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Abstract

Background: Although treatments have been proposed for calcinosis cutis (CC) in patients with systemic sclerosis

(SSc), a standardized and validated method for CC burden quantification is necessary to enable valid clinical trials.

We tested the hypothesis that computer vision applied to dual-energy computed tomography (DECT) finger

images is a useful approach for precise and accurate CC quantification in SSc patients.

Methods: De-identified 2-dimensional (2D) DECT images from SSc patients with clinically evident lesser finger CC

lesions were obtained. An expert musculoskeletal radiologist confirmed accurate manual segmentation (subtraction)

of the phalanges for each image as a gold standard, and a U-Net Convolutional Neural Network (CNN) computer

vision model for segmentation of healthy phalanges was developed and tested. A validation study was performed

in an independent dataset whereby two independent radiologists manually measured the longest length and

perpendicular short axis of each lesion and then calculated an estimated area by assuming the lesion was elliptical

using the formula long axis/2 × short axis/2 × π, and a computer scientist used a region growing technique to

calculate the area of CC lesions. Spearman’s correlation coefficient, Lin’s concordance correlation coefficient with

95% confidence intervals (CI), and a Bland-Altman plot (Stata V 15.1, College Station, TX) were used to test for

equivalence between the radiologists’ and the CNN algorithm-generated area estimates.
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Results: Forty de-identified 2D DECT images from SSc patients with clinically evident finger CC lesions were

obtained and divided into training (N = 30 with image rotation × 3 to expand the set to N = 120) and test sets (N =

10). In the training set, five hundred epochs (iterations) were required to train the CNN algorithm to segment

phalanges from adjacent CC, and accurate segmentation was evaluated using the ten held-out images. To test

model performance, CC lesional area estimates calculated by two independent radiologists and a computer

scientist were compared (radiologist 1 vs. radiologist 2 and radiologist 1 vs. computer vision approach) using an

independent test dataset comprised of 31 images (8 index finger and 23 other fingers). For the two radiologists’,

and the radiologist vs. computer vision measurements, Spearman’s rho was 0.91 and 0.94, respectively, both p <

0.0001; Lin’s concordance correlation coefficient was 0.91 (95% CI 0.85–0.98, p < 0.001) and 0.95 (95% CI 0.91–0.99,

p < 0.001); and Bland-Altman plots demonstrated a mean difference between radiologist vs. radiologist, and

radiologist vs. computer vision area estimates of − 0.5 mm2 (95% limits of agreement − 10.0–9.0 mm2) and 1.7 mm2

(95% limits of agreement − 6.0–9.5 mm2, respectively.

Conclusions: We demonstrate that CNN quantification has a high degree of correlation with expert radiologist

measurement of finger CC area measurements. Future work will include segmentation of 3-dimensional (3D)

images for volumetric and density quantification, as well as validation in larger, independent cohorts.

Keywords: Systemic sclerosis, Scleroderma, Calcinosis cutis, Computer vision, Convolutional neural networks (CNN),

Dystrophic calcifications, U-Net, Artificial intelligence, Medical image analysis

Background

Calcinosis cutis (CC) is defined as the deposition of in-

soluble calcium salts within the skin and subcutaneous

tissues [1]. There are five subtypes of calcinosis cutis:

dystrophic, metastatic, iatrogenic, calciphylaxis, and idio-

pathic [1]. Dystrophic calcification from local tissue in-

jury is the most common subtype and is associated with

autoimmune disorders including systemic sclerosis (SSc)

and juvenile dermatomyositis (JDM). The clinical pres-

entation is highly variable including an incidental finding

on imaging, lesions in the hands or pressure point areas

resulting in soft tissue swelling and ulceration, to disab-

ling and life-threatening lesions [1]. Upwards of 18–49%

of SSc patients [1], 40% of JDM patients [2], and 1% of

chronic renal dialysis patients [3] experience CC.

Calcinosis cutis remains a therapeutic challenge. Medi-

cations for CC include calcium channel blockers (e.g.,

diltiazem), warfarin, topical and intravenous sodium

thiosulfate and aluminum hydroxide (chelation therapy),

ceftriaxone, minocycline, colchicine, intravenous im-

munoglobulin (IVIg), and probenecid among others [1].

The data supporting the efficacy of these treatments are

primarily from case reports, case series, and retrospect-

ive studies rather than randomized clinical trials [1].

Valid clinical trial design to test the safety and efficacy

of proposed systemic treatments requires a feasible, pre-

cise, and reproducible method for CC burden

quantification.

Dual-energy computed tomography (DECT), also

known as “spectral imaging” [4], is an imaging modality

established for the detection of coronary calcifications

[5] and uric acid nephrolithiasis [6], and has more re-

cently been studied for the identification and

quantification of soft tissue monosodium urate deposits

in patients with gout [7]. Single-energy computed tom-

ography (CT) uses a single polychromatic X-ray beam,

which is emitted and received from a single source and

detector, respectively [8]. This limits its use in the differ-

entiation of materials (e.g., fat, soft tissues) that have

similar linear attenuation coefficients [8]. In contrast,

DECT utilizes two energy levels [(usually 80 and 140

kilovoltage peaks (kVp)] [4], that results in greater differ-

entiation between attenuation coefficients [9] and is par-

ticularly efficient for the evaluation of small body parts

including the extremities [8]. Dual-energy computed

tomography permits differentiation of CC lesions from

adjacent bone, but radiologists must manually quantify

lesional CC areas, which is time-consuming and there-

fore costly, and prone to inter-rater variability. More-

over, CC lesions are often irregularly shaped, which can

lead to imprecise and inaccurate measurements. By con-

vention, CC lesions are measured in three planes, using

the maximal dimension as the reference axis, with two

additional orthogonal axes. Using the ellipsoid formula,

utilized in other clinical applications such as prostate

measurement, a multiplication factor of 0.52 can then be

incorporated for volume estimation [10, 11]. On subse-

quent exams, lesions need to be measured using the

same axes, to maintain consistency and accuracy.

Computer vision, a field in which computers are

trained to independently identify and process images

[12], has been increasingly successfully applied to solve

problems in clinical medicine. Since the late 1990s, com-

puter scientists have been using large quantities of cu-

rated images to develop software systems that enable

computers to perform tasks that previously required an
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expert such as skin disease diagnoses [13–15]. Deep

learning methods (e.g., convolutional neural networks

[CNN], deep neural networks [DNN], and support vec-

tor machines [SVM]) are a more complex form of ma-

chine learning and have been developed to enable

computers to filter inputs, such as images, sequentially

through layers in order to learn how to predict and clas-

sify information without manual feature extraction

(Fig. 1a) [12]. The process of filtering images using layers

whereby the output of one layer becomes the input of a

subsequent layer is the same process that neurons in the

human brain use for image classification (e.g., car or

clock), hence deep learning models are called neural net-

works [16].

Because large curated training data sets are not avail-

able for most diseases, a process called transfer learning

was developed to enable algorithms that were developed

for a disease with high prevalence to be applied to more

rare diseases like SSc-CC [17]. Herein, we optimized a

deep learning model using a CNN approach and applied

this technology to DECT images of fingers from patients

with SSc and clinically evident CC. The goal was to train

a computer to quantify CC area lesions that currently

requires a highly trained musculoskeletal radiologist.

The use of artificial intelligence for accurate, precise,

and rapid quantification of CC burden in patients with

SSc will facilitate musculoskeletal radiologists’ workflow

and improve clinical trial design.

Methods

Identification of DECT images containing calcinosis cutis

in patients with systemic sclerosis

We conducted a retrospective study in patients with SSc

and clinically evident finger CC lesions who were re-

ferred for 2-dimensional (2D) DECT imaging. Because

no personal health information was collected and all im-

ages were de-identified, the study was not considered

human subjects research and was exempt from institu-

tional board approval. The Northwestern Memorial Hos-

pital electronic health record was queried for patients

with a diagnosis of SSc (ICD9 = 710.1 or ICD10 =M34.9)

and DECT hand images. De-identified sagittal reformat-

ted images from patients were downloaded from the Pic-

ture Archiving and Communication System (PACS) in

jpeg form to a secure server maintained by the North-

western University Information Technology, then

Fig. 1 a Distinction between machine learning and deep learning. b Optimization of the CNN algorithm for forefinger bone segmentation
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transferred to Visage Imaging 7 (San Diego, CA) for

examination purposes. All images were optimized to as-

sess bone (window of 1500 and level of 450). Because

bone and CC lesions both consist of basic calcium hy-

droxyapatite, a computer scientist manually segmented

(identified) finger phalanges on training set images and

an expert musculoskeletal radiologist (IMO) confirmed

measurements that were then used as a gold standard

reference (ground truth) for the deep learning models

(Fig. 1).

CNN software training

Various segmentation algorithms (e.g., expectation

maximization [18], Fuzzy c-means [19], K-means [20],

mean-shift segmentation [21], V-Net [22], P-Net [23],

and U-Net [24]) were tested in order to identify the opti-

mal approach for finger bone segmentation. U-Net CNN

performed best and was utilized for the experiments

herein.

Training set and test set one

Forty sagittal reformatted DECT finger images from

three unique patients were divided into a training set

(N = 30) and a test set (N = 10). To enlarge the training

dataset to permit development of a U-Net CNN model,

30 images were spatially rotated three times for a total

of 90 additional images (total 120 images). A NVIDIA

Tesla k40c GPU computing processor with varying

numbers of epochs was used (Fig. 1). Visual inspection

was conducted between runs to determine the concord-

ance between manual and computer bone segmentation

in order to identify the optimal number of epochs. The

segmentation approach was tested in ten independent

images and manual inspection confirmed segmentation

accuracy.

Calcinosis cutis area estimates

Thirty-one sagittal reformatted DECT finger images

containing CC from 13 unique patients were identified

as an independent test. The CNN finger bone segmenta-

tion algorithm was applied, arithmetic operations were

applied to segmented images to subtract out the normal

phalanges, and region growing, a pixel-based image seg-

mentation method, was deployed to quantify the area of

residual CC lesions [25]. Concurrently, a musculoskeletal

radiologist (IMO) measured each lesion’s maximal long

axis and maximal perpendicular short axis (mm) and

then calculated an estimated area of each lesion by as-

suming the lesion was elliptical and using the formula

long axis/2 × short axis/2 × π. A second expert muscu-

loskeletal radiologist (AW) independently measured the

area of each CC lesion, and the concordance between ra-

diologists’ measurements was assessed.

Statistics

First, CC lesional area estimates were compared between

radiologists (IMO and AW) to test the precision of area

estimates. Next, the radiologist (IMO)- and CNN-

generated CC area estimates were compared to test the

accuracy of the CNN approach. Spearman’s correlation

coefficient was used to assess the correlation, and Lin’s

concordance correlation coefficient (CCC) was used to

test for equivalence, while Bland-Altman plots were used

to evaluate agreement. A p value≤ 0.05 was considered

significant. Stata V 15.1, College Station, TX, was used

for analyses.

Results

Training the CNN model

The training set (30 images each rotated three times to

generate 120 images) was used to train the segmentation

algorithm. One hundred, 200, 300, 400, and 500 epochs

(iterations) were evaluated and by manual inspection,

and 500 epochs was deemed the optimal number

(Figs. 1b and 2). A 4-h CNN run time was required for

the CNN to learn to discriminate healthy finger bones

from adjacent CC lesions (Fig. 3). The algorithm was

tested in ten additional DECT finger images, and manual

inspection was used to confirm segmentation accuracy.

Measurement of calcinosis cutis lesions in an

independent test set

Next, the accuracy of the computer vision approach for

estimating the CC area was determined in an independ-

ent set of 31 images (test set two), by comparing the area

estimates generated by computer vision (region growing

technique) to those generated by an expert musculoskel-

etal radiologist. The U-Net CNN algorithm was unable

to be applied to seven out of 31 (23%) test set images

due to incomplete visualization of the phalanges (Fig. 4).

For the 31 images scored by both radiologists and com-

puter vision, the area range for radiologist (IMO) was

0.5–41.5 mm2 and for radiologist (AW) was 0.4–40.7

mm2. Per the CNN algorithm, 2D area ranged from

0.69–48.18 mm2.

The correlation between the two radiologists’ mea-

surements was excellent (Spearman’s rho 0.91, p <

0.0001, Lin’s concordance correlation coefficient 0.91

[95% CI 0.85–0.98, p < 0.001] (Fig. 5a) and a Bland-

Altman plot demonstrating a mean difference − 0.5 mm2

(95% limits of agreement − 10.0–9.0 mm2) (Fig. 5b).

Similarly, the correlation between the radiologist vs.

computer vision area estimates was also excellent

(Spearman’s rho 0.94, p < 0.001), Lin’s concordance cor-

relation coefficient 0.95 [95% CI 0.91–0.99, p < 0.001]

(Fig. 5c), and a Bland-Altman plot demonstrating a

mean difference − 1.7 mm2 (95% limits of agreement −

6.0–9.5 mm2) (Fig. 5d).
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Discussion

Calcinosis cutis can significantly worsen health-related

quality of life, depending on lesion location and size, in-

creasing the risk of infection, and leading to deformities,

particularly in patients with SSc [1]. While deep learning

technological advancements have improved the perform-

ance of image recognition in the field of medical image

analysis including the diagnosis of skin diseases [26],

computer vision has not been previously applied to the

problem of CC quantification. Given a lack of standard-

ized and validated methods to assess CC disease burden,

accurate and precise CC quantification represents an un-

met medical need. This study evaluated the utility of ap-

plying a CNN algorithm to DECT hand images of SSc

patients to differentiate CC lesions from adjacent healthy

bone and to permit rapid and reproducible quantifica-

tion of CC lesional area. We found that the computer vi-

sion method applied to finger images had a substantial

degree of concordance and was highly accurate com-

pared to gold standard radiologist area estimates. These

data suggest that computer vision may be a useful ap-

proach for CC disease burden quantification.

Fig. 2 Overview of CNN algorithm training process

Fig. 3 Example of forefinger bone segmentation

Chandrasekaran et al. Arthritis Research & Therapy            (2021) 23:6 Page 5 of 9



The difficulty of assessing CC severity in SSc patients

has been addressed in prior studies. Utilizing plain X-

rays, Chung et al. in 2014 aimed to develop and validate

an original scoring system for CC affecting the hands of

SSc patients [27]. They developed a feasible scoring sys-

tem that accounted for lesional area, density, and ana-

tomic location, but significant interrater and intra-rater

reliability were noted [27]. In the present study, we used

DECT imaging of the hands because this technique has

been successfully used to identify and quantify soft tissue

monosodium urate deposits in patients with gout [9].

Thus, we hypothesized that DECT would be a useful ap-

proach for imaging and quantifying CC in the hands of

patients with SSc.

Conventional imaging studies, such as computed tom-

ography (CT) scans and magnetic resonance imaging

(MRI), have not been proven to be reliable in the identi-

fication of small, irregular calcifications. Newer diagnos-

tic techniques, such as ultrasonography (US),

multidetector computed tomography (MDCT), and

DECT, have been evaluated in small trials for CC detec-

tion [28–31]. A case-control study using US in 44 pa-

tients with SSc demonstrated the presence of CC in 17

patients (39%), with a sensitivity of 89% compared to

radiography [30]. Multidetector computed tomography

has higher tissue resolution and generates 3D images

but requires higher radiation exposure and has not been

studied in CC [28]. There are minimal current data on

the use of DECT in CC. A small study in 2015 of 16 pa-

tients with SSc-CC in the hands found that DECT im-

aging was superior to plain radiographs in localizing soft

tissue CC though CC lesions and bone were noted to

have the same color and density [7].

We examined the utility of applying CNN, specifically

U-Net, to the problem of CC measurement in SSc be-

cause U-Net was initially developed for biomedical

image segmentation [32]. The two main benefits of U-

Net are (1) the ability to develop a useful model in spite

of a small training dataset and (2) the U-architecture

and skip-connection performance performs better for

segmenting different levels of semantic information. The

first task to train the computer to “see” the finger bones

was readily accomplished in healthy finger bones from

SSc patients with normal anatomy. The algorithm failed

to recognize the finger bones in cases where the CC le-

sion was in an area where the entire phalange was not

visible (Fig. 4).

Our study has several strengths. Convolutional neural

networks have recently been applied for cartilage seg-

mentation on knee MRI scans [33], brain lesion segmen-

tation [34], automatic polyp detection on colonoscopy

videos [35], and pulmonary embolism detection on CT

[36], but to our knowledge, this is the first study to apply

deep learning to analyze CC lesions in SSc patients. Our

Fig. 4 Examples of CC lesions on finger images that were not

amenable to U-Net CNN analysis. a Dual-energy computed

tomography image. b U-Net CNN segmentation
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study involved two expert musculoskeletal radiologists

who independently measured CC lesional areas to per-

mit interrater reliability. The computer algorithm was

trained to segment the phalanges assessment using real

2D DECT images from SSc patients with clinically evi-

dent lesser finger CC lesions and demonstrated a high

degree of concordance with a radiologist’s gold standard

assessment, despite variable lesional shape and size. This

suggests that this deep learning model may be an effi-

cient and reproducible method for CC measurement.

Several limitations are noted as well. This study fo-

cused on the hands, specifically lesser finger lesions, be-

cause the hands/fingers have been shown to be the area

most frequently affected by CC in SSc patients [37]. To

be useful in clinical trials, the CNN algorithm will need

to be optimized and tested in other anatomic locations.

The algorithm can only quantify the area of CC lesions

when all three phalanges are visible, limiting its useful-

ness (Fig. 4). Finally, the principles of 2D segmentation

can be transferred to 3-dimensional (3D) segmentation

but does require increased computational complexity

that was not performed in this study. V-Net is an ex-

ample of a CNN utilized for 3D segmentation, previously

applied to prostate gland segmentation on MRI scans

[22], that may be used in future work for CC density

quantification, crucial for assessing response to

treatment.

Conclusions

In this study, we demonstrate that computer vision ap-

proaches can be applied to the problem of CC quantifi-

cation in patients with SSc. Expert musculoskeletal

radiologist review may not be locally available at many

centers, and thus, the ability to add a CNN tool into

standard radiology software programs such as the Visage

Imaging 7 platform might be advantageous. Convolu-

tional neural network-derived CC quantification had a

high degree of correlation with expert radiologist meas-

urement. Moreover, our approach may be generalizable

to other diseases that cause dystrophic calcification, such

as chronic kidney disease, JDM, and malignancy. To fa-

cilitate optimization of computer vision approaches to

aid in the quantification of CC, a de-identified dataset of

our DECT images has been made publicly available on-

line (https://drive.google.com/drive/folders/1_tXg3

dnSQOrZ4_Ro-0JZ3h_hMv0HIe9h?usp=sharing). Future

Fig. 5 a Spearman’s correlation coefficient comparing calcinosis cutis lesional areas measured by a two independent radiologists and c a

radiologist and a computer scientist. Bland-Altman plot, analyzing the agreement between b the two independent assessors, and d the

radiologist’s and computer scientist’s measurement methods. Red lines represent the 95% limits of agreement, purple and green lines represent

the mean difference of area measurements between the two methods and line of unity, respectively
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work will involve transferring the principles of 2D seg-

mentation to 3D segmentation for volumetric and dens-

ity CC quantification as well as additional validation in

larger, multi-center SSc cohorts.
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