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Marine scientists use remote underwater image and video record-

ing to survey fish species in their natural habitats. This helps

them get a step closer toward understanding and predicting how

fish respond to climate change, habitat degradation, and fishing

pressure. This information is essential for developing sustainable

fisheries for human consumption, and for preserving the environ-

ment. However, the enormous volume of collected videos makes

extracting useful information a daunting and time-consuming

task for a human. A promising method to address this problem

is the cutting-edge Deep Learning (DL) technology. DL can

help marine scientists parse large volumes of video promptly and

efficiently, unlocking niche information that cannot be obtained

using conventional manual monitoring methods. In this paper, we

first provide a survey of Computer Visions (CV) and DL studies

conducted between 2003-2021 on fish classification in underwa-

ter habitats. We then give an overview of the key concepts of DL,

while analyzing and synthesizing DL studies. We also discuss the

main challenges faced when developing DL for underwater im-

age processing and propose approaches to address them. Finally,

we provide insights into the marine habitat monitoring research

domain and shed light on what the future of DL for underwater

image processing may hold. This paper aims to inform marine

scientists who would like to gain a high-level understanding of

essential DL concepts and survey state-of-the-art DL-based fish

classification in their underwater habitat.

K E Y W O R D S

Fish Habitat, Monitoring, Computer Vision, Deep Learning.

1

ar
X

iv
:2

20
3.

06
95

1v
3 

 [
cs

.C
V

] 
 1

6 
A

pr
 2

02
2



2 SALEH ET AL.

N O M E N C L AT U R E

AI Artificial Intelligence

ANN Artificial Neural Networks

AUV Autonomous Underwater Vehicle

CNN Convolutional Neural Network

CV Computer Vision

DL Deep Learning

DNN Deep Neural Networks

FCN Fully Convolutional Network

LSTM Long short-term memory

ML Machine Learning

OCR Optical character recognition

RNN Recurrent Neural Network

ROV Remotely Operated Vehicles

RUV Remote Underwater Video

1 | INTRODUCTION

Understanding and modelling how fish respond to climate

change, habitat degradation, and fishing pressure are critical

for environmental protection, and are crucial steps toward en-

suring sustainable natural fisheries, to support ever-growing

human consumption (Zarco-Perello and Enríquez, 2019). Ef-

fective monitoring is a vital first step underpinning decision

support mechanisms for identifying problems and planning

actions to preserve and restore the habitats. However, there is

still a gap between the complexity of marine ecosystems and

the available monitoring mechanisms.

Marine scientists use underwater cameras to record, model,

and understand fish habitats and fish behaviour. Remote

Underwater Video (RUV) recording in marine applications

(Zarco-Perello and Enríquez, 2019) has shown great poten-

tial for fisheries, ecosystem management, and conservation

programs (Piggott et al., 2020). With the introduction of

consumer-grade high-definition cameras, it is now feasible

to deploy a large number of RUVs or Autonomous Underwa-

ter Vehicles (AUVs) to collect substantial volumes of data

and to perform more effective monitoring (Pope et al., 2010;

Rasmussen and Morrissey, 2008; Thorstad et al., 2013). How-

ever, underwater habitats introduce diverse video monitoring

challenges such as adverse water conditions, high similarity

between fish species, cluttered backgrounds, and occlusions

among fish. In addition, the volume of data generated by

deployed RUVs and AUVs rapidly surpasses the capacity of

human video viewers, making video analysis prohibitively

expensive (Konovalov et al., 2019a). Moreover, humans are

more prone to error than a well-designed machine-centred

monitoring algorithm. Therefore, an automated, compre-

hensive monitoring system could significantly reduce labour

expenses while improving throughput and accuracy, increas-

ing the precision in estimates of fish stocks, fish distribu-

tion and biodiversity in general (Hilborn and Walters, 1992).

Implementing such systems necessitates effective Computer

Vision (CV) processes. As a result, significant research has

been conducted on implementing monitoring tools and tech-

niques that build upon CV algorithms for determining how

fish exploit various maritime environments and differentiating

between fish species (Zion, 2012).

In image analysis and CV domains, Deep Learning (DL)

approaches have consistently produced state-of-the-art results

in a variety of applications from agriculture (Olsen et al.,

2019) to medicine (Saleh et al., 2021; Azghadi et al., 2020)

using Deep Neural Networks (DNNs) (Zheng et al., 2020;

Miikkulainen et al., 2019; Montavon et al., 2018). Notably,

a video is inherently composed of images or frames, which

are processed using image analysis techniques. Therefore,

image- and video-based monitoring tasks can be done using

DL models such as Convolutional Neural Networks (CNNs)

that receive an image (frame) as their input. Therefore, the

methods mentioned for image-based tasks are useful for both

images and videos.

Many of DNN-based approaches outperform conventional

methods in marine applications, including ecological and

habitat monitoring, using video trap data (Willi et al., 2019;

Tabak et al., 2019). DL is a technique that mimics how

people acquire knowledge by continuous analysis of input

data. The main drivers of DNN success over the past decade

have been architectural progress by a large community of

computer scientists, more powerful computers and processors,

and access to massive amounts of data, which is critical for

developing successful generalizable DL applications.

DNNs have been successfully employed in many CV ap-

plications such as object classification, identification, and

segmentation as a result of the invention of CNN. CNN is
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F I G U R E 1 Illustration of four typical types of CV tasks From left: Image Classification (i.e. is there a fish in the image,
or what type (class) of fish is in the image?), Object Detection/Localisation, Semantic Segmentation, Instance Segmentation.

a class of DNN, most commonly applied to visual analyses.

For instance, CNNs have been successfully used for analysis

of fish habitats (Xu et al., 2019; Konovalov et al., 2019a; Pope

et al., 2010). In comparison to other image recognition algo-

rithms, CNNs have the significant benefit that they require

limited pre-processing. CNNs are not hand-engineered but

uncover and learn hidden features in the data on their own.

They learn level-by-level with various levels of abstraction.

For instance, they learn simple shapes (edges, lines, etc.) in

the first few layers, understand more sophisticated patterns

in their next layers, and learn classes of objects in their final

layers.

A putative challenge with CNNs is that they require a

large number of images to be fully trained and generalise their

learning to unseen scenarios. On the other hand, CNNs have

an interesting and powerful feature that enables transfer of

their learning and knowledge across different domains. This

means that they can be fine-tuned to work on new datasets (e.g.

fish datasets) other than the one that they have been trained on

(e.g. general objects). However, fine-tuning with annotated

datasets specific for a given domain implies cost/effort/time

needed to generate the annotations, and also requires a larger

set of data which may not always be available.

Equipping CV algorithms with the powerful learning and

inference capabilities of CNNs can provide marine scientists

and ecologists with powerful tools to help them better under-

stand and manage marine environments. However, although

DL, and its variants such as CNNs, have been applied to var-

ious applications across a multitude of domains (Deng and

Yu, 2013; Pathak et al., 2018; Min et al., 2017), their use

in conjunction with computer vision for marine science and

fish habitat monitoring is not broadly appreciated, meaning

they remain under utilised. To address this, in this paper, we

introduce key concepts and typical architectures of DL, and

provide a comprehensive survey of key CV techniques for

underwater fish habitat monitoring. In addition, we provide

insights into challenges and opportunities in the underwater

fish habitat monitoring domain. It is worth noting that our ar-

ticle is written to provide a general and high-level, as opposed

to detailed, introduction of deep learning and its relevant con-

texts for marine scientists. This is useful in understanding

the follow-up discussions on the use of deep learning in the

marine task of underwater fish classification.

Although a recent survey reviews deep learning techniques

for marine ecology (Goodwin et al., 2022) and briefly dis-

cusses DL-based fish image analysis, to the best of our knowl-

edge, no comprehensive survey and overview of deep learning

with a specific focus on fish classification in underwater habi-

tats currently exists. Our paper tries to address this gap and to

facilitate the application of modern deep learning approaches

into the challenging underwater fish images analysis and mon-

itoring domains. We do this by comprehensively reviewing

and analysing the literature providing information about the

DL model the previous works have used, their training dataset,

their annotation techniques, their performance and a compar-

ison to other similar works. This detailed analysis is not

provided in (Goodwin et al., 2022).

In addition, another survey (Li and Du, 2021) exists that fo-

cuses on five different tasks of classification, detection, count-

ing, behaviour recognition, and biomass estimation. Com-

pared to (Li and Du, 2021), we provide a different analysis

and review of the literature because we mainly focus on the

classification of fish in underwater images. Li and Du’s work

(Li and Du, 2021) fits mostly in the domain of aquaculture,

while our paper is mostly a review of "fish classification tech-

niques in underwater habitats" and the challenges they bring.

Li and Du introduce a background to many different DL ar-

chitectures, one of which is CNN, which is the focus of our

paper. Also, the challenges and opportunities that Li and Du

introduce are different to our paper, which is mainly about
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underwater fish classification in their natural habitat.

Furthermore, we provide a historical review of the CV and

DL research using underwater cameras for fish classification,

and analyse how their accuracy has evolved over years. This

is not covered by previous works including (Goodwin et al.,

2022; Li and Du, 2021).

2 | BACKGROUND TO COM-
PUTER VISION AND MACHINE
LEARNING

Humans, have a natural ability to comprehend the three-

dimensional structure of the world around us. Vision sci-

entists (Oomes, 2001) have spent decades attempting to un-

derstand how the human visual system functions (Wang and

Weiland, 2017). Inspired by their findings, CV researchers

(Ballard and Brown, 1982; Huang, 1996; Sonka et al., 2008)

have also been working on ways to recover the 3D shape and

appearance of objects from photos. The automatic retrieval,

interpretation, and comprehension of useful information from

a single image or collection of images can be referred to

as CV. In another definition, CV is a field of Artificial In-

telligence (AI) that focuses on training computers to detect,

recognise, and understand images similarly to processes used

by humans. This necessitates the development of logical and

algorithmic foundations for automated visual understanding

(Mader et al., 2018). This understanding can include image

classification, object localisation, object recognition, seman-

tic segmentation, and instance segmentation, as shown in

Figure 1. Today, computers with CV powers can extract, anal-

yse, and interpret significant information from a single image

or a sequence of images.

Despite this progress, the goal of making a computer to

understand a picture at the same level as a two-year-old child

remains unattainable. This is due, in part, to the fact that CV

is an inverse problem in which we attempt to recover spe-

cific unknowns despite having inadequate knowledge to com-

pletely describe the solution. In CV applications, the cause

is usually an exploration process, while the effects are the

observed data. The corresponding forward problems then con-

sist of predicting empirical data given complete knowledge

of the exploration process. In some sense, solving inverse

problems means “computing backwards”, which is usually

more difficult than forward problem solving (Hohage et al.,

2020).

F I G U R E 2 Comparison between Machine
Learning (ML) and DL. In ML techniques, the features
need to be extracted by domain expert while DL relies on
layers of artificial neural networks to extract these features.

The problem of backward computation was eased by the

introduction of ML techniques more than 6 decades ago.

However, in conventional ML approaches, the majority of

complex features of the learning subject must be identified

by a domain expert in order to decrease the complexity of the

data and make patterns more evident for successful learning

(see Figure 2-top). However, DL offered a fundamentally

new method to ML. Most DL algorithms possess the ground-

breaking ability of automatically learning high-level features

from data with minimal or no human intervention (see Figure

2-bottom).

DL is based on neural networks, which are general-

purpose functions that can learn almost any data type that can

be represented by many instances. When you feed a neural

network a large number of labelled instances of a certain type

of data, it will be able to uncover common patterns between

those examples and turn them into a mathematical equation

that will assist in categorising future data. Empowered by

this fundamental feature, DL and DNN have progressed from

theory to practice as a result of advancements in hardware and

cloud computing resources (Azghadi et al., 2020). In recent

years, DL approaches have outperformed previous state-of-

the-art ML techniques in a variety of areas, with CV being

one of the most notable examples.
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Before the introduction of DL, the capabilities of CV were

severely limited, necessitating a great deal of manual coding

and effort. However, owing to improved research in DL and

neural networks, CV is now able to outperform humans in

several tasks related to object recognition and classification

(Sarigül and Avci, 2017; Salman et al., 2016; Qin et al., 2016;

Sun et al., 2017). CV equipped with DL, is being used today

in a wide variety of real-world applications, that include, but

are not limited to:

• Optical character recognition (OCR) (Permaloff and

Grafton, 1992): automatic number plate recognition and

reading handwritten postal codes on letters;

• Machine inspection (Park et al., 2016): fast quality assur-

ance inspection of components using stereo vision with

advanced lighting to assess tolerance levels on aircraft

wings or car body parts, or to spot flaws in steel castings

using X-ray technology;

• Retail (Trinh et al., 2012): object detection for automatic

checkout lanes;

• Medical imaging (Erickson et al., 2017): registration of

preoperative and intra-operative imaging or long-term

analyses of human brain anatomy as they age;

• Automotive safety (Falcini et al., 2017): detection of un-

foreseen objects such as pedestrians on the street (e.g.

fully autonomously driving vehicles);

• Surveillance (Brunetti et al., 2018): Monitoring of tres-

passers, studies of highway traffic, and monitoring pools

for drowning victims;

• Fingerprint recognition and bio-metrics (Kim et al., 2016):

For both automatic entry authentication and forensic soft-

ware.

This demonstrates the significant impact of DL on CV and

demonstrates its potential for marine visual analysis applica-

tions.

3 | THE EVOLUTION OF COM-
PUTER VISION APPROACHES
TO FISH CLASSIFICATION

The last two decades have witnessed the emergence of novel

computer vision approaches for fish classification including

the design and evaluation of complex algorithms that could

not be applied before and became possible with the availabil-

ity of sufficiently large data and the use of powerful Graphical

Processing Units (GPUs). Here, we perform a systematic liter-

ature review of the evolution of computer vision applications

and their different approaches over the past two decades.

3.1 | Search and Selection Criteria

We systematically reviewed the literature for underwater fish

classification using computer vision from 2003 to 2021. The

search terms used included "underwater fish classification",

"Deep Learning", "Computer Vision", "Machine vision". The

databases searched included Wiley Online Library, IEEE

Xplore, Elsevier/ScienceDirect, and ACM Digital Library.

We believe that combining these four databases accurately

represents global research on this topic.

We divided the search into two stages. First, we queried

the databases for articles with the above-mentioned keywords

in their titles and contents. Secondly, we independently re-

viewed the titles and abstracts of each article in order to check

its relevance to our research topic. After the individual title

and abstract reviews, we considered 64 articles for full-text

reading. In the full-reading phase, we extracted information

relevant to our research topic. In this phase, it became clear

that 21 papers were not relevant to our work and therefore

were excluded. This left us with 43 papers for fish classifica-

tion, 26 of which were classical Computer Vision methods,

and 17 Deep Learning papers. Figure 4 presents an overview

of the methods used in the identified studies and classifies

them into several groups, based on their classification algo-

rithms that can be categorized into two general category of

conventional CV, and modern DL models.
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F I G U R E 3 A popular CNN architecture, named UNET (Ronneberger et al., 2015) is demonstrated. The first component of
UNET is the encoder, which is used to extract features from the input image. The second component is the decoder that outputs
per-pixel scores. The network is composed of five different layers including convolutional (Conv Layer), Rectified Linear Unit
(ReLU), Pooling, Deconvolutional (DeConv), and Softmax.Here, the task of the DNN layers has been to give a high score to only
the pixels in the input image that belong to the fish body, resulting in the demonstrated white blobs output, showing where the
fish are.

F I G U R E 4 An overview of the methods used for fish
classification using different Computer Vision techniques
from 2003 to 2021. It is evident from the graph that DL and
its CNNs have attracted more attention than classical ML
methods.

3.2 | The Evolution of Fish Classification
Algorithms over Two Decades

The publication trend for fish classification studies is sum-

marized in Fig. 5. The figure shows the cumulative number

of publications and how the studies evolved over the past two

decades. It is evident that the number of publications has

been gradually increasing, but in 2016, when the first few

studies using deep learning were combined with CV meth-

ods, the study numbers have seen the highest increase and a

fast upward trajectory for a few years (2015-2019) after DL

burgeoned in fish classification, and before slowing down.

Fig. 5 also shows the highest classification accuracy

achieved in each year, as a quality assessment metric. It

is evident that since 2016, when DL techniques were first pro-

posed for fish classification, the accuracy has seen its highest

value. At the same time, it can be seen that there are large

differences in the accuracies achieved over years. The main

reasons for this difference include (i) using different classi-

fication and CV methods, and (ii) using different fish image

sources that were captured differently and in different envi-

ronments. These bring huge variations among studies, such as

different image resolutions and inconsistent resolutions and

image qualities across time. For example, some fish image

datasets are in grayscale (Chuang et al., 2014, 2016; Kartika

and Herumurti, 2017), while others are in colour (Zion et al.,

2008, 2007; Shafait et al., 2016). Some datasets contain only

images (Islam et al., 2019; Kartika and Herumurti, 2017),

while others include videos (Lopez-Villa et al., 2015; Cut-

ter et al., 2015; Hossain et al., 2016). Also, some datasets

(Huang et al., 2014) used low-quality images from the inter-

net, which negatively affects the accuracy, due to their wide
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F I G U R E 5 An overview of the publication trend and performance of an extensive range of fish classification Computer
Vision (CV) and Deep Learning (DL) models from 2003 to 2021. Here the bars show the cumulative number of publications over
years and the growth thereof, while the line graphs demonstrate the highest classification accuracy in each year in literature on
the right-hand-side vertical axis.

range of resolutions, colours, and angles. They are also taken

at random locations. Due to these factors in various studies,

direct comparison of accuracy values is unfeasible, though

the accuracy trend can be still observed in Fig. 5.

Computer vision for fish classification in the early 2000s

and up to 2016, when first DL works started, has been mainly

to manually extract fish features and then build classifiers

that recognize these features. These conventional studies are

listed, in a chronological order, in Table 1. Although there are

many existing models, most of the classical non-DL models

are based on local and engineered features. These include

works using Haar features (Mutneja and Singh, 2021), Scale-

Invariant Feature Transform (SIFT) (Lindeberg, 2012), and

Histogram of Oriented Gradient (HOG) (Dalal and Triggs,

2005), which need hand-engineered algorithms. Because

these algorithms are not suitable for recognizing images of un-

trained animals and cannot capture fish features from complex

backgrounds, they usually use a large number of manually

extracted samples to build classifiers.

As shown in Table 1, support vector machines (Rova et al.,

2007; Hu et al., 2012; Fouad et al., 2014; Huang et al., 2014;

Chuang et al., 2016; Ogunlana et al., 2015; Hossain et al.,

2016; Wang et al., 2017a; Islam et al., 2019) were one of

the most commonly used classifiers for fish recognition, but

they are prone to overfitting when trained with too many

samples. This problem limits the scale of application. An-

other popular classification technique used in early works

was backpropagation to train a simple feed-forward shallow

neural network (Alsmadi et al., 2010, 2011; Pornpanomchai

et al., 2013; Badawi and Alsmadi, 2014; Boudhane et al.,

2016). Although this technique can handle simple samples,

it is difficult to scale because of the neural network shallow

layers, which will be explained in the next Section. Naive

Bayes (Nery et al., 2005; Zion et al., 2007, 2008; Kartika

and Herumurti, 2017) have also been used to classify fish

since the early 2000s and up to 2017. The technique does

not require much training data, and as shown in Table 1 can

reach good accuracy levels. Table 1 also shows some other

CV classification techniques, which while not as popular as

the above-mentioned methods, could demonstrate good per-

formance. However, it should be noted that, most of the CV

techniques in Table 1, were carefully engineered for their

target datasets and are not capable of showing a similar per-

formance level if used for another similar dataset. They will

perhaps require an overhaul in their design, starting from

manual feature engineering, to designing the detailed classifi-

cation models.

In contrast, deep learning can extract features and perform

classification tasks automatically. The features are invariant

to data scaling, translation, rotation, and distortion. Because
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these features are better for classification, the classification

performance can be better than that conventional CV tasks

using manually designed features. Also, DL classification

models, compared to traditional CV one, usually require a

simpler redesign procedure to work on a new similar dataset,

due to the ability to extract features on their own.

Although DL emerged in 2012 (Krizhevsky et al., 2012),

its first use for underwater fish classification was in 2016

(Salman et al., 2016). After that, 16 other works also used

DL and its CNNs, as shown in Fig. 4, to develop models

that learn features from large amounts of data without man-

ual interference. These studies have shown that, by using

deep learning, some of the usual fish image classification

challenges such as image noise reduction, classification of

difficult or rare-seen fish, and classifying small fish, can be

solved.

In the following parts of this paper, we mainly focus on

deep learning, how it works, and how it can be applied to

develop efficient and high-performance underwater fish clas-

sifiers. We will also critically analyse the 17 DL studies found

as part of our systematic literature review described earlier.

4 | BACKGROUND TO DEEP
LEARNING

Deep Learning (DL) (Goodfellow et al., 2016; LeCun et al.,

2015) is a subset of ML algorithms that employs a neural net-

work with several layers to very loosely replicate the function

of the human brain by enabling it to "learn" from huge quan-

tities of data. The learning happens when the neural network

extracts higher-level features from input training data. The

term "deep" refers to the usage of several layers in the neural

network. Lower layers, for example in image processing,

could detect edges, whereas higher layers might identify parts

of the object.

4.1 | How Deep Learning differs from
Machine Learning

Machine Learning (ML) is usually referred to as a class of

algorithms that can recognise patterns in data and create pre-

diction models automatically. Deep Learning (DL) is a sub-

class of standard ML because it uses the same type of data

and learning methods that ML applies. However, when deal-

ing with unstructured data, e.g. text and images, ML usually

goes through some pre-processing to convert it to a structured

format for learning. DL, on the other hand, does not usually

require the data pre-processing needed by ML. It is capable

of recognising and analysing unstructured data, as well as

automating feature extraction, significantly reducing the need

for human knowledge (see Figure 2-bottom).

For example, to recognise fish in an image, ML requires

that specific fish features (such as shape, colour, size, and

patterns) be explicitly defined in terms of pixel patterns. This

may be a challenge for non-ML specialists because it typically

requires a deep grasp of the domain knowledge and good pro-

gramming skills. DL techniques, on the other hand, skip this

step entirely. Using general learning techniques, DL systems

can automatically recognise and extract features from data.

This means that we just need to tell a DL algorithm whether

a fish is present in an image, and it will be able to figure out

what a fish looks like given enough examples. Decomposing

the data into layers with varying levels of abstraction enables

the algorithm to learn complex traits defining the data, allow-

ing for an automatic learning approach. DL algorithms may

be able to determine which features (such as fishtail) are most

important in differentiating one animal from another. Prior

to DL, this feature hierarchy needed to be determined and

created by hand by an ML expert.

4.2 | How Deep Learning works

Deep Neural Network (DNN), also known as artificial neural

network, is the basis of deep learning. DNNs use a mix of

data inputs, weights, and biases to learn the data, by properly

detecting, categorising, and characterising objects in a given

dataset of interest. DNNs are made up of several layers of

linked nodes, each of which improves and refines the network

prediction or categorisation capabilities. For instance, Fig.

3 shows a popular DNN architecture for image processing,

called UNET (Ronneberger et al., 2015). UNET, which is

a fairly complex deep learning architecture, is composed of

a few different components and layers, to achieve a specific

learning goal, i.e. to segment fish body in an input image.

Any DNN is composed of three types of layers, namely
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TA B L E 1 A list of computer vision studies for underwater fish classification between 2003-2021 using conventional
classifiers and based on engineered features. The last column presents the work’s achieved accuracy.

Article Year Classification Method AC
An Automated Fish Species Classification and Migration Monitoring Sys-

tem (Lee et al., 2003)
2003 Feature vector Classification 92

Determining the appropriate feature set for fish classification tasks (Nery

et al., 2005)
2005 Naive Bayes 90

Real-time underwater sorting of edible fish species (Zion et al., 2007) 2006 Naive Bayes 98

One Fish, Two Fish, Butterfish, Trumpeter: Recognizing Fish in Underwater

Video (Rova et al., 2007)
2007 Support vector machine 90

Classification of guppies’ (Poecilia reticulata) gender by computer vision

(Zion et al., 2008)
2008 Naive Bayes 96

Automatic Fish Classification for Underwater Species Behavior Understand-

ing (Spampinato et al., 2010)
2010

Discriminant Analysis Classifica-

tion
92

Fish Recognition Based on Robust Features Extraction from Size and Shape

Measurements Using Neural Network (Alsmadi et al., 2010)
2010 Backpropagation 86

Fish Classification Based on Robust Features Extraction From Color Signa-

ture Using Back-Propagation Classifier (Alsmadi et al., 2011)
2011 Backpropagation 84

Fish species classification by color, texture and multi-class support vector

machine using computer vision (Hu et al., 2012)
2012 Support vector machine 97

Real-world underwater fish recognition and identification, using sparse

representation (Hsiao et al., 2014a)
2013 Sparse representation classification 81

A research tool for long-term and continuous analysis of fish assemblage in

coral-reefs using underwater camera footage (Boom et al., 2014)
2013 Gaussian Mixture Model 97

Automatic Nile Tilapia Fish Classification Approach using Machine Learn-

ing Techniques (Fouad et al., 2014)
2013 Support vector machine 94

Shape- and Texture-Based Fish Image Recognition System (Pornpanomchai

et al., 2013)
2013 Backpropagation 90

A General Fish Classification Methodology Using Meta-heuristic Algorithm

With Back Propagation Classifier (Badawi and Alsmadi, 2014)
2014 Backpropagation 80

GMM improves the reject option in hierarchical classification for fish

recognition (Huang et al., 2014)
2014 Support vector machine 74

Supervised and Unsupervised Feature Extraction Methods for Underwater

Fish Species Recognition (Chuang et al., 2014)
2014 Hierarchical Partial Classifier 93

A Feature Learning and Object Recognition Framework for Underwater

Fish Images (Chuang et al., 2016)
2015 Support vector machine 98

A novel tool for ground truth data generation for video-based object classi-

fication (Lopez-Villa et al., 2015)
2015 K-means algorithm 93

Automated detection of rockfish in unconstrained underwater videos using

Haar cascades and a new image dataset: labeled fishes in the wild (Cutter

et al., 2015)

2015 Haar cascade classifiers 89

Fish Classification Using Support Vector Machine (Ogunlana et al., 2015) 2015 Support vector machine 79

Fish identification from videos captured in uncontrolled underwater envi-

ronments (Shafait et al., 2016)
2016

Sparse Approximated Nearest

Point
94

Fish Activity Tracking and Species Identification in Underwater Video

(Hossain et al., 2016)
2016 Support vector machine 91

Koi Fish Classification based on HSV Color Space (Kartika and Herumurti,

2017)
2016 Naive Bayes 97

Optical Fish Classification Using Statistics of Parts (Boudhane et al., 2016) 2016 Backpropagation 95

Shrinking Encoding with Two-Level Codebook Learning for Fine-Grained

Fish Recognition (Wang et al., 2017a)
2017 Support vector machine 98

Indigenous Fish Classification of Bangladesh using Hybrid Features with

SVM Classifier (Islam et al., 2019)
2019 Support vector machine 94
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input, output, and hidden layers. The visible layers are the

input and output layers (see Figure 6). The DL model gets the

data for processing in the input layer, and the final prediction

or classification is generated in the output layer. In a typi-

cal neural network, including a DNN, the learning happens

through two general processes, i.e. forward and backward

propagations. Forward propagation refers to the propaga-

tion of input data through the network layers to generate a

prediction or classification result. Backward propagation or,

backpropagation in short, is where the learning happens in

the network. Backpropagation uses a training model that

determines prediction errors and then changes the weights

and biases of the neural network by going backwards through

its layers. Forward propagation and backpropagation work

together to allow a neural network to generate predictions and

reduce the network errors. Through many iterations of back-

ward and forward propagation, the neural network prediction

or classification accuracy improves.

Almost all DNNs work on and through the same princi-

ples described above. However, different DL networks and

architectures are used to solve different tasks. For instance,

CNNs, which are commonly used in computer vision and

image classification applications, can recognise character-

istics and patterns within an image, allowing tasks such as

object detection and recognition to be accomplished. How-

ever, in tasks with a different nature, such as natural language

processing, speech recognition, or timeseries forecasting (Ja-

hanbakht et al., 2022), Recurrent Neural Networks (RNNs)

are commonly employed. Despite the differences in their

architectures, many DL techniques, use the concept of su-

pervised learning to process their input data and accomplish

different tasks.

4.3 | Supervised Learning

Supervised learning is a method used to enable finding and

optimising a function that maps an input to its corresponding

output in an input-output object pair, also known as training

example (Kotsiantis, 2007). Supervised learning uses a set

of training examples based on manually-labelled training

data prepared by human observers or ’supervisors’, hence the

name for the learning method.

The aim of supervised learning is to generate an inferred
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F I G U R E 6 A diagram of a single-layer neural network,
composed of input, hidden, and output layers.

4.3 | Supervised Learning

Supervised learning is a method used to enable finding and

optimising a function that maps an input to its corresponding

output in an input-output object pair, also known as training

example [75]. Supervised learning uses a set of training

examples based on manually-labelled training data prepared

by human observers or ’supervisors’, hence the name for the

learning method.

The aim of supervised learning is to generate an inferred

function, 𝑓 , that maps to the training examples, and can then

be used to map to new examples outside of the training ex-

amples. In order to accomplish any general task, a computer

can be programmed to find function 𝑓 to map 𝑋 to 𝑌 , i.e.

(𝑓 ∶ 𝑋 ↦ 𝑌 ), where 𝑋 is an input domain and 𝑌 is an

output domain. For example, in an image classification task,

𝑋 is the dataset of images and 𝑌 is a set of corresponding

classification labels, which determine whether an object is

present in the respective image in the dataset or not.

To determine the function 𝑓 that can recognise, for in-

stance, a fish in an image using DL, one solution is to do

feature engineering. However, it is usually very difficult to

perform this, i.e. hand-pick features of the fish, based on

the domain knowledge that comes from the training dataset.

In addition, most of the time, the hand-picked features need

to be pruned to reduce their pixel dimensionality. Compar-

atively, it is often more feasible to collect a large dataset of

(𝑥, 𝑦) ∈ 𝑋 × 𝑌 to find the mapping function 𝑓 , and this af-

fords supervised learning advantage as an alternative mapping

technique compared with direct feature engineering. Specif-

ically, in the fish classification task, a large dataset of fish

images is collected, where each image 𝑥 is labelled with 𝑦

that shows the presence or absence of a fish, without the need

to hand-pick its features.

One of the main supervised learning approaches is training

a neural network, which is the foundation of deep learning,

especially for computer vision applications such as fish image

processing. We, therefore, dedicate the next subsection to

neural networks and their underlying working principles.

4.4 | Neural Networks

A ’neural network’ [76] is a computer program originally

conceived by mimicking actual cerebral neural networks that

make up the brain’s grey matter. A computer’s neural network,

a.k.a. an artificial neural network, "learns" to do a specific task

by using a large amount of data, usually through supervised

network training that does not involve any task-specific rules.

As briefly mentioned, a neural network is constructed from

three types of layers: an input layer, hidden or latent layers,

and an output layer (see Figure 6). These layers include

processing neurons within them (coloured circles in Figure

6), and connecting synapses (weights) between them (edges

in the figure).

The input layer is the gate to the network. It provides infor-

mation to the network from outside data, and no calculation is

made in this layer. Instead, input nodes pass the information

on to the hidden layer. This layer is not visible to the outside

world and serves as an abstraction of the inputs, independent

of the neural network structure. The hidden layer (layers)

processes the data received from the input layer and transfers

the results to the output layer. Finally, the output layer brings

the information that the network has learned into the outside

world.

Learning in a neural network happens through minimising

a loss function. Generally, a loss function is a function that

returns a scalar value to represent how well the network per-

forms a specific task. For example, in image classification,

the network is expected to correctly classify all the images

containing a fish as fish, and all those not including a fish, as

no fish, returning a loss value of zero. During learning, the

F I G U R E 6 A diagram of a single-layer neural network,
composed of input, hidden, and output layers.

function, f , that maps to the training examples, and can then

be used to map to new examples outside of the training ex-

amples. In order to accomplish any general task, a computer

can be programmed to find function f to map X to Y , i.e.

(f ∶ X ↦ Y ), where X is an input domain and Y is an

output domain. For example, in an image classification task,

X is the dataset of images and Y is a set of corresponding

classification labels, which determine whether an object is

present in the respective image in the dataset or not.

To determine the function f that can recognise, for in-

stance, a fish in an image using DL, one solution is to do

feature engineering. However, it is usually very difficult to

perform this, i.e. hand-pick features of the fish, based on

the domain knowledge that comes from the training dataset.

In addition, most of the time, the hand-picked features need

to be pruned to reduce their pixel dimensionality. Compar-

atively, it is often more feasible to collect a large dataset of

(x, y) ∈ X × Y to find the mapping function f , and this af-

fords supervised learning advantage as an alternative mapping

technique compared with direct feature engineering. Specif-

ically, in the fish classification task, a large dataset of fish

images is collected, where each image x is labelled with y

that shows the presence or absence of a fish, without the need

to hand-pick its features.

One of the main supervised learning approaches is training
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a neural network, which is the foundation of deep learning,

especially for computer vision applications such as fish image

processing. We, therefore, dedicate the next subsection to

neural networks and their underlying working principles.

4.4 | Neural Networks

A ’neural network’ (Cook, 2020) is a computer program origi-

nally conceived by mimicking actual cerebral neural networks

that make up the brain’s grey matter. A computer’s neural

network, a.k.a. an artificial neural network, "learns" to do a

specific task by using a large amount of data, usually through

supervised network training that does not involve any task-

specific rules. As briefly mentioned, a neural network is

constructed from three types of layers: an input layer, hidden

or latent layers, and an output layer (see Figure 6). These

layers include processing neurons within them (coloured cir-

cles in Figure 6), and connecting synapses (weights) between

them (edges in the figure).

The input layer is the gate to the network. It provides infor-

mation to the network from outside data, and no calculation is

made in this layer. Instead, input nodes pass the information

on to the hidden layer. This layer is not visible to the outside

world and serves as an abstraction of the inputs, independent

of the neural network structure. The hidden layer (layers)

processes the data received from the input layer and transfers

the results to the output layer. Finally, the output layer brings

the information that the network has learned into the outside

world.

Learning in a neural network happens through minimising

a loss function. Generally, a loss function is a function that

returns a scalar value to represent how well the network per-

forms a specific task. For example, in image classification,

the network is expected to correctly classify all the images

containing a fish as fish, and all those not including a fish, as

no fish, returning a loss value of zero. During learning, the

network receives a large amount of input data, e.g. thousands

of fish images, and eventually learns to minimise the loss

between its predicted output and the true target value. In

the case of supervised learning, these true target values are

provided to the network, to find function f described in the

previous section, to minimise the loss function. This min-

imisation happens through optimising f using an algorithm

such as Stochastic Gradient Descent (SGD) (Loshchilov and

Hutter, 2017) that helps find network weights/parameters that

minimise the loss.

4.5 | Convolutional Neural Network

CNNs are probably the most commonly used artificial neural

networks. They have been the dominant deep learning tool

in computer vision and have been widely used in underwater

marine habitat monitoring (Saleh et al., 2020). CNNs are

broadly designed after the neuronal architecture of the human

cortex but on much smaller scales (Schmidhuber, 2015). A

CNN (LeCun et al., 1998) is specifically designed for dealing

with datasets that have some spatial or topological features

(e.g. images, videos), where each of the neurons are placed

in such a manner that they overlap and thus react to multiple

spots in the visual field. A CNN neuron is a simple mathe-

matical design of the human brain’s neuron that is utilised

to transform nonlinear relationships between inputs and out-

puts in parallel. There are two primary layer types in a CNN,

i.e. convolutional layers and pooling layers, which generate

feature maps, as explained in the following subsections.

4.5.1 | Convolutional Layer

In this layer, the convolutional processes (i.e., the multiplica-

tion of a small matrix of the input neurons by a small array of

weights called filter) are used on limited fields (which depend

on the size of the filter) to avoid the need to learn billions

of weights (parameters), which would be required if all the

neurons in one layer are connected to all the neurons in the

next layer. This excessive computation is avoided through

the weight-sharing of convolutional layers combined with

filters for their corresponding feature maps. In a convolution

operation, a small matrix of the input neurons is multiplied in

its same-sized matrix, called a filter. In a convolutional layer,

this convolution operation happens by sliding the filter on the

entire input neurons, generating a feature map. Filters work

on a reduced area of the input (convolutional kernel). Convo-

lutional layers can either use the same kernel size or they can

use different kernel sizes, which makes it possible to extract

complex features from the input using fewer parameters. In

addition, weight-sharing is useful in avoiding model overfit-
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F I G U R E 7 Schematic diagram of pooling layer: (Left) single feature map spatially downsampled from a representation
block with shape 224 × 224 × 1 to a new representation of shape 112 × 112 × 1. (Right) types of pooling layer (max-pooling and
average-pooling).

ting, i.e. memorising the training data, (Abdel-Hamid et al.,

2013), while also reducing computing memory requirements

and enhancing learning performance (Korekado et al., 2003).

4.5.2 | Pooling Layer

This layer is used to reduce the spatial dimension (not depth)

of the input features and add control for avoiding overfitting

by reducing the number of representations with a specified

spatial size. Pooling operations can be done in two differ-

ent ways, i.e. Max and Average pooling. In both methods

(see Figure 7), an input image is down-scaled in size, by

taking the maximum of 4 pixels and down-sampling them

to one pixel. Pooling layers are systematically implemented

between convolutional layers in conventional CNN architec-

tures. The pooling layers work on each channel (activation

map) individually and downsample them spatially. By having

fewer spatial information, pooling layers make a CNN more

computationally efficient.

4.5.3 | Feature Maps

Feature Maps, also called Activation Maps, are the result

of applying convolutional filters or feature detectors to the

preceding layer image. The filters are moved on the preceding

layer by a specified number of pixels. For instance, in Figure

8, there are 37 filters of the size 3 × 3 that move across the

input image with a stride of 1 and result in 37 feature maps.

The majority of CNN layers are convolutional layers.

These layers are used to apply the same convolutional filtering

operation to different parts of the image, creating “neurons”

that can then be used to detect features, like the edges and

corners. A collection of weights connects each neuron in a

convolutional layer to the preceding layer’s feature maps, or

to the input layer image. The feature maps help visualise the

features that the CNN is learning to give an understanding of

the network learning process, as shown in Figure 8.

5 | APPLICATIONS OF DEEP
LEARNING IN FISH-HABITAT
MONITORING

In a recent special issue titled "Applications of machine learn-

ing and artificial intelligence in marine science" published

in the International Council for the Exploration of the Sea

(ICES) journal of marine science (Proud et al., 2020), many

uses of deep learning and CNNs have been shown. These

include identifying the species of harvested fish (Lu et al.,

2020), analysis of fisheries surveillance videos (French et al.,

2020), and natural mortality estimation (Liu et al., 2020).

Other published works have used CNN for other marine ap-

plications such as automatic vessel detection (Chen et al.,

2019), and analysis of deep-sea mineral exploration (Juliani

and Juliani, 2021). However, in this paper we focus on using
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CNNs for CV tasks.

These tasks are mainly designed to extract knowledge

from underwater videos and images. Despite the recent use of

CNNs for various visual analysis tasks such as segmentation

(Garcia et al.; Alshdaifat et al., 2020; Islam et al., 2020;

Zhang et al., 2022), localisation (Su et al., 2020; Jalal et al.,

2020; Knausgård et al., 2021), and counting (Tarling et al.,

2021; Schneider and Zhuang, 2020; Ditria et al., 2021), the

most common and the widest studied CV task in underwater

fish habitat monitoring has been classification. Therefore, in

this paper, we focus mainly on classification of underwater

fish images. We survey some of the latest works on fish

classification and provide a high-level technical discussion of

these works.

The task of classification is defined as classifying the in-

put samples into different categories, usually based on the

presence or absence of a certain object/class, in binary classi-

fication; or the presence of several different objects belonging

to different classes, in multi-class classification (Ismail Fawaz

et al., 2019). Similarly, image classification is concerned with

assigning a label to a whole image based on the objects in

that image. Conceivably, an image can be labelled as fish,

when there is a fish present in it, or negative when no fish

is present. Similarly, images of different species should be

automatically assigned to their respective classes or given a

label representing their class.

Classification is a difficult process if done manually, be-

cause an image may need to be categorised into more than

one class. In addition, there may be thousands of images to

be classified, which makes the task very time-consuming and

prone to human error. Consequently, automation can help

perform classification quicker and more efficiently.

In the context of fish and marine habitat monitoring, CV

offers a low-cost, long-term, and non-destructive observation

opportunity. One of the initial tasks performed using deep

learning on CV-collected marine habitat images is fish clas-

sification, which is a key component of any intelligent fish

monitoring systems, because it may activate further process-

ing on the fish image. However, underwater monitoring based

on image and video processing pose numerous challenges re-

lated to the hostile condition under which the fish images are

collected. These include poor underwater image quality due

to low light and water turbidity, which result in low resolution

and contrast. Additionally, fish movements in an uncontrolled

environment can create distortion, deformations, occlusion,

and overlapping. Many previous works (Boom et al., 2012;

Takada et al., 2014; Martinez-de Dios et al., 2003) have tried

to address these challenges. Some of these works focused

on devising new methods to properly extract traditional low-

level features such as colours and textures using mean shift

algorithm (Boudhane and Nsiri, 2016), in the presence of

the challenges. However, these works have not been very

successful compared to DL approaches.

With the inception of CNNs, many researchers utilised

them to extract both high-level and low-level features of input

images. These features, which can be automatically detected

by the CNN, carry extensive semantic information that can be

applied to recognise objects in an image. In addition, CNNs

have the ability to address the challenges outlined above.

Therefore, they are currently the main underwater image pro-

cessing tool in literature for fish classification, as shown in

Tables 2 and 3. These tables list some of the latest classifica-

tion works, while providing details about the DL models used

and the framework within which the model was implemented.

It also provides information about the data source, as well

as the pre-processing of the data and its labels, while report-

ing the Classification Accuracy (CA) and a short comparison

with other methods if the reviewed work has provided it. One

of the main metrics when comparing different methods for

classification is their CA, which is defined as the percentage

of correct predictions by the network.

CA = (TP + TN)∕(TP + TN + FP + FN), (1)

where TP (True Positive) and TN (True Negative) represent

the number of correctly classified instances, while FP (False

Positive) and FN (False Negative) represent the number of

incorrectly classified instances. For multi-class classification,

CA is averaged among all the classes.

DL algorithms are gaining momentum in their growing

accuracy in different applications. However, they have inher-

ent limitations, which should be considered before choosing

a DL algorithm for a given application. This is because

accuracy, for example in a fish classification task, may sig-

nificantly differ from true accuracy due to the distribution of

samples in the training and testing populations. To address
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F I G U R E 8 Schematic diagram of feature maps of the CNN used in the classification task. The feature map is a
two-dimensional representation of an input image. Here (3 × 3) is the size of the filter slid over the entire image to generate
feature maps.

this limitation of classification accuracy, the Receiver Operat-

ing Characteristics (ROC) (Krupinski, 2017) and Area Under

The Curve (AUC) (Janssens and Martens, 2020) are widely

used as a standard measure for determining the performance

of a model in a binary classification setting. Their definition

is very similar to accuracy but they help one understand the

probability that the classifier produces correct outputs with

desired levels of true positives and false negatives, using a

certain classification threshold.

The works in Tables 2 and 3 can be divided into two

general categories. The first category deals with designing

effective CNNs that address the challenge of unconstrained,

complex, and noisy underwater scenes, while the second

category also tries to address the usual problem of limited

fish training datasets.

As mentioned, when processing unconstrained underwater

scenes specific attention should be paid to implementing a

classification approach that is capable of handling variations

in light intensity, fish orientation, and background environ-

ments, and similarity in shape and patterns among fish of

various species. In order to overcome these challenge and

to improve classification accuracy, various works have de-

vised different methodologies. In (Varalakshmi and Julanta

Leela Rachel, 2019), the authors used different activation

functions to examine the most suitable for fish classification,

while in (Sarigül and Avci, 2017) different number of con-

volutional layers and different filter sizes were examined. In

(Salman et al., 2016), the authors used a CNN model in a hier-

archical feature combination setup to learn species-dependent

visual features for better accuracy. In another work (Qin et al.,

2016), principal-component analysis was used in two convo-

lutional layers, followed by binary hashing in the non-linear

layer and block-wise histograms in the feature pooling layer.

Furthermore, a single-image super-resolution method was

used in (Sun et al., 2017) to resolve the problem of limited

discriminative information of low-resolution images. More-

over, (Chen et al., 2018) used two independent classification

branches, with the first branch aiming to handle the variation

of pose and scale of fish and extract discriminative features,

and the second branch making use of context information to

accurately infer the type of fish. The reviewed works show

that depending on the type of environment and fish species

similarities in the dataset under consideration, various tech-

niques should be considered and investigated to find the best

classification accuracy.

As already mentioned, data gathering in the wild is some-

times very difficult and challenging, thus to maximize the

success rate of training, it is essential to consider gathering

field data from the beginning of the project. This ensures

that the collected training dataset has good sample diversity

including samples collected at different environmental condi-

tions such as water turbidity and salinity, and it captures fish

species similarities. Diversity and comprehensiveness in the

dataset is one of the key factors in reaching high classifica-
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tion accuracies when the model is deployed in the real world.

Data augmentation is another important method that can help

improve the classification accuracy, through increasing the

dataset size and diversity. An alternative to data augmen-

tation is transfer learning, but the model should be always

fine-tuned to the new dataset to maximize accuracy. Image

pre-processing is another important technique that can help

improve classification accuracy, and should be considered

when working with new fish datasets.

Dataset limitation, i.e. having limited number of fish im-

ages from different species, and/or having few numbers of

different fish etc, is another challenge in underwater fish habi-

tat monitoring in general and in fish classification, in specific.

This challenge has been addressed in (Saleh et al., 2020; Jin

and Liang, 2017; Rathi et al., 2017; Tamou et al., 2018) using

transfer learning.

Transfer learning is a ML method that works by trans-

ferring information obtained while learning one problem or

domain to a different but related problem or domain. Com-

paring a randomly initialised classifier with another one pre-

trained on ImageNet (Russakovsky et al., 2015), Saleh et al.

(Saleh et al., 2020) achieved a fish classification accuracy of

99%, outperforming the randomly-initialised classifier, sig-

nificantly. This finding shows that transfer learning can bring

learned information from the ImageNet learning domain to

fish classification domain and can be a useful and crucial

method for evaluating fish environments. Transfer learning

was also used in (Konovalov et al., 2019b) where general-

domain above-water fish image learning was transfered and

used for underwater fish classification. In the same way, to

train large-scale models that are able to generate reasonable

results, (Zhuang et al., 2020) collected 1000 fish categories

with 54,459 unconstrained images from various professional

fish websites and Google engine.

In addition to transfer learning, some works have devel-

oped specific machine learning techniques suiting their ap-

plications. For instance, in a previous study (Siddiqui et al.,

2018), a pre-trained CNN was used as a generalised feature

extractor to avoid the need for a large amount of training data.

The authors showed that by feeding the CNN-extracted fea-

tures to a Support Vector Machine (SVM) classifier (Pisner

and Schnyer, 2019), a CA of 94.3% for fish species classi-

fication can be achieved, which significantly outperforms

a stand-alone CNN achieving an accuracy of 53.5%. Also,

(Deep and Dash, 2019) used the same techniques in (Siddiqui

et al., 2018) to achieve a CA of 98.79%. In addition, (Iqbal

et al., 2021) developed a new technique for fish classifica-

tion by modifying AlexNet (Krizhevsky et al., 2012) model

with fewer number of layers. Moreover, (Konovalov et al.,

2019a) presented a labelling efficient method of training a

CNN-based fish-detector on a small dataset by adding 27,000

above-water and underwater fish images.

CNNs are sometimes capable of surpassing human perfor-

mance in identifying fish in underwater images. By training a

CNN on 900, 000 images, Villon et al. (Villon et al., 2018)

could achieve a CA of 94.9% while human CA was only

89.3%. This result was achieved mainly because the CNN

was able to successfully distinguish fish that were partially

occluded by corals or other fish, while human could not. Fur-

thermore, the best CNN model developed in (Villon et al.,

2018) takes 0.06 seconds on average to identify each fish

using typical hardware (Titan X GPU). This demonstrates

that DL techniques can conduct accurate fish classification

on underwater images cost-effectively and efficiently. This fa-

cilitates monitoring underwater fish and can advance marine

studies concerned with fish ecology.

If DL methods are going to be deployed widely for dif-

ferent marine applications such as fish classification, there

is a need to implement them efficiently, so that they can run

on low-power embedded systems, which can run in real-time

on mobile devices such as underwater drones. To that end,

Meng et al. (Meng et al., 2018) have developed an underwater

drone with a panoramic camera for recognising fish species

in a natural lake to help protect the environment. They have

trained an efficient CNN for fish recognition and achieved

87% accuracy while requiring only 6 seconds to identify 115

images. This promising result shows that, DL can be used

to classify underwater fish while also satisfying the real-time

conditions of mobile monitoring devices. In addition, other

efficient hardware design approaches that have proven useful

in reducing power consumption and increasing speed in clas-

sification task in other domains such as agriculture (Lammie

et al., 2019) can be adopted on edge underwater processors.

In DL applications, video storage is currently a bottleneck

that may be bypassed with real-time algorithms, because

they only need to store some and not all the video frames in
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memory and process them in-situ, as they become available.

This eliminates the time it takes for all the frames to be stored

and retrieved from memory. This is helpful in situations

where large amounts of data have to be processed quickly, for

example, in an underwater fish observation camera, where

frames are collected continuously and should either be stored

locally or transfered to surface, which are both costly and

mostly impossible. Using real-time processing algorithms,

the frames are processed and only the information obtained,

i.e. the number of fish in a frame are sent or stored, which is

much lighter than the entire frame.

6 | CHALLENGES AND AP-
PROACHES TO ADDRESS THEM

Despite the rapid improvement of DL for marine habitat moni-

toring through visual analysis, four main challenges still exist.

The first challenge is to develop models that can generalise

their learning and perform well on new unseen data samples.

The second challenge is limited datasets available for general

DL tasks, and in particular for marine visual processing tasks.

The third challenge is lower image quality in underwater

scenarios. The fourth challenge is the gap between DL and

ecology.

To address these challenges, various computer algorithms

and techniques have been developed. In the following subsec-

tions, we explain the challenges in detail and briefly review

various approaches to address them. However, we do not

intend to include details of these approaches as they are out

of the scope of this paper. The interested reader is invited to

refer to relevant DL materials and the cited papers.

6.1 | Model Generalisation

One of the most difficult challenges in DL is to improve deep

convolutional networks generalisation abilities. This refers

to the gap between a model’s performance on previously

observed data (i.e. training data) and data it has never seen

before (i.e. testing data). A wide gap between the training and

validation accuracy is usually a sign of overfitting. Overfitting

occurs when the model accurately predicts the training data,

mostly because it has memorised the training data instead of

learning their features.

One way to monitor overfitting is by plotting the training

and validation accuracy at each epoch during training. That

way, we will see that if the gap between the validation and

training acuuracy/error is widening (over- or under-fitting) or

narrowing (learning). A well-known and effective method

for improving the generalisability of a DL model is to use

regularisation (Kukačka et al., 2017). Some of the regularisa-

tion methods applied to fish and marine habitat monitoring

domains include transfer learning (Zurowietz and Nattkem-

per, 2020), batch normalisation (Islam et al., 2020), dropout

(Iqbal et al., 2021), and using a regularisation term (Tarling

et al., 2021).

6.2 | Dataset Limitation

Another challenge of training DL models is the limited

dataset. DL models require enormous datasets for training.

Unfortunately, most datasets are large, expensive, and time-

consuming to build. For this reason, model training is usually

conducted by collecting samples from a small number of

datasets, rather than from a large number of datasets.

A dataset can be categorised into two parts: labelled data

and unlabeled data. The labelled data is the set of data that

needs the labelling of classes, e.g. fish species in an image, or

absence or presence of fish in an image. The unlabeled data

is the set of data that has not been processed. The labelled

data forms the training set whose size is closely related to

the accuracy of the trained model. The larger the training

set, the more accurate the trained model. Large training set,

however, are expensive to build. They require a large number

of resources, such as people-hours, space, and money, making

it very difficult for many researchers to achieve them, and in

turn hinders their research.

Since it is difficult to obtain a large labelled dataset, vari-

ous techniques have been proposed to address this challenge.

Some of the techniques applied to the fish and marine habi-

tat monitoring domains include transfer learning (Qiu et al.,

2018), data augmentation (Saleh et al., 2020; Sarigül and

Avci, 2017), using hybrid features (Mahmood et al., 2016;

Cao et al., 2016; Blanchet et al., 2016), weakly supervised

learning (Laradji et al., 2021), and active learning (Nilssen

et al., 2017).
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6.3 | Image Quality

Underwater image recognition’s average accuracy lags signif-

icantly behind that of terrestrial image recognition. This is

mostly owing to the low quality of underwater photos, which

frequently exhibit blurring, and colour deterioration, caused

by the physical characteristics of the water and the hostile

underwater environment.

Most CV applications perform some initial preprocess-

ing of images before feeding them to their image processor.

In underwater scenarios, these preprocessing techniques are

typically used to enhance the image quality. Preprocessing

can also help with the red channel information loss problem,

which is required for obtaining relevant colour data. The red

channel information loss problem is about losing the actual

intensity of the red colour in the scene, for instance, com-

pared to the blue and green colour channels. This is more

pronounced in the underwater environment and as the depth

increases, which attenuates red channel values more strongly

than the other colour channels. We should, therefore, consider

that the red channel value depends not only on the distance

from the subject but also on the intensity of the light reflected

by the subject, as the reflection of intense light is typically

much stronger than that of a light of a very low intensity.

Another issue that arises in the detection of a specific target

in an underwater image is the fact that multiple pixels can

potentially be activated in the image in theform of an object.

For example, sunlight shining through a periscope lens can

cause spurious activation of a given pixel. There is a need

for a reliable method and system for determining whether

a given pixel in a remote underwater image is activated by

some cause other than the presence of a target in the area of

the image.

Preprocessing of underwater photos has been extensively

researched, and several solutions have been devised for cor-

recting typical underwater image artefacts (Carlevaris-Bianco

et al., 2010; Kumar and Prabhaka, 2011). However, the image

quality produced by these approaches is subjective to the ob-

server, and because acquisition settings vary so widely, these

methods may not be applicable to all datasets. According to

empirical results (Beijbom et al., 2012; Shihavuddin et al.,

2013), the current tendency appears to be to perform picture

repair and enhancement processes based on the dataset, i.e.

determining the most appropriate preprocessing strategy for

a specific dataset. This strategy also depends on the purpose

(e.g labelling, classification or both) of the images in the

dataset.

In addition, basic image enhancement techniques have

been shown to be effective in improving image quality. For

instance, in (Cao et al., 2016) increasing the uniformity of the

background was used to boost picture contrast in underwater

images for marine animal classification. This is a strong

indicator that simple enhancing approaches might result in

increased performance. Furthermore, some recent studies

have employed DL algorithms to enhance image quality using

low-quality images. In (He and Li, 2019), for example, end-

to-end mapping is performed between low-resolution and

high-resolution images.

When compared to state-of-the-art handcrafted and tra-

ditional image enhancement methods, DL-based algorithms

typically perform better in addressing picture quality in ter-

restrial photos. However, significant new research is required

to customise these DL-based techniques for underwater im-

ages and maritime datasets. This poses as a future research

opportunity for image quality enhancement in fish monitoring

applications. Below, we discuss some more opportunities.

6.4 | Deep Learning Gap

DL is an emerging field that has a lot to offer in terms of

ecology. The first and most obvious ecological applications

are fish classification or fish count. However, there is still a

gap between the DL-predicted fish counts and, for example,

absolute abundance (fish per area or volume unit). The exist-

ing DL literature discusses mainly the use of CNNs for the

ecological problems of species classification or fish count-

ing. However, the absolute abundance of fish is important for

ecological research and species conservation.

Another important problem in ecological research is fish

population dynamics. A step in addressing this problem is to

analyze long-term data on fish movements and fish densities.

However, such long-term datasets are relatively rare and ex-

pensive to obtain. Hence, there is a need to obtain as much

information as possible from the small amount of data given.

This requires novel methods to give an accurate long-term

estimate of fish densities or, even better, an estimate of the
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absolute abundance of fish.

Other exemplar ecological questions that can be addressed

using DL include species habitat selection, or the relation-

ship between the physical environment and the life history

of species (Van Allen et al., 2012; Shryock et al., 2014; Vin-

cenzi et al., 2019). DL methods can help us with this because

they can take advantage of all the available information. The

current state of DL research can be improved by consider-

ing alternative network architectures, more complex training

algorithms, and more detailed knowledge of the problem do-

main. The existing DL literature suggests that we may see

many new methods in the future. Most of them still do not

have sufficient data to prove that they can outperform exist-

ing methods. There are, however, examples of successful

applications, such as fish classification. For many ecological

problems, a DL method can give very accurate predictions

of fish densities or absolute abundance. However, it remains

unclear whether this accuracy can be obtained only with the

appropriate method or whether this is a property of the par-

ticular dataset on which the method was trained. From this

perspective, the development of a general method for predict-

ing fish densities and absolute abundance from very little data

is a major problem in ecology.

One potential approach to solving this problem is to take

advantage of DL models trained on other datasets, as long as

they are related to the fish density/abundance problem. The

ecological literature suggests that the relationship between

the physical environment and the life history of species (e.g.,

fish density) is likely to be complex because the physical

environment differs from species to species. Therefore, we

may be able to find many similar datasets on other related

problems (e.g., environmental science or engineering). In ad-

dition to developing and testing general methods to estimate

the absolute abundance of fish from very little data, there is

a need to develop general methods that can take advantage

of the ecological knowledge and domain-specific data from a

particular problem.

7 | OPPORTUNITIES IN APPLICA-
TION OF DL TO FISH HABITAT
MONITORING

New methods and techniques will need to be devised to im-

prove the accuracy of deep learning models for various marine

habitat monitoring applications and to bring them closer to

their terrestrial counterparts.

7.1 | Spatio-temporal and Image Data
Fusion

Most of the current marine habitat monitoring and visual pro-

cessing tools only use image-based data to train their model

to understand the habitats and monitor the environment. In

such tools, each frame or image is separately processed and

spatiotemporal correlations across neighbouring frames are

simply overlooked. Exploiting this extra information and

fusing it with the image-processing model can be beneficial

(Yang et al., 2020). For instance, fusing a master-slave camera

setup with LSTM (Wang et al., 2017b) can help to learn the

kinematic model of fish in a 3D fish tracking system. Future

works should consider including spatiotemporal information

in training their model and understanding the scene. In partic-

ular, approaches similar to Long short-term memory (LSTM)

networks or other RNN models can be used in conjunction

with CNNs, to obtain improved classification or prediction

outcomes by taking advantage of the time-domain informa-

tion. For example, An RNN and a CNN model are combined

in (Måløy et al., 2019) to achieve better performance for

salmon feeding action recognition from underwater videos.

In (Peng et al., 2019), the authors propose a spatio-temporal

recurrent network to classify behavioural patterns. Similar

schemes have been proposed in (Xu et al., 2021). However,

their performance and complexity heavily rely on the ability

of the RNN to track the temporal relations of the frames and

on the effectiveness of the CNN.

For instance, estimating and monitoring fish development

based on previous continuous observations, and analysing

fish behaviour are some of the applications where time do-

main information will be not only useful but also critical.

Such models can also be used to build novel video-based

protocols for the surveillance of critically endangered reef
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fish biodiversity.

7.2 | Underwater Embedded and Edge
Processing

DNNs have proven to be successful in both industry and re-

search in recent years, particularly for CV tasks. Specifically,

large-scale DL models have had a lot of success in real-world

scenarios with large-scale data. This is mainly due to their

capacity to encode vast amounts of data and handle millions

of model parameters that enhance generalisation performance

when new data is evaluated. However, this high computa-

tional complexity and substantial storage requirement makes

them difficult to use in real-time applications, especially on

devices with restricted resources (e.g. embedded devices and

underwater edge processors for online monitoring). One ap-

proach to address this is to use compressed networks such as

binarised neural networks, which have shown promise toward

reaching low-power and high-speed edge inference engines

(Lammie et al., 2019), for near-underwater-sensor processing.

This can significantly improve underwater image analysis ca-

pabilities, because the collected large-volume images do not

need to be transferred to surface for processing, and only the

low-volume results can be communicated to shore. This also

solves another problem, which is the challenging underwater

communication (Jahanbakht et al., 2021).

7.3 | Combining Data from Multiple
Platforms

The use of different data collection platforms such as au-

tonomous underwater vehicles (AUVs) or occupied sub-

marines, can provide different image data from different

perspectives of the same or different underwater habitats,

to train more effective DNNs. In addition, using simultane-

ous data from multiple platforms can give more monitoring

information, for instance, of fish distribution patterns, espe-

cially in situations where the number of platforms is limited.

However, combining data from multiple platforms introduces

some challenges such as the lack of ground truth (e.g., the

number of fish in the sampled area for all the platforms), and

the need to develop techniques that can integrate these data in

a robust manner. Future research can work toward addressing

these challenges to exploit the significant benefits of multiple

platform data combination.

7.4 | Automated Fish Measurement and
Monitoring

DL can be used to achieve automated fish measurements,

which may be useful in underwater fish monitoring, for in-

stance to survey fish growth (Yang et al., 2020) through mon-

itoring of fish length (Palmer et al., 2022) and abundance

(Ditria et al., 2019). Here, abundance means the number of

fish in an image or video frame, and not the fish count per area

or volume unit. In addition, automated measurements can

realise remote fish assessments, for example when the moni-

toring locations are remote, or the environmental conditions

and or potential hazards do not allow frequent underwater

scouting by human.

DL can also be used for automation of monitoring of

other fish biological variables such as their movement dynam-

ics, present species, and their abundance and biomass. On

top of these, DL can be used to automate understanding of

environmental and habitat features. To achieve these, new

datasets should be collected, and new or existing DL tech-

niques should be devised or customised in future research.

8 | CONCLUSION

Deep Learning (DL) sits at the forefront of the machine learn-

ing technologies providing the processing power needed to

enable underwater video to fulfill its promise as a critical tool

for visual sampling of fish. It offers efficient and accurate

solutions to the challenges of adverse water conditions, high

similarity between fish species, cluttered backgrounds, oc-

clusions among fish, that have limited the spatio-temporal

consistency of underwater video quality. As a result, DL,

complemented by many other advances in monitoring hard-

ware and underwater communication technologies, opens the

way for underwater video to provide comprehensive fish sam-

pling. This can span from shallow fresh and marine waters

to the deep ocean, opening the way for the development of

the truly comparative understanding of marine and aquatic

fish fauna and ecosystems that has hitherto been impossible.
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At least as importantly, DL solves the problem of handling

the vast quantities of data produced by underwater video in a

consistent and cost-effective way, converting a prohibitively

expensive activity into a simple issue of computer process-

ing. By enabling the processing of vast quantities of data,

DL allows underwater fish video surveys to be conducted

with unprecedented levels of spatial and temporal replication

enabling the massive knowledge advances that flow from the

ability of underwater videos to be deployed contemporane-

ously across many habitats, and at many spatial scales, or to

provide continuous data over time.

DL, and associated techniques, have the potential for

widespread use in marine habitat monitoring for (1) data clas-

sification and feature extraction to improve the quality of au-

tomatic monitoring tools; or (2) to provide a reliable means of

surveying fish habitats and understanding their movement dy-

namics. While this will allow marine ecosystem researchers

and practitioners to increase the efficiency of their monitoring

efforts, effective development of DL will require concen-

trated and coordinated data collection, model development,

and model deployment efforts, as well as transparent and

reproducible research data and tools, which help us reach our

target sooner.
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Garza, J. C. (2019) Effects of species invasion on population
dynamics, vital rates and life histories of the native species.
Population Ecology, 61, 25–34.

Wang, B. and Weiland, J. D. (2017) Visual system. In Neuro-
prosthetics: Theory and Practice: Second Edition.

Wang, G., Hwang, J. N., Williams, K., Wallace, F. and Rose, C. S.
(2017a) Shrinking encoding with two-level codebook learn-
ing for fine-grained fish recognition. In Proceedings - 2nd
Workshop on Computer Vision for Analysis of Underwater
Imagery, CVAUI 2016 - In Conjunction with International
Conference on Pattern Recognition, ICPR 2016, 31–36.

Wang, S. H., Zhao, J., Liu, X., Qian, Z.-M., Liu, Y.
and Chen, Y. Q. (2017b) 3D tracking swimming fish

http://www.mdpi.com/2072-4292/5/4/1809
http://www.mdpi.com/2218-6581/3/2/149
http://www.mdpi.com/2218-6581/3/2/149
http://www.echoview.com.
http://www.echoview.com.


SALEH ET AL. 29

school with learned kinematic model using LSTM net-
work. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 1068–1072. IEEE.
URL: http://ieeexplore.ieee.org/document/
7952320/.

Willi, M., Pitman, R. T., Cardoso, A. W., Locke, C., Swanson,
A., Boyer, A., Veldthuis, M. and Fortson, L. (2019) Identify-
ing animal species in camera trap images using deep learn-
ing and citizen science. Methods in Ecology and Evolution,
10, 80–91. URL: https://onlinelibrary.wiley.
com/doi/10.1111/2041-210X.13099.

Xu, J.-L., Hugelier, S., Zhu, H. and Gowen, A. A. (2021)
Deep learning for classification of time series spec-
tral images using combined multi-temporal and spec-
tral features. Analytica Chimica Acta, 1143, 9–
20. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0003267020311429.

Xu, L., Bennamoun, M., An, S., Sohel, F. and Boussaid,
F. (2019) Deep learning for marine species recognition.
In Smart Innovation, Systems and Technologies, vol. 136,
129–145. Springer Science and Business Media Deutsch-
land GmbH. URL: http://link.springer.com/10.
1007/978-3-030-11479-4_7.

Yang, X., Zhang, S., Liu, J., Gao, Q., Dong, S. and Zhou, C.
(2020) Deep learning for smart fish farming: applications,
opportunities and challenges.

Zarco-Perello, S. and Enríquez, S. (2019) Remote under-
water video reveals higher fish diversity and abun-
dance in seagrass meadows, and habitat differences in
trophic interactions. Scientific reports, 9, 6596. URL:
http://www.ncbi.nlm.nih.gov/pubmed/

31036932http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid=PMC6488625.

Zhang, W., Wu, C. and Bao, Z. (2022) DPANet: Dual
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