underpopulated. Would it not be better if we could simultaneously brighten some dark values and

darken some light values, while still using the full extent of the available dynamic range? Can you

think of a mapping that might do this?

One popular answer to this question is to perform histogram equalization, i.e., to find an in-

tensity mapping function f(I) such that the resulting histogram is flat. The trick to finding such

a mapping is the same one that people use to generate random samples from a probability density

function, which is to first compute the cumulative distribution function shown in Figure 3.7c.

2 The histogram is simply the count of the number of pixels at each gray level value. For an 8-bit image, an

accumulation table with 256 entries is needed. For higher bit depths, a table with the appropriate number of entries

(probably fewer than the full number of gray levels) should be used.
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Figure 3.7: Histogram analysis and equalization: (a) original image (b) color channel and in-

tensity (luminance) histograms; (c) cumulative distribution functions; (d) equalization (transfer)

functions; (e) full histogram equalization; (f) partial histogram equalization; (g) another sample

image; (h) block histogram equalization; (i) locally adaptive histogram equalization.
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Think of the original histogram h(I) as the distribution of grades in a class after some exam.

How can we map a particular grade to its corresponding percentile, so that the students at the

75% percentile range scored better than 3/4 of their classmates? The answer is to integrate the

distribution h(I) to obtain the cumulative distribution c(I),

c(I) =
1

N

I
∑

i=0

h(i) = c(I − 1) +
1

N
h(I), (3.9)

where N is the number of pixels in the image (oops! I mean students in the class :-). For any given

grade/intensity, we can look up its corresponding percentile c(I) and determine the final value that

pixel should take. (When working with 8-bit pixel values, the I and c axes are rescaled to go from

[0, 255].)

Figure 3.7d shows the result of applying f(I) = c(I) to the original image. As we can see, the

resulting histogram is flat, but so is the resulting image (“flat” in the sense of lack of contrast and

muddy looking). One way to compensate for this is to only partially compensate for the histogram

unevenness, e.g., by using a mapping function f(I) = αc(I)+(1−α)I , i.e., a linear blend between

the cumulative distribution function and the identity transform (straight line). As you can see in

Figure 3.7e, the resulting image maintains more of its original grayscale distribution while having

a more appealing balance.

Another potential problem with histogram equalization (or in general, image brightening) is

that noise in dark regions can be amplified and become more visible. The exercise on histogram

equalization Exercise 3.6 suggests some possible ways to mitigate this, as well as alternative tech-

niques to maintain contrast and “punch” in the original images (Stark 2000, Larson et al. 1997).

Locally adaptive histogram equalization

While global histogram equalization can be useful, for some images, it might be preferable to apply

different kinds of equalization in different regions. Consider for example the image in Figure 3.7g,

which has a wide range of luminance values. Instead of computing a single curve, what if we were

to subdivide the image into M × M pixel blocks and perform separate histogram equalization in

each sub-block? As you can see in Figure 3.7h, the resulting image is far from ideal, exhibiting a

strong patchwork of blocking artifacts (intensity discontinuities at block boundaries).

One way to eliminate blocking artifacts is to use a moving window, i.e., to recompute the

histogram for every M × M block centered at each pixel. This process can be quite slow (M2

operations per pixel), although with clever programming, only the histogram entries corresponding

to the pixels entering and leaving the block (in a raster scan across the image) need to be updated

(M operations per pixel). Note that this operation is an example of the non-linear neighborhood

operations we will study in more detail in §3.2.2.
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Figure 3.8: Local histogram interpolation using relative (s, t) coordinates: (a) block-based his-

tograms, with block centers shown as circles; (b) corner-based “spline” histograms. Pixels are

located on grid intersections. The black square pixel’s transfer function is interpolated from the

four adjacent lookup tables (gray arrows) using the computed (s, t) values. Block boundaries are

shown as dashed lines.

A more efficient approach is to compute non-overlapped block-based equalization functions

as before, but to then smoothly interpolate the transfer functions as we move between blocks.

This technique is known as adaptive histogram equalization (AHE), and its contrast (gain) limited

version is known by CLAHE (Pizer et al. 1987).3 The weighting function for a given pixel (i, j)

can be computed as a function of its horizontal and vertical position (s, t) within a block, as shown

in Figure 3.8a. To blend the four lookup functions {f00, . . . , f11}, a bilinear blending function,

fs,t(I) = (1 − s)(1 − t)f00(I) + s(1 − t)f10(I) + (1 − s)tf01(I) + stf11(I) (3.10)

can be used. (See §3.4.1 for higher-order generalizations of such spline functions.) Note that

instead of blending the four lookup tables for each output pixel (which would be quite slow), it is

equivalent to blend the results of mapping a given pixel through the four neighboring lookups.

A variant on this algorithm is to place the lookup tables at the corners of each M × M block

(see Figure 3.8b and Exercise 3.7). In addition to blending four lookups to compute the final

value, we can also distribute each input pixel into four adjacent lookup tables during the histogram

3This algorithm is implemented in the MATLAB adapthist function.



114 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

accumulation phase (notice that the gray arrows in Figure 3.8b point both ways), i.e.,

hk,l(I(i, j)) += w(i, j, k, l), (3.11)

where w(i, j, k, l) is the bilinear weighting function between pixel (i, j) and lookup table (k, l).

This is an example of soft histogramming, which is used in a variety of other applications, including

the construction of SIFT feature descriptors §4.1.3 and vocabulary trees §14.3.2.

3.1.5 Application: Tonal adjustment

[ Note: Can drop this application if pressed for space ]

One of the most widely used applications of point-wise image processing operators is the ma-

nipulation of contrast or tone in photographs, to either make them look more attractive or more

interpretable. You can get a good sense of the range of operations possible by opening up any

photo manipulation software and trying out a variety of contrast, brightness, and color manipula-

tion options, as shown in Figures 3.2 and 3.7.

Exercises 3.1, 3.5, and 3.6 have you implement some of these operations, in order to become

familiar with basic image processing operators. More sophisticated techniques for tonal adjust-

ment, e.g., (Reinhard et al. 2005, Bae et al. 2006), are described in the section on high dynamic

range tone mapping §10.2.1.

3.2 Neighborhood operators

Locally adaptive histogram equalization is an example of a neighborhood operator, which uses

a collection of pixel values in the vicinity of a given pixel to determine its final output value

(Figure 3.10). In addition to performing local tone adjustment, neighborhood operators can be

used to filter images in order to remove noise, sharpen details, accentuate edges, or add soft blur

(Figure 3.9b–d). In this section, we describe both linear and non-linear neighborhood operators,

which include as a special case morphological operators that operate on binary images. We also

describe semi-global operators that compute distance transforms and find connected components

in binary images (Figure 3.9f–h).

3.2.1 Linear filtering

The most commonly used type of neighborhood operator is a linear filter, in which an output

pixel’s value is determined as a weighted sum of input pixel values,

g(i, j) =
∑

k,l

f(i + k, j + l)h(k, l) (3.12)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.9: Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened; (d)

smoothed with edge preserving filter; (e) binary image; (f) dilated; (g) distance transform; (h)

connected components. For the dilation and connected components, black (ink) pixels are assumed

to be active (1).
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Figure 3.10: Neighborhood filtering (convolution). The image on the left is convolved with the filter

in the middle to yield the image on the right. The light blue pixels indicate the source neighborhood

for the light green destination pixel.

(Figure 3.10). The entries in the weight kernel or mask h(k, l) are often called the filter coefficients.

The correlation operator can be more compactly notated as

g = f ⊗ h. (3.13)

A common variant on this formula is

g(i, j) =
∑

k,l

f(i − k, j − l)h(k, l) = f(k, l)h(i − k, j − l), (3.14)

where the sign of the offsets in f has been reversed. This is called the convolution operator,

g = f ∗ h, (3.15)

and h is then called the impulse response function.4 The reason for this name is that the kernel

function, h, convolved with an impulse signal, δ(i, j) (an image that is 0 everywhere except at the

origin) reproduces itself, h ∗ δ = h, whereas correlation produces the reflected signal. (Try this

yourself to verify that this is so.)

In fact, (3.14) can be interpreted as the superposition (addition) of shifted impulse response

functions h(i − k, j − l) multiplied by the input pixel values f(k, l). Convolution has additional

nice properties, e.g., it is both commutative and associative. As well, the Fourier transform of two

convolved images is the product of their individual Fourier transforms §3.3.

4 The continuous version of convolution can be written as g(x) =
∫

f(x − u)h(u)du.
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Figure 3.11: One dimensional signal convolution as a sparse matrix-vector multiply, g = Hf .

Both correlation and convolution are linear shift-invariant (LSI) operators, which obey both

the superposition principle (3.5),

h ◦ (f0 + f1) = h ◦ f0 + h ◦ f1, (3.16)

and the shift invariance principle,

g(i, j) = f(i + k, j + l) ⇔ (h ◦ g)(i, j) = (h ◦ f)(i + k, j + l), (3.17)

which means that shifting a signal commutes with applying the operator (◦ stands for the LSI oper-

ator). Another way to think of shift invariance is that the operator “behaves the same everywhere”.

Occasionally, a shift-variant version of correlation or convolution may be used, e.g.,

g(i, j) =
∑

k,l

f(i − k, j − l)h(k, l; i, j), (3.18)

where h(k, l; i, j) is the convolution kernel at pixel (i, j). (Think for example of modeling the

spatially varying blur in an image that is selectively defocused depending on depth.)

Correlation and convolution can both be written as a matrix-vector multiply, if we first convert

the two-dimensional images f(i, j) and g(i, j) into some raster-ordered vectors f and g,

g = Hf , (3.19)

where the (sparse) H matrix contains the convolution kernels. Figure 3.11 shows how a one-

dimensional convolution can be represented in matrix-vector form.

Padding (border effects)

The astute reader will notice that the matrix multiply shown in Figure 3.11 suffers from boundary

effects, i.e., the results of filtering the image in this form will lead to a darkening of the corner

pixels. This is because the original image is effectively being padded with 0 values wherever the

convolution kernel extends beyond the original image boundaries.

To compensate for this, a number of alternative padding or extension modes have been devel-

oped (Figure 3.12):
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zero wrap clamp mirror

blurred: zero normalized zero clamp mirror

Figure 3.12: Border padding and the results of blurring the padded image. Top row: padded

images; bottom row: blurred padded image. The image below wrapping is the result of dividing

(normalizing) the blurred zero-padded RGBA image by its corresponding soft alpha value.

1. zero pad: set all pixels outside the source image to 0 (good choice for alpha-matted cutout

images);

2. constant pad (aka border color): set all pixels outside the source image to a specified border

value;

3. clamp (aka replicate or clamp to edge): repeat edge pixels indefinitely;

4. (cyclic) wrap (aka repeat, or tile): loop “around” the image in a “torroidal” configuration;

5. mirror: reflect pixels across the image edge;

6. extend: extend the signal by subtracting the mirrored version of the signal from the edge

pixel value

In the computer graphics literature (Akenine-Möller and Haines 2002, p. 124), these mechanisms

are known as the wrapping mode (OpenGL) or texture addressing mode (Direct3D). The formulas

for each of these modes are left as an exercise in Exercise 3.8.

Figure 3.12 shows the effects of padding an image with each of the above mechanisms, as well

as the result of blurring the resulting padded image. As you can see, zero padding darkens the

edges, replication padding propagates border values inward, reflection padding preserves colors

near the borders, and extension keeps the border pixels fixed (during blur).
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Figure 3.13: Examples of separable linear filters. Top row: 2D filter kernels; middle row: their

corresponding horizontal 1-D kernels; bottom row: filtered images. The filtered Sobel and “Lapla-

cian” images are signed images, and are scaled up by 2× and 4×, respectively, and added to a

gray offset before display.

An alternative to padding is to blur the zero-padded RGBA image and to then divide the result-

ing image by its alpha value to remove the darkening effect. The results can be quite good, as seen

in the blurred image below cyclic replication in Figure 3.12.5

Separable filtering

The process of performing a convolution requires K2 (multiply-add) operations per pixel, where

K is the size (width or height) of the convolution kernel (e.g., the box filter in Figure 3.13a).

In many cases, this operation can be significantly sped up by first performing a one-dimensional

horizontal convolution followed by a one-dimensional vertical convolution (which requires a total

of 2K operations per pixel). A convolution kernel for which this is possible is said to be separable.

It is easy to show that the two-dimensional kernel K corresponding to successive convolution

with a horizontal kernel h and a vertical kernel v is the outer product of the two kernels,

K = vhT (3.20)

5 One can think of this as a very simple but special version of bilateral filtering §3.2.2.
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(see Figure 3.13 for some examples). Because of the increased efficiency, the design of convolution

kernels for computer vision applications is often influenced by their separability.

How can we tell if a given kernel K is indeed separable? This can often be done by inspection,

or by looking at the analytic form of the kernel (Freeman and Adelson 1991). A more direct

method is to treat the 2D kernel as a 2D matrix K and to take its singular value decomposition,

K =
∑

i

σiuiv
T
i (3.21)

(see Appendix A.1.1 for the definition of the SVD). If only the first singular value σ0 is non-zero,

the kernel is separable and
√

σ0u0 and
√

σ0v
T
0 provide the vertical and horizontal kernels (Perona

1995). For example, the Laplacian of Gaussian kernel (3.26,4.23) can be implemented as the sum

of two separable filters (4.24) (J. S. Wiejak and Buxton 1985).

What if your kernel is not separable, and yet you still want a faster way to implement it? Perona

(1995), who first made the link between kernel separability and SVD, suggests using more terms

in the (3.21) series, i.e., summing up a number of separable convolutions. Whether this is worth

doing or not depends on the relative sizes of K and the number of significant singular values, as

well as other considerations such as cache coherency and memory locality.

Examples of linear filtering

Now that we have described the process for performing linear filtering, let us examine a number of

frequently used filters (Figure 3.13).

The simplest filter to implement is the moving average or box filter, which simply averages the

pixel values in a K × K window. This is equivalent to convolving the image with a kernel of all

ones and then scaling (Figure 3.13a). For large kernels, a more efficient implementation is to slide

a moving window across each scanline (in a separable filter) while adding the newest pixel and

subtracting the oldest pixel from the running sum. (This is related to the concept of summed area

tables, which I will describe shortly.)

A smoother image can be obtained by separably convolving the image with a piecewise linear

“tent” function (also known as a Bartlett filter). Figure 3.13b shows a 3 × 3 version of this filter,

which is called the bilinear kernel, since it the the outer product of two linear (first order) splines

§3.4.1.

Convolving the linear tent function with itself yields the cubic approximating spline, which

is called the “Gaussian” kernel (Figure 3.13c) in Burt and Adelson’s (1983a) Laplacian pyramid

representation §3.4. Note that approximate Gaussian kernels can also be obtained by iterated con-

volution with box filters (Wells 1986). In applications where the filters really need to be rotationally

symmetric, carefully tuned versions of sampled Gaussians should be used (Freeman and Adelson

1991) (Exercise 3.10).
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The kernels we just discussed are all examples of blurring (smoothing) or low-pass kernels

(since they pass through the lower frequencies while attenuating higher frequencies). How good

are they at doing this? In §3.3, we use frequency-space Fourier analysis to examine the exact

frequency response of these filters. We also introduce the sinc ((sin x)/x) filter, which performs

ideal low-pass filtering.

In practice, smoothing kernels are often used to reduce high-frequency noise. We will have

much more to say about using variants on smoothing to remove noise later in this book §3.2.2,

§3.3, and §3.6.

Surprisingly, smoothing kernels can also be used to sharpen images using a process called un-

sharp masking. Since blurring the image reduces high frequencies, adding some of the difference

between the original and the blurred image makes it sharper,

gsharp = f + γ(f − hblur ∗ f). (3.22)

In fact, before the advent of digital photography, this was the standard way to sharpen images in

the darkroom: create a blurred (“positive”) negative from the original negative by mis-focusing,

then overlay the two negatives before printing the final image, which corresponds to

gunsharp = f(1 − γhblur ∗ f). (3.23)

(This is no longer a linear filter, but still works well.)

Linear filtering can also be used as a pre-processing stage to edge extraction §4.2 and interest

point detection §4.1 algorithms. Figure 3.13c shows a simple 3× 3 edge extractor called the Sobel

operator, which is a separable combination of a horizontal central difference (so called because the

horizontal derivative is centered on the pixel) and a vertical box filter (to smooth the results). As

you can see in the image below the kernel, this filter effectively emphasizes horizontal edges.

The 5-point “Laplacian” operator next to it looks for simultaneous horizontal and vertical

derivatives (or rather, derivatives at different orientations). It is a simple example of what is some-

times called a “corner detector” §4.1, since, it responds well at rectangle and triangle corners, while

largely ignoring oriented edges.

Band-pass and steerable filters

The 5-point Laplacian and Sobel operators are simple examples of band-pass and oriented filters.

More sophisticated kernels can be created by first smoothing the image with a (unit area) Gaussian

filter,

G(x, y; σ) =
1

2πσ2
e−

x2+y2

2σ2 , (3.24)
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(a) (b) (c)

Figure 3.14: Second order steerable filter (Freeman 1992): (a) original image of Einstein; (b)

orientation map computed from the second order oriented energy; (c) original image with oriented

structures enhanced.

and then taking the first or second derivatives (Marr 1982, Witkin 1983, Freeman and Adelson

1991). Such filters are known collectively as band-pass filters, since they filter away the low

frequencies (see Tables 3.2 and 3.3).

The (undirected) second derivative of a two dimensional image,

∇2f =
∂2f

∂x2
+

∂2y

∂y2
, (3.25)

is known as the Laplacian operator. Blurring an image with a Gaussian and then taking its Lapla-

cian is equivalent to convolving directly with the Laplacian of Gaussian (LoG) filter,

∇2G(x, y; σ) =

(

x2 + y2

σ4
− 1

σ2

)

G(x, y; σ), (3.26)

which has certain nice scale space properties (Witkin 1983, Witkin et al. 1986). The 5-point

Laplacian is just a compact approximation to this more sophisticated filter.

Likewise, the Sobel operator is a simple approximation to a directional or oriented filter, which

can obtained by smoothing with a Gaussian (or some other filter) and then taking a directional

derivative ∇û = ∂

∂û
, which is obtained by taking the dot product between the gradient field ∇

and a unit direction û = (cos θ, sin θ),

û · ∇(G ∗ f) = ∇û(G ∗ f) = (∇ûG) ∗ f. (3.27)

The smoothed directional derivative filter,

Gû = uGx + vGy = u
∂G

∂x
+ v

∂G

∂y
, (3.28)
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(a) (b) (c) (d)

Figure 3.15: Fourth order steerable filter (Freeman and Adelson 1991): (a) test image containing

bars (lines) and step edges at different orientations; (b) average oriented energy; (c) dominant

orientation; (d) oriented energy as a function of angle (polar plot).

where û = (u, v), is an example of a steerable filter, since the value of an image convolved with

Gû can be computed by first convolving with the pair of filters (Gx, Gy) and then steering the filter

(potentially locally) by multiplying this gradient field with a unit vector û (Freeman and Adelson

1991). The advantage of this approach is that a whole family of filters can be evaluated with very

little cost.

How about steering a directional second derivative filter ∇û · ∇ûGû, which is the result of

taking a (smoothed) directional derivative, and then taking the directional derivative again? (For

example, Gxx is the second directional derivative in the x direction.)

At first glance, it would appear that the steering trick will not work, since for every direction

û, we need to compute a different first directional derivative. Somewhat surprisingly, Freeman and

Adelson (1991) showed that for directional Gaussian derivatives, it is possible to steer any order of

derivative with a relatively small number of basis functions. For example, only 3 basis functions

are required for the second order directional derivative,

Gûû = u2Gxx + 2uvGxy + v2Gyy. (3.29)

Furthermore, each of the basis filters, while itself not necessarily separable, can be computed using

a linear combination of a small number of separable filters (Freeman and Adelson 1991).

This remarkable result makes it possible to construct directional derivative filters of increas-

ingly greater directional selectivity, i.e., filters that only respond to edges that have strong local

consistency in orientation (Figure 3.14). Furthermore, higher order steerable filters can respond to

potentially more than a single edge orientation at a given location, and they can respond to both

bar edges (thin lines), as well as the classic step edges (Figure 3.15). In order to do this, however,

full Hilbert transform pairs need to be used for second order and higher filters, as described in

(Freeman and Adelson 1991).
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 (a)  S = 24  (b)  s = 28  (c)  S = 24

Figure 3.16: Summed area tables: (a) original image; (b) summed area table; (c) computation

of area sum. Each value in the summed area table (red) is computed recursively from its three

adjacent (blue) neighbors (see (3.31)). Area sums (green) are computed by combining the four

values at the rectangle corners (purple) (3.32). Positive value are shown in bold and negative

values in italics.

Steerable filters are often used to construct both feature descriptors §4.1.3 and edge detectors

§4.2. While the filters developed by Freeman and Adelson (1991) are best suited for detecting

linear (edge-like) structures, recent work by Koethe (2003) shows how a combined 2×2 boundary

tensor can be used to encode both edge and junction (“corner”) features. Exercise 3.12 has you

implement such steerable filters and apply them to finding both edge and corner features.

Summed area tables

If an image is going to be repeatedly convolved with different box filters (and especially filters

of different size at different locations), you can precompute the summed area table (Crow 1984),

which is just the running sum of all the pixel values from the origin,

s(i, j) =
i
∑

k=0

j
∑

l=0

f(k, l). (3.30)

This can be efficiently computed using a recursive (raster-scan) algorithm,

s(i, j) = s(i − 1, j) + s(i, j − 1) − s(i − 1, j − 1) + f(i, j). (3.31)

To find the summed area inside a rectangle [i0, i1]× [j0, j1], we simply combine four samples from

the summed area table,

S(i0 . . . i1, j0 . . . j1) =
i1
∑

i=i0

j1
∑

j=j0

s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1). (3.32)



3.2. Neighborhood operators 125

A potential disadvantage of summed area tables is that they require log M + log N extra bits in

the accumulation image compared to the original image, where M and N are the image width

and height. Extensions of summed area tables can also be used to approximate other convolution

kernels (see (Wolberg 1990, §6.5.2) for a review).

In computer vision, summed area tables have been used in face detection (Viola and Jones

2004) to compute simple multi-scale low-level features. Such features, which consist of adjacent

rectangles of positive and negative values, are also known as boxlets (Simard et al. 1998). In

principle, summed area tables could also be used to compute the sums in the sum-of-squared

difference (SSD) stereo and motion algorithms §11.4. In practice, separable moving average filters

are usually preferred (Kanade et al. 1996), unless many different window shapes and sizes are

being considered (Veksler 2003).

Recursive filtering

The incremental formula (3.31) for the summed area is an example of a recursive filter, i.e., one

whose values depends on previous filter outputs. In the signal processing literature, such filters are

known as infinite impulse response (IIR), since the output of the filter to an impulse (single non-

zero value) goes on forever. (For the summed area table, an impulse generates an infinite rectangle

of 1s below and to the right of the impulse.) The filters we have previously studied in this chapter,

which involve the image with a finite extent kernel, are known as finite impulse response (FIR).

Two-dimensional IIR filters and recursive formulas are sometimes used to compute quantities

that involve large area interactions, such as two-dimensional distance functions §3.2.4 and con-

nected components §3.2.5.

More commonly, however, IIR filters are used inside one-dimensional separable filtering stages

to compute large-extent smoothing kernels, such as efficient approximations to Gaussians and edge

filters (Deriche 1990, Nielsen et al. 1997). Pyramid-based algorithms §3.4 can also be used to

perform such large-area smoothing computations.

3.2.2 Non-linear filtering

The filters we have looked at so far have all been linear, i.e., their response to a sum of two signals

is the same as the sum of the individual responses. This is equivalent to saying that each output

pixel is a weighted summation of some number of input pixels (3.19). Linear filters are easier to

compose and are amenable to frequency response analysis §3.3.

In many cases, however, better performance can be obtained by using a non-linear combination

of neighboring pixels. Consider for example the image in Figure 3.17a, where the noise, rather

than being Gaussian, is shot noise, i.e., it occasionally has very large values. In this case, regular
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.17: Median and bilateral filtering: (a) image with Gaussian noise; (b) Gaussian filtered;

(c) median filtered; (d) bilaterally filtered; (e) image with shot noise; (f) Gaussian filtered; (g)

median filtered; (h) bilaterally filtered. Note that for shot noise, the bilateral filter fails to remove

the noise, because the noisy pixels are too different from their neighbors to get filtered.

.
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(a) median = 4 (b) a-mean= 4.6 (c) domain filter (d) range filter

Figure 3.18: Median and bilateral filtering: (a) median pixel shown in green; (b) selected α-

trimmed mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.
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blurring with a Gaussian filter fails to remove the noisy pixels, and instead turns then into softer

(but still visible) spots.

Median filtering

A better filter to use in this case is the median filter, which selects the median value from each

pixels’ neighborhood (Figure 3.18a). Median values can be computed in expected linear time

using the randomized select algorithm described in (Cormen 2001), and incremental variants have

also been developed (Tomasi and Manduchi 1998) (Bovik 2000, §3.2). Since the shot noise value

usually lies well outside of the true values in the neighborhood, the median filter is able to filter

away such bad pixels (Figure 3.17c).

One downside of the median filter, in addition to its moderate computational cost, is that since

it selects only one input pixel value to replace each output pixel, it is not as efficient at averaging

away regular Gaussian noise (see the discussion of efficiency in Appendix B.3 on robust statistic as

well as textbooks on this subject (Huber 1981, Hampel et al. 1986, Stewart 1999)). A better choice

may be the α-trimmed mean (Lee and Redner 1990) (Crane 1997, p. 109), which averages together

all of the pixels except for the α fraction that are the smallest and the largest (Figure 3.18b).

Another possibility is to compute a weighted median, in which each pixel is used a number of

times depending on its distance to the center. This turns out to be equivalent to minimizing the

weighted objective function

∑

k,l

w(k, l)|f(i + k, j + l) − g(i, j)|p, (3.33)

where g(i, j) is the desired output value, and p = 1 for the weighted median. The value p = 2 is

the usual weighted mean, which is equivalent to correlation (3.12) after normalizing by the sum of

the weights (Bovik 2000, §3.2) (Haralick and Shapiro 1992, §7.2.6). The weighted mean also has

deep connections to other methods in robust statistics (Appendix B.3) such as influence functions

(Huber 1981, Hampel et al. 1986).

Non-linear smoothing has another, perhaps even more important property (especially since shot

noise is rare in today’s cameras). Such filtering is more edge preserving, i.e., it has less tendency

to soften edges while filtering away high-frequency noise.

Consider the noisy image in Figure 3.17e. In order to remove most of the noise, the Gaussian

filter is forced to smooth away high-frequency detail, which is most noticeable near strong edges.

Median filtering does better, but as mentioned before, does not do as good a job at smoothing away

from discontinuities. (See (Tomasi and Manduchi 1998) for some additional references to edge

preserving smoothing techniques.)

While we could try to use the α-trimmed mean or weighted median, these techniques still all

have a tendency to round sharp corners, since the majority of pixels in the smoothing area come



128 Computer Vision: Algorithms and Applications (September 7, 2009 draft)

from the background distribution.

Bilateral filtering

What if we combined the idea of a weighted filter kernel with a better version of outlier rejection?

What if instead of rejecting a fixed percentage α, we simply rejected (in a soft way), pixels whose

values differed too much from the central pixel value? This is the essential idea in bilateral fil-

tering, which was first popularized in the computer vision community by Tomasi and Manduchi

(1998). (See (Chen et al. 2007) for citations of similar earlier (Aurich and Weule 1995, Smith and

Brady 1997) as well as the wealth of subsequent applications in computer vision and computational

photography.)

In the bilateral filter, the output pixel value depends on a weighted combination of neighboring

pixel values

g(i, j) =

∑

k,l f(k, l)w(i, j, k, l)
∑

k,l w(i, j, k, l)
. (3.34)

The weighting coefficient w(i, j, k, l) depends on the product of a domain kernel (Figure 3.18c),

d(i, j, k, l) = exp

(

−(i − k)2 + (j − l)2

2σ2
d

)

, (3.35)

and a data-dependent range kernel (Figure 3.18d),

r(i, j, k, l) = exp

(

−‖f(i, j) − f(k, l)‖2

2σ2
r

)

. (3.36)

[ Note: This may be the only place where I use exp in this chapter. Use the e... notation instead?

I just hate how small everything then looks . ] When multiplied together, these yield the data-

dependent bilateral weight function

w(i, j, k, l) = exp

(

−(i − k)2 + (j − l)2

2σ2
d

− ‖f(i, j) − f(k, l)‖2

2σ2
r

)

. (3.37)

Figure 3.19 shows an example of a noisy step edge being bilaterally filtered. Note how the domain

kernel is the usual Gaussian, the range kernel measures appearance (intensity) similarity to the

center pixel, and the bilateral filter kernel is a product of these two.

Notice that the range filter above used the vector distance between the center and neighboring

pixel. This is important in color images, since an edge in any one of the color bands signals a

change in material, and hence the need to downweight a pixel’s influence.6

6 Tomasi and Manduchi (1998) show that using the vector distance (as opposed to separately filtering each color

band separately) reduces color fringing effects. They also recommend taking the color difference in the more percep-

tually uniform CIE-Lab color space §2.3.2.
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(a) (b) (c)

(d) (e) (f)

Figure 3.19: Bilateral filtering (Durand and Dorsey 2002): (a) noisy step edge input; (b) domain

filter (Gaussian); (c) range filter (similarity to center pixel value); (d) bilateral filter; (e) filtered

step edge output; (f) 3D distance between pixels.

Since bilateral filtering is quite slow compared to regular separable filtering, a number of accel-

eration techniques have been developed (Durand and Dorsey 2002, Paris and Durand 2006, Chen

et al. 2007). Unfortunately, these techniques tend to use more memory than regular filtering, and

are hence not directly applicable to full color image filtering.

Iterated adaptive smoothing and anisotropic diffusion

Bilateral (and other) filters can also be applied in an iterative fashion, especially if a more “cartoon”

like appearance is desired (Tomasi and Manduchi 1998). When iterated filtering is applied, a much

smaller neighborhood can often be used.

Consider, for example, using only the four nearest neighbors, i.e., restricting |k−i|+|l−j| ≤ 1

in (3.34). Observe that

d(i, j, k, l) = exp

(

−(i − k)2 + (j − l)2

2σ2
d

)

=







1, |k − i| + |l − j| = 0,

λ = e−1/2σ2
d , |k − i| + |l − j| = 1.

(3.38)
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We can thus re-write (3.34) as

f (t+1)(i, j) =
f (t)(i, j) + η

∑

k,l f
(t)(k, l)r(i, j, k, l)

1 + η
∑

k,l r(i, j, k, l)

= f (t)(i, j) +
η

1 + ηR

∑

k,l

r(i, j, k, l)[f (t)(k, l) − f (t)(i, j)], (3.39)

where R =
∑

(k,l) r(i, j, k, l), (k, l) are the N4 neighbors of (i, j), and we have made the iterative

nature of the filtering explicit.

As Barash (2002) notes, (3.39) is the same as the discrete anisotropic diffusion equation first

proposed by Perona and Malik (1990b).7 Since its original introduction, anisotropic diffusion has

been extended and applied to a wide range of problems (Nielsen et al. 1997, Black et al. 1998,

Weickert et al. 1998, Weickert 1998) It has also been shown to be closely related to other adaptive

smoothing techniques (Saint-Marc et al. 1991, Barash 2002) as well as Bayesian regularization

with a non-linear smoothness term that can be derived from image statistics (Scharr et al. 2003).

[ Note: (Parts of) this paragraph could be moved to the Additional Readings section. ]

In its general form, the range kernel r(i, j, k, l) = r(‖f(i, j)−f(k, l)‖), which is usually called

the gain or edge-stopping function or diffusion coefficient, can be any monotonically increasing

function with r′(x) → 0 as x → ∞. Black et al. (1998) show how anisotropic diffusion is equiv-

alent to minimizing a robust penalty function on the image gradients, e.g., (3.104) and (3.112),

which we will discuss in the sections on robust regularization §3.6.1 and Markov random field

(MRF) priors §3.6.2. Scharr et al. (2003) show how the edge stopping function can be derived in a

principled manner from local image statistics. They also extend the diffusion neighborhood from

N4 to N8, which allows them to create a diffusion operator that is both rotationally invariant and

incorporates information about the eigenvalues of the local structure tensor.

Note that without a bias term towards the original image, anisotropic diffusion and iterative

adaptive smoothing will converge to a constant image. Unless a small number of iterations is used

(e.g., for speed), it is usually preferable to formulate the smoothing problem as a joint minimization

of a smoothness term and a data fidelity term, as discussed in §3.6.1–3.6.2 and (Scharr et al. 2003),

which introduce such a bias in a principled manner.

3.2.3 Morphology

While non-linear filters are often used to enhance grayscale and color images, they are also used

extensively to process binary images. Such images often occur after a thresholding operation,

θ(f, c) =







1 if f > c,

0 else,
(3.40)

7 The 1/(1 + ηR) factor is not present in anisotropic diffusion, but becomes negligible as η → 0.
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(a) (b) (c) (d) (e) (f)

Figure 3.20: Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d) majority;

(e) opening; (f) closing. The structuring element for all examples is a 5 × 5 square. The opening

fails to eliminate the dot, since it’s not wide enough. The effects of majority are a subtle rounding

of sharp corners.

e.g., converting a scanned grayscale document into a binary image for further processing such as

optical character recognition.

The most common binary image operations are called morphological operations, since they

change the shape of the underlying binary objects (Ritter and Wilson 2000, §7). To perform such

an operation, we first convolve the binary image with a binary structuring element and then select

a binary output value depending on the thresholded result of the convolution. (This is not the usual

way in which these operations are described, but I find it a nice simple way to unify the processes.)

The structuring element can be any shape, from a simple 3× 3 box filter, to more complicated disc

structures. It can even correspond to a particular shape that is being sought for in the image.

Figure 3.20 shows a close-up of the convolution of a binary image f with a 3 × 3 structuring

element s, and the resulting images for the operations described below. Let

c = f ⊗ s (3.41)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned

over the image, and S be the size of the structuring element (number of pixels). The standard

operations used in binary morphology include:

• dilation: dilate(f, s) = θ(c, 0);

• erosion: erode(f, s) = θ(c, S);

• majority: maj(f, s) = θ(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

• closing: close(f, s) = erode(dilate(f, s), s).
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(a) (b) (c) (d)

Figure 3.21: City block distance transform: (a) original binary image; (b) top to bottom (forward)

raster sweep: green values are used to compute the orange one; (c) bottom to top (backward)

raster sweep: green values are merged with old orange value; (d) final distance transform.

As we can see from Figure 3.20, dilation grows (thickens) objects consisting of 1s, while

erosion shrinks (thins) them. The opening and closing operations tend to leave large regions and

smooth boundaries unaffected, while removing small objects or holes and smoothing boundaries.

While we will not use mathematical morphology much in the rest of this book, it’s a handy tool

to have around whenever you need to clean up some thresholded images. You can find additional

details on morphology in other textbooks on computer vision (Bovik 2000, §2.2), (Haralick and

Shapiro 1992, §5.2), as well as articles and books specifically on this topic (Serra 1982, Serra and

Vincent 1992, Yuille et al. 1992, Soille 2006).

3.2.4 Distance transforms

The distance transform is useful in quickly precomputing the distance to a curve or set of points us-

ing a two-pass raster algorithm (Danielsson 1980, Borgefors 1986, Paglieroni 1992, Felzenszwalb

and Huttenlocher 2004a, Breu et al. 1995). It has many applications, including level sets §5.1.3,

fast chamfer matching (binary image alignment) (Huttenlocher et al. 1993), feathering in image

stitching and blending §9.3.2, and nearest point alignment §12.2.1.

The distance transform D(i, j) of a binary image b(i, j) is defined as follows. Let d(k, l) be

some distance metric between pixel offsets. Two commonly used metrics include the city block or

Manhattan distance

d1(k, l) = |k| + |l| (3.42)

and the Euclidean distance

d2(k, l) =
√

k2 + l2. (3.43)

The distance transform is then defined as

D(i, j) = min
k,l:b(k,l)=0

d(i − k, j − l), (3.44)
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i.e., it is the distance to the nearest background pixel whose value is 0.

The D1 city block distance transform can be efficiently computed using a forward and back-

ward pass of a simple raster-scan algorithm, as shown in Figure 3.21. During the forward pass,

each non-zero pixel in b is replaced by the minimum of 1 + the distance of its north or west neigh-

bor. During the backward pass, the same occurs, except that the minimum is both over the current

value D and 1 + the distance of the south and east neighbors (Figure 3.21).

Efficiently computing the Euclidean distance transform is more complicated. Here, just keep-

ing the minimum scalar distance to the boundary during the two passes is not sufficient. Instead,

a vectorial distance consisting of both the x and y coordinates of the distance to the boundary

must be kept and compared together using the squared distance (hypotenuse) rule. As well, larger

search regions need to be used to obtain reasonable results. Rather than explaining the algorithm in

more detail (Danielsson 1980, Borgefors 1986), We leave it as an Exercise 3.13 for the motivated

reader.

Figure 3.9g shows a distance transform computed from a binary image. Notice how the values

grow away from the black (ink) regions and form ridges in the white area of the original image.

Because of this linear growth from the starting boundary pixels, the distance transform is also

sometimes known as the grassfire transform, since it describes the time at which a fire starting

inside the black region would consume any given pixel. The ridges in the distance transform form

the skeleton of the region where the transform is computed, and consist of pixels that are of equal

distance to two (or more) boundaries (Tek and Kimia 2003, Sebastian and Kimia 2005).

A useful extension of the basic distance transform is the signed distance transform, which

computes distances to boundary pixels for all the pixels (Lavallée and Szeliski 1995). The simplest

way to create this is to compute the distance transforms for both the original binary image and its

complement, and to then negate one of these before combining. Because such distance fields tend

to be smooth, it is possible to store them more compactly (with minimal loss in relative accuracy)

using a spline defined over a quadtree or octree data structure. (Lavallée and Szeliski 1995, Szeliski

and Lavallée 1996, Frisken et al. 2000). Such precomputed signed distance transforms can be

extremely useful in efficiently aligning and merging 2D curves and 3D surfaces (Huttenlocher et

al. 1993, Szeliski and Lavallée 1996, Curless and Levoy 1996), especially if the vectorial version

of the distance transform, i.e., a pointer from each pixel or voxel to the nearest boundary or surface

element, is stored and interpolated. Signed distance fields are also an essential component of level

set evolution §5.1.3, where they are called characteristic functions.

3.2.5 Connected components

Another useful semi-global image transform is finding connected components, which are defined

as regions of adjacent pixels that have the same input value (or label). (In the remainder of this
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(a) (b) (c)

Figure 3.22: Connected component computation: (a) original grayscale image; (b) horizontal runs

(nodes) connected by vertical (graph) edges (dashed blue); runs are pseudocolored with unique

colors inherited from parent nodes; (c) re-coloring after merging adjacent segments.

section, consider pixels to be adjacent if they are immediate N4 neighbors and they have the same

input value.) Connected components can be used in a variety of applications, such as finding

individual letters in a scanned document, to finding objects (say cells) in a thresholded image and

computing their area statistics (see below).

Consider the grayscale image in Figure 3.22a. There are four connected components in this

figure: the outermost set of white pixels, the large ring of gray pixels, the white enclosed region,

and the single gray pixel. These are shown pseudocolored in Figure 3.22c as pink, green, blue, and

brown.

To compute the connected components of an image, we first (conceptually) split the image into

horizontal runs of adjacent pixels, and then color the runs with unique labels, re-using the labels

of vertically adjacent runs whenever possible. In a second phase, adjacent runs of different colors

are then merged.

While this description is a little sketchy, it should be enough to enable a motivated student to

implement this algorithm (Exercise 3.14). Haralick and Shapiro (1992), §2.3 contain a much longer

description of other connected component algorithms, including ones which avoid the creation of a

potentially large re-coloring (equivalence) table. Well debugged connected component algorithms

are also available in most image processing libraries.

Area statistics

Once a binary or multi-valued image has been segmented into its connected components, it is often

useful to compute the area statistics for each individual region R. Such statistics include:



3.3. Fourier transforms 135

• the area (number of pixels);

• the perimeter (number of boundary pixels);

• the centroid (average x and y values);

• the second moments,

M =
∑

(x,y)∈R





x − x

y − y





[

x − x y − y
]

, (3.45)

from which the major and minor axis orientation and lengths can be computed using eigen-

value analysis.

These statistics can then be used for further processing, e.g., for sorting the regions in decreasing

area (to consider the largest regions first) or for doing preliminary matching between regions in

different images.

3.3 Fourier transforms

In the previous section §3.2.1, we mentioned that Fourier analysis could be used to analyze the

frequency characteristics of various filters. In this section, we explain both how Fourier analysis

lets us determine these characteristics (or equivalently, the frequency content of an image), and

how using the Fast Fourier Transform (FFT) lets us perform large-kernel convolutions in time that

is independent of the kernel’s size. (For a more comprehensive introduction to Fourier transforms,

see (Bracewell 1986, Glassner 1995, Oppenheim and Schafer 1996, Oppenheim et al. 1999).)

How can we analyze what a given filter does to high, medium, and low frequencies? The

answer is to simply pass a sinusoid of known frequency through the filter and to observe by how

much it is attenuated. Let

s(x) = sin(2πfx + φi) = sin(ωx + φi) (3.46)

be the input sinusoid whose frequency is f , angular frequency is ω = 2πf , and phase is φi. Note

that in this section, we use the variables x and y to denote the spatial coordinates of an image,

rather than i and j as in the previous sections. This is both because the letters i and j are used

for the imaginary number (the usage depends on whether you are reading the complex variables

or electrical engineering literature), and because it is clearer how to distinguish the horizontal (x)

and vertical (y) components in the frequency space. In this section, we use the letter j for the

imaginary number, since that is the form more commonly found in the signal processing literature

(Bracewell 1986, Oppenheim and Schafer 1996, Oppenheim et al. 1999).
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s(x) o(x)

h(x)

s o

xx

A

φ

Figure 3.23: The Fourier Transform as the response of a filter h(x) to an input sinusoid s(x) =

ejωx yielding an output sinusoid o(x) = h(x) ∗ s(x) = Aejωx+φ.

[ Note: I initially wrote this section using f for frequency, but I’ve mostly switched to ω for

angular frequency. Some authors also use u and v for horizontal and vertical frequency, but I

prefer to reserve those for optical flow. ]

If we convolve the sinusoidal signal s(x) with a filter whose impulse response is h(x), we get

another sinusoid of the same frequency but different magnitude A and phase φo,

o(x) = h(x) ∗ s(x) = A sin(ωx + φo) (3.47)

(Figure 3.23). To see that this is the case, remember that a convolution can be expressed as a

weighted summation of shifted input signals (3.14), and that the summation of a bunch of shifted

sinusoids of the same frequency is just a single sinusoid at that frequency.8 The new magnitude A

is called the gain or magnitude of the filter, while the phase difference ∆φ = φo − φi is called the

shift or phase.

In fact, a more compact notation is to use the complex-valued sinusoid

s(x) = ejωx = cos ωx + j sin ωx. (3.48)

In that case, we can simply write,

o(x) = h(x) ∗ s(x) = Aejωx+φ. (3.49)

The Fourier transform is simply a tabulation of the magnitude and phase response to each

frequency,

H(ω) = F {h(x)} = Aejφ, (3.50)

8 If h is a general (non-linear) transform, additional harmonic frequencies will be introduced. This was traditionally

the bane of audiophiles, who insisted on equipment with no harmonic distortion. Now that digital audio has introduced

pure distortion-free sound, some audiophiles are buying retro tube amplifiers or digital signal processors that simulate

such distortions because of their “warmer sound”.
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i.e., it is the response to a complex sinusoid of frequency ω passed through the filter h(x). The

Fourier transform pair is also often written as

h(x)
F↔ H(ω). (3.51)

Unfortunately, (3.50) does not give an actual formula for computing the Fourier transform.

(Instead, it gives a recipe, i.e., convolve the filter with a sinusoid, observe the magnitude and

phase shift, repeat.) Fortunately, closed form equations for the Fourier transform exist both in the

continuous domain,

H(ω) =
∫ ∞

−∞
h(x)e−jωxdx, (3.52)

and in the discrete domain,

H(k) =
1

N

N−1
∑

x=0

h(x)e−j 2πkx
N , (3.53)

where N is the length of the signal or region of analysis. These formulas apply both to filters, such

as h(x) and to signals or images, such as s(x) or g(x).

The discrete form of the Fourier transform (3.53) is known as the Discrete Fourier Transform

(DFT). Note that while (3.53) can be evaluated for any value of k, it only makes sense for values in

the range k ∈ [−N
2
, N

2
]. This is because larger values of k alias with lower frequencies, and hence

provide no additional information, as explained in the previous discussion on aliasing §2.3.1.

At face value, the DFT takes O(N2) operations (multiply-adds) to evaluate. Fortunately, there

exists a faster algorithm called the Fast Fourier Transform (FFT), which only requires O(N log2 N)

operations (Bracewell 1986, Oppenheim et al. 1999). We will not explain the details of the algo-

rithm here, except to say that it involves a series of log2 N stages, where each stage performs small

2 × 2 transforms (matrix multiplies with known coefficients) followed by some semi-global per-

mutations. (You will often see the term butterfly applied to these stages because of the pictorial

shape of the signal processing graphs involved.) Implementations for the FFT can be found in most

numerical and signal processing libraries.

Now that we have defined the Fourier transform, what are some of its properties, and how can

they be used? Table 3.1 lists a number of useful properties, which we describe in a little more

detail below.

• Superposition: The Fourier transform of a sum of signals is the sum of their Fourier trans-

forms. (Thus, the Fourier transform is a linear operator.)

• Shift: The Fourier transform of a shifted signal is the transform of the original signal times

a linear phase shift (complex sinusoid).

• Reversal: The Fourier transform of a reversed signal is the complex conjugate of the signal’s

transform.
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Property Signal Transform

superposition f1(x) + f2(x) F1(ω) + F2(ω)

shift f(x − x0) F (ω)e−jωx0

reversal f(−x) F ∗(ω)

convolution f(x) ∗ h(x) F (ω)H(ω)

correlation f(x) ⊗ h(x) F (ω)H∗(ω)

multiplication f(x)h(x) F (ω) ∗ H(ω)

differentiation f ′(x) jωF (ω)

domain scaling f(ax) 1/aF (ω/a)

real images f(x) = f ∗(x) ⇔ F (ω) = F (−ω)

Parseval’s Thm.
∑

x[f(x)]2 =
∑

ω[F (ω)]2

Table 3.1: Some useful properties of Fourier transforms. The original transform pair is F (ω) =

F{f(x)}.

• Convolution: The Fourier transform of a pair of convolved signals is the product of their

transforms.

• Correlation: The Fourier transform of a correlation is the product of the first transform

times the complex conjugate of the second one.

• Multiplication: The Fourier transform of the product of two signals is the convolution of

their transforms.

• Differentiation: The Fourier transform of the derivative of a signal is that signal’s transform

multiplied by the frequency. In other words, differentiation linearly emphasizes (magnifies)

higher frequencies.

• Domain scaling: The Fourier transform of a stretched signal is the equivalently compressed

(and scaled) version of the original transform, and vice versa.

• Real images: The Fourier transform of a real-valued signal is symmetric around the origin.

This fact can be used to save space and to double the speed of image FFTs by packing

alternating scanlines into the real and imaginary parts of the signal being transformed.

• Parseval’s Theorem: The energy (sum of squared values) of a signal is the same as the

energy of its Fourier transform.

All of these properties are relatively straightforward to prove (see Exercise 3.15), and they will

come in handy later on in the book, e.g., when designing optimum Wiener filters §3.3.1 or per-

forming fast image correlations §8.1.2.
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Name Signal Transform

impulse

-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

δ(x) 1

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

shifted impulse

-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

δ(x − u) e−jωu

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

box filter

-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

box(x/a) asinc(aω)

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

tent

-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

tent(x/a) asinc2(aω)

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

Gaussian

-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

G(x; σ)
√

2π
σ

G(ω; σ−1)

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

Lapl. of Gauss.

-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

(x2

σ4 − 1
σ2 )G(x; σ) −

√
2π
σ

ω2G(ω; σ−1)

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

Gabor

-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

cos(ω0x)G(x; σ)
√

2π
σ

G(ω ± ω0; σ
−1)

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

unsharp mask

-0.5

0.0

0.5

1.0

1.5

-1.0000 -0.5000 0.0000 0.5000 1.0000

(1 + γ)δ(x) − γG(x; σ) (1 + γ) −
√

2πγ
σ

G(ω; σ−1)]

-0.5

0.0

0.5

1.0

1.5

-0.5000 0.0000 0.5000

windowed sinc

-0.5

0.0

0.5

1.0

-1.0000 -0.5000 0.0000 0.5000 1.0000

rcos(x/(aW ))sinc(x/a) (see Figure 3.30)

-0.5

0.0

0.5

1.0

-0.5000 0.0000 0.5000

Table 3.2: Some useful (continuous) Fourier transforms pairs. The dashed line in the Fourier

transform of the shifted impulse indicates its (linear) phase. All other transforms have zero phase

(they are real-valued). Note that the figures are not necessarily drawn to scale, but are rather

drawn to illustrate the general shape and characteristics of the filter or its response. In particular,

the Laplacian of a Gaussian is drawn inverted because it resembles more the “Mexican Hat” it is

sometimes called.
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Now that we have these properties in place, let us look at the Fourier transform pairs of some

commonly occurring filters and signal, as listed in Table 3.2. In more detail, these pairs are as

follows:

• Impulse: The impulse response has a constant (all frequency) transform.

• Shifted impulse: The shifted impulse has unit magnitude and linear phase.

• Box filter: The box (moving average) filter

box(x) =







1 if |x| ≤ 1

0 else
(3.54)

has a sinc Fourier transform,

sinc(ω) =
sin ω

ω
, (3.55)

which has an infinite number of sidelobes. Conversely, the sinc filter is an ideal low-pass

filter. For a non-unit box (Table 3.2), the width of the box a and the spacing of the zero

crossings in the sinc 1/a are inversely proportional.

• Tent: The piecewise linear tent function,

tent(x) = max(0, 1 − |x|), (3.56)

has a sinc2 Fourier transform.

• Gaussian: The (unit area) Gaussian of width σ,

G(x; σ) =
1√
2πσ

e−
x2

2σ2 , (3.57)

has a (unit height) Gaussian of width σ−1 as its Fourier transform.

• Laplacian of Gaussian: The second derivative of a Gaussian of width σ,

LoG(x; σ) = (
x2

σ4
− 1

σ2
)G(x; σ) (3.58)

has a band-pass response of

−
√

2π

σ
ω2G(ω; σ−1) (3.59)

as its Fourier transform. [ Note: Better check this with MATLAB or Mathematica to be sure.

]
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• Gabor: The even Gabor function, which is the product of a cosine of frequency ω0 and

a Gaussian of width σ, has as its transform the sum of the two Gaussians of width σ−1

centered at ω = ±ω0. The odd Gabor function, which uses a sine, is the difference of two

such Gaussian. Gabor functions are often used for oriented and band-pass filtering, since

they can be more frequency selective than Gaussian derivatives.

• Unsharp mask: The unsharp mask introduced in (3.22) has as its transform a unit response

with a slight boost at higher frequencies.

• Windowed sinc: The windowed (masked) sinc function shown in Table 3.2 has a response

function that approximates an ideal low-pass filter better and better as additional sidelobes

are added (W is increased). Figure 3.30 shows the shapes of these such filters along with

their Fourier transforms. For these examples, we use a one-lobe raised cosine,

rcos(x) =
1

2
(1 + cos πx)box(x), (3.60)

also known as the Hann window as the windowing function. Wolberg (1990) and Oppen-

heim et al. (1999) discuss additional windowing functions, which also include the Lancosz

window, which is the positive first lobe of a sinc function.

We can also compute the Fourier transforms for the small discrete kernels shown in Figure 3.13,

as shown in Table 3.3. Notice how the moving average filters do not uniformly dampen higher fre-

quencies, and hence can lead to ringing artifacts. The binomial filter (Gomes and Velho 1997),

used as the “Gaussian” in Burt and Adelson’s (1983a) Laplacian pyramid §3.4, does a decent job

of separating the high and low frequencies, but still leaves a fair amount of high-frequency detail,

which can lead to aliasing after downsampling. The Sobel edge detector at first linearly accentu-

ates frequencies, but then decays at higher frequency, and hence has trouble detecting fine-scale

edges (e.g., adjacent black and white columns). We will see additional examples of small kernel

Fourier transforms in §3.4.1, where we study better kernels for pre-filtering before decimation (size

reduction).

Two-dimensional Fourier transforms

The formulas and insights we have developed for one-dimensional signals and their transforms

translate directly to two-dimensional images. Here, instead of just specifying a horizontal or verti-

cal frequency ωx or ωy, we can create an oriented sinusoid of frequency (ωx, ωy),

s(x, y) = sin(ωxx + ωyy). (3.61)
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Name Kernel Transform Plot
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box-5
1
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-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

linear
1
4 1 2 1 1

2
(1 + cos ω)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

binomial
1
16 1 4 6 4 1 1

4
(1 + cos ω)2

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5

Sobel
1
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2
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Table 3.3: Fourier transforms of the separable kernels shown in Figure 3.13.
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Note: Log power spectrum Note: random sample Note: real image phase

(a) (b) (c)

Figure 3.24: Natural image power spectrum: (a) typical power spectrum (log intensity); (b) ran-

dom image sampled from this spectrum; (c) phase taken from a single image.

[ Note: Generate this figure ]

The corresponding two-dimensional Fourier transforms are then

H(ωx, ωy) =
∫ ∞

−∞

∫ ∞

−∞
h(x, y)e−j(ωxx+ωyy)dx dy, (3.62)

and in the discrete domain,

H(kx, ky) =
1

MN

M−1
∑

x=0

N−1
∑

y=0

h(x, y)e−j2π
kxx+kyy

MN , (3.63)

where M and N are the width and height of the image.

All of the Fourier transform properties from Table 3.1 carry over to two dimensions if we

replace the scalar variables x, ω, x0 and a with their 2D vector counterparts x = (x, y), ω =

(ωx, ωy), x0 = (x0, y0), and a = (ax, ay), and use vector inner products instead of multiplications.

3.3.1 Wiener filtering

While the Fourier transform is a useful tool for analyzing the frequency characteristics of a filter

kernel or image, it can also be used to analyze the frequency spectrum of a whole class of images.

Consider, for example, a random selection of 100 photographs from your personal photo collection

(Exercise 3.16). If you take their Fourier transform and average the squared magnitude of their

transforms, you get an image that looks something like Figure 3.24a.

A simple model for images would be to assume that they are random noise fields whose ex-

pected magnitude at each frequency is given by this power spectrum Ps(ωx, ωy), i.e.,

〈

[S(ωx, ωy)]
2
〉

= Ps(ωx, ωy), (3.64)

where the angle brackets 〈·〉 denote the expected (mean) value of a random variable. (The notation

E[·] is also often used.) [ Note: Decide which to use in this book. ] To generate such an image,
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we simply create a random Gaussian noise image S(ωx, ωy) where each “pixel” is a zero-mean9

Gaussian10 of variance Ps(ωx, ωy) and then take its inverse FFT.

Figure 3.24b shows such a typical image, which, unfortunately, looks more like a [ Note: fill

this in ] than a real image. It is well known that the phase of an image’s Fourier transform carries

more information than its magnitude. Figure 3.24c shows what happens if we use the average

power spectrum combined with a particular image’s phase to regenerate that image.

The observation that signal spectra capture a first order description of spatial statistics is widely

used in signal and image processing. In particular, assuming that an image is a sample from

a correlated Gaussian random noise field combined with a statistical model of the measurement

process yields an optimum restoration filter known as the Wiener filter.11

To derive the Wiener filter, we analyze each frequency component of a signal’s Fourier trans-

form independently. The noisy image formation process can be written as

o(x, y) = s(x, y) + n(x, y), (3.65)

where s(x, y) is then (unknown) image we are trying to recover, n(x, y) is the additive noise signal,

and o(x, y) is the observed noisy image. Because of the linearity of the Fourier transform, we can

equivalently write

O(ωx, ωy) = S(ωx, ωy) + N(ωx, ωy), (3.66)

where each quantity in the above equation is the Fourier transform of the corresponding image.

At each frequency (ωx, ωy), we know from our image spectrum that the unknown transform

component S(ωx, ωy) has a prior distribution which is a zero-mean Gaussian with variance Ps(ωx, ωy).

We also have noisy measurement O(ωx, ωy) whose variance is Pn(ωx, ωy), i.e., the power spectrum

of the noise, which is usually assumed to be constant (white), Pn(ωx, ωy) = σ2
n.

According to Bayes’ Rule (Appendix B.4), [ Note: fix this reference later ], the posterior

estimate of S can be written as

p(S|O) =
p(O|S)p(S)

p(O)
, (3.67)

where p(O) =
∫

S p(O|S)p(S) is a normalizing constant used to make the p(S|O) distribution

proper (integrate to 1). The prior distribution P (S) is given by

p(S) = e−
(S−µ)2

2Ps , (3.68)

9 Except for the DC component at (ωx, ωy) = (0, 0), which is set to mean gray.
10 See §C.2, Algorithm C.1, for code to generate Gaussian noise.
11 Wiener is pronounced “veener”, since in German, the “w” is pronounced “v” and the “v” is pronounced “f”.

Remember that next time you order “Wiener schnitzel”.
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P

n

W

(a) (b)

Figure 3.25: One-dimensional Wiener filter: (a) power spectrum of signal Ps(f), noise level σ2,

and Wiener filter transform W (f); (b) Wiener filter spatial kernel.

where µ is the expected mean at that frequency (0 everywhere except at the origin), and the mea-

surement distribution P (O|S) is given by

p(S) = e−
(S−O)2

2Pn . (3.69)

Taking the negative logarithm of both sides of (3.67) and setting µ = 0 for simplicity, we get

− log p(S|O) = − log p(O|S) − log p(S) + C (3.70)

= 1/2P
−1
n (S − O)2 + 1/2P

−1
s S2 + C, (3.71)

which is the negative posterior log likelihood. The minimum of this quantity is easy to compute,

Sopt =
P−1

n

P−1
n + P−1

s

O =
Ps

Ps + Pn

O =
1

1 + Pn/Ps

O. (3.72)

The quantity

W (ωx, ωy) =
1

1 + σ2
n/Ps(ωx, ωy)

(3.73)

is the Fourier transform of the optimum Wiener filter needed to remove the noise from an image

whose power spectrum is Ps(ωx, ωy).

Notice that this filter has the right qualitative properties, i.e., for low frequencies where Ps ≫
σ2

n it has unit gain, whereas for high frequencies it attenuates the noise by a factor Ps/σ
2
n. Fig-

ure 3.25 shows the one-dimensional transform W (f) and the corresponding filter kernel w(x) for

the commonly assumed case of P (f) = f−1, [ Note: check that this exponent is correct! ] while

Figure 3.26 shows a 2D image denoising example using the empirically estimated power spectrum

shown in Figure 3.24a. Exercise 3.16 has you compare the Wiener filter as a de-noising algorithm

to hand-tuned Gaussian smoothing.

The methodology given above to derive the Wiener filter can easily be extended to the case

where the observed image is a noisy blurred version of the original image,

o(x, y) = b(x, y) ∗ s(x, y) + n(x, y), (3.74)
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Note: original image Note: noisy image Note: de-noised image

(a) (b) (c)

Figure 3.26: Wiener filtering example: (a) original image; (b) noisy image; (c) de-noised image.

[ Note: Generate this figure ]
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Figure 3.27: Discrete cosine transform (DCT) basis functions. The first (DC) basis is the horizontal

blue line, the second is the brown half-cycle waveform, etc. These bases are widely used in image

and video compression standards such as JPEG.

where b(x, y) is the known blur kernel. Rather than deriving the corresponding Wiener filter, we

leave it as an exercise (Exercise 3.17), which also encourages you to compare your de-blurring

results with unsharp masking and naı̈ve inverse filtering. More sophisticated algorithms for blur

removal will be discussed in §3.6 and §10.3.

Discrete cosine transform

The discrete cosine transform (DCT) is a variant of the Fourier transform particularly well suited

to compressing images in a block-wise fashion. The one-dimensional DCT is computed by taking

the dot product of each N -wide block of pixels with a set of cosines of different frequencies,

F (k) =
N−1
∑

i=0

cos
(

π

N
(i +

1

2
)k
)

f(i), (3.75)

where k is the coefficient (frequency) index, and the 1/2-pixel offset is used to make the basis

coefficients symmetric in time (Wallace 1991). Some of the discrete cosine basis functions are
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shown in Figure 3.27. As you can see, the first basis function (straight blue line) encodes the

average DC value in the block of pixels, while the second encodes (a slightly curvy version of) the

slope.

In turns out that the DCT is a good approximation to the optimal Karhunen-Loève decomposi-

tion of natural image statistics over small patches, which can be obtained by performing a principal

component analysis (PCA) of images, as described in §14.1.1. The KL-transform de-correlates the

signal optimally (assuming the signal is described by its spectrum), and thus theoretically leads to

optimal compression.

The two-dimensional version of the DCT is defined similarly,

F (k, l) =
N−1
∑

i=0

N−1
∑

j=0

cos
(

π

N
(i +

1

2
)k
)

cos
(

π

N
(j +

1

2
)l
)

f(i, j). (3.76)

Like the 2D Fast Fourier Transform, the 2D DCT can be implemented separably, i.e., first com-

puting the DCT of each line in the block, and then computing the DCT of each resulting column.

Like the FFT, each of the DCTs can be computed in O(N log N) time, using a simple adaptation

of standard FFT algorithms to the special case of real-valued input coefficients.

As we mentioned in §2.3.3, the DCT is widely used in today’s image and video compression

algorithms, although it is slowly being supplanted by wavelet algorithms §3.4.3 (Simoncelli and

Adelson 1990b) and overlapped variants of the DCT (Malvar 1990, Malvar 1998, Malvar 2000),

which are used in the new JPEG XR standard. These newer algorithms suffer less from the blocking

artifacts (visible edge-aligned discontinuities) that result from the pixels in each block (typically

8 × 8) being transformed and quantized independently. (See Exercise 3.30 for ideas on how to

remove blocking artifacts from compressed JPEG images.)

3.3.2 Application: Sharpening, blur, and noise removal

Another common application of image processing is the enhancement of images through the use of

sharpening and noise removal operations, which all require some kind of neighborhood processing.

While traditionally, these kinds of operations were performed using linear filtering, §3.2.1 (3.22–

3.23) and §3.3.1, it is more common today to use non-linear filters §3.2.2 such as the weighted me-

dian or bilateral filter (3.34–3.37), anisotropic diffusion (3.38–3.39), or non-local means (Buades

et al. 2008). Variational methods §3.6.1, especially those using non-quadratic (robust) norms such

as the L1 norm (which is called total variation), are also often used. Figure 3.18 shows some

examples of linear and non-linear filters being used to remove noise.

When measuring the effectiveness of image denoising algorithms, it common to report the

results as a pSNR (peak signal-to-noise ratio) measurement (2.118), where I(x) is the original

(noise-free) image and Î(x) is the image after denoising. (This is for the case where the noisy
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image has been synthetically generated, so that the clean image is known.) A better way to measure

the quality is to use a perceptually-based similarity metric such as Structural Similarity Index

(SSIM) (Wang et al. 2004, Wang et al. 2005).

Exercises 3.11, 3.16–3.17, 3.21, and 3.28 have you implement some of these operations and

compare their effectiveness. More sophisticated techniques for blur removal and the related task

of super-resolution are discussed in §10.3.

3.4 Pyramids and wavelets

So far in this chapter, all of the image transformations we have studied produce output images of

the same size as the inputs. Often, however, we may wish to change the resolution of an image

before proceeding further. For example, we may need to interpolate a small image to make its

resolution match that of the output printer or computer screen. Alternatively, we may want to

reduce the size of an image to speed up the execution of an algorithm or to save on storage space

or transmission time.

Sometimes, we do not even know what the appropriate resolution for the image should be.

Consider, for example, the task of finding a face in an image §14.2. Since we do not know at what

scale the face will appear, we need to generate a whole pyramid of differently sized images and

scan each one for possible faces. (Biological visual systems also operate at a hierarchy of scales

(Marr 1982).) Such a pyramid can also be very helpful in accelerating the search for an object

by first finding a smaller instance of that object at a smaller (coarser) level of the pyramid and

then looking for the full resolution object only in the vicinity of coarse-level detections §8.1.1.

Finally, image pyramids are extremely useful for performing multi-scale editing operations such

as blending images while maintaining details.

In this section, we first discuss good filters for changing image resolutions (upsampling and

downsampling, aka interpolation and decimation), §3.4.1. We then present the concept of multi-

resolution pyramids, which can be used to create a complete hierarchy of different sized images

and which enable a variety of applications, §3.4.2. A closely related concept is that of wavelets,

which are a special kind of pyramid with higher frequency selectivity and other useful properties,

§3.4.3. Finally, we present a useful application of pyramids, namely the blending of different

images in a way that hides the seams between the image boundaries, §3.4.4.

3.4.1 Interpolation and decimation

Before we can construct and image pyramid, we first need to define how images can be interpolated

(made larger) and decimated (made smaller).
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(a) (b)

Figure 3.28: Signal interpolation, g(i) =
∑

k f(k)h(i − rk): (a) weighted summation of input

values; (b) polyphase filter interpretation.

Interpolation

In order to interpolate (or upsample) an image to a higher resolution, we need to select some

interpolation kernel with which to convolve the image,

g(i, j) =
∑

k,l

f(k, l)h(i − rk, j − rl). (3.77)

This formula is related to the discrete convolution formula (3.14) except that we replace k and l

inside of h() with rk and rl, where r is the upsampling rate. Figure 3.28a shows how to think

of this process as the superposition of sample weighted interpolation kernels, one centered at each

input sample k. An alternative mental model is shown in Figure 3.28b, where the kernel is centered

at the output pixel value i. (The two forms are equivalent.) The latter form is sometimes called

the polyphase filter form, since the kernel values h(i) (in the one-dimensional separable case) can

be stored as r separate kernels, each of which is selected for convolution with the input samples

depending on the phase of i relative to the upsampled grid.

What kinds of kernels make good interpolators? The answer depends on the application and the

computation time involved. Any of the smoothing kernels shown in Tables 3.2 and 3.3 can be used

after appropriate re-scaling.12 The linear interpolator (corresponding to the tent kernel) produces

interpolating piecewise linear curves, which result in unappealing creases when applied to images

(Figure 3.29a). The cubic B-spline, whose discrete 1/2-pixel sampling appears as the binomial

kernel in Table 3.3, is an approximating kernel (the interpolated image does not pass through the

input data points) that produces soft images with reduced high-frequency detail. The equation for

the cubic B-spline is easiest to derive by convolving the tent function (linear B-spline) with itself.

12 The smoothing kernels in Table 3.3 have a unit area. To turn these into interpolating kernels, we simply scale

them up by the interpolation rate r.
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(a) (b)

(c) (d)

Figure 3.29: Two-dimensional image interpolation: (a) bilinear; (b) bicubic (a = −1); (c) bicubic

(a = −0.5); (d) windowed sinc (9 taps).
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Figure 3.30: Some windowed sinc functions (a) and their log Fourier transforms (b): raised-cosine

windowed sinc in blue, cubic interpolators (a = −1 and a = −0.5) in green and purple, and tent

function in brown. These are often used to perform high-accuracy low-pass filtering operations.
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While most graphics cards use the bilinear kernel (optionally combined with a MIP-map §3.4.2),

most photo editing packages use bicubic interpolation. The cubic interpolant is a C1 (derivative-

continuous) piecewise-cubic spline (the term spline13 and piecewise-polynomial are synonymous)

whose equation is

h(x) =















1 − (a + 3)x2 + (a + 2)|x|3 if |x| < 1

a(|x| − 1)(|x| − 2)2 if 1 ≤ |x| < 2

0 else

, (3.78)

where a specifies the derivative at x = 1 (Parker et al. 1983). The value of a is often set to

a = −1, since this best matches the frequency characteristics of a sinc function (Figure 3.30). It

also introduces a small amount of sharpening, which can be visually appealing. Unfortunately, this

choice does not linearly interpolate straight lines (intensity ramps), so some visible ringing may

occur. A better choice for large amounts of interpolation is probably a = −0.5, which produces

a quadratic reproducing spline (it interpolates linear and quadratic functions exactly) (Wolberg

1990, §5.4.3). [ Note: In our VisionTools library, the default value of a = −1. We may want to

change this for large amounts of interpolation. See what GDI+ and Photoshop do? ] Figure 3.30

shows the a = −1 and a = −0.5 cubic interpolating kernel along with their Fourier transforms;

Figure 3.29b shows them being applied to one- and two-dimensional interpolation.

Splines have long been used for function and data value interpolation because of the ability to

precisely specify derivatives at control points and efficient incremental algorithms for their evalu-

ation (Bartels et al. 1987, Farin 1992, Farin 1996). Splines are widely used in geometric modeling

and computer-aided design (CAD) applications, although they have started being displaced by

subdivision surfaces (Zorin et al. 1996, Peters and Reif 2008). In computer vision, splines are

often used for elastic image deformations §3.5.2, motion estimation §8.3, and surface interpolation

§12.3. In fact, it is possible to carry out most image processing operations by representing images

as splines and manipulating them in a multi-resolution framework (Unser 1999).

The highest quality interpolator is generally believed to be the windowed sinc function, because

of it both preserves details in the lower resolution image and avoids aliasing. (It is also possible

to construct a C1 piecewise-cubic approximation to the windowed sinc by matching its derivatives

at zero crossing (Szeliski and Ito 1986).) However, some people object to the excessive ringing

that can be introduced by the windowed sinc and to the repetitive nature of the ringing frequencies

(see Figures 3.28c and 3.29d). For this reason, some photographers prefer to repeatedly interpolate

images by a small fractional amount (this tends to de-correlate the original pixel grid with the final

image). Additional possibilities include using the bilateral filter as an interpolator (Kopf et al.

2007a), using global optimization §3.5, or hallucinating details §10.3.

13 The origin of the term spline comes from the draughtsman’s workshop, where it was the name of a flexible piece

of wood or metal used to draw smooth curves.
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(a) (b)

Figure 3.31: Signal decimation: the original samples (a) are convolved with a low-pass filter

before being downsampled (b).

Decimation

While interpolation can be used to increase the resolution of an image, decimation (downsampling)

is required to reduce the resolution.14 To perform decimation, we first (conceptually) convolve the

image with a low-pass filter (to avoid aliasing) and then keep every rth sample. In practice, we

usually only evaluate the convolution at every rth sample,

g(i, j) =
∑

k,l

f(k, l)h(ri − k, rj − l), (3.79)

as shown in Figure 3.31. Note that the smoothing kernel h(k, l) in this case is often a stretched and

re-scaled version of an interpolation kernel. Alternatively, we can write

g(i, j) =
1

r

∑

k,l

f(k, l)h(i − k/r, j − l/r) (3.80)

and keep the same kernel kernel h(k, l) for both interpolation and decimation.

One commonly used (r = 2) decimation filter is the binomial filter introduced by Burt and

Adelson (1983a). As shown in Figure 3.3, this kernel does a decent job of separating the high

and low frequencies, but still leaves a fair amount of high-frequency detail, which can lead to

aliasing after downsampling. However, for application such as image blending (discussed later in

this section), this aliasing is of little concern.

If, however, the downsampled images will be displayed directly to the user, or perhaps blended

with other resolutions as in MIP-mapping §3.4.2, a higher-quality filter is desired. For high down-

sampling rates, the windowed sinc pre-filter is a good choice (Figure 3.30). However, for small

downsampling rates, e.g., r = 2, more careful filter design is required.

14 The term decimation has a gruesome etymology relating to practice of killing every 10th soldier in a platoon for

failing to meet objectives. It is generally used in signal processing for any downsampling or rate reduction.
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|n| Linear Binomial
Cubic

a = −1
Cubic

a = −0.5
Wind.
sinc QMF-9

JPEG
2000 Photoshop

0 0.50 0.3750 0.5000 0.50000 0.4939 0.5638 0.6029

1 0.25 0.2500 0.3125 0.28125 0.2684 0.2932 0.2669

2 0.0625 0.0000 0.00000 0.0000 -0.0519 -0.0782

3 -0.0625 -0.03125 -0.0153 -0.0431 -0.0169

4 0.0000 0.0198 0.0267

Table 3.4: Filter coefficients for 2× decimation. These filter are of odd length and symmetric and

are normalized to have unit DC gain (sum up to 1). See Figure 3.32 for their associated frequency

responses.

[ Note: Get the Photoshop result and decide whether to include. If so, also refresh the plot. ]

Table 3.4 shows a number of commonly used r = 2 downsampling filters, while Figure 3.32

shows their corresponding frequency responses. These filters include:

• the linear [1, 2, 1] filte: relatively poor response;

• the binomial [1, 4, 6, 4, 1] filter: cuts off a lot of frequencies, but useful for computer vision

analysis pyramids;

• the cubic filters from (3.78): the a = −1 filter has a sharper fall-off than the a = −0.5 filter

(Figure 3.32);

• a cosine-windowed sinc function (Table 3.2);

• the QMF-9 filter of Simoncelli and Adelson (1990b): used for wavelet denoising, aliases a

fair amount (note that their original filter coefficients are normalized to
√

2 gain so they can

be “self-inverting”);

• the 9/7 analysis filter from JPEG 2000 (Taubman and Marcellin 2002)

Please see the original papers for the full-precision values of some of these coefficients.

3.4.2 Multi-resolution representations

Now that we have described interpolation and decimation algorithms, we can build a complete

image pyramid (Figure 3.34). As we mentioned before, pyramids can be used to accelerate coarse-

to-fine search algorithms, look for objects or patterns at different scales, and to perform multi-

resolution blending operations. They are also widely used in computer graphics hardware and

software to perform fractional-level smoothing using the MIP-map, which we cover in §3.5.
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Figure 3.32: Frequency response for some 2× decimation filters. The cubic a = −1 filter has the

sharpest fall-off but also a bit of ringing; the wavelet analysis filters (QMF-9 and JPEG 2000),

while useful for compression, have more aliasing.

The best known (and probably most widely used) pyramid in computer vision is Burt and

Adelson’s (1983a) Laplacian pyramid. To construct the pyramid, we first blur and subsample the

original image by a factor of two and store this in the next level of the pyramid (Figure 3.35).

Because adjacent levels in the pyramid are related by a sampling rate r = 2, this kind of pyramid

is known as an octave pyramid. In Burt and Adelson’s work, they originally propose a 5-tap kernel

of the form

c b a b c , (3.81)

with b = 1/4 and c = 1/4 − a/2. In practice, they and everyone else uses a = 3/8, which results

in the familiar binomial kernel,
1

16
1 4 6 4 1 , (3.82)

which is particularly easy to implement using shifts and adds. (This was important in the days when

multipliers were expensive.) The reason they call their resulting pyramid a Gaussian pyramid is

that repeated convolutions of the binomial kernel converge to a Gaussian. (But then again, this is

true for any smoothing kernel (Wells 1986).)

[ Note: Need an actual figure here (similar to Figure 3.41) showing a Gaussian and Laplacian

pyramid decomposition of an image. Use one of my personal photos, e.g., the Iris? ]

To compute the Laplacian pyramid, Burt and Adelson first interpolate a lower resolution im-
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Note: bilinear Note: bicubic

(a) (b)

Note: windowed sinc Note: MIP-map

(c) (d)

Figure 3.33: Two-dimensional image decimation: (a) bilinear; (b) bicubic (a = [ Note: ? ]); (c)

windowed sinc ( [ Note: ? ] taps); (d) tri-linear MIP-map.

[ Note: Choose an half-octave interpolation ratio to better see MIP-map artifacts. ]

age to obtain a reconstructed low-pass version of the original image (Figure 3.36b). They then

subtract this low-pass version from the original to yield the band-pass “Laplacian” image, which

can be stored away for further processing. The resulting pyramid has perfect reconstruction, i.e.,

the Laplacian images plus the base-level Gaussian (L2 in Figure 3.36b) are sufficient to exactly

reconstruct the original image. Figure 3.35 shows the same computation in one dimension as a

signal processing diagram, which completely captures the computations being performed during

the analysis and re-synthesis stages.

Burt and Adelson also describe a variant on the Laplacian pyramid where the low-pass image

is taken from the original blurred image rather than the reconstructed pyramid (piping the output of

the L box directly to the subtraction in Figure 3.36b). This variant has less aliasing, since it avoids

one downsampling and upsampling round-trip, but it is not self-inverting, since the Laplacian

images are no longer adequate to reproduce the original image.

As before with the Gaussian pyramid, the term Laplacian is a bit of a misnomer, since their
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fine

medium

coarse

l = 0

l = 1

l = 2

Figure 3.34: A traditional image pyramid: each level has half the resolution (width and height)

and hence a quarter of the pixels as its parent level.

¼⅜¼ 16
1
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1
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1
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⅛⅛

(a) (b)

Figure 3.35: The Gaussian pyramid shown as a signal processing diagram. The analysis (a) and

(re-)synthesis (b) stages are shown as using similar computations. The white circles indicate zero

values inserted by the ↑ 2 upsampling operation. Notice how the reconstruction filter coefficients

are twice the analysis coefficients. The computation is shown as flowing down the page, regardless

of whether we are going coarse to fine or vice versa.
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Figure 3.36: The Laplacian pyramid. (a) The conceptual flow of images through processing stages:

images are high-pass and low-pass filtered, and the low-pass filtered images are processed in

the next stage of the pyramid. During reconstruction, the interpolated image and the (optionally

filtered) high-pass image are added back together. The Q box indicates quantization or some other

pyramid processing (e.g., noise removal by coring). (b) The actual computation of the high-pass

filter involves first interpolating the downsampled low-pass image and then subtracting it. This

results in perfect reconstruction when Q is the identity. The high-pass (or band-pass) images are

typically called Laplacian images, while the low-pass images are called Gaussian images.

[ Note: Consider adding images where the colored boxes are. ]
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space: − =

frequency: − =

low-pass lower-pass

Figure 3.37: The difference of two low-pass filters results in a band-pass filter. The dashed blue

lines show the close fit to a half-octave Laplacian of Gaussian.

band-pass images are really differences of (approximate) Gaussians, or DoGs,

DoG{I; σ1, σ2} = Gσ1 ∗ I − Gσ2 ∗ I = (Gσ1 − Gσ2) ∗ I. (3.83)

A Laplacian of a Gaussian (which we saw previously in (3.26)) is actually its second derivative,

LoG{I; σ} = ∇2(Gσ ∗ I) = (∇2Gσ) ∗ I, (3.84)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
(3.85)

is the Laplacian (operator) of a function. Figure 3.37 shows how the Difference of Gaussians and

Laplacian of Gaussian look like in both space and frequency.

Laplacians of Gaussian have elegant mathematical properties that have been widely studied in

the scale space community (Witkin 1983, Witkin et al. 1986, Lindeberg 1990, Nielsen et al. 1997)

and can be used for a variety of applications including edge detection (Marr and Hildreth 1980,

Perona and Malik 1990b), stereo matching (Witkin et al. 1987), and image enhancement (Nielsen

et al. 1997).

A less widely used variant of pyramids are half-octave pyramids, shown in Figure 3.38. These

were first introduced to the vision community by Crowley and Stern (1984), who call them Differ-

ence of Low-Pass (DOLP) transforms. Because of the small scale change between adjacent levels,

the authors claim that coarse-to-fine algorithms perform better. In the image-processing commu-

nity, half-octave pyramids combined with the checkerboard sampling grids are known as quincunx

sampling (Feilner et al. 2005). In detecting multi-scale features §4.1.1, it is often common to use

half-octave or even quarter-octave pyramids (Lowe 2004, Triggs 2004). However, in this case,

the subsampling only occurs at every octave level, i.e., the image is repeatedly blurred with wider

Gaussians until a full octave of resolution change has been achieved (Figure 4.11).
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Figure 3.38: Multiresolution pyramid with half-octave (quincunx) sampling (odd levels are colored

gray for easier visibility).

3.4.3 Wavelets

While pyramids are used extensively in computer vision applications, some people use wavelet

decompositions as an alternative. Wavelets are filters that localize a signal in both space and

frequency (like the Gabor filter in Table 3.2) and are defined over a hierarchy of scales. Wavelets

provide a smooth way to decompose a signal into frequency components without blocking and are

closely related to pyramids, as we will see shortly.

Wavelets were originally developed in the applied math and signal processing communities and

were introduced to the computer vision community by Mallat (1989). Strang (1989), Rioul and

Vetterli (1991), Meyer (1993) and Simoncelli and Adelson (1990b) all provide nice introductions

to the subject along with historical reviews, while Chui (1992) provides a more comprehensive

review and survey of applications. Sweldens (1997) provides a more recent description of the

lifting approach to wavelets we will describe shortly.

Wavelets are widely used in the computer graphics community to perform multi-resolution

geometric processing (Stollnitz et al. 1996), and have also been used in computer vision for similar

applications (Szeliski 1990b, Pentland 1994, Gortler and Cohen 1995, Yaou and Chang 1994, Lai

and Vemuri 1997, Szeliski 2006b), as well as for multi-scale oriented filtering (Simoncelli et al.

1992) and de-noising (Portilla et al. 2003).

Since both image pyramids and wavelets decompose and image into multi-resolution descrip-

tions that are localized in both space and frequency, how do they differ? The usual answer is that
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l = 0

l = 1

l = 2

Figure 3.39: Multiresolution wavelet pyramid. Each wavelet level stores 3/4 of the original pix-

els (usually the horizontal, vertical, and mixed gradients), so that the total number of wavelet

coefficients and original pixels is the same.

traditional pyramids are overcomplete, i.e., they use more pixels than the original image to rep-

resent the decomposition, whereas wavelets provide a tight frame, i.e., they keep the size of the

decomposition the same as the image (Figures 3.39–3.41). However, some wavelet families are

actually overcomplete in order to provide better shiftability or steering in orientation (Simoncelli

et al. 1992). A better distinction, therefore, might be that wavelets are more orientation selective

than regular band-pass pyramids.

How are two-dimensional wavelets constructed? Figure 3.40a shows a high-level diagram of

one stage of the (recursive) coarse-to-fine construction (analysis) pipeline alongside the comple-

mentary re-construction (synthesis) stage. In this diagram, the high-pass filter followed by decima-

tion keeps 3/4 of the original pixels, while 1/4 of the low-frequency coefficients are passed on to the

next stage for further analysis. In practice, the filtering is usually broken down into two separable

sub-stages, as shown in Figure 3.40b. The resulting three wavelet images are sometimes called the

high-high (HH), high-low (HL), and low-high (LH) images. Note how the high-low and low-

high images accentuate the horizontal and vertical edges and gradients, while the high-high image

contains the less frequently occurring mixed derivatives (Figure 3.41).

How are the high-pass H and low-pass L filters shown in Figure 3.40b chosen, and how can

the corresponding reconstruction filters I and F be computed? Can such filters be designed that

all have finite impulse responses? This topic has been the main subject of study in the wavelet
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Figure 3.40: Two dimensional wavelet decomposition: (a) high-level diagram showing the low-

pass and high-pass transforms as single boxes; (b) separable implementation, which involves first

performing the wavelet transform horizontally and then vertically. The I and F boxes are the

interpolation and filtering boxes required to re-synthesize the image from its wavelet components.

[ Note: Consider adding images where the colored boxes are. ]

community for over two decades; the answer depends largely on the intended application, e.g.,

whether the wavelets are being used for compression, image analysis (feature finding), or de-

noising. Simoncelli and Adelson (1990b), Table 4.1 show some good odd-length QMF (quadrature

mirror filter) coefficients that seem to work well in practice.

Since the design of wavelet filters is such a tricky art, is there perhaps a better way? Indeed,

a simpler procedure is to first split the signal into its even and odd components, and to then per-

form trivially reversible filtering operations on either sequence to produce what are called lifted

wavelets (Figures 3.42–3.43). Sweldens (1996) gives a wonderfully understandable introduction

to the subject (the lifting scheme for second generation wavelets), while (Sweldens 1997) contains

a comprehensive review.

As Figure 3.42 demonstrates, rather than first filtering the whole input sequence (image) with
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Figure 3.41: A wavelet decomposition of an image. The high-high components are in the lower

right corner, while the base is in the upper left. Notice how the low-high and high-low components

accentuate horizontal and vertical edges and gradients, while the high-high components store the

less frequent mixed derivatives.

[ Note: Replace this image with one of my own ]

high-pass and low-pass filters and then keeping the odd and even sub-sequences, the lifting scheme

first splits the sequence into its even and odd sub-components. Filtering the even sequence with

a low-pass filter L and subtracting the result from the even sequence is trivially reversible: sim-

ply perform the same filtering and then add the result back in. Furthermore, this operation can

be performed in place, resulting in significant space savings. The same applies to filtering the

even sequence with the correction filter C, which is used to ensure that the even sequence is low-

pass. A series of such lifting steps can be used to create more complex filter responses with low

computational cost and guaranteed reversibility.

This process can perhaps be more easily understood by considering the signal processing di-

agram in Figure 3.43. During analysis, the average of the even values is subtracted from the odd

value to obtain a high-pass wavelet coefficient. However, the even samples still contain an aliased

sample of the low-frequency signal. To compensate for this, a small amount of the high-pass

wavelet is added back to the even sequence so that it is properly low-pass filtered. (It is easy to

show that the effective low-pass filter is [−1/8, 1/4, 3/4, 1/4,−1/8], which is indeed a low-pass filter.)
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Figure 3.42: One dimensional wavelet transform: (a) usual high-pass + low-pass filters followed

by odd (↓ 2o) and even (↓ 2e) downsampling; (b) lifted version, which first selects the odd and even

subsequences and then applies a low-pass prediction stage L and high-pass correction stage C in

an easily reversible manner.
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Figure 3.43: Lifted transform shown as a signal processing diagram. (a) The analysis stage, which

first predicts the odd value from its even neighbors and stores the difference wavelet, and then

compensates the coarser even value by adding in a fraction of the wavelet. (b) The synthesis stage

simply reverses the flow of computation and the signs of some of the filters and/or operations. The

light blue lines show what happens if we use 4 taps for the prediction and correction instead of just

2.
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(a)

(b)

(c)

(d)

Figure 3.44: Steerable shiftable multiscale transforms (Simoncelli et al. 1992): (a) radial multi-

scale frequency domain decomposition; (b) original image; (c) a set of four steerable filters; (d)

the radial multi-scale wavelet decomposition.

During synthesis, the same operations are reversed with a judicious change in sign.

Of course, we need not restrict ourselves to just 2-tap filters. Figure 3.43 shows as light blue

arrows additional filter coefficients that could optionally be added to the lifting scheme without

affecting its reversibility. In fact, the low-pass and high-pass filtering operations can be inter-

changed, e.g., we could use a 5-tap cubic low-pass filter on the odd sequence (plus center value)

first, followed by a 4-tap cubic low-pass predictor to estimate the wavelet, although I haven’s seen

this scheme written down. [ Note: Ask around: it may be well known. ]

Lifted wavelets are called second generation wavelets because they can easily adapt to non-

regular sampling topologies such as those that arise in computer graphics applications such as

multi-resolution surface manipulation (Schröder and Sweldens 1995). It also turns out that lifted

weighted wavelets, i.e., wavelets whose coefficients adapt to the underlying problem being solved,

can be extremely effective at preconditioning the kinds of sparse linear systems that arise in

optimization-based approaches to vision algorithms we discuss in §3.6 (Szeliski 2006b).

An alternative to the widely used “separable” approach to wavelet construction, which de-

composes each level into horizontal, vertical, and “cross” sub-bands, is to use a representation

that is more rotationally symmetric, orientationally selective, and also avoids the aliasing inher-
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ent in sampling signals below their Nyquist frequency.15 Simoncelli et al. (1992) introduce such

a representation, which they call a pyramidal radial frequency implementation of their shiftable

multi-scale transforms, or more succinctly, steerable pyramids. Their representation is not only

overcomplete (which eliminates the aliasing problem), but is also orientationally selective, and has

identical analysis and synthesis basis functions, i.e., it is self-inverting, just like “regular” wavelets.

As a result, this makes steerable pyramids a much more useful basis for the structural analysis and

matching tasks commonly used in computer vision.

Figure 3.44a shows how such a decomposition looks like in frequency space. Instead of re-

cursively dividing the frequency domain into 2 × 2 squares, which results in checkerboard high

frequencies, radial arcs are used instead. Figure 3.44b illustrates the resulting pyramid sub-bands.

Even through the representation is overcomplete, i.e., there are more wavelet coefficients than input

pixels, the additional frequency and orientation selectivity makes this representation preferable for

tasks such as texture analysis and synthesis (Portilla and Simoncelli 2000) and image denoising

(Portilla et al. 2003, Lyu and Simoncelli 2009).

3.4.4 Application: Image blending

One of the most engaging and fun application of the Laplacian pyramid presented in §3.4.2 is the

creation of blended composite images, as shown in Figure 3.45 (Burt and Adelson 1983b). While

splicing the apple and orange image together along the midline produces a noticeable cut, splining

them together (as Burt and Adelson (1983b) called their procedure) creates a beautiful illusion of

a truly hybrid fruit. The key to their approach is that the low-frequency color variations between

the red apple and the orange orange are smoothly blended, while the higher-frequency textures on

each fruit are blended more quickly to avoid “ghosting” effects when two textures are overlaid.

To create the blended image, each source image is first decomposed into its own Laplacian

pyramid (Figure 3.46, left and middle column). Each band is then multiplied by a smooth weight-

ing function whose extent is proportional to the pyramid level. The simplest and most general way

to create these weights is to take a binary mask image (Figure 3.47c) and to construct a Gaussian

pyramid from this mask. Each Laplacian pyramid image is then multiplied by its corresponding

Gaussian mask, and the sum of these two weighted pyramids is then used to construct the final

image (Figure 3.46, right column).

Figure 3.47 shows that this process can be applied to arbitrary mask images with surprising

results. It is also straightforward to extend the pyramid blend to an arbitrary number of images

whose pixel provenance is indicated by an integer-valued label image (see Exercise 3.20). This is

particularly useful in image stitching and compositing applications where the exposures may vary

15 Which is evidenced by the propensity for the signal content to jump from band to band as the original signal is

slowly shifted.
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(a) (b)

(c) (d)

Figure 3.45: Laplacian pyramid blending (Burt and Adelson 1983b): (a–b) original images, (c)

regular splice, (d) pyramid blend.

between different images, as described in §9.3.3.

3.5 Geometric transformations

In the previous section, we saw how interpolation and decimation could be used to change the

resolution of an image. In this section, we look at how to perform more general transformations

such as image rotations or general warps. In contrast to the point processes we saw in §3.1, where

the function applied to an image transforms the range of the image,

g(x) = h(f(x)), (3.86)

here we look at functions that transform the domain,

g(x) = f(h(x)) (3.87)

(see Figure 3.48).

We begin by studying the global parametric 2D transformation first introduced in §2.1.2. (Such

transformation are called parametric because they are controlled by a small number of parameters.)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.46: Laplacian pyramid blending details (Burt and Adelson 1983b). The first three rows

show the high, medium, and low frequency parts of the Laplacian pyramid (taken from levels 0, 2,

and 4). The left and middle columns show the original apple and orange images weighted by the

smooth interpolation functions, while the right column shows the averaged contributions.
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Figure 3.47: Laplacian pyramid blend of two images with an arbitrary shaped region (Burt and

Adelson 1983b): (a–b) input images; (c)region mask; (d)blended image.

We then turn our attention to more local general deformations such as those defined on meshes,

§3.5.2. Finally, we show how image warps can be combined with cross-dissolves to create interest-

ing morphs (in-between animations), §3.5.3. For readers interested in more details on these topics,

there is an excellent survey by Heckbert (1986) as well as very accessible textbooks by Wolberg

(1990), Gomes et al. (1999) and Akenine-Möller and Haines (2002). (Note that Heckbert’s survey

is on texture mapping, which is what the topic of warping images onto surfaces is called in the

computer graphics community.)

3.5.1 Parametric transformations

Parametric transformations apply a global deformation to an image, where the behavior of the

transformation can be described with a small number of parameters. Figure 3.49 shows a sample

of such transformations, which are based on the 2D geometric transformations shown in Figure 2.4.

The formulas for these transformations were originally given in Table 2.1, and are reproduced here

in Table 3.5 for ease of reference.

In general, given a transformation specified by a formula x′ = h(x) and a source image f(x),
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Figure 3.48: Image warping involves modifying the domain of an image function rather than its

range.
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Figure 3.49: Basic set of 2D geometric image transformations

how do we compute the values of the pixels in the new image g(x), as given in (3.87)? Think

about this for a minute before proceeding and see if you can figure it out.

If you are like most people, you will come up with an algorithm that looks something like

Algorithm 3.1. This process is called forward warping or forward mapping and is shown in Fig-

ure 3.50a. Can you think of any problems with this approach?

In fact, this approach suffers from several limitations. The process of copying a pixel f(x) to

a location x′ in g is not well defined when x′ has a non-integer value. What do we do in such a

case? What would you do?

You can round the value of x′ to the nearest integer coordinate and copy the pixel there, but

the resulting image has severe aliasing and pixels that jump around a lot when animating the trans-

formation. You can also “distribute” the value among its four nearest neighbors in a weighted

(bilinear) fashion, keeping track of the per-pixel weights and normalizing at the end. This tech-

nique is called splatting and is sometimes used for volume rendering in the graphics community

(Levoy and Whitted 1985, Levoy 1988, Westover 1989, Rusinkiewicz and Levoy 2000). Un-

fortunately, it suffers from both moderate amounts of aliasing and a fair amount of blur (loss of
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Name Matrix # D.O.F. Preserves: Icon

translation
[

I t
]

2×3
2 orientation + · · ·

rigid (Euclidean)
[

R t
]

2×3
3 lengths + · · · ✚✚

✚✚

❙❙
❙❙

similarity
[

sR t
]

2×3
4 angles + · · · ✚

✚
❙
❙

affine
[

A
]

2×3
6 parallelism + · · · ✂✂ ✂✂

projective
[

H̃
]

3×3
8 straight lines ❵❵

✥✥

Table 3.5: Hierarchy of 2D coordinate transformations. The 2 × 3 matrices are extended with a

third [0T 1] row to form a full 3 × 3 matrix for homogeneous coordinate transformations.

procedure forwardWarp(f, h, out g):

For every pixel x in f(x)

1. Compute the destination location x′ = h(x)

2. Copy the pixel f(x) to g(x′)

Algorithm 3.1: Forward warping algorithm for transforming an image f(x) into an image g(x′)

through the parametric transform x′ = h(x).

high-resolution detail).

The second major problem with forward warping is the appearance of cracks and holes, es-

pecially when magnifying an image. Filling such holes with their nearby neighbors can lead to

further aliasing and blurring.

What can we do instead? A preferable solution is to use inverse warping (Algorithm 3.2),

where each pixel in the destination image g(x′) is sampled from the original image f(x) (Fig-

ure 3.51).

How does this differ from the forward warping algorithm? For one thing, since ĥ(x′) is (pre-

sumably) defined for all pixels in g(x′), we no longer have holes. More importantly, resampling

an image at non-integer locations is a well studied problem (general image interpolation §3.4.1),

and high-quality filters that control aliasing can be used.

Where does the function ĥ(x′) come from? Quite often, it can simply be computed as the

inverse of h(x). In fact, all of the parametric transforms listed in Table 3.5 have closed form
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x’=h(x)

(a) (b)

Figure 3.50: Forward warping algorithm: (a) a pixel f(x) is copied to its corresponding location

x′ = h(x) in image g(x′); (b) detail of the source and destination pixel locations.

procedure inverseWarp(f, h, out g):

For every pixel x′ in g(x′)

1. Compute the source location x = ĥ(x′)

2. Resample f(x) at location x and copy to g(x′)

Algorithm 3.2: Inverse warping algorithm for creating an image g(x′) from an image f(x) using

the parametric transform x′ = h(x).

f(x) g(x’)
x x’

x=h(x’)
^ 

f(x) g(x’)
x x’

x=h(x’)
^ 

(a) (b)

Figure 3.51: Inverse warping algorithm: (a) a pixel g(x′) is sampled from its corresponding loca-

tion x = ĥ(x′) in image f(x); (b) detail of the source and destination pixel locations.
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solutions for the inverse transform: simply take the inverse of the 3 × 3 matrix specifying the

transform.

In other cases, it is preferable to formulate the problem of image warping as that of resampling

a source image f(x) given a mapping x = ĥ(x′) from destination pixels x′ to source pixels x. For

example, in optical flow §8.4, we estimate the flow field as the location of the source pixel which

produced the current pixel whose flow is being estimated, as opposed to computing the destination

pixel where it is going to. Similarly, when correcting for radial distortion §2.1.5, we calibrate the

lens by computing for each pixel in the final (undistorted) image the corresponding pixel location

in the original (distorted) image.

What kinds of interpolation filters are suitable for the resampling process? Any of the filters

we studied in §3.4.1 can be used, including nearest neighbor, bilinear, bicubic, and windowed sinc

functions. While bilinear is often used for speed (e.g., inside the inner loop of a patch tracking

algorithm, §8.1.3), bicubic and windowed sinc are preferable where visual quality is important.

To compute the value of f(x) at a non-integer location x, we simply apply our usual FIR

resampling filter,

g(x, y) =
∑

k,l

f(k, l)h(x − k, y − l), (3.88)

where (x, y) are the sub-pixel coordinate values and h(x, y) is some interpolating or smoothing

kernel. Recall from §3.4.1 that when decimation is being performed, the smoothing kernel is

stretched and re-scaled according to the downsampling rate r.

Unfortunately, for a general (non-zoom) image transformation, the resampling rate r is not

well defined. Consider a transformation that stretches the x dimensions while squashing the y.

The resampling kernel should be performing regular interpolation along the x dimension while

performing smoothing (to anti-alias the blurred image) in the y direction. This gets even more

complicated for the case of general affine or perspective transforms.

What can we do? Fortunately, Fourier analysis can help. The two-dimensional generalization

of the one-dimensional domain scaling law given in Table 3.1 is

g(Ax) ⇔ |A|−1G(A−T f). (3.89)

For all of the transform in Table 3.5 except for perspective, the matrix A is already defined. For

perspective transformations, the matrix A is the linearized derivative of the perspective transforma-

tion (Figure 3.52a), i.e., the local affine approximation to the stretching induced by the projection

(Heckbert 1986, Wolberg 1990, Gomes et al. 1999, Akenine-Möller and Haines 2002).

To prevent aliasing, we need to pre-filter the image f(x) with a filter whose frequency response

is the projection of the final desired spectrum through the A−T transform (Szeliski et al. 2008b). In

general (for non-zoom transforms), this filter is non-separable and hence is very slow to compute.

Therefore, a number of approximations to this filter are used in practice, include MIP-mapping,
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Figure 3.52: Anisotropic texture filtering: (a) Jacobian of transform A and the induced horizontal

and vertical resampling rates {ax′x, ax′y, ay′x, ay′y}; (b) elliptical footprint of an EWA smoothing

kernel; (c) anisotropic filtering using multiple samples along the major axis. Image pixels lie at

line intersections.

elliptically weighted Gaussian averaging, and anisotropic filtering (Akenine-Möller and Haines

2002).

MIP-mapping

MIP-mapping was first proposed by Williams (1983) as a means to rapidly pre-filter images being

used for texture mapping in computer graphics. A MIP-map16 is a standard image pyramid (Fig-

ure 3.34), where each level is pre-filtered with a high-quality filter (rather than a poorer quality ap-

proximation such as Burt and Adelson’s 5-tap binomial). To resample an image from a MIP-map,

a scalar estimate of the resampling rate r is first computed. For example, r can be the maximum

of the absolute values in A (which will suppress aliasing), or it can be the minimum (which will

reduce blurring). Akenine-Möller and Haines (2002) discuss these issues in more detail.

Once a resampling rate has been specified, a fractional pyramid level is computed using the

base 2 logarithm,

l = log2 r. (3.90)

One simple solution is to then resample the texture from the next higher or lower pyramid level,

depending on whether it is preferable to reduce aliasing or blur. A better solution is to resample

both images, and to then linearly blend them using the fractional component of l. Since most MIP-

map implementation use bilinear resampling within each level, this approach is usually called

trilinear MIP-mapping. Computer graphics rendering APIs such as OpenGL and Direct3D have

parameters that can be used to select which variant of MIP-mapping (and of the sampling rate r

16 The MIP stands for multi in parvo, many-in-one.
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computation) should be used, depending on the desired speed vs. quality tradeoff. Exercise 3.22

has you discuss some of these tradeoffs in more detail.

Elliptical Weighted Average

The Elliptical Weighted Average (EWA) filter invented by Greene and Heckbert (1986) is based

on the observation that the affine mapping x = Ax′ defines a skewed two-dimensional coordinate

system in the vicinity of each source pixel x (Figure 3.52a). For every destination pixel x′, the el-

lipsoidal projection of a small pixel grid in x′ onto x is computed (Figure 3.52b). This is then used

to filter the source image g(x) with a Gaussian whose inverse covariance matrix is this ellipsoid.

Despite its reputation as a high-quality filter (Akenine-Möller and Haines 2002), we have found

in our work (Szeliski et al. 2008b) that because a Gaussian kernel is used, the technique suffers

simultaneously from both blurring and aliasing, compared to higher-quality filters. The EWA is

also quite slow, although faster variants based on MIP-mapping have been proposed (see (Szeliski

et al. 2008b) for some additional references).

Anisotropic filtering

An alternative approach to filtering oriented textures, which is sometimes implemented in graphics

hardware (GPUs), different x and y sampling rates, potentially on a tilted grid) is to use anisotropic

filtering (Barkans 1997, Akenine-Möller and Haines 2002). In this approach, several samples at

different resolutions (fractional levels in the MIP-map) are combined along the major axis of the

EWA Gaussian (Figure 3.52c).

Multi-pass transforms

The optimal approach to warping images without excessive blurring or aliasing is to adaptively

pre-filter the source image at each pixel using an ideal low-pass filter, i.e., an oriented skewed sinc

or low-order (e.g., cubic) approximation (Figure 3.52a). Figure 3.53, taken from (Szeliski et al.

2008b), based on related figures in (Heckbert 1989, Dodgson 1992), shows how this works in one

dimension. The signal is first (theoretically) interpolated to a continuous waveform, then (ideally)

low-pass filtered to below the new Nyquist rate, and then re-sampled to the final desired resolution.

In practice, the interpolation and decimation steps are concatenated into a single polyphase digital

filtering operation. (Szeliski et al. 2008b).

For parametric transforms, the oriented two-dimensional filtering and resampling operations

can be approximated using a series of one-dimensional resampling and shearing transforms (Cat-

mull and Smith 1980, Heckbert 1989, Wolberg 1990, Gomes et al. 1999, Szeliski et al. 2008b).
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Figure 3.53: One-dimensional signal resampling (Szeliski et al. 2008b): (a) original sampled

signal f(i); (b) interpolated signal g1(x); (c) warped signal g2(x); (d) filtered signal g3(x); (e)

sampled signal f ′(i). The corresponding spectra are shown below the signals in figures (f–j), with

the aliased portions shown in red.

The advantage of using a series of 1-D transforms is that these are much more efficient (in terms

of basic arithmetic operations) than large non-separable two-dimensional filter kernels.

In order to prevent aliasing, however, it may be necessary to upsample in the opposite direction

before applying a shearing transformation (Szeliski et al. 2008b). Figure 3.54 shows this process

for a rotation, where a vertical upsampling stage is added before the horizontal shearing (and

upsampling) stage. The upper image shows the appearance of the letter being rotated, while the

lower image shows its corresponding Fourier transform.

3.5.2 Mesh-based warping

While parametric transforms specified by a small number of global parameters have many uses,

local deformations with more degrees of freedom are often required.

Consider, for example, changing the appearance of a face from a frown to a smile (Fig-

ure 3.55a). What’s needed in this case is to curve the corners of the mouth upwards while leaving

the rest of the face intact. (See (Rowland and Perrett 1995, Pighin et al. 1998, Blanz and Vetter

1999, Leyvand et al. 2008) for some more sophisticated examples of changing facial expression

and appearance.) To perform such a transformation, different amounts of motion are required in

different parts of the image. Figure 3.55 shows some of the commonly used approaches.

The first approach, shown in Figure 3.55a–b, is to specify a sparse set of corresponding points

in both images. The displacement of these points can then be interpolated to a dense displacement
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Figure 3.54: 4-pass rotation (Szeliski et al. 2008b): (a) original pixel grid, image, and its Fourier

transform; (b) vertical upsampling; (c) horizontal shear and upsampling; (d) vertical shear and

downsampling; (e) horizontal downsampling. The general affine case looks similar except that the

first two stages perform general resampling.

field, §8, using a variety of techniques (Nielson 1993). One possibility is to triangulate the set of

points in one image (de Berg et al. 2006, Litwinowicz and Williams 1994, Buck et al. 2000) and to

use an affine motion model (Table 3.5), specified by the three triangle vertices, inside each triangle.

If the destination image is triangulated according to the new vertex locations, an inverse warping

algorithm (Figure 3.51) can be used. If the source image is triangulated and as used as a texture

map, computer graphics rendering algorithms can be used to draw the new image (but care must

be taken along triangle edges to avoid potential aliasing).

Alternative methods for interpolating a sparse set of displacements include moving nearby

quadrilateral mesh vertices, as shown in Figure 3.55a, using variational (energy minimizing) inter-

polants such as regularization (Litwinowicz and Williams 1994) §3.6.1, or using locally weighted

(radial basis function) combinations of displacements (Nielson 1993). (See §12.3.1 for additional

scattered data interpolation techniques). If quadrilateral meshes are used, it may be desirable to

interpolate displacements down to individual pixel values using a smooth interpolant such as a

quadratic B-spline (Farin 1996).17

In some cases, e.g., if a dense depth map has been estimated for an image (Shade et al. 1998),

17 Note that the block-based motion models used by many video compression standards (Le Gall 1991) can be

thought of as a 0th order (piecewise constant) displacement field.
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(a) (b)

(c) (d)

Figure 3.55: Image warping alternatives: (a) sparse control points −→ deformation grid; (b)

denser set of control point correspondences; (c) oriented line correspondences (Beier and Neely

1992); (d) uniform quadrilateral grid.

[ Note: Versions of these figures appear in (Gomes et al. 1999). I’m not sure where I got these

particular figures; looks like they are from a blue background PPT, perhaps from one of their

courses. ]

we only know the forward displacement for each pixel. As mentioned before, drawing source pix-

els at their destination location, i.e., forward warping (Figure 3.50), suffers from several potential

problems, including aliasing and the appearance of small cracks. An alternative technique in this

case is to forward warp the displacement field (or depth map) to its new location, fill small holes

in the resulting map, and then use inverse warping to perform the resampling (Shade et al. 1998).

The reason that this generally works better than forward warping is that displacement fields tend

to be much smoother than images, so the aliasing introduced during the forward warping of the

displacement field is much less noticeable.

A second approach to specifying displacements for local deformations is to use corresponding

oriented line segments, as shown in Figures 3.55c and 3.56. Pixels along each line segment are

transferred from source to destination exactly as specified, and other pixels are warped using a

smooth interpolation of these displacements. Each line segment correspondence specifies a trans-

lation, rotation, and scaling, i.e., a similarity transform (Table 3.5), for pixels in its vicinity, as

shown in Figure 3.56a. Line segments influence the overall displacement of the image using a

weighting function that depends on the minimum distance to the line segment (v in Figure 3.56a if
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(a) (b) (c)

Figure 3.56: Line-based image warping (Beier and Neely 1992): (a) distance computation and

position transfer; (b) rendering algorithm; (c) two intermediate warps used for morphing.

u ∈ [0, 1], else the shorter of the two distances to P and Q).

For each pixel X , its target location X ′ for each line correspondence is computed along with

a weight that depends on the distance and the line segment length (Figure 3.56b). The weighted

average of all target locations X ′
i then becomes the final destination location. Note that while Beier

and Neely describe this algorithm as a forward warp, an equivalent algorithm can be written by

sequencing through the destination pixels. (The resulting warps will not be identical because line

lengths and/or distances to lines may be different.) Exercise 3.23 has you implement the Beier-

Neely (line-based) warp and compare it to a number of other local deformation methods.

One final possibility for specifying displacement fields is to use a mesh specifically adapted

to the underlying image content, as shown in Figure 3.55d. Specifying such meshes by hand

can involve a fair amount of work; Gomes et al. (1999) describe an interactive system for doing

this. Once the two meshes have been specified, intermediate warps can be generated using linear

interpolation, and the displacements at meshn nodes can be interpolated using splines.

3.5.3 Application: Feature-based morphing

While warps can be used to change the appearance or to animate a single image, even more pow-

erful effects can be obtained by warping and blending two or more images using a process now

commonly known as morphing (Beier and Neely 1992, Gomes et al. 1999).

Figure 3.57 shows the essence of image morphing. Instead of simply cross-dissolving between

two images, which leads to ghosting as shown in the top row, each image is warped toward the

other image before blending, as shown in the bottom row. If the correspondences have been set

up well (using any of the techniques shown in Figure 3.55), corresponding features are always

aligned, and so no ghosting results (Beier and Neely 1992).

The above process is repeated for each intermediate frame being generated during a morph,

using different blends (and amounts of deformation) at each interval. Let t ∈ [0, 1] be the time

parameter that describes the sequence of interpolated frames. The weighting functions for the two
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Figure 3.57: Image morphing (Gomes et al. 1999). Top row: if the two images are just blended,

visible ghosting results. Bottom row: both images are first warped to the same intermediate lo-

cation (e.g., halfway towards the other image) and the resulting warped images are then blended

resulting in a seamless morph.

warped images in the blend go as (1 − t) and t. Conversely, the amount of motion that image 0

undergoes at time t is t of the total amount of motion that is specified by the correspondences.

However, some care must be taken in defining what it means to partially warp an image towards a

destination, especially if the desired motion is far from linear (Sederberg et al. 1993). Exercise 3.25

has you implement a morphing algorithm and test it out under such challenging conditions.

3.6 Global optimization

So far in this chapter, we have covered a large number of image processing operators that take as

input one or more images and produce some filtered or transformed version of these images. In

many applications, it is more useful to first formulate the goals of the desired transformation using

some optimization criterion, and to then find or infer the solution that best meets this criterion.

In this final section, we present two different (but closely related) variants on this idea. The

first, which is often called regularization or variational methods §3.6.1, constructs a continuous

global energy function that describes the desired characteristics of the solution and then finds a

minimum energy solution using sparse linear systems or related iterative techniques. The second

formulates the problem using Bayesian statistics, modeling both the noisy measurement process
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(a) (b)

Figure 3.58: A simple surface interpolation problem: (a) nine data points of various height scat-

tered on the grid; (b) second order controlled-continuity thin-plate spline interpolator, with a tear

along its left edge and a crease along its right (Szeliski 1989).

that produced the input images as well as prior assumptions about the solution space, which are

often encoded using a Markov random field §3.6.2.

Examples of such problems include surface interpolation from scattered data (Figure 3.58),

image denoising and the restoration of missing regions (Figures 3.61–3.62), as well as the segmen-

tation of images into foreground and background regions (Figure 3.66).

3.6.1 Regularization

The theory of regularization was first developed by statisticians trying to fit models to data that

severely underconstrained the solution space (Tikhonov and Arsenin 1977, Engl et al. 1996). Con-

sider, for example, finding a smooth surface that passes through (or near) a set of measured data

points (Figure 3.58), Such a problem is called ill-posed, since many possible surfaces can fit this

data. Since small changes in the input can sometimes lead to large changes in the fit (e.g., if we

use polynomial interpolation), such problems are also often ill-conditioned. Finally, since we are

trying to recover the unknown function f(x, y) from which the data point d(xi, yi) were sampled,

such problems are also often called inverse problems. (Many computer vision task can be viewed

an inverse problems, since we are trying to recover a full description of the 3D world from a limited

set of images.)

In order to quantify what it means to find a smooth solution, we can define a norm on the

solution space. For one dimensional functions f(x), we can integrate the squared first derivative

of the function,

E1 =
∫

f 2
x(x) dx (3.91)
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or perhaps integrate the squared second derivative,

E2 =
∫

f 2
xx(x) dx. (3.92)

(Here, we use subscripts to denote differentiation.) Such energy measures are examples of func-

tionals, which are operators that map functions to scalar values. They are also often called varia-

tional methods, because they measure the variation (non-smoothness) in a function.

In two dimensions (e.g., for images, flow fields, or surfaces), the corresponding smoothness

functionals are

E1 =
∫

f 2
x(x, y) + f 2

y (x, y) dx dy =
∫

‖∇f(x, y)‖2 dx dy (3.93)

and

E2 =
∫

f 2
xx(x, y) + 2f 2

xy(x, y) + f 2
yy(x, y) dx dy, (3.94)

where the mixed 2f 2
xy term is needed to make the measure rotationally invariant (Grimson 1983).

The first derivative norm is often called the membrane, since interpolating a set of data points

using this measure results in a tent-like structure. (In fact, this formula is a small-deflection ap-

proximation to the surface area, which is what soap bubbles minimize.) The second order norm is

called the thin-plate spline, since it approximates the behavior of thin plates (e.g., flexible steel)

under small deformations. A blend of the two is called the thin plate spline under tension, and

versions of these formulas where each derivative term is multiplied by a local weighting function

are called controlled-continuity splines (Terzopoulos 1988). Figure 3.58 shows a simple example

of a controlled-continuity interpolator fit to nine scattered data points. In practice, it is more com-

mon to find first order smoothness terms used with images and flow fields §8.4, and second order

smoothness associated with surfaces §12.3.1.

In addition to the smoothness term, regularization also requires a data term (or data penalty).

For scattered data interpolation (Nielson 1993), the data term measures the distance between the

function f(x, y) and a set of data points di = d(xi, yi),

Ed =
∑

i

[f(xi, yi) − di]
2. (3.95)

For a problem like noise removal, a continuous version of this measure can be used,

Ed =
∫

[f(x, y) − d(x, y)]2 dx dy. (3.96)

To obtain a global energy that can be minimized, the two energy terms are usually added

together,

E = Ed + λEs, (3.97)

where Es is the smoothness penalty (either E1 or E2 or some weighted blend), and λ is called the

regularization parameter, which controls how smooth the solution should be.
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In order to find the minimum of this continuous problem, the function f(x, y) is usually first

discretized on a regular grid.18 The most principled way to perform this discretization is to use

finite element analysis, i.e., to approximate the function with a piecewise continuous spline, and to

then perform the analytic integration (Bathe 2007).

Fortunately, for both the first order and second order smoothness functionals, the judicious

selection of appropriate finite elements results in particularly simple discrete forms (Terzopoulos

1983). The corresponding discrete smoothness energy functions become

E1 =
∑

i,j

sx(i, j)[f(i + 1, j) − f(i, j) − gx(i, j)]
2 (3.98)

+ sy(i, j)[f(i, j + 1) − f(i, j) − gy(i, j)]
2

and

E2 = h−2
∑

i,j

cx(i, j)[f(i + 1, j) − 2f(i, j) + f(i − 1, j)]2 (3.99)

+ 2cm(i, j)[f(i + 1, j + 1) − f(i + 1, j) − f(i, j + 1) + f(i, j)]2

+ cy(i, j)[f(i, j + 1) − 2f(i, j) + f(i, j − 1)]2,

where h is the size of the finite element grid. (The h factor is only important if the energy is being

discretized at a variety of resolutions, as in coarse-to-fine or multigrid techniques.)

The optional smoothness weights sx(i, j) and sy(i, j) control the location of horizontal and

vertical tears (or weaknesses) in the surface. For other problems, such as colorization (Levin et

al. 2004) and interactive tone mapping (Lischinski et al. 2006a), they control the smoothness in

the interpolated chroma or exposure field, and are often set inversely proportional to the local

luminance gradient strength. For second order problems, the crease variables cx(i, j), cm(i, j), and

cy(i, j) control the locations of creases in the surface (Terzopoulos 1988, Szeliski 1990a).

The data values gx(i, j) and gy(i, j) are gradient data terms (constraints) used by algorithms

such as photometric stereo §12.1.1, HDR tone mapping §10.2.1 (Fattal et al. 2002), Poisson blend-

ing §9.3.3 (Pérez et al. 2003), and gradient-domain blending §9.3.3 (Levin et al. 2004). They are

set to zero when just discretizing the conventional first order smoothness functional (3.93).

The two dimensional discrete data energy is written as

Ed =
∑

i,j

w(i, j)[f(i, j) − d(i, j)]2, (3.100)

where the local weights w(i, j) control how strongly the data constraint is enforced. These values

are set to zero where there is no data, and can be set to the inverse variance of the data measure-

ments when there is (see (Szeliski 1989) and §3.6.2).

18 The alternative of using kernel basis functions centered on the data points (Boult and Kender 1986, Nielson 1993)

is discussed in more detail in §12.3.1.
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Figure 3.59: Graphical model interpretation of first order regularization. The white circles are

the unknowns f(i, j) while the dark circles are the input data d(i, j). In the resistive grid interpre-

tation, the d and f values encode input and output voltages, and the black squares denote resistors

whose conductance is set to sx(i, j), sy(i, j), and w(i, j). In the spring-mass system analogy, the

circles denote elevations and the black squares denote springs. The same graphical model can

also be used to depict a first-order Markov random field (Figure 3.60).

The total energy of the discretized problem can now be written as a quadratic form

E = Ed + λEs = xT Ax − 2xT b + c, (3.101)

where x = [f(0, 0) . . . f(m − 1, n − 1)] is called the state vector.19

The sparse symmetric positive-definite matrix A is called the Hessian since it encodes the

second derivative of the energy function.20 For the one-dimensional first order problem, A is

tridiagonal, while for the two-dimensional first order problem, it is multi-banded with 5 non-zero

entries per row. We call b the weighted data vector. Minimizing the above quadratic form is

equivalent to solving the sparse linear system

Ax = b, (3.102)

which can be done using a variety of sparse matrix techniques, such as multigrid (Briggs 1987)

and hierarchical preconditioners (Szeliski 2006b), as described in Appendix A.5.

While regularization was first introduced to the vision community by Poggio et al. (1985)

and Terzopoulos (1986) for the problem such as surface interpolation, it was quickly adopted

19 We use x instead of f because this is the more common form in the numerical analysis literature (Golub and Van

Loan 1996).
20 In numerical analysis, A is called the coefficient matrix (Saad 2003), while in finite element analysis (Bathe

2007), it is called the stiffness matrix.
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by other vision researchers for such varied problems as edge detection §4.2, optical flow §8.4,

and shape from shading §12.1 (Poggio et al. 1985, Horn and Brooks 1986, Terzopoulos 1986,

Bertero et al. 1988, Brox et al. 2004). Poggio et al. (1985) also showed how the discrete energy

defined by (3.99) and (3.100) could be implemented in a resistive grid, as shown in Figure 3.59.

In computational photography §10, regularization and its variants are commonly used to solve

problems such as high-dynamic range tone mapping (Fattal et al. 2002, Lischinski et al. 2006a),

Poisson and gradient-domain blending (Pérez et al. 2003, Levin et al. 2004, Agarwala et al. 2004),

colorization (Levin et al. 2004), and natural image matting (Levin et al. 2008).

Robust regularization

While regularization is most commonly formulated using quadratic (L2) norms, c.f. the squared

derivatives in (3.91–3.94) and squared differences in (3.99–3.100), it can also be formulated using

non-quadratic robust penalty functions (Appendix B.3). For example, (3.99) can be generalized to

E1r =
∑

i,j

sx(i, j)ρ(f(i + 1, j) − f(i, j)) (3.103)

+ sy(i, j)ρ(f(i, j + 1) − f(i, j)),

where ρ(x) is some monotonically increasing penalty function. For example, the family of norms

ρ(x) = |x|p are called p-norms. When p < 2, the resulting smoothness terms become more

piecewise continuous rather than totally smooth, which can better model the discontinuous nature

of images, flow fields, and 3D surfaces.

An early example of robust regularization is the graduated non-convexity (GNC) algorithm in-

troduced by Blake and Zisserman (1987). Here, the norms on the data and derivatives are clamped

to a maximum value

ρ(x) = min(x2, V ). (3.104)

Because the resulting problem is highly non-convex (it has many local minima), a continuation

methods is proposed, where a quadratic norm (which is convex) is gradually replaced by the non-

convex robust norm (Allgower and Georg 2003). (Around the same time, Terzopoulos (1988) was

also using continuation to infer the tear and crease variables in his surface interpolation problems.)

Today, it is more common to use the L1 (p = 1) norm, which is often called total variation

(Chan et al. 2001, Tschumperlé and Deriche 2005, Tschumperlé 2006, Kaftory et al. 2007). Other

norms, whose influence (derivative) more quickly decays to zero are presented in (Black and Ran-

garajan 1996, Black et al. 1998) and discussed in (Appendix B.3).

Even more recently, so called hyper-Laplacian norms with p < 1 have been proposed, based

on the observation that the log-likelihood distribution of image derivatives follows a p ∈ [0.5, 0.8]

slope (and is hence a hyper-Laplacian distribution) (Simoncelli 1999, Levin and Weiss 2007, Weiss
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and Freeman 2007). Such norms have an even stronger tendency to prefer large discontinuities over

small ones. (See also the related discussion in §3.6.2, (3.113).)

While least-squares regularized problems using L2 norms can be solved using linear systems,

other p-norms require different iterative techniques such as iteratively reweighted least squares

(IRLS) or Levenberg-Marquardt. Such techniques are discussed in §6.1.3 and Appendix A.3.

3.6.2 Markov Random Fields

As we have just seen, regularization, which involves the minimization of energy functionals de-

fined over (piecewise) continuous functions, can be used to formulate and solve a variety of low-

level computer vision problems. An alternative technique is to formulate a Bayesian model, which

separately models the noisy image formation (measurement) process, as well as assumes a statis-

tical prior model over the solution space. In particular, in this section we look at priors based on

Markov random fields, whose log-likelihood can be described using local neighborhood interaction

(or penalty) terms (Kindermann and Snell 1980, Geman and Geman 1984, Marroquin et al. 1987,

Li 1995, Szeliski et al. 2008c).

The use of Bayesian modeling has several potential advantages over regularization (see also

Appendix B). The ability to model measurement processes statistically enables us to extract the

maximum information possible from each measurement, rather than just guessing what weighting

to give the data. Similarly, the parameters of the prior distribution can often be learned by ob-

serving samples from the class we are modeling (Tappen 2007). Furthermore, because our model

is probabilistic, it is possible to estimate (in principle) complete probability distributions over the

unknown being recovered, and in particular to model the uncertainty in the solution, which can

be useful in latter processing stages. Finally, Markov random field models can be defined over

discrete variables such as image labels (where the variables have no proper ordering), for which

regularization does not apply

Recall from (3.67) in §3.3.1 (or see Appendix B.4), that according to Bayes’ Rule, the poste-

rior distribution for a given set of measurement y, p(y|x), combined with a prior p(x) over the

unknowns x, is given by

p(x|y) =
p(y|x)p(x)

p(y)
, (3.105)

where p(y) =
∫

x p(y|x)p(x) is a normalizing constant used to make the p(x|y) distribution

proper (integrate to 1). Taking the negative logarithm of both sides of (3.105), we get

− log p(x|y) = − log p(y|x) − log p(x) + C, (3.106)

which is the negative posterior log likelihood.
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To find the most likely (maximum a posteriori or MAP) solution x given some measurements

y, we simply minimize this negative log likelihood, which can also be though of as an energy,

E(x, y) = Ed(x, y) + Ep(x). (3.107)

(We drop the constant C because its value does not matter during energy minimization.) The first

term Ed(x, y) is the data energy or data penalty, and measures the negative log likelihood that the

data were observed given the unknown state x. The second term Ep(x) is the prior energy, and

plays a role analogous to the smoothness energy in regularization. Note that the MAP estimate

may not always be desirable, since it selects the “peak” in the posterior distribution rather than

some more stable statistic—see the discussion in Appendix B.4 and (Levin et al. 2009).

For image processing applications, the unknowns x are the set of output pixels

x = [f(0, 0) . . . f(m − 1, n − 1)],

and the data are (in the simplest case) the input pixels

y = [d(0, 0) . . . d(m − 1, n − 1)]

(see Figure 3.60).

For a Markov random field, the probability p(x) is a Gibbs of Boltzmann distribution, whose

negative log likelihood (according to the Hammersley-Clifford Theorem) can be written as a sum

of pairwise interaction potentials,

Ep(x) =
∑

(i,j)

∑

(k,l)∈N (i,j)

Vi,j,k,l(f(i, j), f(k, l)), (3.108)

where N (i, j) denotes the neighbors of pixel (i, j). (In fact, the general version of the Theorem

says that the energy may have to evaluated over a larger set of cliques, which depend on the order

of the Markov Random field (Kindermann and Snell 1980, Geman and Geman 1984, Bishop 2006).

However, we will not study higher-order cliques in this book.)

The most commonly used neighborhood in Markov random field modeling is the N4 neigh-

borhood, where each pixel in the field f(i, j) interacts only with its immediate neighbors. Fig-

ure 3.60, which we previously used in Figure 3.59 to illustrate the discrete version of first-order

regularization, shown an N4 MRF. The sx(i, j) and sy(i, j) black boxes denote arbitrary interaction

potentials between adjacent nodes in the random field, and w(i, j) denotes the data penalty func-

tion. These square nodes can also be interpreted as factors in a factor graph version of the (undi-

rected) graphical model (Bishop 2006), which is another name for interaction potentials. (Strictly

speaking, the factors are (im-proper) probability functions whose product is the (un-normalized)

posterior distribution.)
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Figure 3.60: Graphical model for a N4 neighborhood Markov random field. (The blue edges

are added for an N8 neighborhood.) The white circles are the unknowns f(i, j), while the dark

circles are the input data d(i, j). The sx(i, j) and sy(i, j) black boxes denote arbitrary interaction

potentials between adjacent nodes in the random field, and the w(i, j) denote the data penalty

functions. The same graphical model can also be used to depict a discrete version of a first-order

regularization problem (Figure 3.59).

As we will see below in (3.111–3.112), there is a close relationship between these interaction

potentials and the discretized versions of regularized image restoration problems. Thus, to a first

approximation, we can view energy minimization being performed when solving a regularized

problem and the maximum a posteriori inference being performed in an MRF as equivalent.

While N4 neighborhoods are most commonly used, in some applications, N8 (or even higher

order) neighborhoods perform better at tasks such as image segmentation because they can better

model discontinuities at different orientations (Boykov and Kolmogorov 2003).

Binary MRFs

The simplest possible example of a Markov random field is a binary field. Examples of such

fields include 1-bit (black and white) scanned document images as well as images segmented into

foreground and background.

To denoise a scanned image, we set the data penalty to reflect the agreement between the

scanned and final images,

Ed(i, j) = wδ(f(i, j), d(i, j)) (3.109)

and the smoothness penalty to reflect the agreement between neighboring pixels

Ep(i, j) = Ex(i, j) + Ey(i, j) = sδ(f(i, j), f(i + 1, j)) + sδ(f(i, j), f(i, j + 1)). (3.110)
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(a) (b) (c) (d)

Figure 3.61: Binary image denoising: (a) original image; (b) noise corrupted image; (c) de-noised

using ICM; (d) de-noised using graph cuts.

[ Note: Still need to generate the real noisy and de-noised images. ]

Figure 3.61 (inspired by (Bishop 2006, Figure 8.30)) shows an example of an original (noise-free)

image along with its noisy version d(i, j), where 10% of the pixels have been randomly flipped.

How do we set the parameters in the data and smoothness terms? One possibility is to let the

energies be the negative log-likelihoods of their respective probabilities, i.e., we set w = − log 0.1

and s = − log???, where the fraction ??? was obtained by counting the percentage of edges in

Figure 3.61a. (This is not really cheating. In practice, we would use a training corpus of image to

set these parameters §10.1.1.)

[ Note: Replace the ??? above once I’ve generated the real figures. ]

Once we have formulated the energy, how do we minimize it? The simplest approach is to

perform gradient descent, flipping one state at a time if it produces a lower energy. This approach

is known as contextual classification (Kittler and Föglein 1984), iterated conditional modes (ICM)

(Besag 1986), or highest confidence first (HCF) (Chou and Brown 1990) if the pixel with the largest

energy decrease is selected first.

Unfortunately, these downhill methods tend to get easily stuck in local minima. An alternative

approach is to add some randomness to the process, which is known as stochastic gradient descent

(Metropolis et al. 1953, Geman and Geman 1984). When the amount of noise is decreased over

time, this technique is known as simulated annealing (Kirkpatrick et al. 1983, Carnevali et al. 1985,

Wolberg and Pavlidis 1985, Swendsen and Wang 1987) and was first popularized in computer

vision by Geman and Geman (1984) and later applied to stereo matching by Barnard (1989), among

others.

Even this technique, however, does not perform that well (Boykov et al. 2001). For binary

images, a much better technique, introduced to the computer vision community by Boykov et al.

(2001) is to re-formulate the energy minimization as a max-flow/min-cut graph optimization prob-

lem (Greig et al. 1989). (This technique has informally come to be known as graph cuts in the

computer vision community.) For simple energy functions (e.g., those where the energy is iden-
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tical for neighboring unlike pixels), this algorithm is guaranteed to produce the global minimum.

Kolmogorov and Zabih (2004) formally characterize the class of binary energy potentials (regu-

larity conditions) for which these results hold, while newer work by Komodakis et al. (2007) and

Rother et al. (2007) provide good algorithms for the cases when they do not. Appendix B.6.4 gives

more details about how to convert the energy function corresponding to a binary MRF into a graph

problem that can be solved by max-flow/min-cut algorithms.

Figures 3.61c and 3.61d show the results of running ICM and graph cuts on our sample binary

image denoising problem. Another binary labeling problem, namely that of segmenting an image

into foreground and background regions given region color statistics (Boykov and Jolly 2001) is

discussed in §5.5.

In addition to the above mentioned techniques, a number of other optimization approaches have

been developed for MRF energy minimization, such as (loopy) belief propagation and dynamic

programming (for one-dimensional problems). These are discussed in more detail in Appendix B.6

as well as the recent comparative survey paper by Szeliski et al. (2008c).

Ordinal-valued MRFs

In addition to binary images, Markov Random Fields can be applied to ordinal-valued labels such

as grayscale images or depth maps. (The term ordinal implies that the labels have an implied

ordering, e.g., higher values are lighter pixels. In the next subsection, we look at unordered labels

such as source image labels for image compositing.)

In many cases, it is common to extend the binary data and smoothness prior terms as

Ed(i, j) = w(i, j)ρd(f(i, j) − d(i, j)) (3.111)

and

Ep(i, j) = sx(i, j)ρp(f(i, j) − f(i + 1, j)) + sy(i, j)ρp(f(i, j) − f(i, j + 1)), (3.112)

which are robust generalizations of the quadratic penalty terms (3.100) and (3.99) first introduced

in §3.6.1, (3.104). As before, the w(i, j), sx(i, j) and sy(i, j) weights can be used to locally control

the data weighting and the horizontal and vertical smoothness. Instead of using a quadratic penalty,

however, a general monotonically increasing penalty function ρ() is used. (Different functions can

be used for the data and smoothness terms.) For example, ρp can be a hyper-Laplacian penalty

ρp(d) = |d|p, p < 1, (3.113)

which better encodes the distribution of gradients (mainly edges) in an image than either a quadratic
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(a) (b) (c) (d)

Figure 3.62: Grayscale image denoising: (a) original image; (b) noise corrupted image with

missing data (black bar); (c) restored using loopy belief propagation; (d) restored using expan-

sion move graph cuts. Images are from http://vision.middlebury.edu/MRF/results/

(Szeliski et al. 2008c).

or linear (total variation) penalty.21 Levin and Weiss (2007) use such a penalty to separate a trans-

mitted and reflected image (Figure 8.19) by encouraging gradients to lie in one or the other image,

but not both. More recently, Levin et al. (2007) use the hyper-Laplacian as a prior for image de-

convolution (deblurring). For the data penalty, ρd can be quadratic (to model Gaussian noise), or

the log of a contaminated Gaussian (Appendix B.3).

When ρp is a quadratic function, the resulting Markov Random Field is called a Gaussian

Markov Random Field (GMRF), and its minimum can be found by sparse linear system solving

(3.102). When the weighting functions are uniform, the GMRF becomes a special case of Wiener

filtering §3.3.1. Allowing the weighting functions to depend on the input image (a special kind of

conditional random field, which we describe below) enables quite sophisticated image processing

algorithms to be performed, including colorization (Levin et al. 2004), interactive tone mapping

(Lischinski et al. 2006a), natural image matting (Levin et al. 2008), and image restoration (Tappen

et al. 2007).

When ρd and/or ρp are non-quadratic functions, gradient descent techniques such as non-linear

least squares or iteratively re-weighted least-squares can sometimes be used (Appendix A.3). How-

ever, if the search space has lots of local minima, as is the case for stereo matching (Barnard 1989,

Boykov et al. 2001), more sophisticated techniques are required.

The extension of graph cut techniques to multi-valued problems was first proposed by Boykov

21 Note that unlike a quadratic penalty, the sum of the horizontal and vertical derivative p-norms is not rotationally

invariant. A better approach may be to locally estimate the gradient direction and to impose different norms on the

perpendicular and parallel components (Roth and Black 2007), which makes this a steerable random field.

http://vision.middlebury.edu/MRF/results/
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(a) initial labeling (b) standard move (c) α-β-swap (d) α-expansion

Figure 3.63: Multi-level graph optimization from (Boykov et al. 2001): (a) initial problem configu-

ration; (b) the standard move only changes one pixel; (c) the α-β-swap optimally exchanges all α

and β-labeled pixels; (d) the α-expansion move optimally selects among current pixel values and

the α label.

[ Note: Keep this here or move to Appendix B.6? ]

et al. (2001). In their paper, they develop two different algorithms, called the swap move and the

expansion move, which iterate among a series of binary labeling sub-problems to find a good so-

lution (Figure 3.63). (A global solution is generally not achievable, as the problem is provably

NP-hard for general energy functions.) Because both these algorithms use a binary MRF opti-

mization inside their inner loop, they are both susceptible to the kind of constraints on the energy

functions that occur in the binary labeling case Kolmogorov and Zabih (2004). Appendix B.6 dis-

cusses these algorithms in more detail, along with some more recently developed graph-theoretic

approaches to this problem (Ishikawa 2003, Veksler 2007).

Another MRF inference technique (remember that the inference of the maximum a posteriori

state is the same energy minimization) is belief propagation (BP). While belief propagation was

originally developed for inference over trees, where it is exact (Pearl 1988), it has more recently

been applied to graphs with loops such as Markov Random Fields (Freeman et al. 2000, Yedidia

et al. 2000). In fact, some of the better performing stereo matching algorithms use loopy belief

propagation (LBP) to perform their inference (Sun et al. 2003). As before, LBP is discussed in

more detail in Appendix B.6 as well as the recent comparative survey paper on MRF optimization

(Szeliski et al. 2008c).

Figure 3.62 shows an example of image denoising and inpainting (hole filling) using a non-

quadratic energy function (non-Gaussian MRF). The original image has been corrupted by noise

and a portion of the data (black bar) has been removed. In this case, the loopy belief propagation

algorithm computes a slightly lower energy and also a smoother image than the alpha-expansion

graph cut algorithm.

Of course, the above formula (3.112) for the smoothness term Ep(i, j) just shows the simplest

case. In more recent work, Roth and Black (2009) propose a Field of Experts (FoE) model, which
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Figure 3.64: Graphical model for a Markov random field with a more complex measurement

model. The additional colored edges show how combinations of unknown values (say in a sharp

image) produce the measured values (a noisy blurred image). The resulting graphical model is still

a classic MRF and is just as easy to sample from, but some inference algorithms (e.g., graph cut

based algorithms) may not be applicable because of the increased network complexity (i.e., state

changes during the inference become more entangled, and the posterior MRF has much larger

cliques).

sums up a large number of exponentiated local filter outputs to arrive at the smoothness penalty.

Weiss and Freeman (2007) analyze this approach and compare it to the simpler hyper-Laplacian

model of natural image statistics. Lyu and Simoncelli (2009) use Gaussian Scale Mixtures (GSMs)

to construct an inhomogeneous multi-scale MRF, with one (positive exponential) GMRF modulat-

ing the variance (amplitude) of another Gaussian MRF.

It is also possible to extend the measurement model to make the sampled (noise-corrupted)

input pixels correspond to blends of unknown (latent) image pixels, as in Figure 3.64. This is

the commonly occuring case when trying to de-blur an image. While this kind of a model is still

a traditional generative Markov Random Field, finding an optimal solution can be difficult be-

cause the clique sizes get larger. In such situations, gradient descent techniques such as iteratively

reweighted least squares can be used (Joshi et al. 2009). Exercise 3.31 has you explore some of

these issues.

Unordered labels

The other case of multi-valued labels where Markov Random Fields are applied are unordered

labels, i.e., labels where there is no semantic meaning to the difference between two labels values.

For example, if we are doing terrain classification from aerial imagery, it makes no sense to take

the numeric difference between the labels assigned to forest, field, water, and pavement. In fact,



3.6. Global optimization 193

Figure 3.65: An example of an unordered label MRF (Agarwala et al. 2004). Strokes in each of the

source images on the left are used as constraints on an MRF optimization, which is solved using

graph cuts. The resulting multi-valued label field is shown as a color overlay in the middle image,

and the final composite is shown on the right.

the adjacencies of these various kinds of terrain each have different likelihoods, so it makes more

sense to use a prior of the form

Ep(i, j) = sx(i, j)V (l(i, j), l(i + 1, j)) + sy(i, j)V (l(i, j), l(i, j + 1)), (3.114)

where V (l0, l1) is a general compatibility or potential function. (Note that we have also replaced

f(i, j) with l(i, j) to make it clearer that these are labels rather than discrete function samples.) An

alternative way to write this prior energy (Boykov et al. 2001, Szeliski et al. 2008c) is

Ep =
∑

(p,q)∈N
Vp,q(lp, lq), (3.115)

where the (p, q) are neighboring pixels and a spatially varying potential function Vp,q is evaluated

for each neighboring pair.

An important application of unordered MRF labeling is seam finding in image compositing

(Davis 1998, Agarwala et al. 2004) (see Figure 3.65, which is explained in more detail in §9.3.2).

Here, the compatibility Vp,q(lp, lq) measures the quality of the visual appearance that would result

from placing a pixel p from image lp next to a pixel q from image lq. As for all MRFs, we assume

that Vp,q(l, l) = 0, i.e., it is perfectly fine to choose contiguous pixels from the same image. For

different labels, however, the compatibility compares the pixel values Ilp(p) and Ilq(q) may not be

equal.

Consider for example where one image I0 is all sky blue, i.e., I0(p) = I0(q) = B, while the

other image I1 has a transition from sky blue, I1(p) = B, to forest green, I1(q) = G.

I0 :
p q p q

: I1

In this case, Vp,q(1, 0) = 0 (the colors agree), while Vp,q(0, 1) > 0 (the colors disagree).
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Figure 3.66: Image segmentation example (Boykov and Funka-Lea 2006). The user draws a few

red strokes in the foreground object and a few blue ones in the background. The system computes

color distributions for the foreground and background and solves a binary MRF. The smoothness

weights are modulated by the intensity gradients (edges), which makes this a conditional random

field (CRF).

[ Note: If I cannot get permission, use the Grab Cut example in Figure 5.26. ]

Conditional random fields

In a classic Bayesian model (3.105–3.107),

p(x|y) ∝ p(y|x)p(x), (3.116)

the prior distribution p(x) is independent of the observations y. Sometimes, however, it is useful

to modify our prior assumptions, say about the smoothness of the field we are trying to estimate, in

response to the sensed data. (Whether this makes sense from a probability viewpoint is something

I will discuss below, once I’ve explained the new model.)

Consider the interactive image segmentation problem shown in Figure 3.66 (Boykov and Funka-

Lea 2006). In this application, the user draws foreground (red) and background (blue) strokes, and

the system then solves a binary MRF labeling problem to estimate the extent of the foreground

object. In addition to minimizing a data term, which measures the pointwise similarity between

pixel colors and the inferred region distributions §5.5, the MRF is modified so that the smoothness

terms sx(x, y) and sy(x, y) in Figure 3.60 and (3.112) depend on the magnitude of the gradient

between adjacent pixels.22

Since the smoothness term now depends on the data, Bayes’ Rule (3.116) no longer applies.

Instead, we use a direct model for the posterior distribution p(x|y), whose negative log likelihood

can be written as

E(x|y) = Ed(x, y) + Es(x, y)

22 An alternative formulation that also uses detected edges to modulate the smoothness of a depth or motion field

and hence to integrate multiple lower level vision modules is presented in (Poggio et al. 1988b).
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Figure 3.67: Graphical model for a conditional random field (CRF). The additional green edges

show how combinations of sensed data influence the smoothness in the underlying MRF prior

model, i.e., sx(i, j) and sy(i, j) in (3.112) depend on adjacent d(i, j) values. These additional

links (factors) enable the smoothness to depend on the input data. However, they make sampling

from this MRF more complex.

=
∑

p

Vp(xp, y) +
∑

(p,q)∈N
Vp,q(xp, xq, y), (3.117)

using the notation introduced in (3.115). The resulting probability distribution is called a condi-

tional random field (CRF), and was first introduced to the computer vision field by Kumar and

Hebert (2003), based on earlier work in text modeling by Lafferty et al. (2001).

Figure 3.67 shows a graphical model where the smoothness terms depend on the data values.

In this particular model, each smoothness term depends only on its adjacent pair of data values,

i.e., terms are of the form Vp,q(xp, xq, yp, yq) in (3.117).

The idea of modifying smoothness terms in response to input data is not new. Boykov and

Jolly (2001) used this idea for image segmentation, as shown in Figure 3.66, and it is now widely

used in image segmentation §5.5 (Blake et al. 2004, Rother et al. 2004), de-noising (Tappen et al.

2007), and object recognition §14.4.3 (Shotton et al. 2006, Winn and Shotton 2006, Shotton et al.

2009).

In stereo matching, the idea of encouraging disparity discontinuities to coincide with intensity

edges goes back even further to the early days of optimization and MRF-based algorithms (Poggio

et al. 1988b, Fua 1993, Bobick and Intille 1999, Boykov et al. 2001) and is discussed in more

detail in §11.5.

In addition to using smoothness terms that adapt to the input data, Kumar and Hebert (2003)

also compute a neighborhood function over the input data for each Vp(xp, y) term, as illustrated in

Figure 3.68, instead of using the classic unary MRF data term Vp(xp, yp) shown in Figure 3.60.23

23 Kumar and Hebert (2006) call the unary potentials Vp(xp,y) association potentials and the pairwise potentials
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Figure 3.68: Graphical model for a discriminative random field (DRF). The additional green edges

show how combinations of sensed data (e.g., d(i, j + 1) etc.) influence the data term for f(i, j).

The generative model is therefore more complex, i.e., we cannot just apply a simple function to the

unknown variables and add noise.

Figure 3.69: Structure detection results using an MRF (left) and a DRF (right) (Kumar and Hebert

2006).

Because such neighborhood functions can be thought of a discriminant functions (a term widely

used in machine learning (Bishop 2006)), they call the resulting graphical model a discriminative

random fields (DRF). In their paper, Kumar and Hebert (2006) show that DRFs outperform similar

CRFs on a number of applications such as structure detection (Figure 3.69) and binary image

denoising.

Here again, one could argue that previous stereo correspondence algorithms also look at a

neighborhood of input data, either explicitly, because they compute correlation measures (Crimin-

isi et al. 2006) as data terms, or implicitly, because even pixel-wise disparity costs look at several

pixels in either the left or right image (Barnard 1989, Boykov et al. 2001).

Vp,q(xp, yq,y) interaction potentials.
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What, then are the advantages and disadvantages of using conditional or discriminative random

fields instead of MRFs?

Classic Bayesian inference (MRF) assumes that the prior distribution of the data is independent

of the measurements. This makes a lot of sense: if you see a pair of snake eyes on your first throw

at craps, it would be unwise to assume that they will always show up thereafter. However, if after

playing for a long time you detect a statistically significant bias, you may want to adjust your prior.

What CRFs do, in essence, is to select or modify the prior model based on observed data.

This can be viewed as making a partial inference over additional hidden variables or correlations

between the unknowns (say a label, depth, or clean image) and the knowns (observed image(s)).

In some cases, the CRF approach makes a lot of sense, and is in fact the only plausible way to

proceed. For example, in grayscale image colorization §10.3.1 (Levin et al. 2004), the best way to

transfer the continuity information from the input grayscale image to the unknown color image is

to modify local smoothness constraints.

Similarly, for simultaneous segmentation and recognition (Shotton et al. 2006, Winn and Shot-

ton 2006, Shotton et al. 2009), it makes a lot of sense to permit strong color edges to influence the

semantic image label continuities.

In other cases, such as image de-noising, the situation is more subtle. Using a non-quadratic

(robust) smoothness term as in (3.112) plays a qualitatively similar role to setting the smoothness

based on local gradient information in a Gaussian MRF (GMRF) (Tappen et al. 2007). (In more

recent work, Tanaka and Okutomi (2008) use a larger neighborhood and full covariance matrix on

a related Gaussian MRF.) The advantage of Gaussian MRFs, when the smoothness can be correctly

inferred, is that the resulting quadratic energy can be minimized in a single step. However, for situ-

ations where the discontinuities are not self-evident in the input data, such as for piecewise-smooth

sparse data interpolation, (Blake and Zisserman 1987, Terzopoulos 1988), classic robust smooth-

ness energy minimization may be preferable. Thus, as with most computer vision algorithms, a

careful analysis of the problem at hand and desired robustness and computation constraints may

be required to choose the best technique (i.e., caveat emptor).

Perhaps the biggest advantage of CRFs and DRFs, as argued by Kumar and Hebert (2006) and

Tappen et al. (2007), is that learning the model parameters is sometimes easier (see also (Blake et

al. 2004)). While learning parameters in MRFs and their variants is not a topic that we cover in

this book, interested readers can find more details in recently published articles (Kumar and Hebert

2006, Tappen et al. 2007, Tappen 2007).

3.6.3 Application: Image restoration

In §3.3.2, we saw how two-dimensional linear and non-linear filters can be used to remove noise

and/or enhance sharpness in images. Sometimes, however, images are degraded by larger prob-
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lems, such as scratches and blotches (Kokaram 2004). In this case, Bayesian methods such as

MRFs, which can model spatially varying per-pixel measurement noise, can be used instead. (An

alternative is to use hole filling or inpainting techniques (Bertalmio et al. 2000, Bertalmio et al.

2003, Criminisi et al. 2004), as discussed in §5.1.3 and §10.5.1.)

Figure 3.62 shows an example of image denoising and inpainting (hole filling) using a Markov

Random Field. The original image has been corrupted by noise and a portion of the data (black

bar) has been removed. In this case, the loopy belief propagation algorithm computes a slightly

lower energy and also a smoother image than the alpha-expansion graph cut algorithm. [ Note:

Previous paragraph is very similar to that describing Figure 3.62 about 7 pages back. Rationalize

this. ]

3.7 Additional reading

[ Note: Not sure if I will keep these sections after all, or just keep all of my references in-line... ]

If you are interested in exploring the topic of image processing in more depth, some of the

popular textbooks include (Lim 1990, Crane 1997, Gomes and Velho 1997, Jähne 1997, Pratt

2001, Gonzales and Woods 2002, Russ 2007). The pre-eminent conference and journal in this

field are the IEEE Conference on Image Processsing and Transactions on Image Processing.

For image compositing operators, the seminal reference is (Porter and Duff 1984) while (Blinn

1994a, Blinn 1994b) provide a more detailed tutorial. For image compositing, Smith and Blinn

(1996) were the first to bring this topic to the attention of the graphics community, while Wang and

Cohen (2007a) provide a recent in-depth survey.

[ Note: Move some references here ]

While image pyramids §3.4.2 are usually constructed using linear filtering operators, some

recent work has started investigating non-linear filters, since these can better preserve details and

other salient features. Some representative papers include (Gluckman 2006a, Gluckman 2006b,

Lyu and Simoncelli 2008) in the computer vision literature, and (Bae et al. 2006, Farbman et al.

2008) in computational photography.

3.8 Exercises

Ex 3.1 (Color balance) Write a simple application to change the color balance of an image by

multiplying each color value by a different user-specified constant. (If you want to get fancy, you

can make this application interactive with sliders.)

1. Do you get different results if you take out the gamma transformation before/after doing the

multiplication? Why or why not?
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2. Take the same picture with your digital camera using different color balance settings (most

cameras control the color balance from one of the Menus). Can you recover what the color

balance ratios are between the different settings? (You may need to put your camera on a

tripod and/or align the images manually or automatically to make this work. Alternatively,

use a color checker chart (Figure 10.3b), as discussed in §2.3 and §10.1.1.)

3. If you have access to the RAW image for the camera, perform the demosaicing yourself

§10.3.1, or downsample the image resolution to get a “true” RGB image. Does your camera

perform a simple linear mapping between RAW values and the color-balanced values in a

JPEG? (Some high end cameras have a RAW+JPEG mode, which makes this comparison

much easier.)

4. Can you think of any reason why you might want to perform a color twist §3.1.2 on the

images? See also Exercise 2.8 for some related ideas.

Ex 3.2 (Compositing and reflections) §3.1.3 describes the process of compositing an alpha-matted

image on top of another one. Answer the following questions and optionally validate them experi-

mentally:

1. Most captured images have gamma correction applied to them. Does this invalidate the basic

compositing equation (3.8), and if so, show should it be fixed? [ Hint: (Blinn 1999, Blinn

2003) has a discussion of this. ]

2. The additive (pure reflection) model may have limitations. What happens if the glass is

tinted, especially to a non-gray hue? How about if the glass is dirty or smudged? How could

you model wavy glass or other kinds of refractive objects? [ Hint: see the Environment

Matting papers (Zongker et al. 1999, Chuang et al. 2000) and §13.4.1. ]

Ex 3.3 (Blue screen matting) §3.1.3

[ Note: Move this to another chapter, e.g., §10.4? ]

Ex 3.4 (Difference keying) Implement a difference keying algorithm, e.g., §3.1.3 and (Toyama et

al. 1999), consisting of the following steps:

1. Compute the mean and variance (or median and robust variance) at each pixel in an “empty”

video sequence.

2. For each new frame, classify each pixel into foreground or background (set the background

pixels to RGBA=0).

3. (Optional) Compute the alpha channel, and composite over a new background.
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4. (Optional) Clean up the image using morphology §3.2.2, label the connected components

§3.2.5, compute their centroids, and track them from frame to frame. Use this to build a

“people counter”.

5. (Optional – remove this) Build a “people remover” through median filtering.

[ Note: Can also move this (or forward pointer to) video processing §10.4. ]

Ex 3.5 (Photo effects) Write a variety of photo enhancement / effects filters: contrast, solarization

(quantization), etc. Which ones are useful (perform sensible corrections), and which ones are more

creative (create unusual images)?

Ex 3.6 (Histogram equalization) Compute the gray level (luminance) histogram for an image,

and equalize it so that the tones look better (and the image is less sensitive to exposure settings).

You may want to use the following steps:

1. Convert the color image to luminance §3.1.2.

2. Compute the histogram, the cumulative distribution, and the compensation transfer function

§3.1.4.

3. (Optional) Try to increase the “punch” in the image by ensuring that a certain fraction of

pixels (say 5%) are mapped to pure black and white.

4. (Optional) Limit the local gain f ′(I) in the transfer function. One way to do this is to

limit f(I) < γI and/or f ′(I) < γ while performing the accumulation (3.9), keeping any

unaccumulated values “in reserve”. (I’ll let you figure out the exact details. :-)

5. Compensate the luminance channel through the lookup table, and re-generate the color im-

age using color ratios (2.115).

6. (Optional) Color values that are clipped in the original image, i.e., have one or more saturated

color channels, may appear unnatural when remapped to a non-clipped value. Extend your

algorithm to handle this case in some useful way.

Ex 3.7 (Local histogram equalization) Compute the gray level (luminance) histograms for each

patch, but add to vertices based on distance (a spline).

1. Build on previous exercise (luminance computation)

2. Distribute values (counts) to adjacent vertices (bilinear)

3. Convert to CDF (look-up functions)
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4. Optional low-pass filtering of CDFs

5. Interpolate adjacent CDFs for final lookup

Ex 3.8 (Padding for neighborhood operations) Write down the formulas for computing the padded

pixel values (̃f)(i, j) as a function of the original pixels values f(k, l) and the image width and

height (M, N) for each of the padding modes shown in Figure 3.12. For example, for replication

(clamping),

f̃(i, j) = f(k, l),
k = max(0, min(M − 1, i)),

l = max(0, min(N − 1, j)),

(Hint: you may want to use the min, max, mod, and absolute value operators in addition to the

regular arithmetic operators.)

Describe in more detail the advantages and disadvantages of these various modes.

[Optional] Check what your graphics card does by drawing a texture-mapped rectangle where

the texture coordinates lie beyond the [0.0, 1.0] range and using different texture clamping modes.

Ex 3.9 (Separable filters) Implement convolution with a separable kernel. The input should be

a grayscale or color image along with the horizontal and vertical kernels. Make sure you support

the padding mechanisms developed in the previous exercise. You will need this functionality for

some of the later exercises. If you already have access to separable filtering in an image processing

package you are using (such as IPL), skip this exercise.

• (Optional) Use Pietro Perona’s (1995) technique to approximate convolution as a sum of a

number of separable kernels. Let the user specify the number of kernels, and report back

some sensible metric of the approximation fidelity.

Ex 3.10 (Discrete Gaussian filters) Discuss the following issues with implementing a discrete

Gaussian filter:

• If you just sample the equation of a continuous Gaussian filter at discrete locations, will you

get the desired properties, e.g., will the coefficients sum up to 0? Similarly, if you sample

a derivative of a Gaussian, do the samples sum up to 0 and/or have vanishing higher order

moments?

• Would it be preferable to take the original signal, interpolate it with a sinc, blur with a

continuous Gaussian, then pre-filter with a sinc before re-sampling? Is there a simpler way

to do this in the frequency domain?

• Alternatively, would it make more sense to produce a Gaussian frequency response in the

Fourier domain and to then take an inverse FFT to obtain a discrete filter?
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• How does truncation of the filter change its frequency response? Does it introduce any

additional artifacts?

• Are the resulting two-dimensional filters as rotationally invariant as their continuous ana-

logues? Is there some way to improve this? In fact, can any 2D discrete (separable or

non-separable) filter be truly rotationally invariant?

Ex 3.11 (Sharpening, blur, and noise removal) Implement some softening, sharpening, non-linear

diffusion (selective sharpening / noise removal filters, such as Gaussian, median, and bilateral

§3.2.2, as discussed in §3.3.2.

Take blurry or noisy images (shooting in low light is a good way to get both) and to try to

improve their appearance and legibility.

Ex 3.12 (Steerable filters) Implement Freeman and Adelson’s (1991) steerable filter algorithm.

The input should be a grayscale or color image, and the output should be a multi-banded image

consisting of the following bands:

• G0◦

1 and G90◦

1

The coefficients for the filters can be found in (Freeman and Adelson 1991).

Test the various order filters on a number of images of your choice, and see if you can reliably

find corner and intersection features. These filters will be quite useful later to detect elongated

structures such as lines §4.3.

Ex 3.13 (Distance transform) Implement some (raster-scan) algorithms for city block and Eu-

clidean distance transforms. Can you do it without peeking at the literature (Danielsson 1980,

Borgefors 1986)? If so, what problems did you come across and resolve? Hint: for the Euclidean

algorithm, you need to keep pairs of values at each pixel indicating the minimum vectorial distance

to the boundary.

Later on, you can use the distance functions you compute to perform feathering during image

stitching §9.3.2.

Ex 3.14 (Connected components) Implement one of the connected component algorithm from

§3.2.5 or (Haralick and Shapiro 1992, §2.3), and discuss its computational complexity.

Threshold or quantize an image to obtain a variety of input labels and then compute the area

statistics for the regions that you find.

Use the connected components that you have found to track of match regions in different im-

ages or video frames. [ Note: Re-read (Schaffalitzky and Zisserman 2002) and see if they use

MSERs or connected components. ]
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Ex 3.15 (Fourier transform) Prove the properties of the Fourier transform listed in Table 3.1, and

derive the formulas for the Fourier transforms listed in Tables 3.2 and 3.3. These exercises are very

useful if you want to become comfortable with working with Fourier transforms, which is a very

useful skill when analyzing and designing the behavior and efficiency of many computer vision

algorithms.

Ex 3.16 (Wiener filtering) Estimate the frequency spectrum of your personal photo collection,

and use this to perform Wiener filtering on a few images with varying degrees of noise.

• Collect a few hundred of your images by re-scaling them to fit within a 512 × 512 window

and cropping them.

• Take their Fourier transforms, throw away the phase information, and average together all of

the spectra.

• Pick two of your favorite images and add varying amounts of Gaussian noise, σn ∈ {1, 2, 5, 10, 20}
gray levels.

• For each image/noise combination, determine by eye which width of a Gaussian blurring

filter σs gives the best de-noised result. You will have to make a subjective decision between

sharpness and noise.

• Compute the Wiener filtered version of all the noised images, and compare these against

your hand-tuned Gaussian-smoothed images.

• [Extra credit]: Do your image spectra have a lot of energy concentrated along the horizontal

and vertical axes (fx = 0 and fy = 0)? Can you think of an explanation for this? Does

rotating your image samples by 45◦ move this energy to the diagonals? If not, is it possible

that this is due to edge effects in the Fourier transform? Can you suggest some techniques for

reducing such effects? [ Hint: reflect images top and bottom before taking the transform.

Mask the image with a center weight and/or edge rolloff. ]

Ex 3.17 (Deblurring using Wiener filtering) Use Wiener filtering to deblur some images.

• Modify the Wiener filter derivation (3.65)–(3.73) to incorporate blur (3.74). [ Hint: see

commented out text in §10.3 for full derivation. ]

• Discuss the resulting Wiener filter in terms of its noise suppression and frequency boosting

characteristics.
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(a) (b) (c)

Figure 3.70: Sample images for testing the quality of resampling algorithms: (a) a synthetic chirp;

(b) some high-frequency images from the image compression community.

• Assuming that the blur kernel is Gaussian and the image spectrum follows an inverse fre-

quency law, compute the frequency response of the Wiener filter and compare it to the un-

sharp mask.

• Synthetically blur two of your sample images with Gaussian blur kernels of different radii,

add noise, and then perform Wiener filtering.

• Repeat the above experiment with a “pillbox” (disc) blurring kernel, which is characteristic

of a finite aperture lens §2.2.3. Compare these results to Gaussian blur kernels (be sure to

inspect your frequency plots).

• It has been suggested that regular apertures are anathema to de-blurring because they intro-

duce zeros in the sensed frequency spectrum (Veeraraghavan et al. 2007). Show that this

is indeed an issue if no prior model is assumed for the signal (i.e., P−1
s l1). If a reasonable

power spectrum is assumed, is this still a problem (do we still get banding/ringing artifacts)?

Ex 3.18 (High-quality image resampling) Implement several of the low-pass filters presented in

§3.4.1 and also the discussion of the windowed sinc shown in Table 3.2 and 3.30. Feel free to

implement other filters from (Wolberg 1990) or (Unser 1999).

Apply your filters to continuously resize an image (both magnifying/interpolating and minify-

ing/decimating it), and compare the resulting animations for several filters. Use both a synthetic

chirp image like the one shown in Figure 3.70a and natural images with lots of high-frequency

detail (Figure 3.70b-c). (These particular images are available on the book website.)
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You may find it helpful to write a simple visualization program that continuously plays the

animations for two or more filters at once and that lets you “blink” between different results.

Discuss the merits and deficiencies of each filter, as well as its speed vs. quality tradeoff.

Ex 3.19 (Pyramids) Construct an image pyramid. The input should be a grayscale or color image,

a separable filter kernel, and the number of desired levels. Implement at least the following kernels:

• 2 × 2 block filtering

• Burt & Adelson’s binomial kernel 1/16(1, 4, 6, 4, 1) (Burt and Adelson 1983a)

• a high-quality 7 or 9-tap filter (using lifting) [ Note: Give some recommended coefficients

here ]; have the students do the lifted version.

Compare the visual quality of the various decimation filters. Also, shift your input image by 1 . . . 4

pixels and compare the resulting decimated (quarter size) image sequence.

Ex 3.20 (Pyramid blending) Write a program that takes as input two color images and a binary

mask image and produces the Laplacian pyramid blend of the two images.

1. Construct the Laplacian pyramid for each image.

2. Construct the Gaussian pyramid for the two mask images (the input image and its comple-

ment).

3. Multiply each Laplacian image by its corresponding mask and sum the images together

(Figure 3.47).

4. Reconstruct the final image from the blended Laplacian pyramid.

Generalize your algorithm to input n images and a label image with values 1 . . . n (the value 0

can be reserved for “no input”). Discuss whether the weighted summation stage (step 3) needs

to keep track of the total weight for renormalization, or whether the math just works out. Use

your algorithm either to blend two differently exposed image (to avoid under- and over-exposed

regions), or to make a creative blend of two different scenes.

Ex 3.21 (Wavelet construction and applications) Implement one of the wavelet families described

in §3.4.3 or (Simoncelli and Adelson 1990b), as well as the basic Laplacian pyramid (Exer-

cise 3.19). Apply the resulting representations to one of the following two tasks:
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1. Compression. Compute the entropy in each band for the different wavelet implementation,

assuming a given quantization level (say 1/4 gray level, to keep rounding error acceptable).

Quantize the wavelet coefficients and reconstruct the original images. Which technique

performs better? (See (Simoncelli and Adelson 1990b) or any of the multitude of wavelet

compression papers for some typical results.)

2. De-noising. After computing the wavelets, suppress small values using coring. [ Note:

Where is this discussed? ]. Compare the results of your denoising using different wavelet

and/or pyramid representations.

Perform and in-place wavelet transformation (like hierarchical basis transformation), using

some simple lifted wavelets. (Specify how many levels to do.) Compute the entropy of the trans-

formed signal (in each “band” separately).

Ex 3.22 (Parametric image warping) Write the code to do affine and perspective image warps

(optionally bilinear as well). Try a variety of interpolants, and report on their visual quality. In

particular, discuss the following:

• In a MIP-map, selecting only coarser level adjacent to the computed fractional level will

produce a blurrier image, while selecting the finer level will lead to aliasing. Explain why

this is so, and then discuss whether blending an aliased and blurred image (tri-linear MIP-

mapping) is a good idea.

• When the ratio of the horizontal and vertical resampling rates becomes very different (anisotropic),

the MIP-map performs even worse. Suggest some approaches to reducing such problems.

Ex 3.23 (Local image warping) Open an image, and deform its appearance. Some possible choices:

1. Click on a number of pixels and move (drag) them to new locations. Interpolate the resulting

sparse displacement field to obtain a dense motion field §3.5.2 and §12.3.1.

2. Draw a number of lines in the image. Move the endpoints of the lines to specify their new

positions, and use the Beier-Neely interpolation algorithm (Beier and Neely 1992)§3.5.2 to

get a dense motion field.

3. Overlay a spline control grid, and move one gridpoint at a time (optionally select the level

of the deformation).

4. Have a dense per-pixel flow field, and use a soft “paintbrush” with variable size incre-

ment/decrement x-y based on mouse-based strokes.
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5. [Challenging]: Does the Beier-Neely warp reduce to a sparse point-based deformation as

the line segments become shorter (reduce to points)?

Ex 3.24 (Forward warping) Given a displacement field from the previous exercise, write a for-

ward warping algorithm:

1. Write a forward warper using splatting, either nearest neighbor or using soft accumulation

§3.5.1.

2. Write a two-pass algorithm, which first forward warps the displacement field, fills in small

holes, and then uses inverse warping (Shade et al. 1998).

3. Compare the quality to these two algorithms.

Ex 3.25 (Feature-based morphing) Extend the warping code your wrote in Exercise 3.23 to im-

port two different images and to specify correspondences (point, line, or mesh-based) between the

two images.

Create a morph by partially warping the images towards each other and cross-dissolving §3.5.3.

Try using your morphing algorithm to perform an image rotation, and discuss whether it be-

haves the way you want it to.

Ex 3.26 (2D image editor) Extend the program you wrote in Exercise 2.2 to now import images

and let you create a “collage” of pictures. You should implement the following steps:

1. Open up a new image (in a separate window).

2. Shift drag (rubber-band) to crop a subregion (or select whole image).

3. Paste into the current canvas.

4. Select the deformation mode (motion model): translation, rigid, similarity, affine, or per-

spective.

5. Drag any corner of the outline to change its transformation.

6. (optional) Change the relative ordering of the images, and which image is currently being

manipulated.

The user should see the composition of the various images pieces on top of each other.

This exercise should be built on the image transformation classes supported in the software

library. Persistence of the created representation (save and load) should also be supported (for

each image, save its transformation).
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Figure 3.71: There is a faint image of a rainbow visible in the right hand side of this picture. Can

you think of a way to enhance it (Exercise 3.29)?

Ex 3.27 (3D texture-mapped viewer) Extend the viewer you created in Exercise 2.3 to include

texture-mapped polygon rendering. Augment each polygon with (u, v, w) coordinates into an im-

age

Ex 3.28 (Image denoising) Implement at least two of the various image denoising techniques de-

scribed in this chapter and compare these on both synthetically noised image sequences and on real

world (low-light) sequences. Does the performance of the algorithm depend on the correct choice

of noise level estimate? Can you draw any conclusions as to which techniques work better?

Ex 3.29 (Rainbow enhancer (challenging)) Take a picture containing a rainbow such as Fig-

ure 3.71 and enhance the strength (saturation) of the rainbow.

• Draw an arc in the image delineating the extent of the rainbow.

• Fit an additive rainbow function (explain why it’s additive) to this arc (it’s best to work with

linearized pixel values), using the spectrum as the cross section, and estimating the width of

the arc and the amount of color being added. This is the trickiest part of the problem, as you

need to tease apart the (low-frequency) rainbow pattern and the natural image hiding behind

it.

• Amplify the rainbow signal and add it back into the image, re-applying the gamma function

if necessary to produce the final image.
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Ex 3.30 (Image de-blocking (challenging)) Now that you have some good techniques to distin-

guish signal from noise, develop a technique to remove the blocking artifacts that occur with JPEG

at high compression setting §2.3.3. Your technique can be as simple as looking for unexpected

edges along block boundaries, to looking at the quantization step as a projection of a convex re-

gion of the transform coefficient space onto the corresponding quantized values.

1. Does the knowledge of the compression factor, which is available in the JPEG header infor-

mation, help you perform better de-blocking?

2. Because the quantization occurs in the DCT transformed YCbCr space (2.114), it may be

preferable to perform the analysis in this space. On the other hand, image priors make more

sense in an RGB space (or do they?). Decide how you will approach this dichotomy and

discuss your choice.

3. While you are at it, since the YCbCr conversion is followed by a chrominance subsampling

stage (before the DCT), see if you can restore some of the lost high-frequency chrominance

signal using one of the better restoration techniques discussed in this chapter.

4. If your camera has a RAW + JPEG mode, how close can you come to the noise-free true pixel

values? (This suggestion may not be that useful, since cameras generally use reasonably high

quality settings for their RAW + JPEG models.)

Ex 3.31 (Inference in de-blurring (challenging)) Write down the graphical model correspond-

ing to Figure 3.64 for a non-blind image deblurring problem, i.e., one where the blur kernel is

known ahead of time.

What kind of efficient inference (optimization) algorithms can you think of for solving such

problems? [ Hint: not sure if (Potetz and Lee 2008) is relevant. ]


