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Abstract— This paper presents a computer vision-based method 
to automatically detect concrete cracks. We focus on images 
containing the concrete: background and crack, where the 
background is the major mode of the gray-scale histogram. 
Therefore, we address the detection problem of potential concrete 
cracks by dealing with histogram thresholding to extract regions 
of interests from the background. We first employ line emphasis 
and moving average filters to remove noise from concrete surface 
images obtained from an inspection robot. The developed 
algorithm is then applied for automatic detection of significant 
peaks from the gray-scale histogram of the smoothed image. The 
biggest peak and its corresponding valley(s) are consequently 
identified to calculate the threshold value for image binarization. 
The effectiveness of our proposed method was successfully 
evaluated on various test images, where cracks could be 
identified without the requirement of some heuristic reasoning. 

Keywords- Concrete crack; histogram thresholding; image 
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I.  INTRODUCTION 

With the development of robotic and computer vision 
systems, tedious, expensive and information intensive tasks of 
infrastructure monitoring such as road or bridge inspection 
could be done by robots. Effectively and periodically 
monitoring could help in early detection of cracks to avoid 
structural damage, and hence, potential accidents. 

Many vision-based approaches have been proposed to deal 
with robotic color tracking and image segmentation [1-4] and 
employed to solve the crack detection problem [5-14]. Most of 
these crack identification methods are based on employing 
edge-detection techniques, such as the fast Haar transform, fast 
Fourier transform, or the Sobel and Canny operator [5]. Yu [6] 
proposed a semi-automatic strategy by combining Sobel and 
Laplacian operators to find crack edges and employing a graph 
search method to extract cracks based on user’s input. Another 
semi-automatic approach is introduced in [7], where the 
detected cracks are traced bi-directionally before being merged 
to accomplish the final result. 

Simple edge detection techniques are however only robust 
to high contrast images with a nearly uniform background [12]. 

Various hybrid approaches have been developed to enhance the 
automatic detection results from concrete images [8-12]. Sinha 
[8] fused data obtained from a ratio edge detector [9] and a 
variance comparison [10] to successfully detect cracks from 
underground pipe images. A gradient based crack detector was 
developed in [11] and demonstrated promising results in highly 
noisy concrete images. The machine vision and optimization 
approach are applied in [12], where cracks in various 
appearances could be successfully detected without any 
adjustments needed for threshold parameters. A multi-scale line 
emphasis filter based on a 3-D Hessian matrix is suggested in 
[13] for medical images. An automatic method was developed 
to deal with the problem of concrete crack detection using 2-D 
images in [14]. Therein, the eigenvalues and eigenvectors of 
the Hessian matrix are combined to extract line structures from 
noisy concrete surface images. 

In this paper, we propose an automatic peak detection 
algorithm for image segmentation to apply to the concrete 
crack detection problem. Scanned images with a crack potential 
are firstly processed using the line emphasis filter developed in 
[14]. The gray-scale histogram of the processed image is then 
smoothed by using a moving average filter, and analyzed to 
detect significant peaks based on two dynamic parameters: the 
offset distance and crossover index. These parameters are 
determined from the detected initial peaks and each updated 
mobile origin, without any heuristic criterion or user’s 
supervision. The segmentation result is then employed for 
image binarization. The effectiveness of our proposed 
algorithm is evaluated through various test data, from high-
contrast to very noisy background images. 

This paper is organized as follows. Section II presents a 
comprehensive review of the proposed approach with two main 
steps: preprocessing and automatic peak detection. In Section 
III, we present the experimental results on test data using a 
variety from high-contrast to high-clutter images. Finally, 
Section IV summarizes the contribution and draws a 
conclusion of this paper. 



                                      
 

II. METHODOLOGY 

At the first stage, the image of a concrete surface is 
preprocessed to eliminate the blob-like noise. The 
corresponding histogram is then smoothed using a moving 
average filter, before being analyzed to detect significant peaks. 
After the preprocessing step, the resulting image with 
background and potential structural cracks is to be segmented 
by employing our automatic peaks detection algorithm. The 
segmentation result is then enhanced using morphological 
operations to remove small uninterested regions. Figure 1 
illustrates the processing steps of our proposed approach. 

A. Preprocessing 

1) Line emphasizing 
In this step, we implement a line emphasis filter, proposed 

in [13] and [14], based on the Hessian matrix, to remove blob-
like and sheet-like noises and feature the line structure 
corresponding to a crack. The Hessian matrix of an image 

,)I(x where ),,( yx=x is given by: 
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Figure 1. Proposed approach for concrete crack detection. 
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The eigenvalues )( ),( 21 xx λλ of )I(x2∇ (where 21 λλ ≥ ) are 
adopted to acquire a generalized measure of similarity to a line 
structure as follows: 
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where .10 ≤< α  

The line-, blob- or sheet structure in the image could be 
expressed by combining two eigenvalues 1λ  and 2λ  as 
described in Table I. 

In order to recover line structures of various widths, the 
partial second derivatives of the image )I(x  in (2) can be 
combined with the Gaussian convolution as, 

 { } ,I;σG(
x
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where ),( fσG x is an isotropic Gaussian function with standard 

deviation .fσ The maximum among the normalized multiple 

scales will be selected from the multi-scale integration of the 
filter responses 12λ  of a pixel x within a region defined by 

)(xR as: 
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where ) ,..., 2 ,1(   1
1 niσsσ i

i == − is a discrete sample of 

,fσ with 1σ  and s  being the minimum scale and scale factor 

of the sampling interval of ,fσ respectively. 

TABLE I. COMBINATION OF EIGENVALUES AND CORRESPONDING 
SHAPE STRUCTURE 

Relationships between eigenvectors Structure 

021 ≈≥ λλ  Line 

021 ≥≈ λλ  Blob 

021 ≈≈ λλ  Sheet 



                                      
 

2) Histogram smoothing 
The gray-scale histogram of the processed image is then 

smoothed using a moving average filter with the kernel width 
equal to 3, taking into account the previous, current and next 
intensity level. This is the best filter candidate for our 
automatic peak detection approach because of its compactness 
and robustness in eliminating random noise while retaining 
significant peaks of the histogram. Let )(ih be the pixel 

number at intensity level i for ; ..., 1, ,0 Li = where L is the 
maximum intensity level. After applying the moving average 
filter, the pixel number at intensity level i is determined as: 

 [ ].)1()()1(
3

1
)( +++−= ihihihih  (6) 

A peak of the smoothed histogram can be identified if it 
meets the following condition: 
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These initial peaks are then stored in a cluster vector 
.δ This cluster vector could be considered as a draft plan, from 

which the significant peaks detection strategy will be built. 
Condition (7) can therefore be represented as: 
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B. Automatic peak detection algorithm 

Our proposed algorithm is inspired by a practical problem 
in mountain exploration. When an explorer gets lost in an 
unknown forest or mountain, the realistic solution is to 
localize a nearest highest position to access an unobstructed 
view before planning for the next travel segment. By repeating 
this “finding and moving” process, the explorer could finally 
go through the mountain and accomplish the journey. A 
flowchart of the mentioned strategy is described in Fig. 2. Our 
proposed algorithm is to split into two main steps: i) searching 
for observing location, and ii) searching for the highest peak in 
the closest distance. 

 

Observe

Is there a mount 
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Find the nearest 
and highest peak

Move there Finish

No

Yes

 
 
 

Figure 2. Strategy for a lost mountain explorer. 

1) Observing location 
Let consider the smoothed histogram as the mount to be 

explored. A point on the intensity axis could then be 
considered as the observing location )(mα if the following 
condition is fulfilled: 

)),(())(()( kδLkδgmα −<  (9) 

where ))(( kδL is a distance to be defined from the current 
peak to the observing location and dependent on the draft 
plan, ))(( kδg  is the intensity level at the kth initial peak and 

Dp is the number of possible dominant peaks, 

.1 Dpm ≤≤ Now, let us define the offset distance: 
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It can be seen that this offset distance ))(( kδL is 
determined based on the two adjacent intensity levels and their 
corresponding pixel number, as illustrated in Fig. 3. Based on 
the height difference and distance between two adjacent peaks, 
a higher peak could always be identified from the calculated 
observing location. 

In the implementation phase, the observing location is set 
at )),(())(( kδLkδg −  hence: 

 )),(())(()( kδLkδgmα −=  (11) 
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Figure 3. Offset distance determination: 

(a) ))(())1(( kδgkδg >+  
(b) )).(())1(( kδgkδg <+  



                                      
 

and the observing location is then placed “higher” than the 
intensity axis to maintain the unobstructed view. For the kth 
detected peak in the cluster vector, the crossover index is 
proposed as follows: 
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2) Highest peak in the closest distance 
A peak is considered as a nearest prominent peak, if it is 

high enough to be “observed” from the current observing 
location and to “block” the view to the next peak. This 
statement can be mathematically described as follows: 
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The searching mechanism of our algorithm is illustrated in 
Fig. 4 when ))(( kδg and ))3(( +kδg are identified as 
dominant. Firstly, ))(( kδg is identified as a dominant peak. 
The new location for observation will be updated at  

)).(())(( kδLkδg − The crossover index of ))(( kδg is reset 
while this characteristic of )),1(( +kδg  )),2(( +kδg … is re-
calculated based on the updated observing location. A 
following dominant peak is then determined at ))3(( +kδg  as 
demonstrated in Fig. 4. 

A new observing location is calculated and the crossover 
index of the next peak is consequently updated according to 
(10–12), until the cluster vector is completely checked. The 
block of Fig. 5 illustrates the implementation of the proposed 
algorithm pseudo-code. 

Once a set of dominant peaks of the processed image are 
identified, we locate the position of the biggest peak. Because 
all blob-like and sheet-like structures have been removed, the 
remaining objects are the background, potential crack and 
small uninterested objects. We calculate the valleys by 
determining the minimum value between two adjacent peaks 
and use the valley(s) of the highest peak as the threshold for 
image binarization.  
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Figure 4. Illustration of searching mechanism. 
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Figure 5. Implementation of automatic peak detection algorithm. 

Morphological operations are then conducted to eliminate the 
small uninterested objects and finally extract the crack from 
the processed image.  

III. RESULTS AND DISCUSSION 

In this section, we evaluate our proposed algorithm on 
various concrete surface images, which were collected from the 
autonomous robotic NDE system [11]. The image backgrounds 
vary from nearly uniform to very noisy. 

Figure 6(a) is the test image where the background is 
nearly uniform and has a high contrast against cracks. The 
cracks in this image are also visibly inherent and could be 
effectively detected with the thresholding technique mentioned 
in Section II.B. The detection result in Fig. 6(b) illustrates the 
extracted cracks, where all visible structures are successfully 
isolated.  

Figures 7(a) and 8(a) are test images with low contrast 
between the background and cracks as well as an increased 
level of noise. Figures 7(b) and 8(b) highlight the extracted 
cracks from both images. Even with a decrease in the visibility 
and width of the cracks, these interested objects are still 
adequately isolated as displayed. Because there is more clutter 
in Fig. 8(a), some blebs and shadings still remain after the 
cleaning process. 



                                      
 

(a)

(b)
 

Figure 6. Test result on high contrast and low clutter image: 
(a) Original image 

(b) Crack detection result. 

It is significant to see that the crack structure in all test images 
can be quite accurately detected from distinct surfaces, 
varying from high to low contrast and low to high clutter 
images. Many vision-based crack detection methods use a 
median filter in the pre-processing step [7, 14] to subtract the 
smoothed image from its origin. This approach is, however, 
only effective with a specific filter size for a specific image, 
which is not applicable for real-world images of concrete in 
construction. Moreover, the thresholding step to extract cracks 
from the background requires another phase of some manual 
adjustments, which leads to a non-robust and heuristic 
solution. Compared with these techniques, our proposed peak 
detection algorithm could overcome these disadvantages by 
employing image gray-scale histograms, to extract dynamic 
parameters for thresholding. The filter span for histogram 

smoothing described in Section II.A.2 is limited at a minimum 
level to illustrate the robustness and effectiveness of our 
proposed algorithm on rough data. 

(a)

(b)
 

Figure 7. Test result on low contrast image 
(a) Original image 

(b) Crack detection result. 

(a)

(b)
 

Figure 8. Test result on low contrast and high clutter image: 
(a) Original image 

(b) Crack detection result. 



                                      
 

IV. CONCLUSION 

This paper has presented an effective vision-based method 
for concrete crack detection. The proposed approach has been 
evaluated on various images, and can successfully extract 
visible cracks from the background of images captured by an 
inspection robot. The obtained results are consistent from 
different data sources with a distinct number as well as the 
visibility level of the detected crack. The threshold for image 
binarization is employed from a non-parametric peak detection 
algorithm. Therefore, our proposed method could be 
considered as fully automatic, and as such, it could 
substantially enhance the effectiveness of a robotic inspection 
process. More importantly, there is also an option for some 
crack classification by analyzing the remaining detected peaks 
after the thresholding step. 
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