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Abstract

Many computer vision approaches take for granted positive

answers to questions such as “Are semantic categories vi-

sually separable?” and “Is visual similarity correlated to

semantic similarity?”. In this paper, we study experimen-

tally whether these assumptions hold and show parallels

to questions investigated in cognitive science about the hu-

man visual system. The insights gained from our analysis

enable building a novel distance function between images

assessing whether they are from the same basic-level cat-

egory. This function goes beyond direct visual distance as

it also exploits semantic similarity measured through Ima-

geNet. We demonstrate experimentally that it outperforms

purely visual distances.

1. Introduction

Categories are a central subject in both computer vision

and cognitive science. Cognitive psychology [36] studies

categories as semantic units in the human mind, and in-

vestigates questions such as “How do humans define cat-

egories?” [36], “How are categories represented (in the hu-

man mind)?” [36], and “Are there conceptual prototypes for

a category?” [30, 31]. The ability to reason at the category

level is even considered a basis of human intelligence [20].

For the human visual system, cognitive science has

found positive answers to questions such as “Do seman-

tic categories form clusters in visual space?”, “Are there

visual prototypes for a semantic category?”, “Is visual sim-

ilarity correlated to semantic similarity?”, and “Are seman-

tic categories visually separable?”. However, the answers

to these questions are currently unclear when visual similar-

ity is measured by modern computer vision techniques. In

spite of this, many recognition systems implictly build on

the assumption of positive answers. In this paper we study

experimentally whether these assumptions hold. We inves-

tigate the relations between visual and semantic category

similarity on the recent ImageNet dataset [7]. This large-

scale dataset contains about 10 Million images in about

15’000 categories organized according to the semantic hi-

erarchy of WordNet [11] (fig. 1). More precisely, we study

the following aspects:

(i) We analyze how the visual variability within a cate-

gory changes with depth in the hierarchy, i.e. the size of its

semantic domain. In particular we test whether a smaller

semantic domain [15] corresponds to a smaller visual vari-

ability (sec. 3).

(ii) We determine a visual prototype for every cate-

gory and measure how well it represents the category as

a whole (sec. 3). This analysis ties in with prototype the-

ory [30, 31] from cognitive science. It states that for suf-

ficiently specific categories, e.g. bird, humans agree on a

single prototype defined by a typical shape and attributes

such as can fly and feathered. For broader categories in-

stead, such as animal, this is not the case.

(iii) We measure the relation between semantic and vi-

sual similarity (sec. 4). In cognitive psychology, categories

are typically defined by grouping “similar objects”, and

super-categories by grouping “similar categories” [36]. Are

these conceptual similarities in categories defined by hu-

mans reflected in the visual similarity between images of

these categories? E.g. are images of different dogs more

similar than images of dogs and cows, and in turn more

similar than images of cows and motorbikes? We attempt

to answer the question whether semantic similarity implies

visual similarity, which is assumed by most visual recogni-

tion approaches and which has been shown to be true for the

human visual system [30, 31].

(iv) We analyze how within-class and between-class vi-

sual similarities change as a function of how broadly classes

are semantically defined (sec. 4). Our analysis focuses on

how well such classes are visually separable. It provides ev-

idence for answering whether computer vision algorithms

have a chance to classify across semantically meaningful

class boundaries. While humans can distinguish tens of

thousands of categories in visual as well as in semantic

space [3], it is currently not clear whether it is possible to

scale computer vision algorithms to that extent and if cur-

rent image descriptors are powerful enough.

The insights gained during the above investigations en-
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Figure 1: The ImageNet hierarchy. Some paths in the hierarchy with their representative

images determined as in sec. 3.
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Figure 2: Example prototype images.

Best (a) and worst (b) prototypes. Cat-

egory names are above the images, q-

scores in the bottom right corner.

able to build a new distance between pairs of images which

assesses whether they show the same basic-level category

(e.g. ”car”, ”dog”; these are important as they are the

level at which human most frequently reason [32]). As

opposed to previous works on distance functions measur-

ing purely the visual similarity between the two query im-

ages [1, 13, 14, 22, 24, 28], our distance employs ImageNet

as a large pool of background data enabling to make ad-

ditional semantic connections beyond direct visual similar-

ity (sec. 5). As we experimentally demonstrate, this new

distance function outperforms pure visual distances. This

makes it valuable for object recognition, image annotation,

and image retrieval, where it can be used in a nearest neigh-

bor classifier or as a kernel in an SVM.

The paper is structured as follows. After introducting

the ImageNet dataset (sec. 2), we analyze the visual scale

of categories as a function of their semantic domain (sec. 3)

and the relation between visual and semantic similarity (sec.

4). Section 5 presents our novel distance between two im-

ages and evaluate it experimentally on ImageNet. Related

work is discussed in sec. 6 and concluding remarks are

given in sec. 7.

2. The ImageNet Dataset

We build our analysis on the ImageNet dataset [7] (Fall

2009 release). ImageNet contains 9’353’897 images in

14’791 categories organized according to the semantic hi-

erarchy of WordNet [11]. A category in ImageNet corre-

sponds to a synonym set (synset) in WordNet. ImageNet

covers a subset of the nouns of WordNet, organized in 12

top-level categories, e.g. animal, instrumentality (fig. 1).

Additionally, for 141’731 images from 548 synsets bound-

ing boxes are available1. Compared to other large datasets,

e.g. TinyImages [37], ImageNet offers two advantages: (i)

the images are in higher resolution. (ii) after downloading

the images from image search engines, they were manu-

ally verified to contain the relevant concepts using Ama-

zon Mechanical Turk (AMT) [7]. Every node (category) in

the hierarchy contains on average 632 images unique to that

node. Moreover, every node also contains all images in its

subtrees (subcategories). In the example in fig. 1, the “an-

imal” node includes all images of its children, e.g. “chor-

date”, “vertebrate”, “mammal”, etc., plus some images of

its own.

3. The Visual Scale of Categories

First we investigate the visual scale of categories at differ-

ent depths in the hierarchy. This measures how much visual

variability there is among instances of a category. We repre-

sent images using GIST [25], which was shown to describe

whole images well [8, 18]. GIST consists of Gabor ori-

entation histograms computed over cells in a regular grid.

(fig. 3f visualizes a GIST descriptor of the image in the ‘an-

imal’ node of fig. 1). We use GIST with the default param-

eters [25] (3 color planes, 4x4 cells, and 3 scales with 8, 8

and 4 orientations respectively, giving 960 dimensions).

We measure the visual scale rS of a category S as the
average distance between its mean GIST descriptor µS and

1These bounding boxes come from the ImageNet Spring 2010 release.
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Figure 3: Scales of categories at different depths. (a,b): histograms of visual scale at depth d = 3, 12 with r3 = 0.25, r12 = 0.20 for

FI; (c,d): histograms of visual scale at depth d = 3, 12 with r3 = 0.27, r12 = 0.18 for BB (these histograms are sparser since only 142K

of the 10M images are annotated with BB) (e): average visual scale rd as a function of depth d for FI and BB. (f): GIST descriptor with 5

orientations in 4 scales for the image in the node “animal” of fig. 1. Every subpanel shows the average Gabor responses on a 4×4 grid on

the image.

all images in S

rS = 1
|S|

∑

I∈S

D(I, µS) (1)

where D(I, µS) is the squared Euclidean distance.

We study the distribution of visual scales among all cate-

gories at a given depth in the hierarchy for both full images

(FI) and objects cropped according to their bounding-box

annotation (BB). We measure how rS changes with depth

both when measured on FI and on BB.

As fig. 3a-d show for two depths, the scale of cate-

gories at a depth is roughly Gaussian and very peaked,

for both FI and BB. Moreover, the average visual scale

rd over the categories at depth d steadily decreases with d

(fig. 3e). Interestingly, this corresponds to categories cov-

ering smaller and smaller semantic domains (e.g. at depth

3 there are animal/chordate and instrumentality/transport;

while at depth 11 there are animal/.../Chihuahua and instru-

mentality/.../minivan). These results show that categories

with smaller semantic domains also have smaller visual

variability. This confirms human intuition and provides ex-

perimental support for this basic assumption made in com-

puter vision. We performed a similar analysis with other

definitions of visual scale and observed the same behavior

(e.g. the average dimension-wise variance of the descrip-

tors)
Closely related to the visual scale of a category is how

well it can be represented using a single prototype image.
We select as the prototype µ̂S of a category S the image I
minimizing the sum of squared distances (SSD) to all im-
ages in S which can be computed efficiently as the image
closest to the synset mean µS

µ̂S = argmin
I∈S

∑

I′∈S

D(I, I ′) = argmin
I∈S

D(I, µS) (2)

Further, we consider q(µ̂S) = 1

|S|

∑
I∈S D(I, µ̂S) as a

measure of quality of µ̂S (i.e. normalized SSD to all im-

ages in S). We did this analysis for FI. To ensure stable

estimations, we consider only categories with at least 100

images. Visually compact categories will be described well

using a single prototype. The prototypes for the categories

with the best and worst q-scores are shown in fig. 2. The

best prototypes come from specific natural categories. For

example the images of “rift valley”2 are mostly landscapes

with sky and grass; the category “Atlantic manta”3 shows

underwater images with large dark trapezes in the middle.

Interestingly, the categories with the worst prototypes are

man-made objects defined by their function, which have

large visual variability. For example “grate”4 and “grat-

ing”5 contain various kind of grates applied over very dif-

ferent objects; the category “serape”6 contains clothing in

different colors, some alone, some worn by persons in vari-

ous locations.

Further prototypes are shown in fig. 1. Interestingly, the

prototype for the entire ImageNet is a regular isotropic gray

texture. Although it is a good average image, it has lit-

tle semantic meaning. For the basic-level categories (e.g.

“cat”, “bus”) and for some of the broader categories (e.g.

“wheeled vehicle”) the prototypes represent their respective

categories well. We released the prototypes online7.

4. Relationship between Semantic and Visual

Similarity

We investigate how semantic distances between categories
defined on the WordNet hierarchy relate to visual distances
in ImageNet. For our analysis we choose the Jiang and Con-
rath semantic distance (JC) [19], which was shown to out-
perform other semantic distances on WordNet for several
natural language processing tasks [4]. The JC distance be-
tween two categories S and T in the hierarchy is defined

2http://www.image-net.org/synset?wnid=n09410224
3http://www.image-net.org/synset?wnid=n01500476
4http://www.image-net.org/synset?wnid=n03454536
5http://www.image-net.org/synset?wnid=n03454707
6http://www.image-net.org/synset?wnid=n04173907
7http://www.vision.ee.ethz.ch/ calvin/imagenet
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Figure 4: Relationship between semantic and visual distance

for (a) FI using 3 visual descriptors (b) BB using GIST. Each line

shows the average visual distance in 100 semantic distance bins.

as

D
JC(S, T )=2 log(p(lso(S, T )))−(log(p(S)) + log(p(T ))) (3)

where p(S) is the percentage of all images in S , lso(S, T )
is the lowest superordinate, i.e. the most specific com-

mon ancestor of S and T . For example in fig. 1,

lso(fish,carnivore)=vertebrate, DJC(carnivore,fish)=9.04,

and DJC(carnivore,primate)=3.87.

We measure the visual distance DV(S, T ) between two
categories S, T as the average distance between the mean
descriptor µS of S and all images in T

D
V(S, T ) =

1

|T |

∑

I∈T

D(µS , I) (4)

In our analysis, we do not consider pairs of categories where

one is an ancestor of the other, e.g. we consider pairs such

as aquatic vertebrate and mammal but not pairs such as

aquatic vertebrate and chordate. This avoids artificially bi-

asing estimations, as ancestors include all images in their

descendants’ categories.

We analyse the relationship between DJC and DV over all

pairs of categories for full images (FI, fig. 4a) and objects

cropped according to their bounding-box annotation (BB,

fig. 4b). Several interesting phenomena can be observed

(GIST curves). First, for both FI and BB, visual distance

continuously grows with semantic distance. Second, the vi-

sual distances grow at different speeds in different ranges

of semantic distance because the background is included in

FI and not in BB: (i) at low semantic distances (DJC < 10),

different categories often share similar background which

dilutes measurements of visual distances on FI (e.g. dogs

and horses). Measurements made on BB instead better re-

flect the true dissimilarity of the category instances them-

selves. This is the reason why the BB curve starts out much

more rapidly than the FI curve; (ii) at intermediate semantic

distances (10 < DJC < 20), backgrounds are more varied

(e.g. dogs and fish) and this effect weakens, as reflected by

the decreasing slope of the BB plot. (iii) at high semantic

distances (DJC > 20), categories appear in radically dif-

ferent environments (animal vs man-made objects). This

explains the increasing slope on FI. For BB instead, the vi-

sual distance converges indicating that for greater semantic

distances all categories are equally visually dissimilar.

For completeness, fig. 4a also reports curves for LAB

color histograms (COLHIST) and bag-of-visual-words

(BoVW) histograms [5] compared with the χ2 distance. For

BoVW, we use SURF descriptors [2] extracted at SURF in-

terest points and quantize them into 2000 visual words with

k-means. The curves follow a similar trend to the GIST one.

In conclusion these results demonstrate that visual sim-

ilarity as measured by computer vision descriptors truly

conveys semantic similarity, analog to what shown for hu-

man perception [30]. This relationship is particularly strong

when measurements are focused on the categories them-

selves, ignoring backgrounds. This confirms that visual

recognition algorithms may benefit from explicitly localiz-

ing category instances in the images.

We now analyze how visual distances within a class and

between classes change as a function of how classes are se-

mantically defined, i.e. how broad is the semantic span of

a class (fig. 5). For a given semantic distance x, we con-

sider all pairs of categories (S, T ) with DJC(S, T ) ≤ x

to belong to the same class, and all pairs (S ′, T ′) with

DJC(S ′, T ′) > x to belong to different classes (we call this

the semantic span). For example, at DJC = 5, craft and

wheeled vehicle are in the same class, while craft and rail-

car are not. At DJC = 10, craft and railcar are in the same

class, but craft and cat are not.

Using this definition of a class, we plot the average

within-class visual distances (on GIST), between-class vi-

sual distances, and the difference between the two as a

function of semantic span (for FI in fig. 5a and for BB in

fig. 5b). Remarkably, the average within-class visual dis-

tance is smaller than the average between-class visual dis-

tance for all but the greatest semantic spans. This sug-

gests that visual classification across semantically-defined

class boundaries is feasible for all relevant semantic spans

(i.e. how semantically broadly classes are defined). This

raises hope that computer vision methods will eventually

solve most semantic classification tasks. We performed the

same analysis using other semantic distances such as Lin-

and Resnik-Similarity [4] and other visual descriptors and

found similar results.

5. Are two images in the same basic-level cate-

gory?

The question whether two images show an object of the

same class is a fundamental problem in computer vision [1,

14, 22, 24]. As classes, typically researchers are interested

in basic-level categories [32], such “car” and “dog”, which

are most relevant for humans (as opposed to general cate-

gories, such as “animal”, and specific ones such as “chin-

chilla”). Having a general comparison function between
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Figure 5: . The within-class distance, the between-class distance,

and the difference between them as a function of semantic span for

FI (a) and BB (b).

pairs of images that decides whether these show objects

of the same basic-level category is useful for image re-

trieval [8, 13, 38], auto-annotation [17], and object recogni-

tion [2, 5, 10, 13, 23, 42], where it can be used in a nearest-

neighbor classifier or plugged as a kernel into an SVM.

5.1. ImageNet Distance Between Two Images

We propose here a novel distance function between two im-

ages Ii, Ij . Different from previous works [1, 13, 14, 22, 24,

28], it is not based purely on the visual similarity of Ii, Ij ,

but also exploits semantic similarity as measured through

ImageNet. ImageNet acts as a large pool of background

data enabling to define a semantic distance between the two

images. In a nutshell, the method works as follows. For

both input images Ii and Ij , we first search their nearest

neighbors Ni and Nj in ImageNet using visual distances.

Then, we determine a semantic distance between the cate-

gories of these neighbors and use it to answer the question

if Ii, Ij show objects of the same class (fig. 6).

The motivation behind our distance is that we expect

ImageNet to make connections between different instances

that are not visually apparent (and thereby improve classi-

fication results). Consider three cases: (i) If Ii and Ij are

visually very similar, they have very similar neighbors with

a small semantic distance. In this case, both a visual dis-

tance and our semantic distance correctly classify the im-

age pair. (ii) If Ii and Ij are visually quite dissimilar, but

from the same class (e.g. two images of the basic-level cat-

egory “car”, but one is a station wagon and the other a rac-

ing car), their neighbors are in different, but semantically

related categories with low semantic distance. In this case,

the semantic distance classifies the pair correctly while the

visual distance does not. (iii) If Ii and Ij are not in the

same class (e.g. a horse and a car), their neighbors will be

in unrelated categories and thus the semantic distance will

be high.

We name our method the ImageNet Distance and de-

scribe below how it uses visual nearest neighbors in Im-

ageNet to infer a semantic distance between two images.

Below we detail two variants of the ImageNet Distance,

which differ in how they compute the semantic distance be-

tween the neighbors. In sec. 5.3 we experimentally compare

the ImageNet Distance to three purely visual distances (one

simple direct distance and two trained for this task, sec. 5.2).

ImageNet Distance based on Jiang-Conrath (DJC
IN ).

Given two input images Ii, Ij , we determine their k near-
est neighbors Ni,Nj in ImageNet. The ImageNet Dis-
tance based on JC measures the sum of the JC semantic
distance between the categories of all pairs of neighbors
(ni, nj) ∈ Ni ×Nj

D
JC
IN (Ii, Ij) =

∑

ni∈Ni

∑

nj∈Nj

D
JC(S(ni),S(nj)) (5)

where S(n) denotes the category of neighbor n. Note how

this approach allows to use any semantic distance between

categories to derive a semantic distance between images.

ImageNet Distance based on Category Histograms
(DCH

IN ). As above, we determine the k nearest neighbors
Ni,Nj of Ii, Ij in ImageNet. Then we compute the his-
togram hi of the categories of the neighbors in Ni. We re-
peat the operation for Nj , giving hj . These Category His-
tograms (CH) capture the category distribution of the neigh-
bors of Ii and Ij . If Ii, Ij are from the same category, then
we expect their neighbors to be distributed over the same
categories. Therefore, we define our ImageNet Distance
based on CHs to be the χ2 distance between hi, hj

D
CH
IN (Ii, Ij) =

∑

S

(hi(S)− hj(S))
2

hi(S) + hj(S)
(6)

where hi(S) is the number of neighbors of Ii in category S .

5.2. Max­Margin Visual Distance Learning

As an alternative against which to compare our ImageNet
Distance, we learn a purely visual distance using a max-
margin formulation similar to [14, 41]. This distance
Dw(xi, xj) compares the visual descriptors xi, xj of the in-
put images Ii, Ij . We focus on distances Dw defined as a
weighted sum over component-wise differences

Dw(xi, xj) =
∑

d

wd∆(xd
i , x

d
j ) with (7)

∆(xd
i , x

d
j ) =















|xd
i − xd

j | ⇒ weighted L1

(xd
i − xd

j )
2 ⇒ weighted L2

(xd
i −xd

j )
2

xd
d
+xd

d

⇒ weighted χ2

If wd = 1 for all d, then Dw(xi, xj) is simply the L1, L2,

or χ2 distance. We aim at training w such that the distances
for training pairs (xi, xj) of objects of the same class are
smaller by a margin than the distances for pairs (xk, xl) of
objects of different classes

Dw(xi, xj) ≤ b− 1 < b+ 1 ≤ Dw(xl, xk) (8)

∀i, j, k, l with ci = cj and cl 6= ck
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Figure 6: Scheme of the ImageNet Distance. For the input images Ii and Ij we search the nearest neighbors Ni and Nj in ImageNet

using visual distances. Then, we determine a semantic distance between the categories of the neighbors and use it to answer the question

if Ii and Ij show objects of the same basic-level category.

Let Xn = ∆(xi, xj) be the difference vector for pair n =
(i, j) (this plays the role of a feature vector describing the
pair). Let yn = 1 if ci 6= cj and yn = −1 if ci = cj be
the corresponding class label for the pair. We can rewrite
inequality (8) as

yn(w
T
Xn − b) ≥ 1 ∀n = (i, j) (9)

which is the constraint for a typical two-class support vector
machine. Therefore, we minimize

min
w,ξ

1
2
||w||2 + C

∑

n

ξn (10)

s.t. yn(w
T
Xn − b) ≥ 1− ξn ∀n = (i, j)

where ξn are slack variables and C is a regularization pa-

rameter balancing between margin and slack terms. We use

liblinear [9] to minimize eq. (10). Note how with L1 as ∆
and a polynomial kernel of degree 2, our formulation learns

a Mahalanobis distance (not necessarily positive definite).

We also compare to the large-margin nearest neighbor

(LMNN) distance of [41] using the authors’ software8 with

default parameters and feature vectors reduced to 100 di-

mensions using PCA as recommended in the software man-

ual.

5.3. Experiments

We evaluate the proposed ImageNet Distances on a subset

of the Caltech101 dataset [10] containing 10 random im-

ages from each of the 102 classes (which are basic-level

categories, such as “dog” and “car”). We randomly split the

classes into two sets of 51 and use them as training and test

sets (2-fold cross-validation). We learn the parameters of

all distance functions on the training set (using the class la-

bels) and evaluate them on the test set (with unknown class

labels). In each set there are 129’795 pairs of images, 1.8%

(2295) of them showing objects of the same class (positive

pairs) and the others objects of different classes (negative

pairs). Performance of classification into positive/negative

pairs is measured by the area under the ROC curve (AUC).

For 54 of the 1020 images we use from Caltech101, we

found a total of 125 duplicates or near-duplicates in Ima-

geNet (the latter are images derived from Caltech101 im-

ages, e.g. by rescaling). We removed these duplicates from

8http://www.cse.wustl.edu/ kilian/page3/page3.html

ImageNet for this experiment, as they would artificially fa-

cilitate the task.

Visual Distance. We start by presenting the performance

of purely visual distances. We first evaluate a direct χ2

distance (not learned) between images, for 3 different de-

scriptors (fig. 7a/table): GIST, LAB color histograms, and

bag-of-visual-words histograms (sec. 4). We compute the

χ2 distance between all pairs of test images and then mea-

sure classification performance as the area under the ROC

(AUC) curve. GIST outperforms the other descriptors, so

we build the following experiments on it. We now evaluate

learned distance functions between GIST descriptors. The

LMNN distance [41] and the weighted L1 and χ2 distances

all perform about equally well (fig. 7a). However, they do

not improve significantly over the simpler direct χ2 dis-

tance. This confirms that learning distance functions truly

generic over classes is very difficult. As a side note, the

L2 distance performs significantly worse, confirming ear-

lier findings that χ2 is better suited for comparing image

descriptors [21, 42].

It is important to notice that in our task the training and

testing classes are completely disjoint. This makes the task

significantly harder than having 5 images of each class for

training and another 5 for testing (although it would involve

the same set of images overall). In such an experiment the

EER for GIST is 67.2% compared to 62.8% in our harder

task.

ImageNet Distance. To find the nearest neighbors within

the ImageNet Distances, we use χ2 on GIST. We evaluate

DCH
IN and DJC

IN using different numbers k of neighbors. For

DCH
IN , the AUC improves as k grows (fig. 7b) and converges

at k = 400. A similar trend can be observed for DJC
IN (not in

the figure), but its results are worse than DCH
IN (rows DJC

IN in

the table). Importantly, DCH
IN with enough neighbors (k >

100) outperforms all purely visual methods (e.g. compare

the dashed black line of DCH
IN to the red line of direct χ2 on

GIST).

Combining Visual and ImageNet Distance. We combine

visual distances with ImageNet distances in a weighted sum

trained by a linear SVM as in [16]. We combine all three

direct visual distances (χ2 on each of the three descriptors)

and three DCH
IN distances obtained by changing the descrip-
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COMB. ALL

(b) ImageNet

distance Method AUC[%] EER[%]

GIST direct 67.4 62.8

GIST learned χ2 67.7 62.8

GIST LMNN [41] 66.4 61.7

DJC
IN k=400 63.8 59.8

DCH
IN k=400 74.7 67.2

COMB. ALL k =400 75.7 68.7

Figure 7: Evaluation of the distance functions. (a): performance of direct (GIST, COLHIST, BOW) and learned visual distances

(Dwχ
2, DwL1, DwL2, LMNN); (b): performance of ImageNet Distance DCH

IN alone (CH) and combined visual and ImageNet distance

(COMB.ALL). For reference, the performance of the best direct distance (GIST) is also given. The table shows the ROC AUCs and EERs

of the various methods.

tor used to find the nearest neighbors. Interestingly, this

combination brings a moderate improvement over one DCH
IN

and leads to our best result (blue line in fig. 7b; row COMB.

ALL’ in table).

6. Related Work

Large-scale image datasets [7, 27, 37] have been proposed

for supporting the development of computer vision algo-

rithms scalable to many images/classes. So far only a

few applications have been investigated, such as retriev-

ing specific objects [27, 38] and learning visual cate-

gories [6, 12, 29] and attributes [33]. In this paper in-

stead, we employed ImageNet to study the relation be-

tween visual and semantic similarity (sec. 4). Most im-

portantely, we investigated experimentally whether similar-

ity measured through modern computer vision descriptors

conveys semantic similarity. In cognitive science, analog

questions were answered positively for the human visual

system [15, 20, 30–32, 36]. The relationship between hu-

man and computer vision has been investigated for image

retrieval, e.g. [34], and object recognition, e.g. [26]. Also

the GIST descriptor has been designed to mimick human

perception [25]. However, to the best of our knowledge,

we presented the first large scale investigation of how well

computer vision descriptors convey semantic similarity.

As a second main contribution, we presented the Ima-

geNet distance to assess whether two images contain the

same basic-level category (sec. 5). It is related to distance

learning approaches in general [41] and for visual classifica-

tion in particular [1, 13, 14, 22, 24, 28]. Typically a distance

function is learned specific to one instance [22], or specific

to one category [14], or more globally for a small set of

20-30 categories [1]. Nowak et al. [24] propose a distance

to decide whether a pair of images contain the same object

instance (not category). All these works tackle the prob-

lem based purely on the two images. Moreover, in these

works [1, 14, 22] the categories used for training the dis-

tance and for testing it are the same.

In constrast, our approach uses more than what available

in the two images, as it exploits semantic similarity mea-

sured through ImageNet. Moreover, our goal is to build

a generic distance to compare any two images, containing

arbitrary unknown classes. In our experiments there is no

overlap between training and testing classes. Such a gen-

eral distance is useful for image retrieval [8, 13, 38], auto-

annotation [17] and object recognition [2, 5, 10, 13, 23, 42].

In our ImageNet distance, we search for the nearest

neighbors of the query images in ImageNet and compare

their synset distributions to solve the original classification

problem. This is a novel instance of the standard general

strategy of using the output of a classifier as an intermedi-

ate representation for another classifier. It has been used,

e.g. in e.g. Classemes [39] for object recognition, to com-

bine multiple kernels in [16], and in [35] where label his-

tograms output by random forests are fed into SVMs. The

closest work to our ImageNet distance is the image similar-

ity measure of [40]. The output of 103 binary SVMs, each

specific to one Flickr category, is used as a feature vector to

compare two test images. In our work instead, the interme-

diate representation is formed by the synset distribution of

the nearest neighbors of the test images. Moreover, we use

a far larger dataset, more classes, and evaluate with disjoint

training and test classes.

7. Conclusion

We experimentally investigated the relations between visual

and semantic categories, and studied whether some assump-

tions taken in many computer vision approaches are valid.

In particular, we have found that (i) the visual variability

within a category grows with its semantic domain; (ii) vi-

sual similarity grows with semantic similarity; (iii) visual

classes are separable across semantically defined bound-
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aries.

As a second contribution, we presented a novel distance

between pairs of images which assesses whether they show

instances of the same basic-level category. It uses ImageNet

as background data to make additional semantic connec-

tions beyond direct visual similarity. We showed experi-

mentally that it outperforms purely visual distances.
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