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Computer Vision, Descriptive Geometry,
and Classical Mechanics!

Christoph M. Hoffmann2

Abstract

The medial-axis transform, also called skeleton, is a shape abstraction proposed
by computer vision. The concept is closely related to cyclographic maps, a
tool developed by descriptive geometry to investigate distance functions, and
to the solu tion of the eikonal equation. We discuss these connections and their
implications on techniques for computing the skeleton.

1 Introduction

The medial-axis transform, also called the skeleton of a shape, was proposed in
computer vision by Blum as a tool for shape recognition and abstraction [3].
Cyclographic maps were developed in classical descriptive geometry as a means
to solve the problem of Apollonius, and, more generally, as a device for studying
distance maps, surface curvature, and other basic geometric properties [19]. In
the Hamilton-Jacobi theory, the Jacobi S function is related to both of these
concepts via the eikonal equation that describes wave propagation [31]. This
similarity of concepts is not surprising in view of the fact that all three notions
fundamentally relate to measuring Euclidean distance, from a given geometric
structure, and Blum [2J was aware of these connections. Nevertheless, how this
interrelationship impacts devising algorithms for computing the skeleton, and
how one might take it into account when attacking its applications seems to go
unreported in the literature.

Let B be a compact set in R 2 or R 3 , such as the boundary of a solid, that
is smooth almost everywhere. Define the distance from B as follows:

dist(p,B) = inf{d(p,q) I q E B}

ITo appear in the proceedings of the Eurographics workshop Computer Graphics and Mathe­matics. October 1991, Genova, Italy.
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where d(p, q) is the usual Euclidean distance. A point q of B at distance
dist(p, B) is called a jootpoint of p in B. The skeleton with respect to B is
the closure of the locus of all points not in B that have at least two distinct
footpoints. Intuitively, the skeleton points have two or more geodesic paths
to B. We discuss ways of conceptualizing the skeleton, and of determining it
algori thmically.

From now on, we fix a domain S in R 2 with a compact, smooth boundaryas. Taking B = as. the skeleton with respect to B is just the medial axis
of Blum [2J, and can be defined alternatively as the closure of the locus of the
centers of maximal circles inscribed in S. An inscribed circle is maximal if no
other inscribed circle contains it properly. Moreover, it has been noted that the
skeleton is a subset of the Voronoi diagram, [16J. If S is polygonal, then the
skeleton is obtained from the Voronoi diagram by deleting the edges incident to
reflex vertices.

We discuss algorithms for constructing the skeleton in 2D. Many, but not
all of them generalize to the three-dimensional problem, and we will comment
throughout whether and how the generalizations can be achieved. A specific
difficulty is that the snrfaces on which faces and edges of the three-dimensional
skeleton lie are not easily described using parametric or implicit algebraics that
are commonly used by the geometric modeling community. In general, the
surfaces can be described exactly and practically only using the dimensionality
paradigm [12J, as a system of nonlinear equations.

Note that the skeleton is an informationally-complete representation of the
domain S, in the sense of [24J, provided we associate with each skeleton point p
its distance dist(p,aS) t.o the boundary. It will be convenient to associate the
distance as an extra. coordinate, to each skeleton point. Thus, the skeleton in 2D
is a three-dimensional structure. and the skeleton in 3D is a four-dimensional
structure. Note that an association of the distance with every interior point
defines the distance surface of Blum [2J. This distance surface also arises in
cyclographic maps and in the integration of the eikonal equation.

2 Geometric Approaches to the Skeleton
The skeleton can be determined by exact or by approximate methods. The
exact algorithms we discuss depend on the geometry of the set B, and so they
are sensitive to the permitted shape primitives. Furthermore, extending these
algorithms to the :3D problem requires careful consideration of the underlying
assumptions and is by no means automatic. Often, only structural elements of
the algorithms generalize. Approximate algorithms discretize the set B in var­
ious ways and are. thereafter, independent of its geometry. Roughly speaking,
to generalize them reduces to devising a discretization of B in 3-space, since the
subsequent processing is usually trivial to extend to higher dimensions.
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2.1 The Two-Dimensional Problem
Perhaps the first effiden t algorithm for constructing the skeleton of a polygonal
domain is due to Preparata [22]. The underlying organization can be grasped
as follows: Consider shrinking the boundary of the domain with uniform speed.
In this process. some edges may become smaller and reflex vertices expand as
circular arcs. At certain critical distances, however, some offset edges have
reached zero length, or different parts of the shrinking boundary have come
into contact. These discrete events can be found by proximity computations
involving two or three elements of the original boundary. They correspond to
branch points of the skeleton. Proper book keeping ensures that not all triples
are subjected to this analysis. Preparata's algorithm first locates the branching
points of the skeleton, and then constructs the skeleton arcs connecting them.
The algorithm determines the skeleton of convex polygons in O(n2 ) steps.

Lee [16] gave an algorithm based on the divide and conquer paradigm that
computes the Voronoi diagram of a polygonal domain. So, by deleting Voronoi
edges incident to reflex vertices, the skeleton is determined. Lee's algorithm
takes O( n log( n)) steps. Patrikalakis and Giirsoy [21] generalized Preparata's
algorithm to domains bounded by circular arcs and line segments. There is also
an algorithm by Srinivasan and Nackman [28], for multiply-connected polygonal
domains.

For convex polygons, the skeleton consists of line segments. Reflex vertices
introduce parabolic arcs. When circular boundary elements are allowed, the
skeleton may also contain segments of the other conic sections.

When the allowed boundary elements are more general, then the skeleton
includes curve segments whose geometry has not been studied systematically.
The customary response is therefore to approximate either the boundary or the
skeleton arcs or both. Exact representations can be given but require the di­
mensionality paradigm - unless extensive symbolic computation is undertaken;[11].

Approximations to the skeleton have been based on Delaunay triangulation
as follows: Sample the boundary of the domain, obtaining a set of points whose
Delaunay triangulation respects the domain boundary. Then the centers of the
circumscribed circles of the Delaunay triangles contained in the domain are
approximately on the skeleton, owing to the fact that they cannot contain other
points of the triangulation and so are approximately maximal inscribed circles.
One can now select only those triangles whose circumcenters lie near branch
points of the skeleton, [23], or make the Delaunay triangulation sufficiently dense
so that all circuIllcenters connect to a reasonable piecewise linear approximation
of the skeleton, [34]. Note that certain segments of the skeleton cannot be so
approximated, as shown in Figure 1. Another method [33] approximates the
domain and its interior with boxes, and classifies interior boxes by the boundary
element it is provably nearest to. Boxes that cannot be so classified provide an
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Figure 1: Dotted skeleton segment cannot be approximated through Delaunay
triangulation

approximation to the Voronoi diagram.
The accuracy of the approximations can be increased using interpolation

and iteration, [.5J. Moreover, the approximate methods generalize to three di­
mensions with little change.

2.2 The Three-Dimensional Problem

The three-dimensional problem is complicated by the fact that the geometry
of the skeleton surfaces is difficult; [8J. Skeleton surfaces of convex polyhedra
are simple. However. nonconvex polyhedra already introduce quadric surfaces
such as paraboloids and parabolic hyperboloids. More general shape primitives
introduce surfaces whose geometry is not well-understood.

We are aware of only one exact algorithm; [13J. It uses many ideas of
Preparata's algorithm, and, in particular, organizes the skeleton evaluation by
increasing distance from the boundary. Surface construction relies heavily on the
dimensionality paradigm and could well be carried out for general boundaries.
However, the proximity computations make it advisable to restrict the geometry
of the boundary to planes. natural quadrics, and tori. Although proximity
calculations can be formulated for general geometries, the resulting systems of
nonlinear equations would be difficult to solve and so the skeleton algorithm
would become practically unacceptable.

The approximation algorithms all generalize, provided a suitable discretiza­
tion of the surface can be given. Sapidis and Perucchio [27J describe an al­
gorithm for constructing boundary-conforming triangulations of CSG objects.
The algorithm tests whether the triangulation respects the boundary. If not, it
determines which additional surface points should be added so as to eliminate
tetrahedra that are partially inside and outside the solid. Such a triangulation
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could be used as the basis for 3D skeleton approximation.
Several papers investigate structural properties of the 3D skeleton; [20,30].

Such studies are important when devising new skeleton algorithms, and can, in
particular, guide evaluations based on marching. Yet it seems that a compre­
hensive topological characterization of the skeleton in 3-space is not known.

2.3 Engineering Applications of the Skeleton

Considerable work. focuses on automatic mesh generation using the skeleton. It
is argued that the skeleton gives good quantitative criteria for choosing the
appropriate mesh density. The approaches to the two-dimensional meshing
problem are especia.lly well-developed; e.g., [1,29]. Armstrong [1] argues that
quadrilateral meshes should "flow" along skeleton arcs. Srinivasan [29] gives
precise criteria for subdividing polygonal regions, and grades subdomains by
the relation between the length of the skeleton arc and its distance from the
boundary.

Three-dimensional mesh generation using the skeleton is largely open. How­
ever, it appears that the paving approach can utilize skeleton information. This
approach generates hexahedral elements layer by layer beginning at the bound­
ary. Each layer is bounded by interior offsets of a certain depth. The skeleton
indicates where the paving pattern has to be adjusted because of impending
self-intersection of the layer under construction.

In unpublished work. Prinz considers feature recognition and extraction us­
ing an approximate skeleton. However, the skeleton is approximated by consid­
ering an octree subdivision [26] of the object. The skeleton approach to feature
recognition has to address how the local perturbation, introduced by a feature
that was added to a basic shape, affects the skeleton. If we should recognize,
for example, that the ~Iobal structure is rotational, will the axis of rotation still
be recognizable from the skeleton after adding surface features?

Certain rigid-body transformations of the skeleton are equivalent to forming
an offset of the original shape. Thus, the skeleton has potential applications in
geometric tolerancing [1.5.14]. Stifter [30] uses the (exterior) skeleton for motion
planning. By moving on the skeleton, maximum clearance from all obstacles is
maintained.

3 Image Processing Algorithms for the Skeleton

Skeleton computations in computer vision begin with a digitized picture. In
consequence, this problem version considers the distance of points in a regular
rectangular grid from a subset of grid points that constitute the contour whose
skeleton is to be found. Early algorithms by Rosenfeld [25] and Montanari
[17] use a distance function that is only approximately the Euclidean distance.
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Danielson's algorithm [7], in constrast, computes the Euclidean distance at each
grid point with a cumulative error that is only a fraction of the grid spacing.
Furthermore, if distance is expressed in multiples of the grid spacing h, the
algorithm can be implemented in integer arithmetic.

Danielson's algorithm computes the Euclidean distance transform in two
passes over the grid, top-to-bottom and bottom-to-top. In each pass, all rows
are scanned twice. in opposite directions. The key to his method is to store
at each grid point the distance amplitudes, Le., the distance in the x- and y­
directions to the nearest boundary grid point. While the distance from a nearest
grid point is not an integer multiple of h, the distance amplitudes always are.
Moreover, it is simple to compute the distance of an adjacent grid point using
the distance amplitudes. Note that Danielson's algorithm generalizes trivially
to 3D grids [41.

If a given set B is not discretized as a set of grid points, interpolatory schemes
for computing the distance transform can be devised [5J. For example, the curve
B can be approximated by a polygonal arc, where the segments are induced by
the grid lines, and the adjacent grid points can be assigned the perpendicular
distance to the nearest boundary segment. This improves the accuracy of the
distance computation significantly, but the distance amplitudes are no longer
multiples of the grid spacing. Further accuracy is obtained using iteration. For
a discussion of Danielson's algorithm and such variations see [5J.

Once the distance at each grid point is known, there are different methods
for extracting the skeleton. Danielson suggests using the skeleton definition as
the locus of the centers of maximal disks. His algorithm includes a corrective
computation that compensates for errors introduced by the discretization. Other
criteria are discussed in Section 6.

4 Cyclographic Maps In Descriptive Geometry

Cyclographic maps have been used in descriptive geometry to solve the Apol­
lonius problem. The concept is due to Muller [19J. Let C be an oriented plane
curve. For every point p we consider all oriented circles, also called cycles, that
are tangent to p a.t C and are oriented at p in the same direction as C is. With
each such cycle, we associate a point q = (x,y,r), where (x,y) is the center of
the cycle and r its radius. Choosing arbitrarily the counterclockwise orientation
as positive, r is signed according to whether the cycle orientation is positive or
negative.

When the curve point p is fixed and regular, all oriented cycles tangent at
p are associated with points that lie on a line through p, with slope 1 against
the (x, y)- plane and are such that the line orthographically projects onto the
curve normal at p. See also Figure 2. As p varies over C, these lines comprise
a ruled surface called the cyclographic map S(C) of C. Since the generators of
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Figure 2: Cyclographic map at a curve point
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Figure 3: The surface S of a closed curve

this surface have constant slope with respect to the plane of C, the surface is
developable [32J.

We can restrict the surface S(C) such that it is the graph of a function with
the (x, y)-plane its domain. With each point (x, y) we associate the "nearest"
point (x, y, r) on S(C). The surface S(C) so defined is then the distance surface
of Blum [2J. It follows, that S( C) can be determined approximately with the
Euclidean distance transform. Figure 3 shows an example.

When intersecting the surface with a plane r = d parallel to the (x, y)-plane,
we obtain an offset of C by d. This is a global offset [5J. Moreover, the points
on S(C) that are not continuously differentiable are the skeleton with respect
to C. See also [14J. Thus, if the skeleton is known, then the map S(C) can be
obtained by adding the ruling from skeleton points to corresponding footpoints
on the curve. Curve points can be found directly from the skeleton point and its
tangent(s), [19]. Briefly, project the skeleton point P = (x, y, r) orthographically
into the (x,y)-plane. obtaining a point pi = (x,y). Find the intersection of the
tangent to the skeleton with the (x, y)-plane, obtaining a point Q. Now draw
the two tangents from Q to the circle with radius Irl, centered at Pl. Then the
contact points R1 and R2 are points of C. See also Figure 4.

In principle, cyclographic maps extend to three dimensions [18]. For in­
stance, instead of oriented circles we now use oriented spheres, adding the ra­
dius as additional fourth coordinate, properly signed. The constructions and
relationships mentioned before generalize to the three-dimensional case. It is
also possible to replace oriented circles with suitably chosen conics. In this case
the surface S( C) corresponds to noneuclidean metrics.

5 Classical Mechanics and the Skeleton
Consider a continuum of particles situated at time t = 0 on a plane, smooth
curve C, moving at constant velocity in a direction locally normal to C. By
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the conservation of momentum, the kinetic energy of each particle is constant,
and will be proportional to the squared velocity components in the principal
directions. That is. v;' + v~ = 1, where Vx is the velocity in the x-direction, and
v y is the velocity in the y-direction. With Vx = as/ax and v y = as/ay, we
obtain

(~~r + (~:r = 1

This is the eikonal equation in geometric optics [9J, and S( x, y) is the time when
a particle reaches the point (x, y). Since we have assumed constant velocity,
Sex, y) is just the distance function assigning to each point in the plane its
distance from C.

Let p = (x, y) be a point reached by two or more different particles at the
same time. Then p has two or more foot points on C and is therefore a skeleton
point. Thus, the derivative discontinuities of the surface S are the skeleton of
C. Moreover, the surface S is just the surface S(C) of the cyclographic map.
We can thus think of the eikonal equation as a differential description of the
Euclidean distance function; [10]. The three-dimensional form of the equation
IS

(~:r + (~:r + (~~r = 1

The eikonal equation suggests computing the distance function using techniques
from numerical analysis. Once the distance function has been determined, the
skeleton can be extracted either by applying the definition of maximal circles,
as suggested in [7], or by finding the tangent discontinuities of the surface, or
by processing intersecting characteristics directions during integration.

6 Computational Approaches

Once the distance map has been computed, the skeleton can be extracted by
applying the maximal-disk criterion. Intuitively, we want to check whether the
disk at (i,j) is contained in a disk centered elsewhere.

Given a grid point (i,j) with distance amplitudes (a,b), let (i +r,j + s) be
a neighbor grid point with distance amplitudes (a', b'), where r, s E {-1, 0, +1},
with h the grid spacing. Let d1 = va2+b2 and d2 = va,2 + b'2. If r =°or
8 = 0, and if

d2 - d1 ~ h
then the inscribed disk centered at (i+ r,j +8) ofradius d2 contains the inscribed
disk centered at (i,j) ofradius d1 • Therefore, the point (i,j) cannot be a skeleton
point. Similarly, if r f= °and 8 f= 0, and if
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Figure 5: Disk centered at X is not maximal, yet is not contained in disk centered
at the immediate neighbors

then the inscribed disk centered at (i + r,j + 8) of radius d2 also contains the
inscribed disk centered at (i,j) of radius dt . Again, the point (i,j) cannot be
a skeleton point in this case. If the disk at (i,j) is not contained in the disks
centered at each of the eight neighbors, however, then (i,j) is not necessarily
a skeleton point. In Figure 5, the disk centered at x is not contained in any
disk centered at the immediate neighbors. Yet the disk is contained in a disk
centered at the grid point indicated by a box.

To decide whether a disk is maximal, we instead attempt to "grow" it. Con­
sider the situation shown in Figure 6. We try to enlarge the disk centered at X in
the direction of the characteristic through the point. The extrapolated distance
d} to the boundary along the characteristic is compared with the interpolated
distance d2 obtained from nearby grid points. If the distances agree, subject to
a suitable tolerance, then the disk can be so enlarged, and the grid point X is
not a skeleton poin t.

The computation is as follows: Let do be the distance of the grid point P.

o X'

0'

o

Figure 6: Disk centered at X is not maximal if it is contained in disk centered
at the square.
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Figure 7: Extrapolating along the characteristic of P

Extrapolating from P, we obtain a point Q at distance d1 = ~ + w from the
boundary, where tv is the distance P, Q; see also Figure 7. Note that the slope
of the characteristic is 1. The distance of Q can be determined alternatively
by interpolating the distances da of A and db of B, as d2 = da + u( db - da )/h.
If the characteristic through P extends on the distance surface to Q, then the
two distances will agree fairly closely. If the characteristic does not extend,
however, then d2 should be smaller than d1 on account of Q being closer to the
boundary in a different direction. Let P' and Q' be the points on the distance
surface above P and Q respectively, where we assume that Q' is at height d2 •
The line P',Q' has the slope tan(4)) = (d2 - ~)/w. If tan(4)) ~ t for t = 1.0,
then the characteristic through P extends, and P is not a skeleton point. But
if tan( 4» < t, then the characteristic does not extend.

When we extract the skeleton from the discrete distance surface, computed
by Danielson's algorithm. the discretization of the boundary has created tangent
discontinuities on the distance surface that are not skeleton points. Figure 8
shows an example in which the tolerated deviation is very small, using t = 1.
If we lower the threshold t, then less points are considered skeleton points. In
Figure 9 a looser tolerance has been used, and there are fewer nonskeleton points
reported. However, too large a tolerance also loses skeleton points at which the
tangent discontinuity of the distance surface is relatively small.

It is simpler to account directly for the boundary geometry and use iteration
to eliminate the discretization errors altogether. We now sketch a preliminary
technique for extracting the skeleton assuming there is a continuous boundary
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Figure 8: Discretization error affecting skeleton construction: threshold t = 1.
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Figure 9: Effect of looser tolerance; t = 0.6
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Figure 10: Approximate skeleton point at intersecting characteristics

that has been specified. The method includes iteration and interpolation steps,
and applies techniques from [6,12]. First, we give a different criterion for finding
skeleton points.

Consider a grid square such as the one shown in Figure 10. The characteris­
tics of the distance function can be reconstructed from the distance amplitudes,
provided that Danielson's algorithm is modified to record signed amplitudes. In
the figure, the characteristics are shown as dotted lines. If the characteristics
of the corner points intersect in the grid square, then the intersection point is
an approximate skeleton point. This intersecting-characteristics criterion works
well except near endpoints of the skeleton, because there the characteristics are
nearly parallel. Note that the intersection is also difficult to determine for nearly
anti- parallel characteristics. However, in that case distance interpolation will
locate the intersection quite accurately.

Skeleton points lie on equal-distance curves and surfaces [8]. Since the char­
acteristics localize which parts of the boundary lie nearby, it is not difficult to
formulate a system of equations that describes the skeleton locally [13], in terms
of the coordinates of the skeleton point, its footpoints, and the distance to the
boundary. This system can be solved with Newton iteration very effectively
since the characteristics provide good initial estimates for all quantities.

In three dimensions, matters are more complicated since the characteristics
through the vertices of a grid cube will be skew in general. By interpolating
the characteristics along grid edges, intersection curves and surfaces can be
determined and thereafter refined using iteration in the same way as in the two­
dimensional case. Alternatively, the intersections of the skeleton with grid lines
can be found using interpolation.

This algorithm has not yet been fully implemented. Note that the local
topological structure of the skeleton can be determined as described in [13].
In essence, our approach negotiates a reduction in the number of grid points
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against the increased computational work of iteration and interpolation.
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