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Abstract. Increasing the level of spacecraft autonomy is essential for broadening the reach of solar system exploration.

Computer vision has and will continue to play an important role in increasing autonomy of both spacecraft and Earth-

based robotic vehicles. This article addresses progress on computer vision for planetary rovers and landers and has four

main parts. First, we review major milestones in the development of computer vision for robotic vehicles over the last

four decades. Since research on applications for Earth and space has often been closely intertwined, the review includes

elements of both. Second, we summarize the design and performance of computer vision algorithms used on Mars in

the NASA/JPL Mars Exploration Rover (MER) mission, which was a major step forward in the use of computer vision

in space. These algorithms did stereo vision and visual odometry for rover navigation and feature tracking for horizontal

velocity estimation for the landers. Third, we summarize ongoing research to improve vision systems for planetary

rovers, which includes various aspects of noise reduction, FPGA implementation, and vision-based slip perception.

Finally, we briefly survey other opportunities for computer vision to impact rovers, landers, and orbiters in future solar

system exploration missions.

Keywords: stereo vision, obstacle detection, visual odometry, visual velocity estimation, slip prediction, planetary

exploration

1. Introduction

Both on Earth and in space, a key motivation for de-

veloping computer vision-based, autonomous navigation

systems is that communication latency and bandwidth

limitations severely constrain the ability of humans to

control robot functions remotely. In space, onboard com-

puter vision enables rovers to explore planetary surfaces

more quickly and safely, landers to land more safely

and precisely, and orbiters to better maintain safe orbits
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in the weak and uneven gravity fields of small aster-

oids, comets, and moons. The performance limitations

of space-qualified computers strongly constrain the com-

plexity of onboard vision algorithms. Nevertheless, the

MER mission, which landed two rovers on Mars in 2004,

very successfully used stereo vision, visual odometry, and

feature tracking for rover navigation and for estimating

the horizontal velocity of the landers before touchdown.

This was the first use of such algorithms in a planetary

exploration mission. More advanced capabilities, using

more advanced spaceflight computers, are now of interest

for future missions.

This paper starts with a historical perspective on the

four decades of research that led up to the autonomous

navigation capabilities in MER (Section 2), then de-

scribes the design and performance of the MER vi-

sion systems (Section 3), ongoing research to improve

them (Section 4), and other opportunities for computer

vision to impact rover, lander, and orbiter missions

(Section 5). The history of planetary rover research is

tightly interwined with research on robots for Earth-

bound applications, since this work has proceeded in par-

allel, served related requirements, often been done by the

same people, and experienced much cross-fertilization.

Therefore, the historical perspective touches on high-

lights of both.

In discussing the MER mission itself, we summarize

pertinent characteristics of the mission, the rover, and

the lander, then we briefly describe the algorithms,

present main results of their operation in the mission,

and note their key limitations. Rover navigation used

stereo cameras for 3-D perception and visual odometry.

Computing was performed by a 20 MHz “RAD6000”

flight computer, which is a space-qualified version of an

early PowerPC architecture. The lander used one descent

camera and the same flight computer to track features

over three frames in the last 2 km of descent to the

surface, in order to estimate terrain-relative horizontal

velocity so that retro-rockets could reduce that velocity,

if necessary, to avoid tearing the airbags on impact.

Since these algorithms and results are discussed in detail

elsewhere, we keep the discussion to an overview and

provide references for more detail.

Ongoing research on vision for rover navigation ad-

dresses both engineering and research-oriented ends of

the spectrum. At the engineering end of the spectrum,

work on stereo includes FPGA implementation, to in-

crease speed in a space-qualifiable architecture, and im-

proved algorithms for rectification, prefiltering, and cor-

relation to reduce noise, improve performance at occlud-

ing boundaries (edges of rocks), and reduce pixel-locking

artifacts. At the research-oriented end of the spectrum,

one of the major navigation safety and performance issues

in MER was slippage on sloping terrain. Visual odome-

try addressed this to some degree for MER, but we are

now applying learning algorithms to attempt to predict

the amount of slip to expect from the appearance and

slope angle of hills immediately in front of the rover.

The most significant possibilities to impact future mis-

sions are to improve position estimation for precision

landing, to detect landing hazards, and to improve station-

keeping and orbit estimation around low-gravity bodies,

including small asteroids, comets, and moons of the outer

planets. Sensors and algorithms are in development for

all of these functions at JPL and elsewhere.

2. Historical Perspective

Planetary rover research began in the early 1960s with

analysis and prototype development of a robotic lu-

nar rover for NASA’s Surveyor program (Bekker, 1964)

(Table 1, Fig. 1). The U.S. never sent an unmanned rover

to the moon, but the Soviet Union sent two teleoper-

ated “Lunokhod” rovers in the early 1970s (A Scientific

Rationale for Mobility in Planetary Environments, 1999).

Research on more automated navigation of rovers for

Mars continued through the 1970s at JPL, Stanford Uni-

versity, and elsewhere, using onboard stereo cameras

and scanning laser rangefinders and off-board computers

(O’Handley, 1973; Levine et al., 1973; Thompson, 1977;

Lewis and Johnston, 1977; Gennery, 1980; Moravec,

1980).

In the early 1980s, there was a hiatus in planetary rover

funding from NASA, but mobile robot research contin-

ued under funding from other agencies at various research

centers. At Carnegie Mellon University (CMU), Moravec

developed a series of mobile robots using stereo vision

for perception (Moravec, 1983). One product of this line

of work was a stereo vision-based visual odometry algo-

rithm that produced the first quantitatively accurate stereo

vision-based egomotion estimation results (Matthies and

Shafer, 1987) and led to the visual odometry algorithm

now in use on Mars.

Computer vision for mobile robots got a major boost

in this period with the start of the DARPA Strategic Com-

puting (SC) and Autonomous Land Vehicle (ALV) pro-

grams. One goal of SC was to demonstrate vision and

advanced computing results from SC on robotic vehicles

developed under ALV. At CMU, Takeo Kanade was a

Principal Investigator in both of these programs. Under

SC, Kanade initiated a long-running effort to develop fast

stereo vision implementations on special-purpose com-

puting hardware, commencing with an implementation

on the “Warp” systolic array computer at CMU (Guerra

and Kanade, 1985).

Robot vehicles built under the ALV program, including

the CMU “Navlab”, a converted Chevy van, were possi-

bly the first to have enough onboard computing power to

host substantial terrain perception, terrain mapping, and

path planning algorithms onboard. ALV-related research
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Table 1. Chronology of sample ground robot systems and programs

Period Robot system/program

Mid 1960s Robotic lunar rover prototypes for NASA Surveyor program

Early 1970s Russian Lunokhod lunar rovers

1970s Stanford Cart

Mid-late 1980s DARPA Autonomous Land Vehicle (ALV) Program; first CMU Navlab

1995 “No-Hands Across America” road-following demo by CMU Navlab 5

Late 1980s-early 1990s CMU Ambler

Late 1980s-early 1990s JPL Robby

1992–1996 DARPA “Demo II” Unmanned Ground Vehicle (UGV) Program

1997 Mars Pathfinder mission with Sojourner rover

1997–2002 DARPA Tactical Mobile Robotics (TMR) Program

1998–2001 Demo III Experimental Unmanned Vehicle (XUV)

2001-present Robotics Collaborative Technology Alliance

2000–2003 DARPA Perception for Off-road Robotics (PerceptOR) Program

2003-present Mars Exploration Rover mission with Spirit and Opportunity

2004–2007 DARPA Learning Applied to Ground Robotics (LAGR) Program

2004–2005 DARPA Grand Challenge (1 and 2) desert robot race

Figure 1. Sample ground robots. Top: Surveyor lunar rover prototype, Lunokhod 1, CMU Navlab 1. Middle: JPL Robby Mars rover testbed, CMU

Ambler Mars rover testbed, CMU Dante. Bottom: Demo II UGV, Demo III XUV, DARPA TMR testbed.
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under Kanade and colleagues focused on road-following

with monocular, color imagery and on terrain mapping

and obstacle avoidance with a two-axis scanning laser

rangefinder (ladar) built by the Environmental Research

Institute of Michigan (ERIM). By the end of the decade,

the Navlab was able to follow a variety of structured

and unstructured roads and avoid obstacles in modestly

rough off-road terrain at speeds from a few kilometers per

hour (kph) off-road to 28 kph on structured roads (Thorpe

et al., 1991a,b). This was the beginning of an extensive,

ongoing body of work at CMU on both road-following

and terrain mapping for off-road navigation by a series of

students and more junior faculty. Highlights of this body

of work include such achievements as the “No-Hands

Across America” trip by Navlab 5 from Pittsburgh to

San Diego, which covered 2849 miles with 98.2% of it

autonomous (Pomerleau and Jochem, 1996). Work with

the ERIM ladar produced a number of techniques for

registering and fusing sequences of range images into

aggregate terrain maps and for doing obstacle detection

and avoidance with such maps (Hebert et al., 1988). Ter-

rain mapping and analysis for off-road obstacle avoidance

remains an open, active area of research 20 years later.

In the mid-to-late 1980s, NASA resumed funding re-

search on autonomous navigation for Mars rovers, with

JPL and CMU as the primary participants. The initial

co-Principal Investigators at CMU were Kanade, Tom

Mitchell, and Red Whittaker. CMU carried over its ladar-

based work from the ALV program into the planetary

rover domain (Hebert et al., 1989), while JPL explored

the use of stereo vision as an all-solid-state approach that

might be more easily space qualifiable. CMU built a six-

legged robot over 4 m tall called Ambler, to be able to step

over 1 m tall obstacles, and developed perception, plan-

ning, and control algorithms for statically stable legged

locomotion (Krotkov and Simmons, 1996). This was fol-

lowed at CMU by a series of NASA-funded projects led

by Whittaker to develop mobile robots (Dante I and Dante

II) for major field campaigns on Earth, including descend-

ing into volcanoes in Antarctica and Alaska (Wettergreen

et al., 1993; Bares and Wettergreen, 1999). Dante II in-

cluded a novel ladar mounted on a central mast with a

360 degree, spiral scan pattern to do 360 degree mapping

around the robot. JPL’s effort achieved a breakthrough

in real-time, area-based stereo vision algorithms that en-

abled the first stereo vision-guided autonomous, off-road

traverse (Matthies, 1992). This algorithm used SSD cor-

relation, implemented with efficient sliding sums and

applied at low resolution to bandpass filtered imagery.

Implemented on a Motorola 68020 CPU and Datacube

convolution hardware, the system produced 64 × 60 pixel

range imagery at 0.5 Hz. This success shifted the focus of

stereo vision research from edge-based methods to area-

based methods and inspired other robotic vehicle projects

to experiment more with stereo.

The 1990s was a period of tremendous progress, en-

abled by more powerful computing and better 3-D sen-

sors. The DARPA Unmanned Ground Vehicle (UGV)

program built robotic HMMWVs relying on stereo vi-

sion for 3-D perception (Mettala, 1992). Autonomous

off-road runs of up to 2 km at 8 kph were achieved with

a stereo system that generated range data in a 256 × 45

pixel region of interest at about 1.3 Hz (Matthies et al.,

1996). This program also experimented for the first time

with stereo vision at night using thermal infrared cam-

eras (Matthies et al., 1996; Hebert et al., 1996). Con-

currently, Okutomi and Kanade developed an influential,

SAD-based, multi-baseline stereo algorithm (Okutomi

and Kanade, 1993), which Kanade and co-workers ex-

tended in a custom hardware implementation as the CMU

Video-Rate Stereo Machine (Kanade et al., 1996). This

produced 256 × 240 disparity maps at 30 Hz. A software

version of this algorithm was evaluated for obstacle de-

tection on highways at speeds up to 25 mph (Williamson,

1998). When Konolige showed that SAD-based stereo al-

gorithms could run at up to 30 Hz for 320 × 240 imagery

using only current DSPs or microprocessors (Konolige,

1997), emphasis shifted away from special-purpose hard-

ware implementations.

The 1990s also saw relatively sophisticated sensors

and autonomous navigation functions migrate into small

robots. In the DARPA Tactical Mobile Robotics (TMR)

program, tracked robots less than one meter long were

equipped with stereo vision and/or SICK single-axis

scanning laser rangefinders and programmed to do obsta-

cle mapping and avoidance, vision-guided stair climbing,

and indoor mapping of hallway networks (Krotkov and

Blitch, 1999; Matthies et al., 2002; Thrun, 2001). In this

period, NASA refocused on small rovers for affordabil-

ity reasons and landed the Sojourner rover on Mars in

the 1997 Mars Pathfinder mission (Wilcox and Nguyen,

1998). Since Sojourner’s computer was only an Intel 8085

clocked at 2 MHz, its 3-D perception system was a sim-

ple light-stripe sensor that measured about 25 elevation

points in front of the rover (Matthies et al., 1995). The

lander had a multispectral stereo camera pair on a pan/tilt

mast about 1.5 m high. Processing this stereo imagery on

Earth with JPL’s real-time stereo algorithm produced ex-

cellent maps of the terrain around the lander for rover

operators to use in planning the mission. This was val-

idation of the performance of the stereo algorithm with

real Mars imagery.

Major outdoor autonomous robot research programs

in the 2000s to date include the Demo III Experimen-

tal Unmanned Vehicle (Demo III XUV) and Robotics

Collaborative Technology Alliance (RCTA) programs,

both funded by the Army Research Lab (ARL), the

DARPA Perception for Off-Road Robotics (PerceptOR)

and Learning Applied to Ground Robotics (LAGR) pro-

grams, and NASA’s Mars Exploration Rover (MER)
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mission and supporting technology development. Demo

III, RCTA, and PerceptOR addressed off-road navigation

in more complex terrain and, to some degree, day/night,

all-weather, and all-season operation. A Demo III follow-

on activity, PerceptOR, and LAGR also involved system-

atic, quantitative field testing. For results of DemoIII,

RCTA, and PerceptOR, see (Shoemaker and Bornstein,

2000; Technology Development for Army Unmanned

Ground Vehicles, 2002; Bornstein and Shoemaker, 2003;

Bodt and Camden, 2004; Krotkov et al., 2007) and refer-

ences therein. LAGR focused on applying learning meth-

ods to autonomous navigation. The DARPA Grand Chal-

lenge (DGC), though not a government-funded research

program, stressed high speed and reliability over a con-

strained, 131 mile long, desert course. Both LAGR and

DGC are too recent for citations to be available here. We

review MER in the next section.

With rover navigation reaching a significant level of

maturity, the problems of autonomous safe and precise

landing in planetary missions are rising in priority. Fea-

ture tracking with a downlooking camera during descent

can contribute to terrain-relative velocity estimation and

to landing hazard detection via structure from motion

(SFM) and related algorithms. Robotic helicopters have

a role to play in developing and demonstrating such ca-

pabilities. Kanade has made many contributions to struc-

ture from motion, notably the thread of factorization-

based algorithms initiated with Tomasi and Kanade

(1992). He also created one of the largest robotic heli-

copter research efforts in the world (Amidi et al., 1998),

which has addressed issues including visual odometry

(Amidi et al., 1999), mapping (Miller and Amidi, 1998;

Kanade et al., 2004), and system identification modeling

(Mettler et al., 2001). For safe and precise landing re-

search per se, JPL began developing a robotic helicopter

testbed in the late 1990s that ultimately integrated inertial

navigation, SFM, and a laser altimeter to resolve scale in

SFM. This achieved the first fully autonomous landing

hazard avoidance demonstration using SFM in Septem-

ber of 2003 (Johnson et al., 2005a,b; Montgomery et al.,

to appear).

Finally, Kanade guided in early work in the area that

became known as physics-based vision (Klinker et al.,

1990; Nayar et al., 1991; Kanade and Ikeuchi, 1991),

which exploits models of the physics of reflection to

achieve deeper image understanding in a variety of ways.

This outlook is reflected in our later work that exploits

physical models from remote sensing to improve outdoor

scene interpretation for autonomous navigation, includ-

ing terrain classification with multispectral visible/near-

infrared imagery (Matthies et al., 1996), negative obstacle

detection with thermal imagery (Matthies and Rankin,

2003), detection of water bodies, snow, and ice by ex-

ploiting reflection, thermal emission, and ladar propaga-

tion characteristics (Matthies et al., 2003), and modeling

the opposition effect to avoid false feature tracking in

Mars descent imagery (Cheng et al., 2005).

3. Computer Vision in the MER Mission

The MER mission landed two identical rovers, Spirit and

Opportunity, on Mars in January of 2004 to search for

geological clues to whether parts of Mars formerly had

environments wet enough to be hospitable to life. Spirit

landed in the 160 km diameter Gusev Crater, which in-

tersects the end of one of the largest branching valleys on

Mars (Ma’adim Vallis) and was thought to have possi-

bly held an ancient lake. Opportunity landed in a smooth

plain called Meridiani Planum, halfway around the planet

from Gusev Crater. This site was targeted because orbital

remote sensing showed that it is rich in a mineral called

gray hematite, which on Earth is often, but not always,

formed in association with liquid water. Scientific results

from the mission have confirmed the presence of water

at both sites, and the existence of water-derived alter-

ation of the rocks at both sites, but evidence has not been

discovered yet for large lakes (Squyres and Knoll, 2005).

Details of the rover and lander design, mission op-

eration procedures, and the individual computer vision

algorithms used in the mission are covered in separate

papers. In this section, we give a brief overview of the

pertinent aspects of the rover and lander hardware, briefly

review the vision algorithms, and show experimental re-

sults illustrating qualitative behavior of the algorithms in

operation on Mars. Section 4 addresses more quantita-

tive performance evaluation issues and work in progress

to improve performance.

3.1. Overview of the MER Spacecraft and Rover

Operations

Figure 2 shows a photo of one of the MER rovers in a

JPL clean room, together with the flight spare copy of the

Sojourner rover from the 1997 Mars Pathfinder mission

for comparison. The MER rovers weigh about 174 kg, are

1.6 m long, have a wheelbase of 1.1 m, and are 1.5 m tall

to the top of the camera mast. Locomotion is achieved

with a rocker bogie system very similar to Sojourner,

with six driven wheels that are all kept in contact with

the ground by passive pivot joints in the rocker bogey

suspension. The outer four wheels are steerable.

The rovers are solar powered, with a rechargeable

lithium ion battery for nighttime science and commu-

nication operations. The onboard computer is a 20 MHz

RAD6000, which has an early PowerPC instruction set,

with no floating point, a very small L1 cache, no L2

cache, 128 MB of RAM, and 256 MB flash memory.

Navigation is done with three sets of stereo camera pairs:

one pair of “hazcams” (hazard cameras) looking forward
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Figure 2. MER rover (left) with Sojourner rover from the 1997 Mars Pathfinder mission (right), shown in a JPL clean room.

under the solar panel in front, another pair of hazcams

looking backward under the solar panel in the back, and a

pair of “navcams” (navigation cameras) on the mast. All

cameras have 1024 × 1024 pixel CCD arrays that cre-

ate 12 bit greyscale images. The hazcams have a 126

degree field of view (FOV) and baseline of 10 cm; the

navcams have a 45 degree FOV and baseline of 20 cm

(Maki et al., 2003). Each rover has a five degree of free-

dom arm in front which carries a science instrument pay-

load with a microscopic imager, Mossbauer spectrome-

ter, alpha/proton/x-ray backscatter spectrometer (APXS),

and a rock abrasion tool (RAT). The camera mast has

two additional science instruments: a stereo pair of “pan-

cams” (panoramic cameras) and the “mini-TES” (thermal

emission spectrometer). The pancams have filter wheels

for multispectral visible and near-infrared imaging for

mineral classification. They have the highest angular

and range resolution of all cameras on the rover, with a

16 degree field of view and 30 cm baseline. The mini-

TES acquires 167 spectral bands between 5 and 29 µm in

a single pixel. All instruments on the mast are pointable

by one set of pan/tilt motors.

Because of constraints on solar power, the rovers drive

for up to 3 hours per sol,1 followed by a downlink teleme-

try session of up to 2 hours per sol. A large team of

people plans the next sol or several sols’ mission in the

remaining hours per sol. The rovers’ top driving speed is

5 cm/sec, but they are typically driven at 3.75 cm/sec to

limit motor heating. The basic traverse cycle involves ac-

quiring hazcam stereo images and planning a short drive

segment while standing still, then driving 0.5 to 1.5 m,

then stopping and repeating the process. With comput-

ing delays, this results in a net driving speed on the or-

der of 1 cm/sec. Because the a priori 3σ landing un-

certainty ellipse was about 80 × 10 km, exact targets for

exploration could not be identified before landing. Af-

ter landing, the science team concluded that the desir-

able investigation sites required the rovers to travel more

quickly than planned in order to reach them within toler-

able time limits. This led to a new operational mode for

long distance drives in which navcam or pancam stereo

pairs acquired at the end of each sol are used by hu-

man operators to identify hazard-free paths up to 100 m

ahead for the next sol’s traverse. The rovers drive these

initial segments with little or no obstacle detection and

avoidance processing, then switch to “autonav” mode

with complete obstacle detection and avoidance. This has

enabled drives of up to 370 m/sol in the most flat, safe

terrain.

Additional details about the rover hardware, software

architecture, and operations are given in Maimone et al.

(2006) and references therein.
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(a) (b)

Descent

Images

Lander

Attitudes
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1. Bin Images
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3. Select Features
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6. Track Features

Estimate Velocity

4. Flatten Images

Figure 3. Basic elements of DIMES: (a) algorithm flow, (b) pictorial illustration.

3.2. Descent Image Motion Estimation System

The first vision algorithm to operate in the MER mis-

sion was the Descent Image Motion Estimation System

(DIMES), though it was by far the last to be developed.

A little more than two years before launch, MER staff

realized that statistical models that had been used for

Mars near-surface wind velocities were wrong, and that

an improved model predicted higher steady-state winds,

with a consequently higher horizontal velocity at impact

and higher probability of catastrophic tearing of the lan-

der airbags (Cheng et al., 2004). The lander system had

lateral rockets (“TIRS”, for Transverse Impulse Rocket

System) that were needed to orient the lander vertically

before firing the main retrorockets. In principle, TIRS

could be used to reduce horizontal velocity, but there

was no horizontal velocity sensor in the system to guide

such a maneuver. Cost and schedule constraints prohib-

ited adding a doppler radar velocity sensor, which is the

usual approach to velocity sensing. By coincidence, a

sun sensing camera had been built for MER but deleted

from the system earlier in development. The only veloc-

ity sensing solution that did fit in the cost and schedule

constraints was to reinsert this camera as a descent cam-

era and to develop software to use it to estimate velocity.

With an inertial measurement unit (IMU) in the lander to

sense angular velocity and an altimeter to sense vertical

velocity, the entire velocity vector could be estimated by

tracking a single surface feature. More features are de-

sirable for reliability and precision, but limitations of the

onboard computer allowed tracking only two features per

frame in real-time. A set of redundant measurements and

error checks made this robust and an extensive testing

protocol with elaborate simulations and field testing val-

idated performance of the system at the required levels

of precision and reliability.

The basic elements of the DIMES algorithm are illus-

trated in Fig. 3 and consist of the following; details are

given in Cheng et al. (2005). Many of the details were

motivated by the need to fit within the very limited com-

puting power and time available.

1. The raw 1024 × 1024, 12 bit descent imagery was re-

duced to 256 × 256 pixels by a combination of binning

in the CCD for one axis and software averaging in

the other axis, then truncated to 8 bits/pixel. To avoid

tracking the shadow of the parachute, knowledge of

the lander attitude and sun direction was used to iden-

tify where the shadow would occur in the image.

A radiometric effect called the “opposition effect”

causes a broad peak in image brightness around that

point, which could also interfere with tracking (Hapke,

1986). A “zero phase mask” was computed to elimi-

nate a pre-determined part of the image to avoid both

of these problems.

2. For each pair of images, knowledge of the altitude,

an upper bound on horizontal velocity, and bounds on

attitude measurement errors were used to determine

the maximum possible area of overlap between the

images and the extent of search windows to use for

feature tracking.

3. Two features were selected by applying a Harris inter-

est operator on a coarse grid in one image, within the

area of overlap and avoiding the zero phase mask.
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4. Radiometric corrections (“flattening”) were applied to

the selected feature templates and search windows to

reduce the effects of (1) smearing because the CCD

camera had a frame transfer architecture without a

shutter, (2) pixel-to-pixel response variations, and (3)

vignetting due to optical transfer roll-off.

5. The feature templates and search windows were rec-

tified to take out orientation and scale differences

by using knowledge of lander altitude, attitude, and

orientation relative to north to project the imagery into

a camera frame parallel to the ground with the same

scale and orientation for both images.

6. Features were matched between images by applying

Moravec’s pseudo-normalized correlator (Moravec,

1980) in a two-level image pyramid, with sub-

pixel peak detection at the highest resolution. Va-

lidity checks applied to screen false matches were

correlation value, peak width, and the ratio between

the two best correlation peaks.

Three images were acquired in total. Two features were

tracked between the first pair and combined with the IMU

and altimetry to produce one velocity estimate. Two fea-

tures were used in case one failed to track, and two was

the most that would fit in the time budget. Two more fea-

tures were tracked between the second and third image

to produce a second velocity estimate. Differencing these

produced a rough acceleration estimate for the total in-

terval, which was compared with accelerations measured

with the IMU for a final error check. The total runtime

of this algorithm on the flight computer was just under

14 sec, using about 40% of the CPU. To amplify the run-

time constraint, in 14 sec the landers fell over 1000 m,

which was more than half the distance to the ground from

where the first image was acquired.

The Harris interest operator embodied a generic feature

definition that was applicable to any kind of terrain and

could be computed quickly. Tracking features by mul-

tiresolution correlation search, instead of by a gradient

descent tracker or other means of estimating optical flow,

allowed features to be tracked despite the large camera

motion between frames. The various optimizations de-

scribed above for each stage of the algorithm allowed it to

complete in the time available despite the slow clock rate,

lack of cache, and lack of floating point in the processor.

This algorithm was tested first with a simulator, called

MOC2DIMES, that used real Mars orbital imagery to

generate triples of synthetic descent images, based on an

elaborate model of the descent camera optical and noise

effects, simulated descent trajectories from a model of

lander dynamics, a model of the opposition effect, and a

sampling of orbital imagery representative of the terrain

variation within the 80 × 10 km landing targeting ellipse

(Willson et al., 2005a). Results of Monte Carlo trials with

this simulator predicted 3σ horizontal velocity estimation

errors of <4 m/s for both landing sites, using imagery ac-

quired at 2, 1.7, and 1.4 km above the ground. Because

of the potentially severe consequences of a gross error,

parameters were tuned so that no gross errors occurred

in testing. This resulted in some cases where no velocity

estimate was reported (1% of cases for Gusev Crater sim-

ulations and 29% for Meridiani Planum simulations), in

which case the landing system would perform its default

actions without input from the vision system. This was

deemed acceptable by the mission.

The algorithm was then tested in the field by mounting

an engineering model of the real descent camera on a

manned helicopter, within a gimbal to emulate attitude

disturbances from parachute oscillation, together with an

inertial measurement unit, data collection hardware, and

ground truthing sensors (Johnson et al., 2005b). This was

flown at three different altitudes over several Mars analog

sites in the Mojave desert, and triples of images selected

from the three altitudes were used to test the algorithm

against the measured ground truth. The distribution of the

velocity errors over 1913 test cases was consistent with

the MOC2DIMES simulation results.

DIMES was employed for both MER landings. For

Spirit, it estimated that the horizontal velocity at im-

pact would be about 23.5 m/s without firing TIRS, which

was on the edge of the airbag limits. Therefore, TIRS

was fired, producing a safe horizontal velocity of 11 m/s.

For Opportunity, near-surface winds were lower and

DIMES determined that TIRS firing was unnecessary.

Both landings were successful; DIMES may have been

instrumental in the successful landing of Spirit. Figure 4

shows sample images and processing results from the

Spirit landing; the entire DIMES algorithm, testing, and

flight results are described in detail in Johnson et al.

(2006).

3.3. Stereo Vision

In the evolution from the 1997 Mars Pathfinder (MPF)

mission to MER, traverse goals for the rovers expanded

from staying within about 10 m of the lander for MPF to

traveling up to 100 m/day and at least 600 m in 90 days

for MER. To make obstacle detection more reliable, JPL

chose to improve the quality of 3-D terrain perception

beyond the very sparse measurements of the Sojourner

light-stripe system. At the time, the main alternatives for

doing so were scanning laser rangefinders (ladar) and

stereo vision. In missions like this, it is always desirable

to have imagery for human consumption, even if a ladar

is used. Ladar has an advantage of greater range, but this

was unnecessary given the slow driving speed and rela-

tively low obstacle frequency. Stereo vision has the ad-

vantage of being all solid-state, hence having greater me-

chanical reliability and longer life. Based on experience
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Figure 4. First pair of descent images for Spirit landing, shown after rectification. Selected templates are in red, search windows in blue, and match

locations in green.

from the Mars Pathfinder mission, it was believed that

Mars terrain would have enough texture for stereo vision

to work nearly everywhere. It was already established

that simple stereo algorithms based on area correlation

could produce sufficiently dense, sufficiently accurate

range imagery with sufficient speed within the available

computing power (Goldberg et al., 2002; Matthies, 1992;

Matthies et al., 1995). Therefore, stereo vision was se-

lected as the best trade-off between cost, risk, and per-

formance for 3-D sensing for this mission. The entire

autonomous driving software architecture, including the

stereo vision and obstacle avoidance algorithms, is dis-

cussed in Biesiasdecki and Maimone (2006). Here we

summarize the main elements of the stereo algorithm, in

order to discuss its limitations and compare it to modifica-

tions addressed in Section 4, then illustrate performance

of the algorithm on Mars imagery.

Main steps of the algorithm are as follows:

• The raw 1024 × 1024 images are binned down to

256 × 256 and rectified with bilinear interpolation.

• The images are highpass filtered by subtracting out

local block averages.

• 7 × 7 SAD scores are computed for the disparity

search range and minima are computed independently

for each pixel.

• The left-right check is applied to eliminate ambiguous

matches.

• Subpixel disparity is computed by fitting parabolas to

the three SAD scores around the minima.

• Small blobs of unreliable disparity estimates are re-

moved by applying a modified blob filter for which

the connectivity criterion is a threshold on the dispar-

ity gradient.

• A few other local reliability tests are applied, such as

thresholding the curvature of the parabolic fit, masking

out parts of the image known to contain parts of the

rover, and eliminating any pixels that appear to repre-

sent overhangs, which on Mars are invariably due to

disparity artifacts caused by noise or nearly horizontal

intensity edges in the imagery (e.g. shadows and the

skyline).

On the MER flight processor, with rest of the flight

software system running at the same time, 256 × 256

disparity maps take about 30 seconds to compute. For

comparison, the same algorithm runs at 30 Hz for

320 × 240 disparity maps on a 1.4 GHz Pentium M in

other applications.

Gusev Crater has scattered rocks and is highly textured,

but much of Meridiani Planum turned out to be a smooth,

featureless plain with fine soil that produces relatively

low texture imagery (Fig. 5). Spirit could get adequate

range data at Gusev from the wide angle hazcams, but

Opportunity had to use the higher resolution, narrower

angle navcams to perceive the soil texture well enough

get adequate range data.

Figure 6 shows a typical stereo result for navcams and

Fig. 7 for hazcams, both from Gusev Crater. The small

holes in the range image result mostly from the left-right

check; we do not interpolate over such holes. The ragged

disparity border around the edge of Humphrey rock is

typical of this class of stereo algorithm; this does not

noticeably impact obstacle avoidance performance. The

rippling visible in the elevation plot is the result of pixel-

locking artifacts in the subpixel disparity estimation pro-

cess; there is insufficient computing power onboard to

address this with acceptable runtime. While this raises

the noise floor in elevation maps, at short range it is still

far below the size of rock that is a hazard. This is illus-

trated by the fact that the green bumps corresponding to

small rocks in the height image in the upper right of Fig. 5
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(a)

(b) (c)

Figure 5. (a) Navcam mosaic from Spirit in Gusev Crater at the end of a traverse; wheel tracks show some obstacle avoidance maneuvering. (b)

Navcam mosaic from Opportunity in Meridiani Planum. Opportunity landed in the 20 m diameter Eagle Crater in the middle of this mosaic. (c)

Textureless hazcam image from inside Eagle Crater. Additional imagery can be seen at http://marsrovers.jpl.nasa.gov/gallery/images.html.

are distinct from the pixel-locking ripples. Algorithms

for converting range images into elevation maps, assess-

ing elevation maps to produce traversability “goodness”

maps, accumulating goodness maps over time, and using

goodness maps to plan driving trajectories are discussed

at length in Maimone et al. (2006). We summarize overall

navigation experience in Section 3.5. Potential for dust

accumulation on the lenses to negatively impact stereo

was analyzed in Willson et al. (2005b) and determined to

be tolerable.

3.4. Visual Odometry

During mission development, the default approach to po-

sition estimation for the rovers was to initialize attitude

while stationary, using sun sensing and accelerometers

(to sense the gravity vector), then to propagate attitude

and position while driving using gyros and wheel en-

coders (Ali et al., 2005). It was recognized that this would

be vulnerable to error due to wheel slip. On Mars, there

are very few options for other methods to estimate po-

sition; there is no global positioning system (GPS) and

visual landmarks with known absolute positions cannot

be guaranteed to be available. Incremental motion esti-

mation by visual feature tracking (“visual odometry”, or

VO) with the existing cameras is the only solution that

doesn’t require adding more hardware to the vehicle. This

capability was included in the flight software as an option.

Experience early in the mission showed that slippage

on slopes could be severe, could significantly compro-

mise rover safety by causing it to slide into rocks, and

could reduce the efficiency of operation by causing the

rover to end up far off target at the end of a day’s traverse.

This was confirmed in testing with Mars analog soil on a

tilt table at JPL, which showed nonlinear behavior of slip

as a function of slope, slippage rates of 20% on slopes

of 10 degrees, and slippage rates of 95% on slopes of 20

degrees (Lindemann and Voorhees, 2005). This was exac-

erbated when one wheel motor on Spirit began to fail and

operators chose to drag it except when absolutely neces-

sary to cross difficult terrain. Opportunity also had one

serious incident of getting stuck in a sand drift, in which
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Figure 6. Stereo results from the Spirit navcams, looking at Humphrey rock in Gusev Crater. The rock is about 0.5 m tall. Upper left: false color

range image (red is closest, magenta is furthest). Upper right: false color height image (red is lowest, magenta is highest). Bottom: elevation plot,

seen from above, where the cameras are at the left looking right (same color coding as the height image). Green cross-hairs are not significant in this

image.

Figure 7. Stereo results from Spirit hazcams, looking at Comanche Spur on top of Husband Hill in the Columbia Hills. The base of the spur is 2.6 m

away.
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(a) (b)

(c)

Figure 8. (a) Rocky 8 research rover, showing retro-reflectors used with a total station survey instrument to measure ground truth pose. (b) Rocky

8 on a sandy test site in the Mojave Desert with slopes up to 25◦. (c) Plot of ground truth and VO position estimates for a 29 m run on this hillside.

The final VO position differs from the true final position by 0.37 m, or 1.3% of the distance traveled.

the wheels spun in place for the equivalent of nearly 50 m

of driving while the rover dug itself in. Thereafter, VO

was used whenever there was potential for non-trivial

slippage or sinkage.

The VO algorithm selects point features, matches these

in stereo with multi-resolution correlation to establish

their 3-D coordinates, tracks the features in stereo with

multi-resolution correlation, and solves for the motion

between successive stereo pairs as a 3-D to 3-D pose esti-

mation problem. To make this precise, 3-D Gaussian error

models are propagated into the pose estimation formula-

tion. Elements of this algorithm originated with Moravec

(1980) and were improved by Matthies and co-workers

(Matthies, 1989; Olson, 2003; Helmick et al., 2004;

Cheng et al., 2006); we refer readers to these references

for details and focus here on discussing performance of

the algorithm. Due largely to lack of development time,

the MER navigation system does not use a Kalman filter

or related algorithm to combine motion information

from the IMU, wheel encoders, and visual odometry.

Instead, when VO is used, it either completely replaces

the motion estimate coming from IMU+wheel odometry

or it replaces just the position degrees of freedom—

because the gyros in the IMU have very low drift rates

and produce good incremental attitude estimates. Future

missions are likely to employ a more sophisticated sensor

fusion algorithm; they will also include a processor with

floating point, which will make such algorithms easier to

implement.

This algorithm has been evaluated by Monte Carlo sim-

ulation, by outdoor testing on rovers with accurately sur-

veyed ground truth, and by operation on Mars. Olson

used Monte Carlo simulations to examine position error

growth with time, to show that integrating absolute head-

ing sensors (e.g. sun sensing) with VO achieved linear

position error growth, and to find an optimal baseline

for VO (Olson, 2003). In outdoor testing with an urban

robot vehicle using differential GPS as ground truth, he

observed a position error of 1.2% of the distance trav-

eled over 210 stereo pairs covering 20 m. This was in

good agreement with the predictions of his Monte Carlo

simulations. More recent outdoor testing with Mars rover

research vehicles has obtained ground truth position and

attitude data with a laser-based survey instrument called

a “total station,” which measures range to retro-reflectors

on the rover with sub-centimeter accuracy (Fig. 8(a)).

The total station is motorized, automatically tracks one

retro-reflector as the rover moves, and automatically finds
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Figure 9. Opportunity’s 15 sol trajectory near Wopmay Rock in Endurance Crater. The rock is approximately at the grey ellipse. The vehicle started

in the upper left, first driving toward the rock and then trying to get around or away from the rock. The downslope direction is at about 1 o’clock.

In the left plot, after each step, wheel odometry puts the rover further upslope than it really is; the “jumps” pointing toward 1 o’clock are the result

of VO adjusting the rovers’ position downslope to reflect slip during that step. The right plot shows the same course using the VO corrections to

approximate the rover’s true path.

the other retro-reflectors when the rover stops to deter-

mine the full 6-DOF pose of the vehicle. We estimate

that this gives ground truth with a precision of 2 mm for

position and 0.2◦ for attitude. In multiple outdoor tests

of 25 m to 29 m in length, final position errors were be-

tween 1.3% and 2.5% of distance traveled (Helmick et al.,

2004). Figure 8(b) shows the rover on one of the outdoor

test sites. For this test, Fig. 8(c) plots the position trajec-

tory from the ground truth system and from VO; the final

VO position was accurate to 1.3% of the total distance

traveled. VO provided position updates approximately

every 20–30 cm in this test. A closely related algorithm

developed at LAAS-CNRS in the late 1990s is described

in Mallet et al. (2000), where they report position errors

of 1 m over 25 m (4%) in outdoor experiments.

Results of using this algorithm on Mars are discussed

in Cheng et al. (2006). It has been used on both rovers

with navcam imagery. Vehicle motion between images

was specified to ensure at least 60% overlap between

adjacent images, which led to forward steps of no more

than 75 cm and turns-in-place of no more than 18 degrees

per step. Runtime of the algorithm on the flight proces-

sor with all other flight software operating averaged 150

sec/step, with a large standard deviation, while tracking

on the order of 100 features. With no other flight software

running, this comes down to 21 sec/step. For perspec-

tive, on a 3.6 GHz Pentium 4 workstation we are able to

run essentially the same algorithm, tracking 266 features

to an image resolution of 640 × 480 pixels, simultane-

ous with SAD stereo at 320 × 240 resolution with 32

disparities, and achieve 15 frames/sec. As of March 4,

2005, in use on both rovers on Mars, VO had converged

to a solution successfully1418 times in 1484 cases, or

95.5% of the time, tracking an average of about 80 fea-

tures per frame. Failures to converge appear to be mostly

cases where vehicle motion was too large for effective

feature tracking. Except for a few cases of improper pa-

rameter settings, only one case had been observed where

the algorithm reported success but Earth-based checking

showed a clearly bad estimate. This occurred when the

tracked feature set was dominated by features on the rover

shadow.

VO was used on Mars in situations involving potential

slip on slopes, potential for sinking in sand drifts, and to

ensure accurate approach to rocks against which the sci-

ence team wished to place instruments. One of the more

striking instances of its use happened when Opportunity

was in Endurance Crater, operating on a 17–20◦ slope

with loose sand and buried rocks near a large rock (“Wop-

may”) of interest to the science team. As Opportunity first

tried to approach, then struggled over several days to es-

cape this rock, VO was used to make sure the rover did

not slip onto the rock. Figure 9 shows rover trajectories

estimated by wheel odometry and VO for this sequence of

drives. In the left plot, the vehicle started in the upper left

corner and drove toward the rock. The first line segment

shows the first step as estimated by wheel odometry; the

second line segment shows a position correction applied

by VO reflecting downslope slip. The rest of path sim-

ilarly shows steps as estimated by wheel odometry and

corrected by VO. The right plot uses the VO corrections

to approximate the true vehicle path continuously, instead

of applying discrete corrections after each step.

Of course, visual odometry drifts over time, with

position error growing faster as heading error grows. For

MER, heading is updated periodically by sun sensing

(Ali et al., 2005), since there is not enough magnetic

field for a compass. The whole history of the rovers’

trajectories are also estimated on Earth by bundle

adjustment, using overlapping navcam images acquired

periodically and using manually-assisted tie-point

matching (Di et al., 2005; Li et al., 2006).
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Algorithms for missions must reach a high degree of

maturity several years before launch, so MER’s VO rep-

resents fairly mature, tested software from the late 1990s.

More recent research on VO has used other error func-

tions and feature tracking methods with an emphasis on

real-time performance on Pentium architectures (Nister

et al., 2006). Motion estimation performance appears to

be comparable, though a direct comparison on common

data sets has not been made. Another more recent trend in

the literature has been the use of monocular or stereo im-

age sequences in simultaneous localization and mapping

(SLAM) problems, using Harris or SIFT and sometimes

integrating inertial sensors (Eustice et al., 2005; Se et al.,

2002). Formulations for integration of multiple sensors

for localization are definitely germane to rover naviga-

tion. However, rover navigation is typically a one-way

traverse, whereas much research on SLAM and SIFT

landmarks addresses loop closure and contexts where

landmarks might be revisited many times, so feature in-

variance and path topology are less important for rovers

than computational efficiency and the ability to achieve

order of 1% error in a linear traverse.

3.5. Overall Mars Navigation Results

Driving mode statistics through August 15, 2005, are

given in Maimone et al. (2006). At that point, Spirit had

been on Mars for 573 sols and had driven 4798 m; Op-

portunity had been on Mars for 555 sols and had driven

5947 m. Spirit used stereo vision for obstacle detection

for 28% of its total traverse and VO for 16%; obstacle de-

tection and VO were only used together for 3 m, because

that was too slow. Opportunity used stereo vision for ob-

stacle detection for 21% of its traverse and VO for 11%;

it never used obstacle detection and VO together. The rest

of the driving was commanded as “blind” drives, because

operators on Earth could see in navcam or pancam im-

agery that the way was clear and chose to travel faster by

not incurring the runtime delay for the autonomous nav-

igation functions. Spirit drove roughly 3 km on the floor

of Gusev Crater to the base of the Columbia Hills, which

are about 100 m high, and has been in the hills ever since.

Most of its obstacle detection was done on the floor of

the crater, as part of drives in which an initial segment

that operators could see was blind and beyond which ob-

stacle detection was enabled. Most of its VO was done

in the hills. Opportunity used obstacle detection during

very long daily drives on the plains, mostly to avoid driv-

ing into small craters. It used VO on sloping terrain in

Eagle Crater, Endurance Crater, and on the plains as it

entered terrain with sand drifts, as a precaution against

getting stuck with wheels spinning deeply in sand. As of

March 15, 2006, Spirit had covered 6797 m and Oppor-

tunity 6645 m; driving mode statistics up to that point are

not yet available. Detailed narrations of driving experi-

ence for both rovers are given in Leger et al. (2005) and

Biesiadeck et al. (2005).

Since the goal for the primary mission was to survive

90 days and to drive a minimum of 600 m, the rovers

have far surpassed that goal. Onboard computer vision

algorithms have been instrumental in that achievement.

Moreover, because long drives were necessary to reach

scientifically interesting terrain, MER has firmly estab-

lished the importance of long range mobility for Mars

surface exploration.

3.6. Lessons Learned

Before moving to a discussion of ongoing development,

we will briefly recap key requirements for rover vision

systems and lessons learned from the MER mission.

Rovers drive slowly and the terrain typically is not very

complex, so lookahead distance requirements for obsta-

cle detection are short. Power and energy are limited,

which puts a premium on low-power electronics. Rover

driving is generally confined to a few hours around mid-

day for operational reasons largely unrelated to the vision

system. Simple, area-based feature tracking and stereo

correlation algorithms generally have proved sufficient

for velocity estimation for landers and for obstacle de-

tection and visual odometry for rovers.

While MER has been a very successful mission despite

its slow computer, future missions will want to drive a lot

farther in a given amount of time, so faster implemen-

tations of vision and planning algorithms are important.

Several low-level data quality issues need to be addressed

in stereo vision, including maximizing ability to match

in low-texture terrain such as that encountered at Merid-

iani Planum and reducing pixel-locking artifacts. One of

the key performance limitations in this mission has been

slip on slopes. Coping with this consumed a great deal

of time when Opportunity was in Endurance Crater and

prevented Opportunity from making a closer approach

to scientifically interesting cliff outcrops in the crater.

This could be improved by making visual odometry fast

enough to use in a continuous steering control algorithm

that would compensate for slip.

4. Current Development

JPL is designing a new rover, called the Mars Science

Laboratory (MSL), for the 2009 Mars launch window.

This design is powered by a radio-isotope thermal gen-

erator (RTG) instead of solar panels, is much larger than

MER, and is intended to be able to drive 20 km in a pri-

mary mission of nearly two Earth years. Stereo cameras

are again the sole 3-D perception sensors onboard. The

flight computer is a space-qualified PowerPC 750 with a

clock rate of about 100 MHz; this brings floating point,
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but still no L2 cache. Budget priorities dictate that MSL’s

autonomous navigation capabilities will be little changed

from MER. Nevertheless, vision system R&D is contin-

uing along several lines in parallel to MSL development.

This includes vastly increasing computational through-

put by exploiting flight qualifiable field programmable

gate arrays (FPGAs) as computing elements, improving

the quality of disparity data by reducing noise, improv-

ing performance at occluding boundaries, and reducing

pixel locking, and attempting to learn to predict slippage

ahead of the vehicle by regressing past slippage experi-

ence against the visual appearance of the terrain.

4.1. FPGA Computing

JPL is developing a new flight computing system, called

the Mobility Avionics Module (MAM), around the

Xylinx Virtex-II Pro FPGA as the main computing ele-

ment. This FPGA includes PowerPC 405 (PPC405) pro-

cessor hard cores that can be clocked at up to 300 MHz;

the rest of the FPGA logic can be clocked at approxi-

mately 100 MHz. A prototype MAM exists as a PMC

form factor (∼6 × 3 inch) board that weighs 150 g, draws

3 W, and includes a Virtex II Pro with two embedded

PPC405 cores running Linux, with Ethernet, PCI bus,

Compact Flash, 1394, and serial I/O. This board has been

installed in a research rover and the entire rover onboard

software has been ported to one PPC405 in the FPGA.

Benchmarks show that stereo vision and VO run together

in 6.4 sec/frame for 640 × 480 input imagery, 320 × 240

disparity maps with 32 disparities, and VO tracking 266

features in a four-level image pyramid. This is a vast

speed-up over the MER flight processor.

To increase speed further, we are moving the most

time-consuming vision functions into the FPGA logic.

Our initial step has been to move the SAD computation

for stereo vision into the logic, since that greatly domi-

nates the runtime of the stereo algorithm. The logic im-

plementation has been designed to be highly parallel and

pipelined, so that in steady state it produces one subpixel

disparity estimate per clock cycle at a 100 MHz clock

rate (Villalpando, 2006). The current implementation is

hard-coded for 320 × 240 pixel imagery with 32 dispar-

ities. SAD scores for all 32 disparities are computed in

parallel, then flowed into a comparator tree that deter-

mines the minimum SAD at each pixel and performs

a left-right consistency check. Finally, subpixel dispar-

ity is computed by parabolic fitting and output as 8 bits

of integer and 8 bits of subpixel data. The implementa-

tion uses roughly 40% of the resources in a Virtex II Pro

model 2VP4 FPGA. At one output pixel per clock cy-

cle, the pipeline throughput rate is equivalent to roughly

1 ms/frame. The current I/O implementation does not use

DMA, so with I/O one frame takes 50 ms. Together with

running rectification, prefiltering, and triangulation on

the PPC405, the entire stereo process takes 250 ms/frame.

Related work on FPGA and other hardware-based

stereo implementations includes an FPGA implemen-

tation of another SAD-based algorithm similar to ours

([STOC] Stereo Head User Manual 1.1, 2006), a cus-

tom ASIC implementation of the Census stereo algorithm

(Woodfill et al., 2004), and an implementation of a multi-

scale, multi-orientation, phase-correlation algorithm in

multiple FPGAs (Masrani and MacLean, 2006). The first

two are commercial products; all three claim speeds of

30 Hz operation or greater on images of 512 × 480 or

640 × 480 pixels. All of these are purely stereo machines

and do not include a general purpose processor core with

an operating system that can host other application func-

tions coded in C, as the FPGA in our mobility avionics

module does, so they were designed for more narrow

purposes. The key points to note about our work are that

(1) it is becoming possible to fly high capacity FPGAs

in space, including embedded microprocessors and large

amounts of reconfigurable logic in the same chip, and

(2) such chips support area-based stereo in a few mil-

liseconds/frame. A detailed, engineering-oriented com-

parison of the chip real estate versus speed versus dispar-

ity map quality of different real-time stereo algorithms

would be valuable, but is beyond our current scope.

4.2. Noise Reduction and Improved Occluding

Boundaries

As engineering improvements, we are working to im-

prove disparity estimation at rock boundaries and to im-

prove the signal-to-noise ratio (SNR) of the disparity

maps, within the limits of real-time performance.

For better boundary estimation, we have had good

success with using five overlapping SAD windows

(“SAD5”) (Hirschmuller et al., 2002). In initial work on

a real-time implementation, we have a SAD5 correlator

running at 30 Hz on a 1.4 GHz Pentium M for 320 × 240

disparity maps and 32 disparities. We got further im-

provement at occluding boundaries by changing the im-

age prefiltering used to compensate for radiometric dif-

ferences between left and right images. SAD is normally

run on images that have been bandpass or highpass fil-

tered to reduce brightness differences between the stereo

images, which arise from a number of causes. This fil-

tering introduces overshoot or ringing artifacts at strong

intensity edges. When such edges correspond to occlud-

ing boundaries, the artifacts affect different parts of the

background surface in the left and right images, which

contributes to poor matching at occluding boundaries. We

have addressed this by replacing linear filters with a fast,

separable approximation to the edge-preserving bilateral

filter; that is, the bilateral-filtered image is subtracted
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Figure 10. Stereo results on the same Spirit navcam imagery as Fig. 6, with SAD5 and improved low-level signal processing (see text). The occluding

boundary of the rock is cleaner, there are fewer holes in the disparity map, the small rocks are better delineated, the shadow to the right of the large

rock gets the disparity of the ground instead of the rock, and pixel-locking is slightly reduced.

from the original to reduce radiometric differences be-

tween left and right images. Our experiments show that

this produces better depth maps for a variety of outdoor

scenes (Ansar et al., 2004).

In most of the research community, stereo evaluation

has focused on estimating integer disparity and scoring

the fraction of pixels with correct integer disparity. How-

ever, for autonomous navigation applications, subpixel

estimation is essential, so accuracy and precision of the

subpixel estimates is a key performance issue. This is

affected by such factors as aliasing caused by simpli-

fications introduced to low-level filtering for real-time

performance, pixel-locking, and other errors caused by

correlation windows overlapping strong intensity edges

or occluding boundaries. In the MER stereo algorithm,

aliasing arises from the use of bilinear interpolation in

rectification and the use of block averaging in the high-

pass filter used to compensate for radiometric differences

between images. We have not undertaken a detailed fre-

quency domain analysis and redesign to address this, but

we have experimented with bicubic interpolation in rec-

tification and better highpass filter kernels.

Figure 10 illustrates the effect on the MER Humphrey

Rock stereo pair of using bicubic interpolation in recti-

fication, bilateral filtering for preprocessing, and SAD5

for correlation (see Fig. 5 for comparison). The occlud-

ing boundary of the rock is cleaner, there are fewer small

holes, the small rocks are better defined, and the shadow

on the right edge of the rock gets the disparity of the

ground instead of the rock. Pixel-locking is also slightly

reduced, though this is hard to see in this figure; we ad-

dress this in more detail in Section 4.3. To begin to quan-

tify the difference, we have taken 10 left navcam images

from Meridiani Planum, with appearances similar to por-

tions of Fig. 4(b), shifted them to create synthetic right

images with disparity gradients corresponding to a flat

ground plane seen from the navcam, and collected RMS

disparity error statistics for the stock MER algorithm and

the modified version described above. This yielded RMS

errors of 0.16 pixels and 0.09 pixels, respectively. While

this is just a start for quantitative evaluation, reducing

the noise in the disparity map by nearly a factor of two

is significant for practical applications and indicates that

this issue is worth further examination.

4.3. Reduced Pixel-Locking

We have recently conducted a short study of pixel-locking

(Stein et al., 2006), the phenomenon in which disparities

estimated by window-based stereo algorithms are biased

toward integer disparities. It is desirable to reduce this

effect in order to increase the feasible lookahead distance

for obstacle detection for a given stereo camera set-up.
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Figure 11. Left image of a texture-mapped synthetic room and the corresponding ground truth disparity map. The blue lines are for visual aid only,

to help distinguish the surfaces in the room. The red dashed rectangles indicate the ceiling/floor regions used for analysis (see text). Also note that

any stair-stepped pattern visible in the disparity map is due to color quantization; the disparities do indeed vary smoothly.

This effect was noted at least as far back as Gennery

(1980). Xiong explained it for SSD matching through a

frequency domain analysis and showed modest improve-

ment by replacing parabolic fits with quartic fits to es-

timate subpixel disparity (Xiong and Matthies, 1997).

Shimizu and Okutomi gave an analysis for both SSD and

SAD matching and showed that SSD suffers less from

this effect (Shimizu and Okutomi, 2001). Since the bias

is approximately anti-symmetric around integer dispar-

ity values, they proposed to reduce the effect by creat-

ing new image pairs sampled halfway between the orig-

inal pixels, doing subpixel stereo matching again with

the resampled imagery, and averaging the results with

disparities obtained from the original imagery. In their

experiments, that reduced errors to 1/6 to 1/8 of the stan-

dard method. Szeliski and Scharstein also analyzed SSD

matching in the frequency domain, though not with an ex-

plicit focus on pixel-locking, and proposed stereo match-

ing approaches based on interpolating imagery to higher

resolution (Szeliski and Scharstein, 2002). Their algo-

rithm had a number of complexities and was not targeted

at real-time systems. The main conclusion of our study is

that iterative affine matching reduces the RMS disparity

error on planar surfaces and attenuates the rippling arti-

facts from pixel-locking more than the Shimizu-Okutomi

method. The difference appears to increase with increas-

ing surface tilt, which is both intuitive and significant for

ground vehicle navigation, where a steeply tilted ground

surface (relative to the camera frame) is the norm. To

date, we have not addressed runtime issues in this study,

so prospects for real-time performance of iterative affine

matching for subpixel stereo disparity estimation remain

to be evaluated.

Our experiments used standard SAD stereo to estimate

integer disparities, then used affine matching constrained

to 1-D (along scanlines) to estimate subpixel disparity,

allowing X translation, scale, and shear deformations of

the template and iterating to convergence. This allows

initial disparity errors of greater than one pixel to be cor-

rected, which are quite possible in highly foreshortened

parts of the image. Standard parabola fitting cannot cor-

rect errors greater than 0.5 pixels. The use of discrete

windows for summing matching error required a few

additional practical considerations. First, to avoid arti-

facts due to sharp changes in matching cost as the win-

dow’s size or position change, we used a Gaussian-shaped

weighting function. In addition, we ignored any pixels

(by zero-weighting them) which are marked as occluded

or invalid in the initial integer disparity result. Finally,

if the window straddles an occlusion boundary, the cen-

ter pixel’s computed offset will be influenced by pixels

from a different physical surface in the image. Since we

have an initial estimate of disparity (and thus occlusion

boundaries in the scene), we also ignore any pixels in the

window whose initial integer disparity differs radically

from that of the central pixel whose offset we are com-

puting. To cope with local brightness differences between

the images, the matcher was applied after the difference

of bilateral filtering discussed earlier. For direct compar-

ison to Shimizu-Okutomi, we used squared differences

instead of absolute differences in the affine matcher. In

Stein et al. (2006), we referred to this method as “affine

LK,” for affine Lucas-Kanade.

We compared this approach to simple parabola fit-

ting and to our implementation of the error compen-

sation scheme of Shimizu-Okutomi. To allow quantita-

tive analysis, we first evaluated results on synthetic im-

agery. The left image of a synthetic stereo pair along with

the corresponding ground truth disparity map are shown

in Fig. 11, depicting a rectangular room with various
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Figure 12. Histograms of subpixel disparity from the outlined region

on the ceiling of the synthetic room.

textures mapped to the planar ceiling, floor, and walls.

Because the four surfaces in the room are planar, the true

distribution of subpixel disparities along each should be

uniform. A histogram of ground truth subpixel disparities

for a region on the room’s ceiling is shown at the top of

Fig. 12.

Initial integer disparities were computed for the pair as

described above. Windows for all results provided were

7 × 7 pixels. After applying parabola fitting to estimate

subpixel disparity, we see in Fig. 12 the typical pixel-

locking effect as peaks of subpixel disparity. Applying

the approach of Shimizu and Okutomi (2001) improves

the “peakiness” somewhat, and using Lucas-Kanade with

with constant windows yields similar results. But once we

enable affine warping of the windows, we see the more

dramatic flattening of the histogram shown at the bottom

of the figure, which more closely resembles the ground

truth distribution. The floor region produces similar

results.

In addition to comparing disparity distributions, which

shed light on the pixel-locking performance, it is impor-

tant to check the actual disparity errors as well. For the

initial integer disparity map shown in Fig. 13(a), consider

its absolute error versus the ground truth disparity map,

shown in Fig. 13(b). The errors have been capped at 0.5 to

de-emphasize outliers and highlight initial smaller errors.

Note that most of the errors on the floor start larger than

0.5, which is most likely due to significant foreshorten-

ing since the synthetic camera is placed fairly close to the

ground plane. The error maps after subpixel disparity es-

timation by parabola fitting, by the approach in Shimizu

and Okutomi (2001), and by the affine LK method are

shown in Fig. 13(c)–(e), respectively. Note that errors on

the floor are significantly reduced only when using the

affine matcher.

Figure 14 compares the RMS error over the ceiling and

floor regions for the various approaches. To suppress the

influence of outliers, we ignore all pixels whose initial

integer disparity error was greater than 3 when comput-

ing the following RMS values (note that the choice of

this threshold does not radically alter the results). For the

ceiling, both parabola fitting and the method in Shimizu

and Okutomi (2001) do reduce the error from the initial

integer estimates by about 65%. The affine LK approach

reduces the error by 78%. On the floor, where the errors

are much higher initially, both methods based on parabo-

las yield only about 6% error reduction over the integer

estimates, whereas the affine LK approach achieves 86%.

Figure 15 shows results on a real stereo image pair,

taken from outdoor experiments in a field. We do not

have ground truth for this pair, but because the ground is

roughly planar, we can expect a smooth distribution of

disparity. The pixel-locking effect is clearly visible for

simple parabola fitting. The Shimizu-Okutomi method

shows a marked improvement for this pair, but the affine

LK approach still produces the smoothest histogram.

Figure 16 shows similar results on a difference image

pair.

Figure 17 shows oblique overhead views of 3-D recon-

structions for portions of the scenes in Figs. 15 and 16.

Pixel-locking ripples are clear in the parabola fitting re-

sults and reduced in the Shimizu-Okutomi and affine LK

results. The 3-D reconstruction for the imagery in Fig. 16

includes part of the nearest tree and the fallen log in the

lower left corner of the image.

Overall, the affine LK approach produced results that

varied from modestly to significantly better than the

Shimizu-Okutomi method, depending on surface tilt and

other factors that were not controlled in these experi-

ments. The affine LK approach adapts to the local slant

of the underlying surface, which makes it appealing com-

pared to simpler schemes like using a fixed, tilted horopter

to rectify imagery before matching (Burt et al., 1995). It

is likely to reduce potential for false alarm obstacle de-

tections on the ground. We have not yet tested the method

on uneven ground to ensure that true relief is preserved.

Given that we still require a real-time implementation,

the next phase of this work must weigh implementation

costs against the noise reduction realized for the various

approaches to ameliorating pixel-locking.

4.4. Vision-Based Slip Prediction

One of the most significant mobility limitations to emerge

from MER is slippage on slopes. Using VO to improve

state estimation has already helped control steering to

offset slippage, but it would be valuable to be able to

predict in advance when a slope might be slippery, so as

to make more intelligent path planning decisions about
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Figure 13. Absolute disparity errors for the synthetic room imagery, capped at 0.5. The large initial errors on the floor are corrected only using the

affine LK approach.

Figure 14. RMS subpixel disparity errors from the floor and ceiling regions of the synthetic room imagery.
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Figure 15. The left image of a real stereo pair, initial integer disparity map, and subpixel disparity distributions for the ground region (yellow dashed

lines). The Shimizu-Okutomi method improves the results considerably, but affine LK does slightly better.

it. Attempting to predict slip from physical models of

wheel/soil interaction would be complex, particularly

given the heterogeneity and spatial variation of real ter-

rain surfaces and the unknown parameters of such mod-

els that would have to be estimated first. Existing work

on modeling wheel/soil interaction typically assumes

homogeneous terrain and simplifies the physical model

in addition (Andrade et al., 1998; Iagnemma et al., 2004).

Therefore, we have begun to tackle slip prediction as a

visual learning problem that, for the time being, avoids

modeling wheel/soil interaction (Angelova, 2006a, b).

Our approach starts by building gridded elevation maps

of the terrain in front of the rover that record geometric

and visual appearance features of the terrain. As the rover

drives over mapped areas, visual odometry is compared

to wheel odometry to estimate slip of the whole rover

as a unit. Pairing the geometric and visual appearance

features (e.g. texture) of map cells with the measured slip

in each cell enables learning a local, nonlinear regression

function that maps from the features to predicted rover

slip. Since the input space of terrain features could be high

dimensional, to limit the complexity of the problem we

currently partition it as follows. We assume that terrain

consists of a number of distinct classes, where each class

can be recognized by visual features such as color and

texture, and we assume that slippage for each class is only

a function of slope. From labeled training data, we train

a classifier to recognize the terrain class in each map cell;

then for each class, we learn a regression function that

maps from slope to slip.

To evaluate the feasibility of this approach, we first ex-

perimented with predicting slip from slope for a single,

known terrain class (Angelova et al., 2006a), then ex-

tended our experiments to situations where the set of
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Figure 16. The left image of a real stereo pair, initial integer disparity map, and subpixel disparity distributions for the ground region (yellow dashed

lines). Here the Shimizu-Okutomi method makes modest improvement and affine LK is again the smoothest.

classes and labeled training data were given (Angelova

et al., 2006b). Ultimately, our goal is to learn the set of

classes from experience. However, a priori it was un-

clear how well slip can be predicted from slope for even

just one, known terrain class, so we tested this first, as

follows.

We estimate slope by fitting a plane to the average ele-

vation of map cells in neighborhoods in front of the rover,

and decompose slope into pitch and roll angles aligned

with the rover reference frame. We consider slip learn-

ing as nonlinear function approximation. While many

learning algorithms can be applied to this problem, our

choice is motivated by our goal to eventually have the

algorithm running onboard a rover with the ability to do

fast, online updates. We selected a type of Receptive Field

Regression algorithm (Schaal and Atkeson, 1998) called

Locally Weighted Projection Regression (Vijayakumar

et al., 2005). The main idea is to split the input domains

into sub-regions (called receptive fields), apply local lin-

ear fits in each receptive field, and do weighted blending

of these to approximate a globally nonlinear function.

Slip S (as a function of terrain slopes x) can be written

in the following form:

Ŝ(x) =

C
∑

c=1

e−‖x−xc‖2/λ

(

bc
0 +

R
∑

r=1

bc
r

〈

dc
r , x

〉

)

where e−‖x−xc‖2/λ is a weighting function that depends

on the distance from the query example x to the recep-

tive field center xc, C is the number of receptive fields

for this dataset, bc
0, bc

r , dc
r are the parameters of the lin-

ear regression in each receptive field, and λ controls the

receptive field size and in our case is estimated using a

validation set (to avoid overfitting). Given the training

data D = {xi , Si }
N
i=1, where the vector xi contains the
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Figure 17. Oblique overhead views of the 3-D reconstructions from subpixel disparity maps for the imagery in Fig. 14 (left column) and Fig. 15

(right column), with camera viewing directions indicated by white arrorws.

estimated slopes from range imagery and Si are the cor-

responding slip measurements at this particular location,

the task of the learning procedure is to estimate the un-

known parameters xc, bc
0, bc

r , dc
r , λ so that they fit the

training data D well (see Angelova et al., 2006a for de-

tails). The receptive fields are distributed to cover the

input space so that all training data belong to at least

one receptive field. This is done by adding new recep-

tive fields whenever an incoming training example is not

covered by other receptive fields. The linear fit in each

receptive field is done using the Partial Least Squares

algorithm (Wold, 1966), but other linear regression algo-

rithms could be used (Schaal and Atkeson, 1998). When

a new point arrives, only the parameters of the receptive

fields in the vicinity of this point are to be re-evaluated.

This allows for fast update in online learning. Note that

the assumed model for the function is fairly nonrestric-

tive and varieties of nonlinear behaviors could be learned

from the training data.

To test how well this works when the terrain type is

known, we acquired data with a testbed robotic vehicle in

five different terrain types in a park next to JPL (soil, sand,

gravel, asphalt, and woodchips). This represents a total

of about 5000 frames covering a total distance of about

1 km, of which approximately 3000 frames were used

for training and 2000 for testing. Figure 18 shows results

for one, representative terrain type (soil); results for the

other types are discussed in Angelova et al. (2006a). The

vehicle was driven several times up and down the dirt hill

shown in the inset photo; roughly half of this data was

used for training, the rest for testing. Comparing plots

of pitch (lower graphs) to slip (upper graphs), there is a

reasonable correlation between the two. RMS prediction

errors were 11.8% for the test data in this case. Results



Computer Vision on Mars

0 200 400 600 800

0

50

100

S
lip

X
 (

%
)

Soil. Train. RMS:7.23%

0 200 400 600 800

0

10

20

Step number

S
lo

p
e

s
 (

d
e

g
)

0 200 400 600 800

0

50

100

Soil. Test. RMS:11.8%

Slip [gnd truth]
Slip [predicted]

0 200 400 600 800

0

10

20

Step number

Pitch

Roll

Figure 18. Learning to predict forward slip as a function of terrain slope: results for a single, known terrain type (soil). Top row shows predicted

(red) and ground truth (green) slip as a function of step number; training data is on the left, test data on the right. The bottom graphs show the

corresponding pitch and roll angles for each step number. Slip does correlate with pitch. Average RMS prediction error is given at the top of each

plot.

for other terrain types include RMS test errors of 3.6% on

asphalt and 27.5% on gravel. Given the stochastic nature

of slip and the presence of noise in various measurements

that go into estimating slip, we consider these levels of

error to be encouraging. Note that Spirit has experienced

slippage has high as 125%; that is, it has actually slipped

backwards in the process of trying to climb.

In subsequent work with labeled training data for mul-

tiple terrain types, we have used texton-based texture

analysis (Varma and Zisserman, 2005) for terrain clas-

sification, then used slope as above for slip prediction

once the terrain class had been identified. Details and ex-

perimental results are reported in Angelova et al. (2006b).

The results to date are encouraging. As this still repre-

sents early work on a new problem area, a number of

issues remain to be addressed, such as determining how

well the assumption of a discrete set of classes works

in Mars terrain, automatically learning the classes, and

reducing this to a real-time, onboard system. Neverthe-

less, we believe this foray into visual learning of terrain

traversability properties is bearing fruit for Mars rovers

and will have impact on terrestrial applications of ground

robots as well.

5. Discussion and Future Directions

The MER mission has succeeded far beyond its primary

mission objectives. The three computer vision algorithms

in the mission—stereo vision and visual odometry for the

rover and feature tracking for horizontal velocity estima-

tion for the lander—have performed reliably and made

material contributions to mission success. Limitations of

the 20 MHz onboard processor kept these algorithms very

simple, but since this is the first time algorithms like this

have ever been used in a mission, this represents an impor-

tant starting point and opens the door to more advanced

algorithms in future missions as onboard computing abil-

ity improves.

The 100 MHz PowerPC 750 onboard computer

planned for a 2009 Mars rover now in design will im-

prove the computing situation modestly. A much bigger

boost may come from the use of FPGA-based computing

in subsequent missions. JPL has prototyped a new com-

puting system based on the Xylinx Virtex II Pro FPGA,

with two embedded PowerPC 405 (PPC405) processor

hard cores. Rover navigation software running on the

PPC405s already shows dramatic speed improvements

over the MER computer. The stereo vision correlator has

been moved into the FPGA logic, with a throughput of

one pixel of disparity per clock cycle at 100 MHz, or the

equivalent of about 1 ms for a 320 × 240 disparity map

with 32 disparities. Additional functionality in the FPGA

logic will follow in the future.

We have discussed some efforts to improve the SNR

of the disparity maps, improve disparity at occlud-

ing boundaries, and reduce pixel-locking artifacts. The

SNR improvement and occluding boundary work is rela-

tively mature and largely implementation-oriented in na-

ture, though important for practical performance. Our
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examination of pixel-locking raises interesting questions

about the potential value of refining SAD-based dispar-

ity maps with affine iterations, but leaves a number of

issues open, particularly whether this can be embodied

in a real-time system in the near future.

What’s next for rover vision? In the vein of more

optimization, multi-resolution stereo algorithms should

be able to significantly improve the efficiency of stereo for

terrain like Mars; doing so has simply not been a top prior-

ity so far. More recent work on visual odometry-like algo-

rithms could improve localization, but VO performance

is already good enough that this would offer marginal

return. There is still much work to be done to enable on-

board algorithms that provide absolute localization rela-

tive to landmarks or orbital imagery; however, this is not a

strong priority in the funding arena. We briefly described

a new research thrust on attempting to learn to predict

percent slip from experience, by using visual appearance

(texture) to classify terrain and nonlinear regression to

relate measured slope and slip in each terrain class.

By far the biggest impact for computer vision in future

missions will not be new capabilities for rovers, but rather

new capabilities to enable precision landing and land-

ing hazard avoidance. We have made a start on these by

demonstrating real-time, onboard structure from motion

for autonomous landing hazard avoidance by a robotic

helicopter (Johnson, 2005a) and by demonstrating algo-

rithms for recognizing craters as landmarks for precision

navigation during orbiting and descent operations (Cheng

et al., 2003; Cheng and Miller, 2003). Additional tech-

niques are being actively pursued at JPL and elsewhere.

Note

1. A sol is one Mars day, which is about 24 hours and 40 minutes.
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