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Abstract

An investigation of the relative speed and effectiveness

of two computer vision algorithms has been conducted. One

algorithm incorporates a two-level data hierarchy. The other

incorporates a one-level hierarchy and serves as a relatively

conventional basis for comparison. The computer vision

algorithms, programmed in Fortran, detect and recognize a

moving square. Both computer vision algorithms could readily

be implemented in existing hardware. The two-level algorithm

was found to be up to 90% faster than the one-level

algorithm.

An analysis was made of elapsed CPU time variance as a

function of time of day and user load. This was done to

minimize the variance of results in comparing the above two

algorithms. The mean and standard deviation of elapsed CPU

time were both found to increase with system load, and system

load was found to exhibit a midday peak.
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A) Relation to Previous Work

1) Overview

This research presents a new approach to the

implementation of data hierarchies. The difference in number

of pixels (by area) of the various levels of data hierarchies

is commonly four. The author arbitrarily chose a factor of

sixteen. This data hierarchy was applied to the analysis of

a moving square generated in software. Polygonal scenes (as

analyzed here) were formerly popular subjects for analysis

CAggarwal and Duda 1975; Mitiche and Bouthemy 1985].

Generating images or scenes is rare in computer vision, but

is quite common in computer graphics. As a preliminary to

pattern recognition, a suboptimal corner detection algorithm

was implemented CPavlidis 19823. The accuracy of this

algorithm was improved considerably with three minor

revisions. A pattern recognition algorithm was implemented

which recognized a square given information derived from the

location of its four corners.

2) CPU Time Variability Analysis

Accounting data measures the amounts of computer

resources a user consumed. Some types of accounting data are

elapsed CPU time, duration of user sessions, and amount of

memory used CKnudson 1985; O'Neill and O'Neill 19803.
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The demands users place upon a computer vary from

installation to installation. For example, one computer may

be used mostly for many small programs, while another may be

used mostly for text processing and larger programs. The

configurations of large computers is often adjusted or

"tuned" to peak performance under a given set of conditions

CFerrari, Serazzi, and Zeigner 19833. For example, the page

size of virtual memory systems may be adjusted, or a high

speed printer may be added to a system to reduce the load on

low speed printers.

The above-described field of computer performance

evaluation and tuning is somewhat concerned with variability

in accounting data. Davies' 1979 study examined elapsed CPU

time for the same program under various conditions. He

reported that elapsed CPU time increased with the load placed

upon a computer CDavies 19793.

The author repeated this study using a VAX/VMS instead

of a Decsystem 10/50. The author's results generally concur

with those of Davies. The parameters of system load analyzed

show a system and installation dependence.
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3) Edge Detection

Edges of shapes usually correspond to intensity

discontinuities in a digital image. Edge detection

algorithms locate small spatial regions of large intensity

change. Most edge detection algorithms locate boundary

points which must be grouped together to form shape

boundaries. A few techniques reduce the extent of this

grouping by locating edges in terms of lines instead of

points CSuk and Hong 19823.

Intensity discontinuities are found through the use of

computational operators. A large variety of these operators

are currently in use. Some of the most popular are templates

CKittler, Illingworth, and Paler 19833, Laplacian CWiejak,

Buxton, and Buxton 19853, and Hough Transforms CBrown 19833.

For a general discussion of these and other operators, see

Ballard and Brown 1983.

The author implemented an edge operator which detected

grey-level discontinuities. The digital images under

analysis were binary, so detecting dincontinuities was a

fairly simple problem. The changes detected were from zero

to one, and from one to zero CCapson 19843.
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4) Data Hierarchies

Data hierarchies are also known as pyramid data

structures. They contain N versions of an image, each at a

different resolution level and pixel size. To create a data

hierarchy, pixels of a high resolution view may be grouped

together and averaged in software, resulting in a lower

resolution view of the same scene.

One-Level Hierarchy Two-Level Hierarchy

Figure 1: Illustration of Data Hierarchies

To increase speed and accuracy, data hierarchies may be

incorporated into edge detection algorithms CTanimoto and

Klinger 1980; Spann and Wilson 1985; Harlow and Eisenbeis

19733. For example, one level of a data hierarchy might be

512 pixels square (high resolution) , and another level might

be 64 pixels square (low resolution). The low resolution

level could be useful for rapidly finding the outline of an

apple, and the high resolution level for resolving this shape
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in greater detail.

Quadtrees are perhaps the most popular form of data

hierarchy. In a quadtree, the high resolution image has four

times as many pixels as the low resolution image. The author

differed from this convention in choosing a high resolution

image with sixteen times as many pixels.

5) Corner Detection

Numerous types of methods are currently employed to

represent boundaries of shapes. One of the simplest is a

region occupancy array. This is a array of the same size as

the digital image. If a pixel is within the shape of

interest, then the corresponding pixel in the occupancy array

is given a value of one, otherwise is is given a zero.

A more common class of techniques is polygonal curve

fitting. This method divides a boundary into sections, and

fits a polynomial to these sections. Linear polynomials are

perhaps most frequently used CBezdek and Anderson 19863. The

endpoints of these boundary sections are called break points,

polygon vertices, or feature points. (For an overview of

these techniques, see Fischler and Bolles 1986.)

It is possible to optimize the locations of the break

points CDunham 19863. Optimization minimizes both the number

of break points and the error of polygonal approximations.
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The disadvantage of optimization is higher computational

cost. Some algorithms include optimization, and some do not.

The author implemented a suboptimal algorithm based on

the description found in Pavlidis 1982. The performance of

this algorithm was improved considerably by implementing a

few ainor revisions. For the extent of these revisions, see

Corner Detection on page 29.

6) Pattern Recognition

Moving squares are relatively simple shapes to

recognize, requiring neither a complicated model nor a

complicated algorithm. There exist a wide variety of complex

algorithms for pattern recognition. For an introductory

discussion, see Ballard and Brown 1983.

The pattern recognition algorithm analyzed the following

parameters of
"squareness"

which were calculated from the

corner locations: the number of corners, lengths of the

sides, and interior angles CMitiche and Bouthemy 19853.
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B) Applications

A possible application of the principles employed is

tracking and identifying missiles. Other possible

applications are: watching traffic to determine flow

characteristics; tracking products on an assembly line to

verify dimensional accuracy as well as presence or absence;

identifying the region of text in a letter for automatic

sorting; locating alignment marks for silicon wafer

production; aligning and inserting components in printed

circuit assembly; tracking motions of animals and people;

measuring the flow of liquids; etc..



Introduction Page 9

C) Implementation

1) General

This thesis presents a study of software techniques,

particularly data hierarchies. These hierarchies were

implemented in computer vision algorithms (software). This

software implementation demonstrates the feasibility of

hardware implementation.

The difficulties of hardware implemented were avoided to

concentrate on the new aspects of the work done here. In

keeping with this concentration, the software equivalent of a

moving square was created. This was thought to be a speedier

and more flexible approach than having a physical shape move.

In addition, a square generated in software offered the

advantage of a more controlled test ground.

Fortran was chosen as the language for the software

because it is a popular language for scientific uses, it

compiles efficiently, and it is the author's favorite

language. The version of Fortran used was VAX-11 Fortran

V4.3, a structured extension to Fortran-77. The machine used

was VAXB of the Rochester Institute of Technology's

VAXcluster. This is a Digital Equipment Corporation VAX/VMS

model 11/785 computer.
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The computer vision algorithms implemented consisted of

the following major sections: scene generation, edge

detection, corner detection, and pattern recognition. The

scene was a moving square on a stationary square background.

The edge detection, corner detection, and pattern recognition

algorithms were much more generalized than the scene was.

These algorithms did not
"know"

a priori that the object

being analyzed was a square. The edge and corner detection

algorithms could find the edges and corners of almost any

closed figure. The pattern recognition algorithm could

determine if the shape found was a regular polygon with the

specified number of sides. While these algorithms were

designed to be very general, their utility was only tested

with squares.

2) Data Hierarchies

A two- level data hierarchy was created. It contained

two digital images, or arrays of pixels. These images

correspond to the same scene, and differ in resolution.

Digital images are usually 512 X 512 pixels. For the- high

resolution level of the data hierarchy, it was decided that a

relatively small array (128 by 128) would most readily

illustrate the computer vision algorithms implemented. For

the low resolution level of the data hierarchy, an even

smaller array (32 by 32) was chosen.



I. Introduction Page 11

To implement a two- level data hierarchy, the scene was

examined first in low resolution, then in high resolution.

To implement a one- level data hierarchy, the scene was

examined only in high resolution.

3) Object and Scene

The software equivalent of a moving square was created.

The square had a constant brightness of one, while the

background had a constant value of zero. (This square is

described in more detail in the Object and Scene section of

the Experimental on page 20.)

The creation of the moving square took into account the

size of the digital image which mapped onto the scene. A

high resolution view of the scene was created by mapping the

scene onto a large digital image. A low resolution view

resulted from mapping the scene onto a small digital image.

As a result of the above procedure, it was not necessary to

average the high resolution view to result in a low

resolution view of the scene.

Initially, the square was allowed to move while the

scene was being scanned. This resulted in motion blur. To

eliminate the problem of motion blur, the square was allowed

motion only between examinations of the scene. This

condition could be achieved in hardware by synchronizing a

strobe with the digitizing scan rate.
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The image digitizing system modeled here created two

data files, one of which was the scene in low resolution, the

other being the scene in high resolution.
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A) CPU Time Variability Analysis

1 ) Background

Two general criteria are currently used to determine how

much time a computer requires to complete a task. The first

is elapsed time, as could be measured with a stop watch. The

second is elapsed CPU time, or the amount of CPU time

utilized. Note that in a timesharing environment (as

occurred here), CPU time may readily be orders of magnitude

lower than elapsed time.

The elapsed time required to replicate a task is known

to vary greatly, being longest when the system load is the

highest. One might expect that the CPU time needed to

replicate a task would not vary at all. During the course of

his experimentation, the author discovered that the CPU time

required to replicate a task varied.

To characterize the relative speed of two algorithms,

elapsed CPU time for both algorithms was measured. If this

research had been done in an environment where CPU time

showed great variation, then little faith could be placed in

the results gathered.

The simplest method to reduce CPU variability would be

to use a single-user machine. Another possibility would be

to analyze CPU variability to isolate a low variability time
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for processing. Due to the unavailability of a single-user

machine with sufficient power, the latter option was chosen.

CPU variability was found to be very low between midnight and

6:00 AM; consequently all data from the computer vision

algorithms was collected during this time.

To analyze CPU variability, a program was written to

utilize processor time in computing transcendental functions

(sine, logarithm, etc.). Various amounts of processor time

were used, ranging from 1 to 400 ms.. The use of processor

time was replicated 35 times. The program which used

processor time in this manner was called CPU. FOR (a copy of

which appears in Appendix One).

It was hypothesized that relationships existed among

time of day, system load, and processor time. These

hypothesized relationships appear in the Results section on

page 38. To characterize these relationships, a command file

(CPU.COM) was submitted to batch. This command file ran the

above program (CPU. FOR) approximately once every hour and a

half. Just before the program was run, the system load was

determined by calling the local "nodeshow userload"

utility.

System load was defined as the average number of processes

waiting for time or memory resources over the last fifteen

minutes .
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2) Statistical Analysis

A statistical analysis of the CPU time data was

undertaken. A program (C.CPU3STATS. FOR) was written to

calculate mean and standard deviation using the following

formulas. The results of this statistical analysis can be

found in the Results section of this report on page 38.

N

X Xi

1 = 1

N

Sx =

N

-1 2
Xi -

1

1

N
2

N> > >
_
I = 1

N * (N - 1)

Where X
Sx
N
Xi

Mean
Standard Deviation
Number of Data Points
ith Data Point
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B) Modeling of CPU Time Saved

A mathematical model was developed to predict the

relative speed of the two computer vision algorithms

implemented.

The bulk of the CPU time utilized by the edge detection

algorithms was thought to be spent examining the requisite

number of pixels. A much smaller fraction of CPU time was

thought to be used by the overhead portions (initializing

variables, error trapping, etc.) of these algorithms.

The model analyzed the number of pixels each algorithm

examined, the resultant relative savings of CPU time, and

neglected the above-described overhead. Because the overhead

was not included in the model, the model represents a

best-case analysis, and the actual results are expected to be

slightly less favorable.

The one-level algorithm analyzed only the high

resolution view. This view is 128 pixels square, for a total

of 16384 pixels. This was compared to the number of pixels

examined by the two-level algorithm. The two-level algorithm

first analyzed the entire low resolution view (32 pixels

square) for 1024 pixels. The region of the shape in low

resolution was isolated, then analyzed in high resolution for

a variable number of pixels. This number of pixels depended

on the width of the shape found.
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A short computer program, MODEL. FOR, was written to

implement this model. For more details on the modeling, see

the Modeling of CPU Time Saved section of Appendix One on

page 55. The results appear in the Results section on page

43.
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C) Coordinate System

A coordinate system was arbitrarily chosen for the

scene. The scene had a width of one, centered on the origin

(0,0). The coordinates of top-right corner of the scene were

(.5,. 5); the bottom- left was denoted by (-.5, -.5).

A short subroutine called COORD (included in Appendix

One under Coordinate System) implemented the above coordinate

system. Arrays are accessed in terms of array indices, I and

J for example. This routine translates from array indices to

the above scene coordinate system. I and J, the array

indices to be transformed, are passed to the routine and

shifted so that they are centered about 0, then they are

scaled so that they range from -.5 to +.5. X and Y in scene

coordinates are returned.
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D) Object and Scene

1) Choice of Object and Scene

The object and scene were chosen to be relatively

simple: closed regular polygons; squares. This was done to

eliminate unnecessary complications from the computer vision

algorithms. Note that a more complex scene is not likely to

change the relative performance of the two algorithms, but it

would certainly make it much more difficult to achieve

conclusive results.

The object and the scene it moves through were chosen to

be coplanar squares. The moving square had a constant

brightness of one, and the stationary background had a

constant brightness of zero. The square was allowed to

travel in a straight line at constant velocity. The

direction of the square's travel and its starting point were

variable. The square may rotate about its center while it is

translating. The direction and rate of rotation were

variable. For an example of the generated square, see page

88 of Appendix Two.

2) Implementation

A function subprogram named SQUARE was written to

implement the above choice of object and scene. It created

the moving square during run-time. Input to this function
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were the following variables to specify the movement of the

square :

Table 1: Square Specification Variables

Variable Description

Speedr
Speedt

Width
Angleo

Anglet
Xi, Yi

speed of rotation

speed of translation

width of square

initial offset angle

direction of translation
initial coordinates
of square's center

Units

degrees /time
scene widths /time

scene width

degrees

degrees
scene units

To let the square rotate, the square's angle from the

horizontal was incremented. To let the square translate, the

square's definition stayed constant, and the coordinate

system of the scene was moved in the opposite direction.

This resulted in apparent motion in the desired direction.

The square was defined in polar coordinates to simplify

letting the square rotate. The square's angle from the

horizontal was simply incremented to let the square rotate.

To create the scene, the array indices corresponding to each

pixel were passed to the subroutine SQUARE. The array

indices were transformed first into scene cartesian

coordinates, then into polar coordinates. If the coordinates

of the pixel's center lie within the square, then a one was

returned. Otherwise, a zero was returned.
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E) Edge Detection

1 ) Background

The edge detection algorithm was designed to be slightly

more general than necessary to examine the scene. Even

though only moving squares were analyzed, the edge detection

algorithm was given the capacity to accurately find the edges

of nearly any single convex polygon. As a result, it was not

necessary to give this algorithm a priori knowledge of the

shape it was analyzing.

To detect the edges of the as-yet unidentified shape,

the scene was scanned horizontally, one row at a time. For

most of the shape two points per line are sufficient to

define the edges. However, on the top and bottom edges of

the shape, a variable number of points are needed. See the

figure below.

The Square Number of Boundary
Points Per Row

+XXXXXXX+ 2
+XXXXXXX+ 2
+XXXXXXX+ 2
+XXXXXXX+ 2
+XXXXXXX+ 2
+XXXXXXX+ 2

Key:
X Interior Point
+ Boundary Point

Figure 2: Number of Points Defining Edges of a Square
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As the square moved, sometimes parts of the square were

clipped at the scene boundary. When this occurred, the edge

detection algorithm found the edges of the undipped portion

of the square. Depending on how the square was clipped, the

resulting shape could have anywhere from three to eight

sides. See the below figure.

Key:
Scene

D Square Inside Scene
Square Outside Scene

Figure 3: Clipping of Square at Scene Boundary

2) Implementation

A subroutine, EDGE, was written to implement the above

edge detection algorithm. The output from this subroutine

includes two arrays containing the coordinates of the edge

points, and a flag to note whether or not a shape was found.

This subroutine calls the above-mentioned square generating

function, creating the moving square during program

execution.
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To locate the square, the first and last pixel on each

row with a value of one is found. In addition, a boundary

condition may occur at the right-hand edge of the scene: If

the edge of the square extends beyond the edge of the scene,

then a one followed by a zero will not be found. This

condition was trapped accordingly.
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F) Corner Detection

1) Introduction

As a preliminary to pattern recognition, the corners of

the square were found via a split-and-merge polygon fitting

algorithm. Polygon fitting algorithms draw a polygon to

approximate the boundary of closed figure. Split-and-merge

algorithms split data into successively smaller segments when

necessary, and new segments identified are merged when

possible.

Due to quantization error, a theoretically smooth edge

may become ragged or saw- toothed. As the width of a square

becomes small in terms of pixels, the raggedness of

theoretically smooth edges increases. (See page 89 for an

example of a very ragged edge.) This phenomenon made it

difficult to find the four corners of a square in the low

resolution view of the scene. This problem occurred rarely

in high resolution.

A significant portion of the polygon fitting algorithm

are two collinearity tests. These tests determine whether a

given set of points lie on the same line to within a given

tolerance. The line is drawn directly from the first point

to the last point. This line is probably not the optimal fit

to the data, but it is relatively easy to calculate.
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2) First Collinearity Test

The first collinearity test checks for a relatively rare

occurrence which is illustrated below. Note that points B,

C, and D are nearly collinear. Note also, that when viewed

as an ordered sequence, these points are not collinear. The

first collinearity test checks for this condition by

computing and summing the length of the lines from point to

point (AB, BC, CD, and DE) . This sum is compared to the

overall length (AE) . If the sum divided by AE is less than

1.1, then the points are declared to be collinear; if the

quotient is greater than 1.5, the points are not collinear.

=E

Key:
Point to Point Lengths
Overall Length

Figure 4: First Collinearity Test

3) Second Collinearity Test

Ideally, every point under test will lie exactly on the

line drawn, but this is rarely the case. The more

perpendicularly distant points are away from the line drawn,
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the less the points are collinear. To evaluate this measure

of collinearity, the second collinearity test calculates the

distance from the line drawn to each point under test. The

point furthest away from the line drawn is identified. By

the above definition, this is also the least collinear point.

The largest perpendicular distance was scaled by the

length of the line. If the result is less than a specified

tolerance, the points are declared to be collinear. If not,

then the number of points under test is reduced: the test

points are divided into two groups at the most distant point.

Least Collinear Point

X

Figure 5: Second Collinearity Test

4) Split and Merge Aspects

Using the above two tests, a selectable number of the

edge points were grouped together and tested for

collinearity. If these points were found to be collinear to

within a tolerance, they formed a line segment. If these
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points were not collinear, then the number of points under

test was reduced. The new endpoint was chosen to be the

point furthest away from the original line segment. The new

line was tested for collinearity and split further as

necessary.

A^

X

Key:
Original Line Segment
New Line Segments

Figure 6: Splitting Line Segments

The above procedure identified a set of collinear

points. Starting from the last element of the above set, the

next group of collinear points was found as above. These two

sets of collinear points form two line segments, which in

turn form an interior angle. If this angle was equal to 180

degrees to within the specified tolerance, then the two line

segments were merged.
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Key:
Original Line Segments
Merged New Line Segment

Note that only for clarity, only the endpoints of the
above line segments are shown.

Figure 7 : Merge Check

The indices to the points under test were then

incremented, and the next group of points analyzed. This

process continued until all the points describing the edges

of the square were analyzed.

5) Implementation

The main subroutine for polygon fitting was named POLY,

the subroutine which tests points for collinearity was named

COLINE. Three other associated routines appear listed with

the above in the Corner Detection section of Appendix One on

page 76 .

6) Enhancements

The polygon fitting algorithm was modified slightly in

three ways to optimize its performance: 1) a merge check

between the first and last corners found was added, 2) the

collinearity tolerances were adjusted, and 3) the number of
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test points was adjusted to be slightly larger than the

expected width of the moving square.

The first edge point of the square was the starting

point for corner detection. As a result, the first edge

point was a default polygon vertex. The first edge point may

have unnecessarily (and incorrectly) been declared a polygon

vertex. This potential error was trapped by applying a merge

check between the first and last polygon vertices: the

second collinearity test was applied to the line segments

bounded by the last, first, and second vertices.

There are two tolerances input to the polygon fitting

algorithm: the first tolerance is the maximum separation of

a point from the line it is thought to be collinear with; the

second tolerance applies to the interior angle formed by two

lines. If this angle equals 180 degrees within the second

tolerance, then the two line segments are merged.

These two tolerances have a pronounced affect on the

number of polygon vertices declared. If the above tolerances

are set to low values, then a large number of polygon

vertices will generally be found. If these tolerances are

set high, then a small number of vertices will be declared.

These tolerances were adjusted just to the point where four

corners were found for a square in low resolution with a

width equal to 40% of the scene width. Note that this square
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was only 12 pixels wide. The tolerance for distance was set

to 2.5 pixels, and the tolerance for angles was set to 45

degrees .

Corner detection was much easier to perform in high

resolution than in low resolution. This is because

quantization error and the raggedness of the
squares'

edges

increased as the number of pixels representing a shape

decreased. Enabling the corner detection algorithm to find

four corners on a square with ragged edges required setting

the two above tolerances to high values.

The corner detection algorithm started its analysis at

the first edge point. Let us assume for the sake of

discussion that the first edge point corresponded to the

first corner of the square. Starting from the first edge

point, a variable number of data points were grouped together

and tested for collinearity. Let the number of points

grouped together be denoted by
"N"

. The value of N affected

which edge points were declared to be corners. In the field,

common values for N range from five to ten EPavlidis 19823.

An imaginary line was drawn from the first corner to an

edge point. The value of N determined which edge point

formed the second endpoint of this line. For some values of

N, the line was drawn from the first corner to a point near

the second corner. This line potentially could have passed
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the collinearity test with the tolerances specified.

A second line was drawn from the last endpoint of the

above line to a new point. These two lines would not be

collinear in this example, so the common endpoint of both

lines would be declared to be a new polygon vertex. For

small values of N (ten for example), the author discovered

that this endpoint could be up to four pixels away from the

true corner of the square. See the below figure.

To more accurately find the square's corners, the value

of N was adjusted to be at least six pixels greater than the

width of the largest square expected. N was set equal to the

number of pixels on one row of the digital image. With this

setting of N, edge points from more than one side of the

square were grouped together to form the first line tested

for collinearity. These points did not pass the collinearity

test. The point furthest away from this line was found, and

corresponded to an exact corner of the square. This line was

then split at the exact corner of the square, and this corner

declared a polygon vertex. This procedure, due to the

adjustment of N, resulted in locating the corners of the

square more precisely.
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Figure 8: Setting the Number of Test Points

Setting N to the above value required that another small

change be made. After each polygon vertex was found, the

indices to the points under test were incremented by N. The

corner detection algorithm continued until the above indices

were greater than the number of edge points. If the number

of edge points was not an integer multiple of N, then some

edge points would not have been analyzed using the above

technique. This error was trapped by setting one of the

above indices to the last edge point for the last pass

through the algorithm.
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G) Pattern Recognition

In most applications of computer vision, pattern

recognition is a very important task. How can one track

moving squares without first being certain that there are

squares to track?

Three criteria were chosen to measure "squareness": the

number of corners was tested for equality with four; the

lengths of the sides were tested for being the same within a

specified tolerance; and the interior angles were tested for

being equal to ninety degrees within a tolerance. The number

of corners, the lengths of the sides, and the interior angles

were calculated as an integral part of the polygon fitting

routine. The function subprogram written to implement

pattern recognition was named RECOGN. Its text is listed in

Appendix One on page 79.
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H) Data Hierarchies

Taken as a whole, the above-described software

implemented a one-level data hierarchy. The entire scene was

scanned at low resolution to find the edges of the moving

shape. From the edge data, the corners were found. From the

corners, it was determined whether or not a square was found.

To implement a two- level data hierarchy, the author used

the low resolution edge data to find the region of the moving

shape. This region was then enlarged by a few pixels in all

directions to allow for quantization error, then examined

again in high resolution.

For the two-level data hierarchy, the corner detection

could occur in either of three options: low resolution only,

high resolution only, or combined low and high resolution.
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I) Statistical Analysis

The two vision algorithms reported elapsed CPU time. To

characterize the mean and standard deviation of elapsed CPU

time, a program named C .VISI0N3STATS.F0R was written. Note

that a different program was written to do similar

statistical analysis for a different set of elapsed CPU time

data (see CPU Time Variability). It was necessary to write a

new program due to the variations in file format.
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A) CPU Time Variability Analysis

1) Introduction

To analyze elapsed CPU time variability as functions of

user load and time of day, system load was determined

throughout one day at approximately one and a half hour

intervals. Immediately following this, elapsed CPU time data

was collected for replicates of various processes. These

processes were designed to utilize various amounts of CPU

time, from 1 to 400 ms .

2) Standard Deviation Vs. Mean CPU Time

For many processes, the standard deviation increases

with the mean. The author expected the standard deviation of

CPU time to increase with the mean, as it does. Note that

the rate of increase changed throughout the day. See the

below figure and table.

Table 2: Standard Deviation and Mean CPU Time

3:00 AM 3:00 PM

Standard
Deviation

(ms)

.406

.490

.471

.725

1.132
1.721

Mean
(ms)

1.200
4.371

17.314

75.657

183.314
432.743

Standard
Deviation

(ms)

.632

.781

1.

5,

435
371

6.638
7.699

Mean
(ms)

1.200
4.086

18.000
75.829

186.000
439.314
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Figure 9: Log Standard Deviation Vs. Log Mean CPU Time

3) Mean CPU Time Vs. Load

This research was run in a timesharing environment. As

the user load increased, the length of the slice of CPU time

allotted to each user is hypothesized to have decreased.

This resulted in each process being shuffled in and out of

the CPU at an increasing rate. Moving a process in and out

of the CPU requires CPU time. In other words, as the system

load increases, the amount of CPU time spent in overhead

increases. Considering the above, one might expect mean CPU

time to increase with the system load, as it did indeed.
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437.5+
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Figure 10: Mean CPU Time Vs. Load

4) Standard Deviation Vs. Load

User load in a timesharing environment is subject to

large variations over small intervals of time. Processes

heavily dependent on CPU resources are begun and ended at

random intervals, resulting in variable demand upon CPU

resources and large fluctuations in system load over the

short term.

If the system load varies greatly, then the mean CPU

time to replicate a task varies. This results in a high

standard deviation. Using the above logic, the author

expected the standard deviation to increase with the load, as

did occur.
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The CPU time data plotted below had a mean of

approximately 76 ms . . Note that this is a different group of

data then plotted elsewhere in this section. This was

necessary because the other data set was very noisy and did

not exhibit a very clear relationship between standard

deviation and load.

4.5+

Standard
Deviation 3 ^
(m>

'

.

1.5+

1.6 3.2 4.8 6.4 SM

Sestet. Load
(processes waiting)

Figure lis Standard Deviation Vs. Load

5) System Load, Mean, and Standard Deviation Vs. Time

The computer centers for the system used are open from

8:00 AM to 11:00 PM daily. During the day when the computer

centers are open, the system load is relatively high. As a

consequence of high load, the mean CPU time and standard

deviation are also relative high. At night, the computer

centers close and the system load is very low. Mean and

standard deviation are consequently also very low. See the

following three graphs.
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Figure 14: Standard Deviation Vs. Time of Day
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B) Modeling of CPU Time Saved

The relative CPU time required by both algorithms was

modeled. The two-level algorithm, as modeled, was much

faster than the one-level algorithm.

Table 3: Predicted CPU Time Savings

Width of the Square Predicted CPU
(% of Scene Width) Time Saved (%:

3.5 93.1
10 91.6

25 85.0

40 73.8

65 45.2
70 38.0

85 13.3
100 -6.3
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C) Actual Time Saved

The two-level edge detection algorithm was

experimentally shown to be much faster than the one-level

algorithm. The predicted results are quite close to the

actual results. See the below figure and tables for more

details.

Table 4: Average CPU Time Required for Two Algorithms

Width of Square
(% of Scene Width)

3.5
10

25
40

65
70

85
100

iiij.oa*

One-Level Two-Level Savings

(ms) (ms) (%)

263 36 86
262 41 84

265 62 77

263 86 68

265 154 42
266 178 33

268 255 5

268 288 -8

30.00+

-10.00+

0.00 20.00 40.00 0.00 80.00 100.00

Width of Square
('/. of Scana Uidth)

Figure 15: Time Saved Vs. Width
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Table 5: Comparison of Actual To Predicted Time Saved

Width of Square Actual Predicted Error in
(% of Scene Width) Savings (%) Savings (%) Prediction (%)

3.5 86 93 7
10 84 92 8

25 77 85 8
40 68 74 6

65 42 45 3

70 33 38 5

85 5 13 6

100 -8 -6 -2
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In the two-level data hierarchy, the low resolution

level located the region of the moving square. This region

was then examined in high resolution. Note that the region

of the moving square was often much smaller then the entire

field. This is to be compared to the one-level data

hierarchy in which the entire field was examined in high

resolution to find the square.

With small shapes, a small section of the high

resolution level was analyzed in the two-level hierarchy.

This resulted in significant savings of time. If the shape

was the same size as the scene (or nearly so), then the

entire high resolution level was analyzed. In this case, the

time spent analyzing the low resolution level was effectively

wasted. The result is that the two-level data hierarchy

implemented actually required more CPU time than the

corresponding one-level hierarchy.

A comparison of actual to predicted time savings shows

that there is a close correlation (see Table 4 on page 44).

The author expected the predicted savings to be slightly

higher than the actual savings. Note that this is the case,

except for a square with a width of 100%.
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A) CPU Time Variability Analysis

1) Command Files

$! file name is BATCH.COM
$! it submits CPU.COM to batch
$! written by David Zokaites Dec-85 to Jan-86
$ SUBMIT/RESTART/NOTIFY/QUE=VAXB$LARGE/LOG_FILE= -

CDMZ5436.THESIS.DEVEL0P.CPU3CPU.LOG -

CDMZ5436 . THESIS . DEVELOP . CPU3CPU

$Ifile name is CPU.COM
$!Written by David Zokaites 16-Dec-85, 12-Jan-85
$!This file executes a series of commands to test cpu time

$ [variability. These commands are repeated after a certain

$!delta time.
$!

$ ! initialize

$ SET NOON (ignore all errors

$ WSO :== WRITE SYS$0UTPUT
$ SET DEF CDMZ5436. THESIS. DEVELOP. CPU3
$ COUNT = 0

$ LOOP:

$ WSO "count = ", COUNT

$ N0DESH0W USERLOAD VAXB

$ RUN CPU

$ RENAME CPUA.DAT 'COUNT 'A

$ RENAME CPUB.DAT ' COUNT 'B

$ COUNT = COUNT + 1

$ WAIT 01:00 !HH:MM:SS. CC

$ IF COUNT .LT. 24 THEN GOTO LOOP

2) Program

(Program name is CPU. FOR
(Written by David Zokaites

!8-Dec-85 to 13-Dec-85, revised 12-Jan-86

! It determines elapsed CPU time for both computation and I/O.
(Note that the elapsed time is determined repeatedly. This is

!to get an estimate of variability.

! initialize
(declare variables

INTEGER*4 TIME,
+ MS,
+ REPS

(elapsed cpu time

(limit on do loop, roughly = CPU
(number of times cpu time is found
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REAL ARG, (argument to math functions
+ COMP, 10, (scales MS for computation or i/o
+ C0UNTER1, C0UNTER2 (counters, could be integer

!LIB$INIT_TIMER and LIB$STAT_TIMER are part of system's

(run time library. The former initializes the count of

(elapsed CPU time, the latter determines elapsed time.

(open files
OPEN (NAME =' CPUIN.DAT'

, TYPE = 'OLD', UNIT = 1)
OPEN (NAME = 'CPUA.DAT', TYPE = 'NEW', UNIT = 2)
OPEN (NAME = 'CPUB.DAT', TYPE = 'NEW', UNIT = 3)

! read and write

READ (1,*) REPS, COMP, 10
WRITE (2,*) 'Computation CPU time '

WRITE (3, *) 'I/O CPU time '

WRITE (2,5) REPS
WRITE (3,5) REPS

5 FORMAT ( ' in ms for repetitions of same thing
' /

+
' Number of repetitions =

'

, / 13/ )

! start of loop to read and compute

10 READ (1,*, END = 20) MS

(use cpu time in computation

(repeat this section to get an indication of variability
DO I = 1, REPS

CALL LIB$INIT_TIMER (initializes timer

(use some time

DO C0UNTER1 =1, (MS * COMP)
DO C0UNTER2 = 1, 1000

VARIABLE =SIN( C0UNTER1 ) *C0UNTER1**C0UNTER1-L0G( COUNTER 1 )
END DO
END DO

(determine elapsed time

CALL LIB$STAT_TIMER (2, TIME)

WRITE (2, A) TIME

END DO
WRITE (2,*) (skip a line

(use cpu time in 1/0

(repeat this section to get an indication of variability
DO I = 1, REPS

CALL LIB$INIT_TIMER (initializes timer

(use some time

OPEN (NAME - 'JUNK.DAT', TYPE = 'NEW', UNIT=20)
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DO J = 1, (MS * IO)
WRITE (20,*) J
END DO
CLOSE (UNIT =20)

(determine elapsed time
CALL LIB$STAT_TIMER (2, TIME)
WRITE (3, A) TIME

END DO
WRITE (3, *) (skip a line

! end of loop to read and compute
GO TO 10

! end program

20 STOP ' NORMAL END OF CPU. FOR'

END

3) Statistical Analysis

Program name is C . CPU3STATS .FOR
Written by David Zokaites 20-Dec-85, 12-Jan, 13-Jan-86
This program characterizes mean, standard deviation, range,

The input is the output from CPU.COM and CPU. FOR

! initialize
CHARACTER*7 FILE ! cpu input data file to be opened

(initialize output file
OPEN (UNIT=4, NAME =' STATS . DAT '

, TYPE = 'NEW')
WRITE (4,10)

10 FORMAT ( ' ELAPSED CPU TIME VARIABILITY ANALYSIS DATA ' /
+ ' time = time the data was collected

' /
+ '

users = number of users on the system, excluding batch ' /
+ ' load = avg sys load in last minute, # processes waiting'/

+
'

process = process using cpu time, computation or I/O '/

+ ' The statistical parameters calculated follow: ' /

+ '
mean (mean), standard deviation (sdev); range, from'/

+- '

minimum (min) to maximum (max), for POINTS points. '/

+
' file = file containing elapsed cpu time '//

+ TIME USERS LOAD PROCESS MEAN '

+
' SDEV RANGE MIN MAX POINTS FILE SDEV /MEAN ' / )

(call stats for two groups of file names

FILE(4:7) =
'.DAT'

FILE (3:3) =
'A'

CALL STATS (FILE)
FILE (3:3) =

'B'

CALL STATS (FILE)
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lend calling routine
STOP 'NORMAL END OF STATS. FOR'

END

(subroutine to do all the work

SUBROUTINE STATS (FILE)
! initialize
(declare variables

INTEGER
+ POINTS,
+ DATA,
+ MIN, MAX,
+ RANGE,
+ SUM,
+ SUMSQ ,

+ COUNTER ,

+ LSDIGIT,
+ MSDIGIT

REAL
+ MEAN,
+ SDEV,
+ SCALED

number of numbers

input data
minimum and maximum values of the data
max - min

sum of data
sum of data * data
counter on which file was opened

least significant digit
most

(mean of the input data
(standard deviation
! scaled sdev = sdev / mean

CHARACTERS PROCESS, (process that used cpu time
+ USERS, (number of users on sys (excludes batch jobs)
+ LOAD (system load in terms of jobs waiting

CHARACTERS FILE (cpu input data file to be opened

CHARACTER*26 TIME (TIME of data collection

OPEN (UNIT=1, NAME = 'CPU. LOG',
OPEN (UNIT=4, NAME =

'STATS.DAT'

TYPE =
' OLD ' ) ! input

TYPE =
'OLD' ) (output

(open loop to read files numbered 0, 1, 2
COUNTER = -1

12 CONTINUE
COUNTER = COUNTER + 1

(read descriptive data from cpu. log
READ (1,15, END=40, ERR=40) TIME,

15 FORMAT ( / T27, A26, 5X, A3, 74X,
(open CPU time input file

(compute lsdigit, msdigit
MSDIGIT = 10 * INT( COUNTER/ 10)
LSDIGIT = COUNTER - MSDIGIT

MSDIGIT = MSDIGIT/ 10

! compute FILE

FILE (2:2) = CHAR (LSDIGIT + 48)

IF (COUNTER .GE. 10) THEN

FILE(1:1) = CHAR (MSDIGIT + 48)

ELSE

USERS, LOAD
A4 // )
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FILE(1:1) =
' '

END IF
! open

OPEN (UNIT=2, NAME= FILE, TYPE = 'OLD')
(read initial data from file

READ (2,20) PROCESS, POINTS
20 FORMAT ( '

'A3,///, 13 /)
(open loop to examine new sets of data in file

DO I = 1, 6
(initialize variables
MIN = 1000000
MAX = 0
SUM = 0

SUMSQ = 0
(compute statistics

DO J = 1, POINTS
READ (2,*,END=50) DATA
IF (DATA .LT. MIN) MIN = DATA
IF (DATA .GT. MAX) MAX = DATA
SUM = SUM + DATA

SUMSQ = SUMSQ + DATA * DATA
END DO
READ (2,*) (skip over a blank line in a file

RANGE = MAX - MIN
MEAN = FLOAT (SUM) / POINTS
SDEV = POINTS * SUMSQ - SUM * SUM
SDEV = SDEV / ( POINTS * (POINTS - 1) )
SDEV = SQRT ( ABS (SDEV))
SCALED = SDEV / MEAN

! output data
WRITE (4, 30)TIME,USERS,LOAD,PROCESS,MEAN, SDEV, RANGE,

+ MIN, MAX, POINTS, FILE, SCALED
30 FORMAT ( '

', A26, 3(4X, A4 ) , 2F8 . 3 , 417, A8 , F8 . 3 )
(close loop to examine new sets of data in file

END DO
WRITE (4, *) (skip line in output file

(close loop that read files

CLOSE (UNIT = 2)
GOTO 12

40 CLOSE (UNIT = 1)
! finalize

RETURN
50 STOP 'END OF FILE IN STATS. FOR'

END
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B) Main Vision Algorithm

1) Modeling of CPU Time Saved

(Program name is MODEL. FOR
(Written by David Zokaites 4-Feb-86

(This program models the CPU time saved by a two- level data

(hierarchy as compared to a one-level data hierarchy. More
(specifically, the % savings of number of pixels examined is
(computed.

! initialize
REAL

+ LEVEL1 ,
+ LEVEL2 ,
+ WIDTH,
+ WIDTHt
+ SAVED

number of pixels examined one- level hierarchy
two

width of the square in % of scene width

transformed width

% time saved

INTEGER
+ PIX1, (number of pixels per row in low resolution

+ PIX2 ! . . . high

PARAMETER (PIX1 = 32, PIX2 = 128)

OPEN (UNIT=1, NAME= ' MODELIN.DAT'

, TYPE='OLD')
OPEN (UNIT=2, NAME= ' MODELOUT.DAT'

, TYPE='NEW')

WRITE (2,*) '% time saved with 2-level data hierarchy'

WRITE (2, *) WIDTH % TIME '

! compute
(read while not end of file

20 READ (1,*, END=100) WIDTH

(transform width

WIDTHt = WIDTH/ 100 (converts from % to decimal
(Detected square in low res could be 0 to 2 (avg of 1)
(pixels smaller than actual due to quantization error

(in generating the square. To correct for this, the

(region of interest was expanded by 2 . 5 pixels. Net

(avg expansion = 1.5 pixels.

WIDTHt = WIDTHt + 1.5/PIX1

IF (WIDTHt .GT. 1) WIDTHt = 1

(number of pixels examined

LEVEL1 = PIX2 * PIX2 (high resolution

LEVEL2 = PIX1 * PIX1 ! low res
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40

LEVEL2 = LEVEL2 + (WIDTHt * PLX2) ** 2

(time saved

SAVED = ( LEVEL 1 - LEVEL2 ) / LEVEL1
SAVED = SAVED * 100 (converts to %

(output results
WRITE (2,40) WIDTH, SAVED
FORMAT ( ' '

, 2F9 . 3 )

! end compute

GOTO 20

(end
100 STOP 'NORMAL END OF MODEL. FOR'

END

2) Command Files

$! file name is BATCH.COM
$! it submits VISI0N.COM to batch

$! written by David Zokaites Jan-86

$ SUBMIT/ NOTIFY/ QUE=VAXB$LATE/AFTER=T0M0RR0W/ L0G_FILE--

CDMZ5436.DEVEL0P3VISI0N.LOG CDMZ5436 .DEVEL0P3VISI0N

$! file name is VISI0N.COM
$! it collects data for my thesis
$!

$ set noon ! ignore errors

$ set def Cdmz5436. thesis. develop3

$ assign input.dat sys$input

$ assign sysout.dat sys$output

$ nodeshow userload 2

$ run vision

$ nodeshow userload 2

$ deassign sys$input

$ deassign sys$output

3) Program

^^^^^.j.*******************************************************

* INTRODUCTORY COMMENTS
*^***^^******************************************************

Written by David Zokaites

11/19/85 - 1/86

Program name is VISION. FOR

This program implements the two computer vision algorithms



VI. Appendix One: Program Listings Page 57

! described in the author's research thesis, "Computer Vision
! of a Moving Square using a Two-Level Data Hierarchy."

********************************^^***^A**AA*******************
* INITIALIZE
**************************************************************

(declare variables
(Viewl is a low res view of the scene PIX1 pixels square,
!View2 high PIX2

BYTE
+ SQUARE

(integer data type, 1 byte of memory
(below function to create moving square

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

INTEGER
PIX1, (number of pixels per row of VIEW1
PIX2, (number of pixels per row of VIEW2
TIME, (time
NSCANS, !# of times scene is scanned

CPU, (elapsed CPU time in milliseconds

SCANT, (cpu time for calling EDGE in 2-level hierarchy
OVERALL, (overall cpu time

0VERALL1, 0VERALL2, (overall cpu time for viewl or view2

XEDGE(512), YEDGE(512), (boundary of shape 512 = 4 * pix2

Ncorners, (number of corners of the shape found in POLY
CORNERS (10,2) , !X,Y locations of the corners

Nedge, !# of points on boundary of shape

NTEST1, NTEST2,!# of points tested for collinearity see POLY
(for VIEW1 and VIEW2

(boundary values for square location, VIEW1
HIJ, LOWJ, HII, LOWI,
IA, IB, JA, JB (do loop indices in examining VIEW2

REAL
+ CONSTK
+ L0CATE1
+ EXPAND,
+ IANGLES
+ LINET,
+ POINTT,
+ TOLL,
(paramete

+ SPEEDR ,

+ SIDES (

2), C0NST2(2), (constants used in COORD

, L0CATE2 , (find search location for high res view

(expand area of moving square in high res

(10), (interior angles of the polygon

(tolerance for two lines being collinear

(tolerance for points on a line being collinear

(tolerance for lengths of sides in % from avg
rs of moving square, see line 50

SPEEDT, XI, YI, WIDTH, ANGLEO , ANGLET,
10) (lengths of the sides of the polygon fitted

LOGICAL

FLAG,
MEDIUM,
LONG,
RECOGN,
RECKON

!T if a shape has been found

!T if medium length output was chosen

! long
(below pattern recognition function

IT if a square was recognized

CHARACTER*! OUTPUT (used to input length of output
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!LIB$INIT_TIMER and LIB$STAT_TIMER are part of the system's

(run time library. The former initializes the count

(of elapsed CPU time, the latter determines elapsed time.

(miscellaneous initialization
'common blocks

COMMON /SQUAR/ SPEEDR, SPEEDT, Xi , Yi , (for SQUARE
+ ANGLET, ANGLEO, WIDTH, TIME
COMMON /CORD/ C0NST1 , C0NST2 (COORD subprogram

COMMON /SCN/ Nedge (EDGE
COMMON /POLY/ LINET, POINTT (POLY and COLINE
COMMON /LINE/ XEDGE, YEDGE (POLY, LINE, EDGE
COMMON /REC7 TOLL (RECOGN
COMMON /OUTPUT/ MEDIUM, LONG (output in POLY, EDGE

[*** OPEN LOOP TO READ WHILE NOT END OF FILE
! input length of output

WRITE (6,20)
20 FORMAT (/

+ Input B for brief output, M for med, and L for long.')
READ (5,30, ERR=200, END=200) OUTPUT

30 FORMAT (Al)
IF ( OUTPUT . EQ .

' L '

. OR . OUTPUT . EQ .

' 1 '

) THEN
MEDIUM =

.FALSE.

LONG =
.TRUE.

ELSE
IF (OUTPUT .EQ.

'M'
.OR. OUTPUT .EQ. 'm') THEN

MEDIUM =
.TRUE.

LONG =
.FALSE.

ELSE
MEDIUM =

.FALSE.

LONG =
.FALSE.

END IF
END IF

(open output files
OPEN (UNIT = 1, NAME = 'OUTPUTA.DAT', TYPE = 'NEW')
IF (LONG) THEN

OPEN (UNIT = 3, NAME = 'OUTPUTC.DAT', TYPE = 'NEW')
OPEN (UNIT = 4, NAME = 'OUTPUTD.DAT', TYPE = 'NEW')

END IF
OPEN (UNIT = 11, NAME = '0UTPUTT.DAT', TYPE = 'NEW')

(output length of output

WRITE (1,110) OUTPUT

110 FORMAT ( ' Chosen length of output was
'

, Al )

IF (LONG) WRITE( 1,112)
112 FORMAT

(' (B - brief, M = medium, L = long) '/)
(open loop to read

10 CONTINUE

(initialize global variables
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DATA PIX1, PIX2 /32, 128/
L0CATE1 = PIX2 / PIX1
LOCATE2 = LOCATE1 / 2 -

.5

EXPAND = 1.001 + 1/ L0CATE1
HII = 0 (variables for square

HIJ = 0
+ 1
1

= PIX1/2 + .5

= PIX2/2 + .5

PIX1 (used
PIX2
0
from screen

location in VIEW1

(used in COORD

in COORD to scale coordinates

LOWI = PIX1
LOWJ = PIX1 +

CONSTl(l) =

CONSTK2) =

C0NST2U) =

C0NST2(2) =

OVERALL =

1 read variables

! initial description
IF (LONG) WRITE (6,40)

40 FORMAT ( /
+ One unit of time is needed to examine the scene. Scene'/
+

' has a width of one scene width, is centered about the
' /

+
'

origin. Please input the following variables in ' /
+

' these units to define the squares motion.'//)

(table of variable identification
IF (LONG) WRITE (6,50)

50 FORMAT (
+

' VARIABLE DESCRIPTION
+

' SPEEDR speed of rotation

+
' SPEEDT speed of translation scene width/time'/

+
' NSCANS # of times scene is examined

+
'

Xi, Yi initial coordinates

+ ' WIDTH width

+
' ANGLE0 initial offset angle

+
' ANGLET direction of translation

+
' ANGLET is measured counter clockwise from horizontal

X'

/

+
'
axis. ANGLEO is measured counter clockwise from Y axis.'/

+
' Positive SPEEDR results in counter clockwise rotation,'/

+
'
negative values result in clockwise rotation. Only

'

/

+
' Xi, Yi, and SPEEDR are allowed to be negative. NSCANS '/

+
'
must be > = 1 ' / )

READ (5,*, ERR = 220, END = 220) SPEEDR, SPEEDT, NSCANS,
+ Xi, Yi, WIDTH, ANGLEO, ANGLET

! correct for bad input

SPEEDT = ABS (SPEEDT

IF (NSCANS .LT. 1)
WIDTH = ABS (WIDTH)
ANGLEO = ABS (ANGLEO)
ANGLET = ABS (ANGLET)

(echo print input

IF (LONG) WRITE (6,60)

+ Xi, Yi, WIDTH, ANGLEO,
60 FORMAT ( ' INPUT

' /

+
' SPEEDR SPEEDT NSCANS

UNITS ' /
degrees/ time ' /

scene width/time

counts
' /

scene width
' /

scene width
' /

degrees ' /
degrees ' / /
from horizontal

NSCANS - 1

SPEEDR,
ANGLET

SPEEDT, NSCANS,

Xi Yi WIDTH
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+ ' ANGLEO ANGLET ' /
+ 2F8.3, 18, 5F8.3/)

(input polygon fitting, variables
IF (LONG) WRITE (6,70)

70 FORMAT (
+ Input the following variables which

' /
+

'

affect the polygon fitting done here:'/
+ LINET, collinearity tolerance in degrees >=1 for 21ines
-I- POINTT, collinearity tolerance in pixel units > = .3

for'

+
'

points on a line'/
+ NTEST1, number of points >=3 grouped together for VIEW1
+ NTEST2, number of points >=3 grouped together for VIEW2

/

/)
READ (5, a, ERR
(correct for
IF (LINET .

IF (POINTT
IF (NTEST1
IF (NTEST2

= 230, END=230) LINET, POINTT,NTEST1 ,NTEST2
bad input
LT. 1) LINET = 1
.LT. .3 ) POINTT =

.3

.LT. 3) NTEST1 = 3

.LT. 3) NTEST2 = 3

(echo print input
IF (LONG) WRITE (6,80) LINET, POINTT, NTEST1 , NTEST2

80 FORMAT ( ' INPUT ' /
+ ' LINET POINTT NTEST1 NTEST2 '

, /2F8.3, 218/)

(input pattern recognition variable

IF (LONG) WRITE (6,90)
90 FORMAT (' Input the following variable which '/

+
'

affect the pattern recognition done here: '/
+

' TOLL, tolerance for lengths of sides in pixel
units'

+
'

change from the average
' /

+ ' tolerance for interior angles is calculated from TOLL'/)
READ (5, *, ERR = 240, END=240) TOLL
(correct for bad input
TOLL = ABS (TOLL)

(echo input
IF (LONG) WRITE (6,100) TOLL

100 FORMAT (
+

' TOLL '

WRITE (6,100
INPUT ' /
/F8.3/)

(initialize output files
(square generation variables

IF (LONG) THEN
WRITE (1,40)
WRITE (1,50)

END IF
WRITE (1,60) SPEEDR, SPEEDT, NSCANS,

+ Xi, Yi, WIDTH, ANGLEO, ANGLET

(polygon fitting vars

IF (LONG) WRITE (1,70)
WRITE (1,80) LINET, POINTT, NTEST1 , NTEST2

(pattern recognition vars
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IF (LONG) WRITE (1,90)
WRITE (1,100) TOLL

(elapsed cpu time
WRITE (11,115)

115 FORMAT (/
+ Elapsed CPU time for executing major routine calls

' /
+ ' Subroutine Called View CPU Time (ms) '/)

[reverse direction of rotation for a given input SPEEDR
SPEEDR = - SPEEDR

*************************************************************
* MAIN SECTION OF PROGRAM
**************************************************************

(repeat the below NSCANS times to allow the shape to move

DO TIME = 0, (NSCANS -1)

(examine VIEW1 to find a moving shape

(call edge detection algorithm (scan scene)

CALL EDGE (1, PIX1 , 1, PIX1, 1, PIX1, FLAG, NTEST1 , CPU)
(determine elapsed CPU time

OVERALL1 = CPU
SCANT = CPU
WRITE (11,120) 'edge', '1', CPU

120 FORMAT (2 A14, 114)

(if a shape was not found, go to end of this section

IF ( .NOT. FLAG) THEN
WRITE <1,A)
WRITE (1,A)

' A SHAPE WAS NOT FOUND IN VIEW1 '

WRITE (1,*) ' VIEW2 OMITTED '

OVERALL = OVERALL + OVERALL 1
ELSE

(call corner detection (polygon fitting) algorithm

CALL LIB$INIT_TIMER (initializes CPU time

CALL POLY (PIXl,Nedge, Ncorners, CORNERS, IANGLES ,

+ NTEST1, SIDES, 1)
(determine elapsed CPU time

CALL LIB$STAT_TIMER (2, CPU)
OVERALL 1 = OVERALL 1 + CPU

WRITE (11,120) 'poly','l', CPU

(call pattern recognition algorithm

CALL LIB$INIT_TIMER (initializes CPU time

RECKON = RECOGN (NCORNERS, SIDES, IANGLES)
(determine elapsed CPU time

CALL LIB$STAT_TIMER (2, CPU)
OVERALL 1 - OVERALL 1 + CPU

WRITE (11,120) 'recogn', '1', CPU

(find region of the moving shape in VIEW1
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(find hi
CALL

DO I =

IF
IF
IF
IF

END DO
(output results
IF (LONG) WRITE

150 FORMAT ( ' The
+

' I =
'

, 12,
+

' J =
'

, 12,

and low values

LIB$INIT_TIMER
1 ,Nedge
YEDGE(I) .GT.

YEDGE(I) .LT.

XEDGE(I) .GT.

XEDGE(I) .LT.

for I and J

HII) HII = YEDGE(I)
LOWI) LOWI = YEDGE(I)
HIJ) HIJ = XEDGE(I)
LOWJ) LOWJ = XEDGE(I)

(1,150) LOWI, HII, LOWJ,
region of moving square

' to '

, 12, /
'

to '

, 12, / )

HIJ
in VIEW1 is

(convert from VIEW1 array index to VIEW2 array index
(EXPAND expands VIEW1 locations by EXPAND pixels

IA = L0CATE1 * (LOWI - EXPAND) -L0CATE2

(HII + EXPAND) -L0CATE2

(LOWJ - EXPAND) -LOCATE2

(HIJ + EXPAND) -L0CATE2

correct out of bounds errors

.) THEN

160

IB = L0CATE1 *

JA = L0CATE1 *

JB = L0CATE1 *

1 check for and

IF (IA .LT. j
IA = 1
END IF

IF (IB .GT.

IB = PIX2
END IF

IF (JA .LT.

JA = 1
END IF

IF (JB .GT.

JB = PIX2
END IF

(output results

IF (LONG) WRITE (1,160) IA, IB, JA,
FORMAT ( ' The region under analysis

+
' I =

'

, 13,
' to

'

, 13, /
+

' J =
'

, 13,
' to '

, 13, /)

PIX2) THEN

1) THEN

PIX2) THEN

JB
in VIEW2 is

(determine elapsed CPU time

CALL LIB$STAT_TIMER (2, CPU)
OVERALL1 = OVERALL 1 + CPU

OVERALL = OVERALL + OVERALL1

WRITE (11,120) 'viewl total

[Examine VIEW2 to resolve square

(edge detection

CALL EDGE (2, PIX2, IA, IB,
(elapsed cpu time

OVERALL2 = CPU

SCANT = SCANT + CPU

OVERALL 1

JA, JB, FLAG, NTEST2, CPU)
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WRITE (11,120) 'edge', '2', CPU
(corner detection

CALL LIB$INIT_TIMER
CALL POLY (PIX2, Nedge , Ncorners, CORNERS, IANGLES,

+ NTEST2, SIDES, 2)
(elapsed cpu time

CALL LIB$STAT_TIMER (2, CPU)
OVERALL2 = OVERALL 2 + CPU
WRITE (11,120) 'poly', '2', CPU

(pattern recognition
CALL LIB$INIT_TIMER
RECKON = RECOGN (NCORNERS, SIDES, IANGLES)

(determine elapsed CPU time
CALL LIB$STAT_TIMER (2, CPU)
OVERALL2 = OVERALL2 + CPU
WRITE (11,120) 'recogn'

,
'2'

, CPU
WRITE (11,120) 'view2 total', '2', 0VERALL2
OVERALL = OVERALL + OVERALL2

[repeat edge detection, for a one-level data hierarchy
(instead of two-level

CALL EDGE (2, PIX2 , 1, PIX2 , 1, PIX2, FLAG, NTEST2 , CPU)
(elapsed cpu time
OVERALL2 = CPU
OVERALL = OVERALL + CPU
WRITE (11,120) '1 level scan ','2', CPU

WRITE (11,120) '2 level scan'

,

' 1&2 '

, SCANT

WRITE (11,120) 'delta time
'

,

' 1&2 '

, (CPU - SCANT)
WRITE (11, A)

lend of this major section

END IF
END DO
WRITE (11,120)

'TOTAL'

,

'1&2'

, OVERALL

(END PROGRAM, end loop to read data

WRITE (1,180)
IF (LONG) THEN
WRITE (3,180)
WRITE (4,180)

END IF
WRITE (11,180)

180 FORMAT (/ ' ',80('*')/
'
end of one data set '/ )

GOTO 10

200 STOP 'EOF while reading
OUTPUT'

220 STOP 'NORMAL END OF VISION. FOR (EOF reading square )

230 STOP 'EOF while reading polygon fitting
'

240 STOP 'EOF while reading
TOLL'

END
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C) Coordinate System

*************************************************************

a subroutine: translate from array indices (I, J)
A to scene coordinates (X,Y)
*************************************************************

Arrays are accessed in terms of array indices, I and J for

example. This routine translates from array indices to the

coordinate system of the scene itself. Scene coordinates

are centered at 0,0 and have a width and height of one.

! This subroutine returns X and Y,

SUBROUTINE COORD (I, J, N, X,
COMMON /CORD/ C0NST1 , C0NST2

(declare variables

INTEGER
+ I, J [array indices
+ N [number of VIEW = 1 for

REAL
+ X, Y, [position in terms of scene coordinates

+ C0NSTK2), (used to shift coordinates

+ C0NST2(2) (scales coordinates

! constants

low resolution, 2 for high

(shift axis

X = J - CONSTKN)
Y = CONSTKN) - I

(scale axis

X = X/C0NST2(N)
Y = Y/C0NST2(N)

END
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D) Object and Scene

*************************************************************
A FUNCTION: CREATE MOVING SQUARE
*************************************************************
Written by David Zokaites 3/85
Create the software equivalent of a square which can

translate as well as rotate. The square has a brightness
of 1 on a background of brightness 0. If the coordinates

of the pixel lie within the square, then a 1 is returned.

Otherwise, a 0 is returned.

! initialize
BYTE FUNCTION SQUARE (I, J, N)

INTEGER SCALE, TIME
COMMON /SQUAR/ SPEEDR, SPEEDT, Xi , Yi,
+ ANGLET, ANGLEO, WIDTH, TIME

(increment THETA
Itheta = the square's angle from horizontal
(change in THETA results in rotation of square

THETA = ANGLEO + SPEEDR a TIME

!to let the square translate, the square's definition is
(constant, the coordinate system of the scene is transformed

! transform array indices
[convert from array indices (I, J) to scene coordinates (X,Y)

CALL COORD (I, J, N, X, Y)
(find change in scene coordinates: allow for square's motion

R = TIME A SPEEDT
DELTAX = R a COSD (ANGLET)

DELTAY = R a SIND (ANGLET)
! implement above change

X = X - Xi - DELTAX
Y _ Y - Yi - DELTAY

[convert scene coordinates to polar coordinates

(phi = angle from center of square to center of pixel

PHI = ATAND (Y/X)
COSPHI = C0SD( PHI )

IF (COSPHI .NE. 0) THEN

Rxy = X/COSPHI (may give division by zero error

ELSE

Rxy = Y/SIND( PHI ) (correction for error

END IF
(distance from center of square to center of pixel

Rxy = ABS( Rxy )

[calculate square's location
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(compute effective angle, ANGLEE, note the below is a new

[definition of phi. draw a line from the square's center

(to a corner. Phi = angle

(between this line and a point on the edge of square

ANGLEE = THETA + PHI
TEMP = ABS( ANGLEE) +45

SCALE = INK TEMP/ 90)
ANGLEE = ABS( ANGLEE - 90ASCALE)

(Rs = distance from square's center to edge

Rs =1/ (2A C0SD( ANGLEE) )
Rs = ABS( Rs a WIDTH) (scales square to width

(determine if pixel is part of square: core of this subroutine

IF (Rxy .LE. Rs) THEN
SQUARE = 1 (pixel is part of square

ELSE
SQUARE = 0 (pixel not part of square

END IF

RETURN
END
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E) Edge Detection

*************************************************************
A SUBROUTINE: DETECT EDGES OF MOVING SHAPE
*************************************************************
(written by David Zokaites 10/85 - 1/86
(This subroutine scans the scene in either low or high res and

(finds the edges of the moving shape. The top right corner of

(the square is the first point stored in X, Y. The rest of the
(edge points are stored in clockwise progression. This routine

(returns X, Y, FLAG3 , and CPU. CPU = the cpu time required

(to execute this routine. Note that the time required to call

(SQUARE is not included in CPU. This is done by storing the
(results of SQUARE in a temporary file, and reading this file.

! initialize
SUBROUTINE EDGE (NVIEW, PIX, Ibegin, lend, Jbegin, Jend,
+ FLAG3, NTESTP, CPU)

COMMON /SCN/ Nedge
COMMON /LINE/ X,Y
COMMON /OUTPUT/ MEDIUM, LONG (controls length of output

(declare variables

BYTE
+ SQUARE,
+ VIEW (128,128;

[below function to create moving square

(a view of the scene

INTEGER
+ NVIEW, 1# of view, = 1 or 2
+ Ibegin, lend, (area of VIEW under interest
+ Jbegin, Jend, [area of VIEW under interest
+ X(512), Y(512), [shape boundary in array indices
+ Xfirst(128), Yfirst(128) , (first part of shape boundary
+ FIRST j , LAST j , (locate square terms of array index
+ OLDFIRSTJ, OLDLASTJ, [locate square for old row of VIEW
+ PIX, (pixels in a row of VIEW

+ PIX2, (2 a PIX
+ PIX2P1, (PIX2 + 1
+ Nedge, !# of points on boundary of shape

+ Nedge2, [number of points in Xfirst
-t- NTESTP, !see POLY, # of points tested for collinearity
+ ONE(150), (array with 1,2,3,4,5,6,7,8,9,0 for output

+ DELTAJ, (jend - jbegin + 1

+ START, [number of spaces skiped in output statement

+ ITEN, [number of 110 format specifier

+ LSDIGIT, (function: find least significant digit

+ INPUT, (input to statement function

+ CPU, (elapsed cpu time

+ LINES (number of lines to skip in read statement
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+

+

+

+

+

+

+

+

+

+

LOGICAL
FLAG1 ,
FLAG2 ,

FLAG3 ,

FLAG4 ,
FLAG5 ,
WITHIN,
BEYOND,
MEDIUM,
MEDLONG ,

LONG

flags for locating shape

T if first "1"

on a row was found
last

T if shape was found
T if first row was found
T if bottom of shape has been found
T if bottom of shape found before end of field
T if shape extends beyond bottom of field
T if medium length output chosen

sometimes T when medium is T
T if long length output was chosen

(declare statement function to find least significant digit
LSDIGIT (INPUT) = 10.0 a ( FLOAK INPUT )/10.0 + .01

-

+ INT (INPUT/ 10) )

20

!LIB$INIT_TIMER and LIB$STAT_TIMER are part of system's

(run time library. The former initializes the count of

(elapsed CPU time, the latter determines elapsed time.

OPEN (UNIT = 1, NAME = 'OUTPUTA.DAT', TYPE = 'OLD')
OPEN (UNIT = 10, NAME = 'SQUARE.DAT', TYPE ~ 'NEW')

1 initialize VIEW
DO I = 1, PIX
DO J = 1, PIX

VIEW (I, J) = SQUARE (I, J,NVIEW)
END DO

WRITE (10,20) (VIEW (I,K), K = 1, PIX)
FORMAT ( ' ' <PIX>I1)

END DO
CLOSE (UNIT=10)

[call routine to initialize cpu time

CALL LIB$INIT_TIMER

(set pointer to SQUARE.DAT

OPEN (UNIT = 10, NAME =

LINES = IBEGIN - 2

IF (LINES .EQ. 0) READ

IF (LINES .GT. 0) READ

30 FORMAT ( <LINES> (/) )

(initialize variables

Nedge = 0
Nedge 2 = 0

PIX2 = 2 a PIX

PIX2P1 = PIX2 + 1

FLAG3 = .FALSE.

FLAG4 =
.FALSE.

'SQUARE.DAT', TYPE = 'OLD')

(10, A)
(10,30)

! square not found yet

(end of square not found yet
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FLAG5 =
.FALSE.

MEDLONG = LONG .OR. (MEDIUM .AND. (NVIEW .EQ. D)
(initialize one, start
IF (MEDLONG) THEN

DO I = 0, 14
DO J = 1,9
ONE(J + 10AI) = j
END DO
ONE(J + 10AI) = o

END DO
START = 10 - LSDIGIT (JBEGIN)
DELTAJ = JEND - JBEGIN + 1

ITEN=(JEND-LSDIGIT(JEND) )~ (JBEGIN - LSDIGIT ( JBEGIN) )
ITEN = ITEN/10 - 1
END IF

[initialize output

(check for printer overflow error

IF (MEDLONG .AND. Jend - Jbegin + 6 .GT. 130) WRITE (1,40)
40 FORMAT (' '80('A')/ ' More than 130 characters per record,

+ 'requires special printer set up
' / '

', 80('A-) )
! normal output

IF (MEDLONG) WRITE (1,60) NVIEW,
+ ( ONE (I), I = (JBEGIN/10 +1), (JEND/10) ),
+ ( ONE (I), I = JBEGIN, JEND )

60 FORMAT ( / ' This is the scene as the program
saw'

+
' it for VIEW', II / ' ROW '

+ K START), <ITEN>I10, /, 5X, <DELTAJ>I1 )
(Examine VIEW to find square

DO I = Ibegin, lend
(initialize variables for VIEW
(read VIEW

READ (10,65) ( VIEW(I,J), J = JBEGIN, JEND)
65 FORMAT ( T<JBEGIN+1>, < JEND-JBEGIN+2) II)

(flags for locating square, square not found yet

FLAG1 =
.FALSE.

FLAG2 =
.FALSE.

(vars for locating square, if square not found, vars-< 0
OLDFIRSTJ = FIRSTJ

0LDLASTJ = LASTJ
FIRST j = 0

LASTj = 0

[open do loop to examine one row of VIEW

DO J = Jbegin, Jend

(LOCATE SQUARE: find first and last pixel per row = 1

(find first pixel by finding first
"1"

IF ((VIEW(I,J) .EQ. 1) .AND. .NOT. FLAG1 ) THEN

FIRSTj = J (first pixel = J

FLAG1 =
.TRUE. (set flag to find only one first "1"

FLAG3 =
.TRUE. [square has been found

END IF
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[find last pixel by finding first "0"
after first

"1"

IF ( (VIEW(I,J) .EQ.O) .AND. . NOT. FLAG2 .AND. FLAG1 ) THEN
LASTj = J - 1 (last pixel =

...

FLAG2 =
.TRUE. [set flag to find only one last pixel

END IF
[last pixel: boundary at right edge
IF ((VIEW(I,J) .EQ. 1) .AND. (J .EQ. Jend)) THEN
LASTj = Jend ! last pixel = Jend
END IF

(finish examination of one row of VIEW
END DO
(fill array of shape's boundary

(first row of moving shape

IF ( FLAG1 .AND. .NOT. FLAG4 ) THEN
DO K - LASTJ, (FIRSTJ+1), -1

NEDGE2 = NEDGE2 + 1
Xf irst(NEDGE2) = K
Yfirst(NEDGE2) = I

END DO
FLAG4 =

.TRUE.

END IF
(middle section of moving shape

IF (FLAG1) THEN
NEDGE = NEDGE + 1
X( NEDGE) = LASTJ
Y(NEDGE) = I
NEDGE2 = NEDGE2 + 1
XFIRSKNEDGE2) = FIRSTJ
YFIRSKNEDGE2) = I
END IF

(last row of moving shape

! see if shape extends beyond the bottom row of VIEW
BEYOND = (LASTJ .NE. 0) .AND. (I .EQ. lend)
[see if bottom of shape has been found within VIEW

WITHIN = FLAG4 .AND. (FIRSTJ .EQ. 0)
WITHIN = WITHIN .AND. .NOT. FLAG5

IF BEYOND 1=1+1
IF (BEYOND .OR. WITHIN) THEN

IMINUS1 =1-1
DO K = (OLDLASTJ -1), OLDFIRSTJ, -1

NEDGE = NEDGE + 1

X( NEDGE) = K

Y( NEDGE) = IMINUS1

END DO
DO K = (NEDGE2 - 1) , 2, -1

NEDGE = NEDGE + 1

X( NEDGE) = XFIRST(K)

Y( NEDGE) = YFIRST(K)
END DO

FLAG5 =
.TRUE.
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END IF
! output data

IF (MEDLONG)
+ WRITE (1,70) I, (VIEW(I,K), K = Jbegin, Jend)

70 FORMAT ('

',
13,'

', <PIX>I1 )
(close outer do loop

END DO
! output data

IF (LONG) WRITE (1,80) NEDGE, NVIEW, (K, X(K) ,Y(K) ,K=1 ,Nedge)
80 FORMAK /,I3, '

points describe shape boundary in VIEW', II, /

+ ' Point # X and Y in Array Indices ' /
+ 1000(318/))

! end subroutine

CALL LIB$STAT_TIMER(2,CPU)
CLOSE (UNIT=10)
END
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F) Corner Detection

1) Main Routine

*************************************************************
A SUBROUTINE: POLYGON FITTING
*************************************************************
Written by David Zokaites 11/85
This subroutine implements a polygon fitting or corner

detection algorithm. For more details, see the author's

thesis, "Computer Vision of a Moving Square using a

Two-Level Data Hierarchy".

! This subroutine returns Ncorners, CORNERS, IANGLES, and SIDES

! initialize
SUBROUTINE POLY (PIX, Nedge, Ncorners, CORNERS, IANGLES ,

+ NtestP, SIDES, NVIEW)

COMMON /POLY/ LINET, POINTT
COMMON /LINE/ X,Y (for LINE subroutine

COMMON /OUTPUT/ MEDIUM, LONG (controls output

+

+

+

+

+

+

+

+

+

INTEGER
! boundary
X(512) , Y(
FIRSTp, !

LASTp , !

NTESTP, !

(usually
1VIEW1 be
! segments

VERTEX(IO)
Ncorners ,
CORNERS (10

LINEAR,
MAXp,

shape, coordinates of the data points

of collinearity test group

4- PIX,
+ Nedge ,
+ NVIEW

of moving
512),
index to first point
index of the last
number of points above group normally contains

5 to 10, must be >3 here, bigger for VIEW2 than
cause larger squares should be broken into bigger
for polygon fitting.

, ! last polygon vertex declared
(number of corners found in POLY
(vertices

(true if points are collinear

(index of point where max error (MAXe) found
in a collinearity test

(number of pixels in one row of VIEW
!# of points in X and Y boundary of shape

!# of view under test, = 1 or 2

,2)

i

+

+

+

+

REAL

ANGLE,

LENGTH,
IANGLES

TESTA,

[function to calculate angle between adjacent

[sides of the fitted polygon

(function to calculate length of polygon sides

10) ,! interior angle among adjacent edges of polygon

(interior angle under test for merging
SIDES (10) lengths of the sides of the polygon
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4- LINET,
!r<

+ POINTT

(collinearity tolerance between lines
-anges from 5 to 30?, minimum value here is 20?

(used in COLINE not POLY

LOGICAL
+ MEDIUM,
+ LONG

(true if medium length output was chosen

! true if long . . .

[open output files
OPEN (UNIT = 1, NAME =

IF (LONG) THEN
OPEN (UNIT = 3, NAME =

OPEN (UNIT = 4, NAME =

END IF
[initialize debugging output

OUTPUTA.DAT', TYPE = 'OLD')

OUTPUTC.DAT'

OUTPUTD.DAT'

TYPE =

TYPE =

OLD' )
OLD' )

IF (LONG)
10 FORMAT
+

'

FIRSTp
IF (LONG)

20 FORMAT
+

' The angle

+
' The lines

+ ' ANGLE P0INT1

WRITE (3,10) NVIEW
(/ ' Variables in COLINE for VIEW'

LASTp MAXp MAXe LINEAR ' )
WRITE (4,20) NVIEW
(/

II, /

between two lines as found in POLY for VIEW', 11/
are described by three points.'/

P0INT2 P0INT3 '

)

[initialize variables

VERTEX(l) = 1
CORNERS (1,1) = X(l)
CORNERS (1,2) = Y(l)
Ncorners = 1

FIRSTp = 1

LASTp = NTESTP

[find vertices

DO WHILE (LASTP .LE. NEDGE)

CALL COLINE (FIRSTp,LASTp,MAXp, LINEAR)

+

30

IF (LINEAR) THEN
IF (VERTEX (Ncorners) .EQ. FIRSTp) THEN
[line from VERTEX (Ncorner s ) to FIRSTP-

(line from FIRSTP to LASTP

ELSE
(determine if line from VERTEX( Ncorners ) to FIRSTP
(can be merged with line from FIRSTP to LASTP

! compute angles

IANGLES (Ncorners + 1) = ANGLE (VERTEX (NCORNERS),
FIRSTP, LASTP)

IF (LONG) WRITE (4,30) IANGLES ( Ncorners + 1),
VERTEX( Ncorners ) , FIRSTP, LASTP
FORMAT (F9.3, 319)

(if lines can not be merged declare new polygon vertex
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TESTA = 180 - IANGLES (NCORNERS + 1)
IF ( TESTA .LE. LINET ) THEN
(merge line segments; line from VERTEX(Ncorners) to
[FIRSTP = line from VERTEX (Ncorner s ) to LASTP

ELSE
Ncorners = Ncorners + 1

VERTEX (Ncorners) = FIRSTp
CORNERS (Ncorners, 1) = X(VERTEX(Ncorners ) )
CORNERS (Ncorners, 2) = Y(VERTEX(Ncorners ) )

END IF
END IF

! increment indices to points under test

FIRSTp = LASTp (step ten

LASTp = LASTp + NTESTP
(check for LASTP being too big
IF ((LASTP .GT. NEDGE) .AND. ( (NEDGE-FIRSTP) .GE. D)

+ LASTP = NEDGE
(split last line into 2 segments at MAXp

ELSE (continue if started

LASTp = MAXp
END IF

END DO (end do while started

(end of subroutine

IIANGLES(I) was not found yet

IANGLES ( 1 ) = ANGLE ( VERTEX ( NCORNERS ) , VERTEX ( 1 ) , VERTEX ( 2 ) )
IF (LONG) WRITE (4,30) IANGLES (Ncorners + 1),
+ VERTEX(Ncorners ) , FIRSTP, LASTP
(perform merge check on first and last corners

TESTA = 180 - IANGLES (1)
IF ( TESTA .LE. LINET ) THEN (merge

NCORNERS = NCORNERS - 1
DO I = 1, NCORNERS

DO J = 1, 2
CORNERS (I, J) = CORNERS ( (1+1), J )
VERTEX (I) = VERTEX (1+1)

END DO
END DO

(recompute interior angle

IANGLES(l) = ANGLE ( VERTEX ( NCORNERS), VERTEX(l), VERTEX(2) )

IF (LONG) WRITE (4,30) IANGLES (Ncorners +1),
+ VERTEX(Ncorners ) , FIRSTP, LASTP

END IF
(compute sides

DO I = 1, (NCORNERS -1)

SIDES(I) = LENGTH ( VERTEX(I), VERTEX(I+1) )

END DO
SIDES (NCORNERS) = LENGTH ( VERTEX( NCORNERS), 1)

(output data

WRITE (1,40) Ncorners, NVIEW, (K, IANGLES(K), SIDES(K),
+ (CORNERS (K,L), L=l,2), K=l ,Ncorners )

40 FORMAT
('

', II,
' Corners of the moving shape were

found'
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+ ' in VIEW'
,11,/

+ Interior Side ' /
+ Corner # Angle Length X and Y in array indices
+ / 10(19. 2F8.3, 218 /) / )

END

2) Collinearity Tests

*************************************************************
A SUBROUTINE: TEST POINTS FOR COLLINEARITY
*************************************************************
! This subroutine returns MAXp and LINEAR.

! initialize
SUBROUTINE COLINE (FIRSTp, LASTp,MAXp, LINEAR)

COMMON /POLY/ LINET, POINTT
COMMON /LINE/ X,Y
COMMON /OUTPUT/ MEDIUM, LONG

INTEGER
+ I, (do loop index
+ X(512), Y(512), (coordinates of the data points

+ LINEa(2), (line from FIRSTp to LASTp, test collinearity
+ FIRSTp, (index of first point of group tested
+ LASTp, (index of the last point ...
+ LINEAR, (true when points of LINEa are collinear

+ MAXp [index of point where max error (MAXe) found
! in a collinearity test

REAL
+ DET, [determinate of X and Y from firstp to lastp
+ LEN, (length of LINEa
+ LENA, (sum point (i) to point (i+1) lengths
+ ERROR, (error at a point

+ POINTT, [collinearity tolerance for points on a line
[minimum value here is 1?

+ LINET, (used in POLY not COLINE
+ MAXe, [error at MAXp, MAXp = point of max error

+ TEMPI, TEMP2 (intermediate variables

LOGICAL
+ MEDIUM, (true if medium length output was chosen

+ LONG (true if long

IF (LONG) OPEN (UNIT = 3, NAME = '0UTPUTC.DAT', TYPE='0LD')

(initialize variables
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- Y( FIRSTp) AX (LASTp)
LINEA)
+ LINEA(2) a LINEA (2

LENA to LEN

+

( X(I)
( Y(I)

TEMP2 )

- X(I
- Y(I

- 1)
- 1)

MAXp = FIRSTp
MAXe =0.0
LINEAR =

.TRUE.

(evaluate LINEa
DET = Y( LASTp) ax (FIRSTp)
CALL LINE (FIRSTP, LASTP,
LEN = LINEA(l) * LINEA(l)
LEN = SQRT ( LEN )

(first collinearity test: compare

! compute LENA
LENA = 0
DO I = (FIRSTP +1), LASTP

TEMPI = ( X(I) - X(I - 1) )
TEMP2 = ( Y(I) - Yd - 1) )
LENA = LENA + SQRT ( TEMPI

END DO
LENA = LENA / LEN

(test collinearity
IF ( LENA .LT. 1.1
! linear =

.true.

IF (LONG) WRITE (3.
RETURN
END IF
IF ( LENA .GT. 1.5

(find MAXe
DO I = (FIRSTp+1), ( LASTp- 1)

ERROR = DET- LINEa ( 2 ) AX( I )
IF ( ABS (ERROR) .GT. MAXe)

MAXe = ABS (ERROR)

MAXp = I
END IF

END DO
MAXe = MAXe / LEN

(compute LINEAR
IF (MAXe .GE. POINTT) LINEAR =

.FALSE.

! if maxe > pointt linear =
.true.

(end of subroutine

[output variables

IF (LONG) WRITE (3, 65) FIRSTP, LASTP, MAXp, MAXe, LINEAR

65 FORMATC ', 318, F3.3, L8)
! end

END

) THEN

65) FIRSTP, LASTP, MAXp, MAXe, LINEAR

LINEAR =
.FALSE.

+ LINEa(l)AY(I
THEN

3) Associated Subroutines

*************************************************************

a MISC SUBROUTINES AND FUNCTIONS
*************************************************************
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[compute angle between adjacent edges of the fitted polygon

using the law of cosines: aAa =bAb + c*c -2AbAcA cos(A)

REAL FUNCTION ANGLE (VERTEX, FIRSTP, LASTP)

INTEGER [pointers to X,Y endpoints of adjacent sides

+ VERTEX, FIRSTP, LASTP

REAL VTOF, (distance from vertex to lastp,
+ TEMP, (intermediate variable

+ FTOL, VTOL, (distance firstp to lastp, vertex to lastp
+ LENGTH, Ibelow function
+ SMALL Ismail correction for round off error

PARAMETER (SMALL =
.000003)

VTOF = LENGTH (VERTEX, FIRSTP)
FTOL = LENGTH (FIRSTP, LASTP )
VTOL = LENGTH (VERTEX, LASTP )

ANGLE = VTOL A VTOL - VTOF a VTOF - FTOL * FTOL
TEMP = -2 A VTOF a FTOL

(check for potential division by 0 error
IF ( TEMP .EQ. 0 ) THEN
ANGLE =90

RETURN
END IF
ANGLE = ANGLE / TEMP

(check for abs( angle) > 1 due to round off error

IF (ABS (ANGLE) .GT. 1) THEN

ANGLE = ANGLE - SIGN (SMALL, ANGLE)

END IF
ANGLE = AC0SD (ANGLE)
RETURN
END

(compute the length of one side of the fitted polygon

(this function returns length

REAL FUNCTION LENGTH (BEGIN, END)

INTEGER

+ BEGIN, END, (pointers to X,Y endpoints of the line

+ DELTA(2)

CALL LINE (BEGIN, END, DELTA)
LENGTH = DELTA(l) A DELTA(l) + DELTA(2) a DELTA(2)
LENGTH = SQRT ( LENGTH )

RETURN

END

(compute delta X and delta y for the line from Xbegin, Ybegin
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(to Xend, Yend. This subroutine returns DELTA ( )

SUBROUTINE LINE (BEGIN, END, DELTA)

COMMON /LINE/ X,Y
INTEGER

+ BEGIN, END, (indices to ends of the line
+ X(512), Y(512), (boundary of shape

+ DELTA(2) (parameters of the line

DELTA(l) = X(END) - X(BEGIN) (delta x

DELTA(2) = Y(END) - Y(BEGIN) [delta y

END
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G) Pattern Recognition

*************************************************************
* FUNCTION: PATTERN RECOGNITION
*************************************************************
(Written by David Zokaites 11/85 - 12/85

(This function determines if a shape is square. If it is
(square, then a value of .TRUE, is returned. Otherwise, .FALSE.

(is returned.

! initialize
LOGICAL FUNCTION RECOGN (NCORNERS, SIDES, IANGLES)

COMMON / REC / TOLL

(declare variables

REAL
+ IANGLES (10), (interior angles

+ SIDES (10), (lengths of the sides of the polygon
+ AVERAGE, (average of the sides

+ ERROR, !% deviation of one side from the average

+ ANGLEREF, (reference interior angle

+ CHANGE, (an interior angle - angleref

+ TOLL, (tolerance for lengths of sides change from avg
+ TOLA, (tolerance for interior angles in degrees
+ TOLAIN (input tolerances

INTEGER
+ NCORNERS, (number of corners found
+ NSIDES (number of sides the shape should have

DATA NSIDES, ANGLEREF, AVERAGE /4, 90, 0/

OPEN (UNITd, NAME = 'OUTPUTA.DAT', TYPE = 'OLD')

[determine if shape is a square

(first criteria: number of corners

IF (NCORNERS .NE. NSIDES) THEN
RECOGN =

.FALSE.

WRITE (1,20) NCORNERS, NSIDES

20 FORMAT
(' The shape has the wrong number of corners: ',

+ II,
'
not

'

, II )
WRITE (1,30)

30 FORMAT
(' Therefore the shape is NOT a square. '/)

RETURN
END IF

[second criteria: lengths of sides

(compute AVERAGE

AVERAGE = 0
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DO I = 1, NCORNERS
AVERAGE = AVERAGE + SIDES(I)
END DO
AVERAGE = AVERAGE / NCORNERS
(compare sides to average

DO I = 1, NCORNERS
ERROR = SIDES(I) - AVERAGE
IF ((TOLL - ERROR) .LT. 0) THEN

RECOGN =
.FALSE.

WRITE (1,40) I, SIDES(I), (ERROR - TOLL)
40 FORMAT (' Side # ', II, 'of length ', F8 . 3

+ ' is out of tolerance by ', F8 . 3 ,

' % ')
WRITE (1,30)

RETURN
END IF

END DO
(third criteria: interior angles

[compute TOLA from TOLL
TOLA = ATAND( TOLL/ AVERAGE )

[make the test
DO I = 1, NCORNERS

CHANGE = ABS ( IANGLES ( I ) - ANGLEREF)
IF (CHANGE .GT. TOLA ) THEN
RECOGN =

.FALSE.

WRITE (1,50) I, IANGLES(I), (CHANGE - TOLA)
50 FORMAT (' Interior angle # ', II, F8.3,

+
' is out of tolerance by ', F8.3, ' degrees.

WRITE (1,30)
RETURN
END IF

END DO
(if all criteria pass

RECOGN =
.TRUE.

WRITE (1,60)
60 FORMAT (

' The shape passes all criteria and
'

+ 'therefore IS a square.'/)

RETURN
END
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H) Statistical Analysis

Program name is C . VISI0N3STATS .FOR

Written by David Zokaites 15-Jan-86
This program characterizes mean, standard deviation,
The input is OUTPUTT.DAT from VISION. FOR

range

! initialize
(declare vars

INTEGER
+ POINTS, [number of numbers
+ DATA(3) , (input data
+ MIN(3), MAX( 3) , (minimum and maximum values of the data
+ RANGE(3) , (max - min
+ SUM(3) , (sum of data
+ SUMSQ(3) (sum of data a data

REAL
+ MEAN(3)
+ SDEV(3)
+ DELTA

(mean of the input data
(standard deviation
!% change from mean(l) to mean(2)

LOGICAL NEWSET !T if read from new data set

CHARACTERa 5
CHARACTERA7

TEST [test string from input data file
LABEL(3) (labels output

(misc initialization
[open files
OPEN (UNIT=1, NAME
OPEN (UNIT=3, NAME
OPEN (UNIT=4, NAME
[initialize output

WRITE (3,10)
WRITE (4,20)
(set LABEL

DATA LABEL / ' 1 level

=
'OUTPUTT.DAT'

= 'STATSB.DAT',
= 'STATSA.DAT',
files

2 level

. TYPE =

TYPE =

TYPE =

OLD') [input
NEW'

NEW
! output
! output

delta' /

! open loop to read and examine

[not end of file
3 0 CONTINUE
[ initialize vars

new sets of data while

NEWSET =
.FALSE.

POINTS = 0

DO I = 1 , 3
MIN(I) = 1000000

MAX(I) = -1000000

SUM(I) = 0

SUMSQ ( I ) = 0
END DO
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(open loop to examine old data set
40 CONTINUE

READ (1, 50, END = 100) TEST
[increment sums if . . .

IF ( TEST .EQ. 'view2') THEN
! increment sums

READ (1,55) DATA
POINTS = POINTS + 1
DO I = 1, 3
IF ( DATA(I) .LT. MIN(I) ) MIN(I) - DATA(I)
IF ( DATA(I) .GT. MAX(I) ) MAX(I) = DATA(I)
SUM (I) = SUM(I) + DATA(I)
SUMSQ(I) = SUMSQ(I) + DATA(I) A DATA(I)

END DO

1 if end of data set . .

ELSE IF (TEST .EQ.

' a***a '

) THEN
[compute statistics

NEWSET =
.TRUE.

IF (POINTS .GE. 2) THEN
DO I = 1, 3 (compute statistics

RANGE (I) = MAX(I) MIN(I)
MEAN (I) = FLOAT ( SUM(I) ) / POINTS
SDEV(I) = POINTS a SUMSQ(I) - SUM(I) a SUM(I)
SDEV(I) = SDEV(I) / ( POINTS * (POINTS - 1) )
SDEV(I) = SQRT ( ABS (SDEV(I)))

END DO
DELTA = 100 A MEAN(3) / MEAN(l)

(output data
WRITE (3, 70) MEAN, DELTA

WRITE (4, 80) ( MEAN(I), SDEV(I), RANGE(I), MIN(I),
+ MAX(I), LABEL(I), POINTS, I = 1,3)

END IF

END IF
(close loop to examine new sets of data in file

IF (NEWSET) THEN
GOTO 3 0
ELSE
GOTO 40 (goto examine old data set

END IF

[FORMAT STATEMENTS
(initialize output files
10 FORMAT ( mean

' /

+
' ' /

+ ' 1 level 2 level delta deltas '

)
20 FORMAT (
+

' Statistics calculated in C - VISI0N3STATS .FOR

'

+
' from data in OUTPUTT.DAT'/
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+
'

mean (mean), standard deviation (sdev); range, from'/

+ '
minimum (min) to maximum (max), for POINTS points. '/

+
' MEAN SDEV RANGE MIN MAX DATATYPE POINTS'/)

(read test
50 FORMAT (T4, A5 )
! read data
55 FORMAT (3 (T35, 18, /) )
(output statistics
70 FORMAT (4 F10.3)
80 FORMAT ( 3C ',2F8.3, 317, A10, 18/))

! finalize
10 0 STOP 'NORMAL END OF STATS. FOR'

110 STOP 'END OF FILE IN STATS'

END
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A) CPU Time Variability Analysis

1) Output from BATCH.COM and CPU.COM

Note that the following output file was shortened to fit the
available space.

count = 0
Userload on VAXB.
Tuesday, January 14, 1986 1:32 PM is: 43 users, 1 batch job,
Free memory is: 2686 pages. System load average is: 3.58 6.58

NORMAL END OF CPU. FOR
count = 1
Userload on VAXB.

Tuesday, January 14, 1986 3:23 PM is: 46 users, 1 batch job,
Free memory is: 3144 pages, System load average is: 8.40 9.32

NORMAL END OF CPU. FOR
count = 2
Userload on VAXB.

Tuesday, January 14, 1986 6:09 PM is: 30 users, 1 batch job,
Free memory is: 7094 pages, System load average is: 4.01 3.53

2) Output From CPU. FOR

Note that the following output file was shortened to fit the

available space.

Computation CPU time

in ms for repetitions of same thing
Number of repetitions =

35

1
0

2
1
1
1
2
2
2
1
2
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3) Output from t .CPU3STATS. FOR

ELAPSED CPU TIME VARIABILITY ANALYSIS DATA
time = time the data was collected

users = number of users on the system, excluding batch

load = avg system over last minute in # processes waiting
process = process using cpu time, computation or I/O
The statistical parameters calculated follow:
mean (mean), standard deviation (sdev); range (range), from

minimum (min) to maximum (max), for POINTS points.

file = file containing elapsed cpu time

TIME USERS LOAD PROCESS MEAN

January 14,
January 14,
January 14,
January 14,
January 14,
January 14 ,

January 14,
January 14,
January 14,
January 14.

January 14,
January 14,

January 14,
January 14,
January 14,
January 14,
January 14,
January 14,

1986 1:32 P 43 3.58 Com 1.257 \
/

1986 1:32 P 43 3.58 Com 4.829 -->

1936 1:32 P 43 3.53 Com 18.314 -- >

1986 1:32 P 43 3.58 Com 76.829 -->

1986 1:32 P 43 3.58 Com 185.886 -->

1986 1:32 P 43 3.58 Com 437.629 -->

1986 3:23 P 46 8.40 Com 1.200 -->

1986 3:23 P 46 8.40 Com 4.086 -->

1986 3:23 P 46 8.40 Com 13.000 -->

1986 3:23 P 46 8.40 Com 75.829 -->

1986 3:23 P 46 8.40 Com 186.000 >

1986 3:23 P 46 8.40 Com 439.314 -->

1986 6:09 P 30 4.01 Com 1.200 -->

1986 6:09 P 30 4.01 Com 3.386 -->

1986 6:09 P 30 4.01 Com 17.371 /

1986 6:09 P 30 4.01 Com 76.400 -->

1986 6:09 P 30 4.01 Com 185.571 >

1986 6:09 P 30 4.01 Com 433.914 -->

V V V V V

The above arrows note where the above file was shortened to

fit on this page.
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B) Main Vision Algorithm

1) Modeling of CPU Time Saved

% time saved with 2-level data hierarchy
WIDTH
3.500
10.000
25.000
40.000
65.000
70.000
85.000
100.000

TIME
93.080
91.593
84.937
73.780
45.187
37.968
13.312
-6.250

2) Main Output

Note that the following output file was shortened to fit
the available space.

Chosen length of output was M
INPUT
SPEEDR SPEEDT NSCANS Xi
20.000 0.100 2 0.000

Yi WIDTH ANGLEO ANGLET
0.000 0.400 0.000 0.000

INPUT
LINET POINTT NTEST1 NTEST2

45.000 2.500 16 32

INPUT
TOLL
2.400

This is the scene as the program saw it for VIEW1

ROW 12 3
12345678901234567890123456789012

1 00 0000000000000000000000 0000 0000

2 000 0000 00000000 00 0000 000 0 0000000

3 00000000000000000000000000000000

4 oooooooooooooooooooooooooooooooo

5 00000000000000000000000000000000

6 00000000000000000000000000000000

7 oooooooooooooooooooooooooooooooo
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8 00000000000000000000000000000000
9 00000000000000000000000000000000
10 00000000000000000000000000000000
11 00000000001111111111110000000000
12 00000000001111111111110000000000
13 00000000001111111111110000000000
14 00000000001111111111110000000000
15 00000000001111111111110000000000
16 00000000001111111111110000000000
17 00000000001111111111110000000000
18 0 0000000001111111111110000000000
19 00000000001111111111110000000000
20 000000000 01111111111110000000000
21 00000000001111111111110000000000

22 00000000001111111111110000000000

23 00000000000000000000000000000000

24 00000000000000000000000000000000

25 00000000000000000000000000000000

26 00000000000000000000000000000000

27 00000000000000000000000000000000

28 00000000000000000000000000000000

29 00000000000000000000000000000000

30 00000000000000000000000000000000

31 00000000000000000000000000 000000

32 oooooooooooooooooooooooooooooooo

4 Corners of the moving shape were found in VIEW1

Interior Side

Corner # Angle Length X and Y in array indices

1 90.000 11.000 22 11

2 90.000 11.000 22 22

3 90.000 11.000 11 22

4 90.000 11.000 11 11

The shape passes all criteria and therefore IS a square.

4 Corners of the moving shape were found in VIEW2

Interior Side

Corner # Angle Length X and Y in array indices

1 90.000 51.000 90 39

2 90.000 51.000 90 90

3 90.000 51.000 39 90

4 90.000 51.000 39 39

The shape passes all criteria and therefore IS a square.

This is the scene as the program saw it for VIEW1

ROW 1 2 3
12345678901234567890123456789012

1
00000000000000000000000000000000

2
oooooooooooooooooooooooooooooooo
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3 00000
4 00000
5 00000
6 00000
7 00000
8 00000
9 00000
10 00000
11 00000
12 00000
13 00000
14 00000
15 00000
16 00000
17 OOOOO
18 OOOOO
19 00000
20 OOOOO
21 OOOOO
22 00000
23 OOOOO
24 OOOOO
25 OOOOO
26 OOOOO
27 OOOOO
28 00000
29 OOOOO
30 OOOOO
31 00000
32 00000

4 Corners

Corner #
1
2
3
4

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000001
0000001
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
of the
Interi
Angle
90.000
90.000
90.000
91.818

OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
oooooooo
oooooooo
00000011
00001111
01111111
11111111
11111111
11111111
11111111
01111111
01111111
01111111
00111111
00111111
00111111
00011111
00011000
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo
oooooooo

moving
or Side
Length
11.705
11.705
11.705
11.705

OOOOOOOOOOOO
OOOOOOOOOOOO
OOOOOOOOOOOO
OOOOOOOOOOOO
oooooooooooo
oooooooooooo
011000000000
111100000000
111100000000
111100000000
111110000000
111110000000
111110000000
111111000000
111111000000
111111100000
111111100000
111111100000
111111000000
111000000000
oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo
shape were found in VIEW1

X
23
27
16

12

and Y
9

20
24
13

in array indices

The shape passes all criteria and therefore IS a square.

4 Corners of the moving shape were found in VIEW2
Interior Side

Corner # Angle Length X and Y in array indices
1 89.220 50.922 92 32

2 90.383 49.980 109 80

3 89.085 50.596 62 97

4 91.975 49.041 46 49

The shape passes all criteria and therefore IS a square
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3) Elapsed Cpu Time Data

Note that the following output file was shortened to fit
the available space.

Elapsed CPU time for executing major subroutine calls
Subroutine Called View CPU Time (ms)

edge 1 17
poly 1 3

recogn 1 1
viewl total 1 21

edge 2 30
poly 2 2

recogn 2 4
view2 total 2 36

1 level scan 2 114
2 level scan 1&2 47
delta time 1&2 67

edge 1 16
poly 1 2

recogn 1 2
viewl total 1 20

edge 2 41
poly 2 2

recogn 2 1
view2 total 2 44

1 level scan 2 116
2 level scan 1&2 57
delta time 1&2 59

TOTAL 1&2 351

4) Statistical Analysis

a) First Output File

Note that the following output file was shortened to lit
the available space.

Statistics calculated in C . VISION!STATS .FOR from OUTPUTT.DAT
mean (mean), standard deviation (sdev); range (range), from
minimum (min) to maximum (max), for POINTS points.

MEAN SDEV RANGE MIN MAX DATA TYPE POINTS
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262.667 1.496 5 260 265 1 level 15
35.667 2.239 9 30 39 2 level 15
227.000 2.928 10 222 232 delta 15

261.933 1.624 6 259 265 1 level 15
40.667 1.633 6 37 43 2 level 15
221.267 1.668 6 218 224 delta 15

265.133 3.067 12 262 274 1 level 15
61.667 2.845 10 55 65 2 level 15
203.467 3.739 15 197 212 delta 15

b) Second Output File

mean

1 level 2 level delta delta%
262..667 35,,667 227.000 86.421
261.,933 40,,667 221.267 84.474
265..133 61..667 203.467 76.741
263.,267 85,.533 177.733 67.511
264.,867 153,,667 111.200 41.983

266.,400 177,,667 88.733 33.308

267.,733 254.,600 13.133 4.905

268..000 288,,467 -20.467 -7.637

263..133 40,.600 222.533 84.571
262,.800 66,.400 196.400 74.734

262,,533 128,.600 133.933 51.016

264,.933 253,.067 11.867 4.479

265,,000 284..000 -19.000 -7.170

267,,000 290,.800 -23.800 -8.914

266,,600 290,.467 -23.867 -8.952
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