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Computer Vision Techniques for Transcatheter
Intervention

Feng Zhao, Xianghua Xie, Senior Member, IEEE, and Matthew Roach

Abstract—Minimally invasive transcatheter technologies have
demonstrated substantial promise for the diagnosis and treatment
of cardiovascular diseases. For example, TAVI is an alternative
to AVR for the treatment of severe aortic stenosis and TAFA
is widely used for the treatment and cure of atrial fibrillation.
In addition, catheter-based IVUS and OCT imaging of coronary
arteries provides important information about the coronary lu-
men, wall and plaque characteristics. Qualitative and quantitative
analysis of these cross-sectional image data will be beneficial for
the evaluation and treatment of coronary artery diseases such as
atherosclerosis. In all the phases (preoperative, intraoperative,
and postoperative) during the transcatheter intervention pro-
cedure, computer vision techniques (e.g., image segmentation,
motion tracking) have been largely applied in the field to accom-
plish tasks like annulus measurement, valve selection, catheter
placement control, and vessel centerline extraction. This provides
beneficial guidance for the clinicians in surgical planning, disease
diagnosis, and treatment assessment. In this paper, we present a
systematical review on these state-of-the-art methods.

We aim to give a comprehensive overview for researchers
in the area of computer vision on the subject of transcatheter
intervention. Research in medical computing is multi-disciplinary
due to its nature, and hence it is important to understand the
application domain, clinical background, and imaging modality
so that methods and quantitative measurements derived from
analyzing the imaging data are appropriate and meaningful.
We thus provide an overview on background information of
transcatheter intervention procedures, as well as a review of the
computer vision techniques and methodologies applied in this
area.

Index Terms—Image processing, IVUS, medical imaging, OCT,
reconstruction, registration, segmentation, transcatheter inter-
vention, TAFA, TAVI, TMVR, TPVR, TTVI.

I. INTRODUCTION

TRANSCATHETER intervention is an emerging technol-

ogy for the diagnosis and treatment of cardiovascular

diseases. In recent years, more and more computer vision

techniques have been used in all the phases of the transcatheter

intervention procedures. It is thus desirable to give an overview

of this increasingly important research area. The purpose of

this paper is to present a comprehensive background of this

clinical application, including pathology and imaging modali-

ty, and a detailed survey of the computer vision techniques

popularly applied in such procedures. Particularly for new

comers to this area with a computer vision background, it is

beneficial to gain understanding of the basics of transcatheter

intervention technologies, as well as to have a thorough

F. Zhao, X. Xie (corresponding author, x.xie@swansea.ac.uk), and M.
Roach are with the Department of Computer Science, Swansea University,
Swansea, SA2 8PP, United Kingdom.

Fig. 1. Normal and diseased aortic valves (images are adapted from
WebMD [4]).

understanding of the crucial role that various computer vision

methods played in transcatheter interventions.

Cardiovascular disease generally refers to abnormalities in

the heart and blood vessels, mainly including coronary heart

disease, stroke, peripheral arterial disease, and aortic disease.

It is one of the leading causes of death in developed countries,

killing more than 88,000 and 600,000 people in the UK and

USA each year, respectively [1], [2]. Aortic stenosis is the

most common valvular heart disease [3], where the aortic

valve cannot fully open, usually a result of calcium deposit

(calcification) in the artery that makes the valve narrow (see

Fig. 1). The blood flow from the heart hence decreases, leading

to severe hypertension and angina. If untreated, it could cause

functional deterioration, heart failure, and even death.

Transcatheter intervention is an emerging technology that

can provide promising solutions for cardiovascular diseases. In

all the phases (preoperative, intraoperative, and postoperative)

during this procedure, computer vision techniques such as

image segmentation and motion tracking have been widely

applied to accomplish many tasks including annulus measure-

ment, valve selection, catheter placement control, and vessel

centerline extraction, which provides beneficial guidance for

the clinicians in surgical planning, disease diagnosis, and

treatment assessment. In this review, we focus on the impor-

tance and benefits of computer vision techniques popularly

used in transcatheter intervention in clinical practice. However,

it is also necessary to introduce background information of

transcatheter intervention procedures, e.g., imaging modalities,

principles of imaging, advantages and disadvantages, proper-

ties of acquired images, and challenges of processing these

image data.

Transcatheter intervention is generally performed through

the lumen of a catheter, including the delivery of intravascular
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Fig. 2. Typical cross-sectional images delivered by different imaging technologies. (a) IVUS image of coronary artery [6], (b) OCT image of coronary
artery [6], and (c) X-ray CT image of aortic root (image is from Morriston Hospital [7]).

devices such as balloon, coils and stents to dilate or close car-

diovascular defects. The catheter-based imaging technologies

such as intravascular ultrasound (IVUS) and optical coherence

tomography (OCT) [5] can provide 2D cross-sectional images

of the coronary artery structure. As a valuable complementary

modality to angiography, both modalities measure the back-

scattered signal from the surrounding vessel structure after

sending a sound wave in IVUS or light in OCT. They have

been widely used in coronary disease diagnosis and treatment,

since the clinicians can apply them to assess the severity

of a lesion, perform plaque classification, and determine

the location and size for stenting. The acquired IVUS and

OCT images contain precise information including the lumen

size, stent strut location, and morphology analysis of plaque

lesion. However, the IVUS images are noisy with attenuation,

speckles and other artifacts. OCT images have a relatively

higher resolution than IVUS images, but they still suffer from

guide-wire and shadowing artifacts that may cause missing or

weakening the boundaries. Therefore, it is critical to extract

the boundaries, although the accurate segmentation of the

inner/outer arterial wall is still a challenge problem.
As shown in Fig. 2a, a typical IVUS image consists of three

parts: lumen, vessel that includes intima and media layers,

and adventitia that surrounds the vessel wall. The media-

adventitia border represents the outer coronary arterial wall

located between the media and adventitia. Segmentation of

IVUS images has shown to be an intricate process due to the

low contrast and various forms of interferences and artifacts

caused by different factors such as calcification and acoustic

shadow. Catheter movement can also cause spatial and tempo-

ral fluctuation, leading to ambiguities. To tackle the problems,

various algorithms have been developed in the literature [8].

Among many others, graph cut-based technique has shown to

be a promising approach to IVUS image segmentation, where

the inner/outer vessel wall is extracted with careful manual

initialization [9] or automatically detected without requiring

user initialization [10]–[12]. Both of them are based on the

minimization of a cost function derived from different feature

information (e.g., edge/boundary, shape prior, texture).
OCT provides high-resolution cross-sectional imaging of

vessels including the coronary arteries and it can accurately

differentiates the most superficial layers of the vessel wall as

well as stent struts and the vascular tissue surrounding them

(see Fig. 2b). For the management of cardiovascular disease,

it is important to obtain the vessel wall properties. Approaches

based on mathematical morphology, thresholding, Catmull-

Rom splines, and active contour models are commonly used

for the detection of the vessel wall and stent strut in OCT

images with no existence of guide-wire shadow artifacts [13]–

[15]. In fact, OCT image sequences may have guide-wire

shadow artifacts which result in inaccurate vessel wall segmen-

tation. To overcome the difficulty, Tung et al. [16] proposed

an automatic method utilizing active contour models, convex

hull detection along with expectation maximization and graph

cut for the elimination of guide-wire shadow artifacts and the

accurate detection of the vessel wall as well as stent strut,

in which the removal of shadow artifacts relies on the good

estimation of the guide-wire position.

Traditionally, surgical aortic valve replacement (AVR) is the

only effective treatment for adults with severe symptomatic

aortic stenosis that carries a poor prognosis. For patients (up

to 30% [17]) who are not eligible for such an open-heart

surgery to replace their aortic valve, transcatheter aortic valve

implantation/replacement (TAVI/TAVR1) is an alternative to

AVR and will represent the new standard for the treatment

of severe aortic stenosis. To reduce the risk of stroke and

major vascular complications after TAVI (e.g., severe aortic

regurgitation, atrioventricular block), it is very important to

select the optimal access route for valve implantation and place

the valve in the right position. This depends on the accurate

extraction of the vessel geometry of the thoracic aorta and

heart (especially the aortic root). Computer vision techniques

including advanced image processing, real-time interactive

segmentation [18], and motion tracking provide an opportunity

to approach this goal for both the preoperative planning and

intraoperative treatment. Fig. 2c gives an example slice image

for the TAVI procedure through X-ray computed tomography

(CT) imaging modality.

The remainder of this survey is organized as follows. In

Section II, we briefly introduce the transcatheter intervention

technologies including heart valve implantation/replacement,

atrial fibrillation ablation, IVUS and OCT. The variety of

1We use TAVI for the rest of this paper.
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Fig. 3. The four valves in a human heart (image is adapted from Web-
MD [19]).

computer vision techniques in transcatheter intervention is

given in Section III. In Section IV, we discuss different

imaging modalities involved in the transcatheter procedure as

well as performance evaluation of segmentation methods. We

finally conclude this paper in Section V.

II. TRANSCATHETER INTERVENTION TECHNOLOGIES

The four heart valves (see Fig. 3) determine the pathway

of blood flow through the heart. Normally, a heart valve

allows blood flow in only one direction. Heart disease occurs

when a valve cannot fully open due to calcification in the

artery and thus decreases the blood flow (called stenosis)

or a valve malfunctions and allows some blood to flow in

the wrong direction (called regurgitation). Compared to tradi-

tional surgical operations for the treatment of heart diseases,

transcatheter technologies offer a minimally invasive way for

replacing abnormal heart valves, leading to less morbidity

and faster recovery. In the following sections, we give a

brief introduction of these transcather approaches currently

employed or potentially adopted in clinical practice.

A. Transcatheter aortic valve implantation

Aortic valve stenosis (see Fig. 1) is the most commonly ac-

quired heart valve disease. The gold standard for the treatment

of severe symptomatic aortic stenosis is the implantation of

an aortic valve prosthesis via open-heart surgery, i.e., surgical

aortic valve replacement (AVR). However, a large number of

patients (approximately one-third) are not eligible for surgical

AVR because of their advanced age or other diseases like

renal dysfunction. In such cases, transcatheter aortic valve

implantation (TAVI) [20], [21] is a cost-effective alternative

to AVR and plays an important role in the treatment of aortic

stenosis by increasing life expectancy and improving quality

of life. It has been proven to be feasible, safe and effective

for the treatment of patients with severe aortic stenosis [17],

[22]–[24]. TAVI has evolved as a routine procedure for high

risk patients [22], [25] and it outperforms medical therapy in

these patients with respect to mortality [26].

TAVI is the implantation of an aortic heart valve prosthesis

within the diseased aortic valve through a catheter without the

need of open-heart surgery. There are two main approaches

for implanting a valve in the aortic root: transfemoral and

transapical approaches. The former technique is a retrograde

approach via the femoral artery, the subclavian artery, or the

ascending aorta; and the latter one is an antegrade approach via

the apex of the heart. As a minimally invasive approach, TAVI

surgery is performed using echocardiographic and fluoroscopic

guidance for visualization during implantation. During the

procedure, a valve (a balloon expandable stent combined with

a bovine pericardial bioprosthetic tissue valve) is reduced to

size and placed on a delivery catheter. The delivery catheter

is then inserted either in the femoral artery through a small

incision at the top of the leg (transfemoral approach) or

between the ribs through the apex of the heart (transapical

approach). Once in the heart, the valve is positioned and

deployed across the patient’s diseased aortic valve. Fig. 4 gives

an example of such a TAVI procedure through femoral artery.

It is very important to place the valve in a right position to

reduce the risk of stroke and major vascular complications. For

example, a low valve implantation may lead to severe aortic

regurgitation (AR), or promote atrioventricular block (AVB)

after TAVI [28], [29].

1) Role of imaging: During the whole TAVI procedure, a

variety of different imaging modalities [30], [31] are involved,

including preoperative imaging, intraoperative imaging, and

postoperative imaging. This multi-modality imaging may help

to minimize the major complications (e.g., vascular compli-

cations, paravalvular leaks, stroke, atrioventricular block) and

plays an important role in the TAVI workflow. As shown in

Table I, preoperative imaging techniques such as multislice

computed tomography (CT), X-ray angiography/fluoroscopy,

and transesophageal echo (TEE) are applied for patient selec-

tion, artery assessment, access site selection, valve selection,

approach selection, and the planning of implant placement,

while intraoperative imaging techniques (e.g., X-ray angiogra-

phy and TEE) are utilized for guiding the catheter placement,

controlling the valve positioning, and quality control. These

imaging modalities can be used for postoperative follow-up as

well.

Precise and extensive preoperative planning is of great

importance for the TAVI procedure, starting from careful

patient selection. At present, TAVI is suitable for high-

risk patients with severe symptomatic aortic stenosis, but

is not recommended for patients with bicuspid valves [36],

[37]. Transthoracic echocardiography (TTE), transesophageal

echocardiography (TEE), magnetic resonance imaging (MRI),

or computed tomography (CT) can be applied for diagnosis

of aortic stenosis. Once a patient is identified, the next step

is to choose the approach type (transfemoral or transapical)

according to the criteria and parameters reported in [36].

The feasibility of the transfemoral or transapical approach

can be best assessed by multislice CT angiography (CTA).

To prevent severe complications after TAVI such as left

ventricular outflow tract (LVOT) rupture and postoperative

aortic insufficiency (AI) due to paravalvular leaks, it is crucial

to decide the proper valve size and type based on the aortic
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Fig. 4. The TAVI procedure through femoral artery (images are adapted from Raney Zusman [27]).

TABLE I
IMAGING MODALITIES AND THEIR APPLICABILITY FOR THE TAVI PROCEDURE.

Phase Imaging Modality Applicability

Preoperative
Computed tomography
X-ray angiography
Transesophageal echo

Patient selection, artery assessment, access site
selection, valve selection, approach selection, im-
plant placement planning

Intraoperative
X-ray angiography
Transesophageal echo

Catheter placement guidance, valve position con-
trol, quality control

Postoperative
Transesophageal echo
Computed tomography

Paravalvular leaks evaluation, valve migration as-
sessment

TABLE II
COMPARISON OF FOUR COMMERCIAL PROSTHETIC HEART VALVING MODELS.

Model Manufacturer
Transfemoral

Approach
Transapical
Approach

Clinical
Approval

Sapienr Edwards Lifesciences [32] Yes Yes Europe, USA

CoreValver Medtronic [33] Yes No Europe, USA

Jenavalver Jenavalve Technology [34] No Yes Europe

Acurater Symetis [35] Yes Yes Europe

root geometry and the aortic annulus diameter measured with

CTA imaging [38].

To select the optimal intraoperative treatment, angiography

is generally used to guide the catheter placement for both

transfemoral and transapical aortic valve implantation, while

TEE is applied to ensure correct wire placement within the left

ventricle (LV). During valve placement, these online imaging

techniques also guarantee clear identification of the coronary

ostia and the annulus to avoid occlusion of the coronary ostia

and impairment of the mitral valve. Therefore, the stented

valve can be positioned in the aortic annulus accurately, which

is essential for TAVI [31].

After valve deployment, TEE is used to regularly monitor

paravalvular leaks as well as valve migration during follow-

up. In case of inconclusive findings or indication of major

complications, CT imaging can be supportive. The immediate,

midterm and long-term TAVI procedural results can then be

evaluated appropriately.

Accurate patient selection, good knowledge of the vascular

anatomy, aortic annulus size, and LV evaluation will benefit the

prosthetic valve selection and procedural approach selection,

thus minimize the risk of major complications with TAVI.

Moreover, a number of new techniques are being developed,

including 3D imaging technology (e.g., the Syngo DynaCT

system) [39], template-based planning [40], patient-specific

simulation approaches [41], and image-guided catheter inter-

ventions [42]. In the future, these techniques could be em-

ployed for determining the optimal treatment preoperatively,

for more accurate patient selection, intervention planning and

valve placement, or for postoperative prediction of the long-

term outcome, valve degeneration and migration.

2) State-of-the-art valving techniques: To date, there are

four types of commercial transcatheter aortic valve prostheses

(TAVP) available in the European market: the Sapienr valve

by Edwards Lifesciences (Irvine, California, USA) [32], the

CoreValver revalving system by Medtronic (Minneapolis,

Minnesota, USA) [33], the Jenavalver by Jenavalve Tech-

nology (Munich, Germany) [34], and the Acurate TAr by

Symetis (Ecublens, Switzerland) [35]. The Sapienr (stain-

less steel stent) and Sapien XTr (Cobalt-chromium stent)

models were approved for both transapical and transfemoral

approaches, and Sapienr is the only balloon-expandable TAVP

in clinical use. The CoreValver (Nitinol stent) system is a

self-expandable TAVP, which was approved for transfemoral,

subclavian and direct aortic approaches. Both Jenavalver

and Acurate TAr are self-expandable TAVP and they were
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Fig. 5. Examples of different prosthetic heart valves. (a) Sapienr valve, (b)
CoreValver, (c) Jenavalver, (d) Acurate TAr, and (e)-(h) valves expanded
on balloon and catheter or crimped on catheters. (Images are from Edwards
Lifesciences [32], Medtronic [33], Jenavalve [34], and Symetis [35], respec-
tively.)

approved for transapical procedure only. Recently, Symetis

demonstrated the Acurate TFr at EuroPCR 2013 that can be

delivered via transfemoral procedure. Fig. 5 shows examples

of these heart valve models and Table II gives a summary of

them. The impact of these heart valve prostheses is impressive.

More than 40,000 TAVPs have been implanted worldwide, a-

mong which Germany is the leading country. In 2010, approx-

imately 25% of all aortic valve replacements were performed

with TAVP [43]. The total number of patients currently eligible

for TAVI procedure is approximately 200,000, representing a

$2B market worldwide.

3) Challenges: The common procedure of TAVI is to place

a cylindrical stent device inside the aortic root, i.e., a cylinder

inside a cylinder. Without calcifications, the stent device is

prone to migrate and dislodge, as the anchoring mechanism

is based on friction. The success rate is still low, due to

the intrinsic complexity of the procedure, the suboptimal

positioning of the prosthesis, and the device migration. In

addition, the risk of malpositioning is still high. These issues

can be addressed by a couple of means, e.g., a sophisticated

shape of the stent, innovative materials for both the stent

and the functional component, an easier and more reliable

procedure, etc. From the technological point of view, the

significant improvement of imaging quality and the rapid

development in computer vision especially the real-time in-

teractive segmentation techniques [18] could lead to a higher

rate of procedural success by providing more accurate valve

size assessment, self-guided positioning, unique matching with

the anatomy of the aortic root, and so on.
Compared to the surgical AVR where the original valve

and surrounding calcifications are removed before implanting

the valve prosthesis, TAVI overlaps the prosthetic valve to the

existing irregular calcifications. Thus, its effective functioning

and consequent durability in human use need to be addressed

in the future development of the technology.

B. Transcatheter mitral valve repair

Mitral regurgitation (MR) may lead to progressive left

ventricular dysfunction, heart failure, and even death. The

traditional surgical mitral valve repair or replacement is

the established treatment for degenerative MR, whereas it

may not be applicable for functional MR and those high-

risk patients with both degenerative and functional MR (see

Fig. 6), especially elderly persons. Transcatheter mitral valve

repair/replacement (TMVR) technology has been developed

for such cases. A variety of technologies have emerged and

are at different stages of investigation. In [45], Karimov,

Massiello, and Fukamachi reviewed various transcatheter-

based technologies for mitral valve replacement. Chiam and

Ruiz [46] classified the percutaneous TMVR approaches based

on functional anatomy. They grouped the therapies into those

targeting the leaflets, annuloplasty, percutaneous chords, and

LV remodeling. Currently, the MitraClip therapy [47] (see

Fig. 7) is the only percutaneous transcatheter treatment for se-

lected patients with degenerative or functional MR [48], [49],

which is based on edge-to-edge surgical technique pioneered

by Alfieri et al. [50]. Maisano et al. [51] reported the early

and 1-year results of the percutaneous mitral valve interven-

tions in 567 patients with significant MR who underwent the

MitraClip therapy at 14 European sites. The patients’ mean

age was 74 years and most of them had functional MR (77%)

with multiple comorbidities including coronary artery disease,

hypertension, atrial fibrillation, and renal disease. The 30-day

mortality rate was 3.4% and no MitraClip device embolization

was observed. At 12 months after the procedure, the majority

of patients demonstrated improvement in the severity of MR.

This study involved the largest database of MitraClip therapy

till now and confirmed the safety, efficacy, and low mortality

rate of the MitraClip implant procedure in high-risk patient

population.
So far, more than 10,000 patients have been treated with

TMVR throughout the world [49]. Compared to the progress

in TAVI technology, the transcatheter treatment of MR patients

is underserved. However, it appears that TMVR will progress

into daily clinical practice in the near future. Start-up compa-

nies like Endovalve [53] and CardiAQ [54] are in the process
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Fig. 6. The normal and degenerative mitral valves (images are adapted from Abbott Vascular [44]).

of developing TMVR products for the treatment of functional

MR. Worldwide cardiovascular leading companies (e.g., Ed-

wards Lifesciences [32], Medtronic [33]) are involved in this

area as well. Furthermore, advancements in computer vision

will offer innovative solutions to properly address prosthesis

anchoring and sealing in mitral position for transcatheter mitral

valve technologies.

C. Transcatheter pulmonary valve replacement

Transcatheter pulmonary valve replacement (TPVR) is a

feasible alternative to surgical bioprosthetic valve implantation

(see Fig. 8). There has been a recent explosion in this

emerging field. In [55], Ghawi et al. reviewed the progress and

innovations of TPVR, its benefits and challenges, as well as

the future advancements associated with this technology. The

first human transcatheter valve implantation in the pulmonary

position was performed via the transfemoral approach for a 12-

year-old male patient with pulmonary atresia and ventricular

septal defect [56]. More TPVR procedures were reported

by the same group [57], where all the eight patients had

significant improvement in their pulmonary insufficiency after

successful implantation of the valve in the desired position.

Following these successful clinical attempts of TPVR, more

clinical trials [58]–[62] focused on the effectiveness, safety and

Fig. 7. The MitraClip procedure (images are from Cath Lab Digest [52]).

longevity of the valves (e.g., Medtronic Melodyr valve [33],

Edwards Sapienr valve [32]).

Although many successes have been noted, there are still

a number of challenges with this procedure, including poten-

tial procedural complications such as valve migration, guide

wire injury to a distal branch pulmonary artery, damage to

the tricuspid valve, and arrhythmia [58], [60], along with

device-related complications like Hammock effect and stent

fracture [61], [64]–[66]. Recent studies demonstrated that the

procedural complications can be reduced to 5-6% [67] and the

device-related complications can be treated by valve-in-valve

TPVR [68].

D. Transcatheter tricuspid valve implantation

Tricuspid regurgitation (TR) is the most common pathology

of tricuspid valve, due to the increased right ventricular

preload and afterload, annulus dilation, and right ventricular

systolic dysfunction (see Fig. 9). TR is frequently present in

patients with mitral valve stenosis and severe TR has been

found in about one-third of the patients after mitral valve

replacement for rheumatic heart disease [69]. TR may result in

significant symptoms, even advanced myocardial disease. For

patients at high surgical risk, transcatheter tricuspid valve im-

plantation/replacement (TTVI/TTVR) plays a significant role

in the treatment of severe symptomatic TR (see Fig. 10). A few

cases have been reported in patients with single-valve disease

by the transjugular, transfemoral, or transatrial approach [70]–

[73]. Similar procedures were performed for patients with

multi-valve disease [74], [75]. In [76], Lauten et al. presented

the first human case description of transcatheter treatment of

severe TR in a 79-year-old patient with venous congestion and

associated non-cardiac diseases. The treatment was performed

by percutaneous caval valve implantation. The investigators

in [75] described a successful TTVI procedure via the femoral

route with very good results and no major complications

for a 62-year-old man with severe TR due to bioprosthesis

degeneration. The first human series of percutaneous tricuspid

valve replacements in 15 patients with congenital or acquired

tricuspid valve disease was detailed by Roberts et al. [77].

Procedural success was achieved in all 15 patients and their

TR was reduced to mild or none. One case of third-degree



2168-2372 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/JTEHM.2015.2446988, IEEE Journal of Translational Engineering in Health and Medicine

IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, VOL. X, NO. X, XXX 2015 7

Fig. 8. The TPVR procedure through femoral artery (images are adapted from Medtronic [63]).

Fig. 9. Tricuspid regurgitation (image is adapted from Children’s Heart
Specialists [78]).

heart block was the only major complication, one case of

endocarditis was found two months after implantation, and one

patient with pre-procedural multi-organ failure died 20 days

after the procedure. The other patients’ bioprosthetic valves in

the tricuspid position functioned well four months on average

after replacement.

E. Transcatheter valve-in-valve implantation

Due to calcification or scar formation leading to valve

dysfunction, the results of surgical valve repair or replacement

are generally not very good and may result in bioprosthesis

degeneration anywhere between 10-15 years after implanta-

tion [79]. Redo-valve surgery is challenging due to the fact

that the patients are often in a poor clinical condition and it

may cause more problems. Alternatively, transcatheter valve-

in-valve implantation (see Fig. 11) is a promising treatment

for high-risk patients with degenerated bioprosthetic heart

valves [80]. The authors in [68], [81] described successful

percutaneous implantations for aortic and pulmonary valves.

Garsse et al. [82] presented the first successful percutaneous

tricuspid valve-in-valve implantation for a 74-year-old patient

with chronic obstructive pulmonary disease, severe stenosis

of a degenerated tricuspid bioprosthesis, and other diseases.

In this case, an Edwards Sapienr 23 mm valve was placed

inside a degenerated 25 mm Carpentier-Edwards bioprosthesis.

In [83], Weich et al. reported a transjugular tricuspid valve-

in-valve replacement for a 38-year-old woman with rheumatic

heart disease. The patient’s mitral valve prosthesis functioned

well but her tricuspid prosthesis was severely calcified. Jux

et al. [84] described the first successful percutaneous tran-

scatheter double-valve-in-valve replacement in a single 26-

year-old male patient via the femoral route, where two valves

were implanted in the pulmonary and tricuspid position, re-

spectively.

F. Transcatheter left atrial fibrillation ablation

Atrial fibrillation (AF) is the most common heart arrhythmia

(see Fig. 12) and it is among the main causes of strokes.

The transcatheter ablation procedure (see Fig. 13) is widely

used for the treatment and cure of AF [86], [87], which is a

minimally invasive surgery using high radio-frequency energy

with a catheter from inside the atrium to eliminate the sources

of ectopic foci, especially around the pulmonary vein (PV)

ostia [88], [89]. The AF is finally removed by electrically

isolating all the PV trunks of the left atrium (LA) from the

rest of the heart using ablation. The complex and varying

shape of the LA of different patients (e.g., size, position

and number of PV ostia) [90] complicates this procedure.

During the catheter ablation, CT or MRI imaging can be

used to provide anatomical images of heart structures for the

preoperative planning and intraoperative intervention.

Catheter-based ablation is very effective in the treatment of

AF. However, this procedure could increase the risk of damage

to the prosthetic valves in special patient groups. In [91], the

authors described the safety, feasibility and efficacy of tran-

scatheter ablation procedure in 26 patients with mitral valve

prostheses (MVP). These patients had mitral valve surgery and

subsequently developed AF, thus underwent circumferential

PV ablation. To minimize the risk of valve damage during

ablation, the catheter position relative to the valve and the

leaflet motion were monitored by fluoroscopy. After a 3-

month blanking period, they performed a 12-month follow-up,

in which anti-arrhythmic treatment was considered for every

subject. Compared with another matched group consisting of

52 ablated patients without MVP, the MVP group took a
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Fig. 10. The TTVI procedure [85] (RA: right atrium, RV: right ventricle).

much longer fluoroscopy time. At the end of follow-up, 73%

of MVP patients were in sinus rhythm, slightly lower than

the control group. Six patients in the MVP group had atrial

tachycardia and three of them required repeat ablation, while

only one patient in the control group had this problem and

settled without treatment. No complications were found in

control patients, while one femoral pseudoaneurysm and one

transient ischemic attack occurred among MVP patients. The

researchers concluded that AF ablation is feasible in MVP

patients. More findings on arrhythmia and electrophysiology

can be found in [92]–[95].

The AF may relapse following the transcatheter ablation.

Manganiello et al. [99] investigated the incidence of symp-

tomatic and asymptomatic AF recurrences applying contin-

uous subcutaneous electrocardiogram (ECG) monitoring and

insertable cardiac monitor (ICM, subcutaneously implanted

during the ablation procedure) recording. They carried out

a long-term follow-up of 113 patients who underwent PV

ablation. According to the symptoms and ECG data, 40

patients demonstrated AF recurrences. Based on the ICM

results, arrhythmia relapses were found in 75 patients (35 of

them were asymptomatic).

Radio-frequency AF ablation has been widely practiced in

many medical centers with numerous successes. However,

complications like atrio-esophageal fistula could occur after

Fig. 11. The transcatheter valve-in-valve implantation procedure. (Left) A
SAPIEN valve is deployed within a surgical Edwards prosthesis (image is
from Heart Valve Surgery [96]), and (Right) a correct positioning where the
SAPIEN valve overlaps the sewing ring of the surgical prosthesis [80].

Fig. 12. Normal rhythm and atrial fibrillation (images are adapted from
Healthy Habits Hotline [97]).

Fig. 13. Transcatheter left atrial ablation (image is adapted from Wellington
Hospital [98]).

this transcatheter ablation procedure in the posterior LA wall.

Pappone et al. [100] reported two patients with cerebral and

myocardial damage several days after undergoing circumfer-

ential PV ablation. One of them survived after emergency

cardiac and esophageal surgery, and the other one died due to

extensive systemic embolization. A recent case was presented
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Fig. 14. Cross-sectional imaging of the arterial wall. (a) Four IVUS images acquired with transducers at different frequencies (green: media-adventitia border,
red: lumen border) [8], and (b) an OCT frame (note the guide-wire shadow artifact at ‘Guidewire’) [102].

TABLE III
PHYSICAL CHARACTERISTICS OF CATHETER-BASED IMAGING (IVUS VS. OCT).

Property IVUS OCT

Energy source Ultrasound Near-infrared light

Wavelength (µm) 35-80 1.3

Frame rate (frames/s) 30 15-20

Pullback rate (mm/s) 0.5-1 1-3

Imaging resolution (µm)
Lateral: 200-300
Axial: 100-200

Lateral: 20-40
Axial: 15-20

Tissue penetration (mm) 10 1-2.5

Maximum scan diameter (mm) 15 7

in [101], where a 68-year-old woman presented bilateral

oedema secondary to acute embolic stroke in the brain and air

in the LA three weeks after transcatheter ablation for treatment

of her chronic AF. Atrio-esophageal fistula was diagnosed in

all of them.

G. Transcatheter technologies using IVUS and OCT

As a valuable complementary imaging modality to angiog-

raphy, intravascular ultrasound (IVUS) and optical coherence

tomography (OCT) have been widely used in coronary disease

diagnosis and treatment. Compared to angiography that only

depicts a 2D silhouette of the lumen, both modalities pro-

vide 2D cross-sectional images of the coronary artery vessel

structure, assisting the clinicians in assessing the severity of a

lesion, performing plaque classification, and determining the

location and size for stenting.
IVUS is a catheter-based imaging technique, which places

a catheter with a sensor on its tip inside the coronary artery

(see Fig. 14a). The sensor rotates as it emits ultrasound pulses

and receives echoes from the tissues around to generate to-

mographic images of the arterial wall in real time, which pro-

vides important information about coronary arteries including

lumen, wall and plaque characteristics (e.g., shape and size).

OCT is a novel intravascular imaging modality based on near-

infrared light (shorter wavelength than ultrasound) emission,

which enables a higher-resolution imaging of the arterial wall

(see Fig. 14b) in the range of 10-20 microns than IVUS [103],

[104]. Cross-sectional images are generated by measuring

the echo time delay and intensity of light reflected or back-

scattered from internal tissue structures [105]–[107]. In clinical

practice, IVUS and OCT can provide qualitative and quanti-

tative assessment of coronary arteries and atherosclerosis. For

example, OCT images can be combined with angiography to

reconstruct the 3D coronary arteries for the evaluation of 3D

arterial morphology [108], and the endothelial shear stress can

be quantified using computational fluid dynamics of coronary

arteries after 3D reconstruction for estimating the development

and progression of coronary atherosclerotic plaque [109]. The

authors in [110] analyzed a large number of intracoronary

OCT images using a rapid and reliable segmentation algo-

rithm, which can facilitate quantitative investigation of stent

restenosis and thrombosis, as well as robust 3D reconstruction

of coronary arteries to calculate endothelial shear stress in

atherosclerosis. It also has potential application in plaque

quantification and local hemodynamic analysis.

Table III shows the physical characteristics of IVUS and

OCT [5], which are based on the Volcano, Boston Scientific,

and Terumo IVUS systems and the Light Lab time-domain

OCT imaging system that are commercially available. It is

worth noting that OCT cannot image through a blood field

which limits its adoption in clinical practice. In order to

produce high-quality images, it requires clearing or flushing

blood from the lumen during image acquisition. Both occlu-

sive [111], [112] and non-occlusive [113], [114] techniques

have been developed to stop the coronary blood flow during

the acquisition period. The safety of intravascular OCT imag-

ing mainly depends on the mechanical characteristics of the

catheter and the extent of ischaemia caused by flow obstruction

from the occlusion balloon when the occlusive technique is

employed or the amount of contrast injected when the non-
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TABLE IV
COMPUTER VISION TECHNIQUES INVOLVED IN TRANSCATHETER INTERVENTION.

Approach Method References

1. Edge features [9], [116]
Gradient-based 2. Radial grayscale gradient [117]

3. Radial grayscale gradient & variance [118]

1. Statistical shape driven [119]
Statistical & probabilistic 2. Mixture of Gaussians [120]–[123]

3. Mixture of Rayleigh [124]–[126]

1. Active contour model [127]–[130]
Model-based 2. Shape constrained deformable model [131]–[139]

3. Marginal space learning [87], [140], [141]

Graph cut-based [8], [11], [12], [142], [143]

Multiscale wavelet-based [144]–[147]

Combined [148], [149]

Imaging-based [42], [150], [151]
1. Annulus measurement Robot assisted [152]–[154]

Ring fitting [155]
Graph search [156]
Dynamic programming [157]

2. Ventricle segmentation Combined [158], [159]
Applications Atlas-based [160]

Active shape model-based [161]–[163]
Model-based [87], [139], [141], [164]–[166]3. Atrium segmentation
Non-model-based [86], [167]
Border detection [168]–[170]
Vessel tracking [171], [172]4. Vessel centerline extraction
Active contour model [173]
Minimum distance [174], [175]

occlusive technique is applied. OCT imaging technique has

been considerably adopted across Europe and Japan, though

not approved in USA yet. Preliminary studies of patients

with coronary artery diseases using both occlusive and non-

occlusive techniques show that the OCT image acquisition

is safe and no major complications occurred [113], [115].

Compared to IVUS, OCT provides superior visualization and

differentiation of the lumen and arterial wall interface, which

facilitates the determination of lumen areas and volumes [5].

Due to a low crossing profile, the OCT imaging wires are

able to negotiate tight lesions that the IVUS catheter is unable

to cross and it can also measure smaller lumen sizes than

IVUS [115]. Because of its limited tissue penetration ability,

OCT may not be suitable for investigating vessel remodeling,

which is well addressed by IVUS.

III. COMPUTER VISION TECHNIQUES IN TRANSCATHETER

INTERVENTION

Transcatheter intervention is an interdisciplinary technique,

involving clinical, imaging and interventional surgeons, cardi-

ologists, radiologists and anesthesiologists. Appropriate image

processing and analysis, real-time interactive segmentation,

and visualization tools can help them to cooperate and com-

municate efficiently to find an optimal treatment for a patient.

Moreover, preoperative and intraoperative imaging provides

a large amount of volumetric images for the planning and

guidance of the transcatheter intervention. To make use of

these data for clinical investigations, precise measurement of

the geometric features (e.g., diameter, center and orientation

of the aortic valve annulus) and accurate segmentation of

the anatomical structures (e.g., left ventricle and left atrium)

are essential. In this section, we concentrate on those state-

of-the-art computer vision techniques that have been widely

applied in the minimally invasive transcatheter procedure (see

Table IV).

A. Gradient-based approaches

The edge patterns in IVUS images can be used to distinguish

lumen and media-adventitia contours. Hybrid algorithms have

been developed to incorporate such edge features into desirable

target boundaries. These techniques usually require precise

initialization and rely on energy minimization. An early work

was introduced by Sonka et al. [9] for the detection of internal

and external elastic laminae (inner and outer media layers) and

plaque-lumen borders. After removing the calibration markers

and selecting the regions of interest (ROIs), the authors applied

Sobel-like edge detectors on subimages to construct laminae

and lumen border graphs and then performed heuristic graph

search deploying two distinct cost functions to detect the

borders. In this work, dynamic programming is used to search

a minimum path in the cost function, which incorporates edge

information with a simplistic prior, based on echo pattern

and border thickness. The presented technique demonstrated

good correlation between manually and automatically detected

lumen borders, plaque areas, and percent area stenoses. How-

ever, it requires manual initialization. An extended version of

this approach using a different cost function and 3D optimal

graph search was presented in [116], where the authors applied

principal component analysis (PCA) to reduce the noise and

increase the homogeneity of intensity within the ROIs, and
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Fig. 15. A typical contour detection result. (a) Initialized annular region in an IVUS image, (b) Obtained contours using ordinary (dotted) and modified
(solid) methods [118].

then estimated the initial lumen border by applying a spline-

based active contour model for the following graph-search

segmentation.

In [117], Meier et al. proposed to automatically segmen-

t both lumen and media-adventitia boundaries through the

enhancement of image continuity along the circumferential

direction in polar coordinates and speckle noise reduction

using iterative nonlinear spatial median filters. They applied

three different segmentation methods for the detection of the

lumen borders: i) thresholding of radial grayscale gradient

maps obtained by convolving the polar image with gradient

kernels, ii) adaptive region growing from a luminal seed

point after detecting the catheter outline, and iii) deformation

of a gradient-based parametric deformable model to search

for connected outline points and detect the media-adventitia

border. In addition, postprocessing involving dropout filtering

and outline smoothing is required to remove remaining outliers

and refine the final segmentation. Two data sets of 77 and

28 IVUS images of human coronary arteries are selected

for the identification of lumen and media-adventitia borders,

respectively. Experimental results show that the first strategy

is robust and outperforms the other two approaches, while

they are more computationally intensive. Instead of using

image gradient only, Luo et al. [118] designed a modified cost

function combining both gradient and variance of the grayscale

intensities in the radial direction, which is less sensitive to

noise. They employed circular dynamic programming to ex-

tract the media-adventitia boundaries. It has been demonstrated

that the presented algorithm can attain high accuracy and

reliability in the measurement of the lumen area variation (see

Fig. 15). However, manual initialization of the ROI and the

origin point in the first frame are required.

To improve the convergence capability of existing meth-

ods, Xie and Mirmehdi [176] proposed an external magnetic

vector force field based on hypothesised magnetic interactions

between the image gradients (object boundary) and active con-

tour. It can attract the contour to deep concave regions, without

suffering from saddle point and stationary point problems. This

image gradient based assumption was later extended to 3D

medical image segmentation [177].

B. Statistical and probabilistic approaches

Border detection and region identification in IVUS coronary

artery images are challenging tasks. Few algorithms have been

developed in order to trace the intima and the media-adventitia

automatically. Statistical approaches are generally proposed

based on an assumption that grayscale values correspond-

ing to lumen and plaque (intima) regions are generated by

two distinct distributions that can be modeled parametrical-

ly [125] (e.g., Rayleigh or mixture of Gaussians) or non-

parametrically [119]. Taking advantage of this property, Gil

et al. [120], [121] suggested the use of elliptic templates

guided by the global statistics inside regions to model and

detect the lumen borders of coronary arteries for the first

time. They incorporated two different Gaussian probabilities

corresponding to lumen and tissue areas into a deformable

model with elliptical shape constraint. The use of probabilities

can reduce the impact of speckle noise in low-quality IVUS

images, while the restricted deformable shape makes the

model more robust to shadows due to calcium plaque and

artifacts of the catheter. Similarly, Taki et al. [123] developed

an automatic approach for the identification of the intima

and the media-adventitia borders simultaneously using two

different thresholds after despeckling through affine invariant

anisotropic diffusion filters.
In practice, the vessel border detection is a complex prob-

lem, requiring sophisticated methods. By assuming a Rayleigh

distribution and modeling the expected contour with a priori

knowledge using Markov processes, Haas et al. [124] incor-

porated additional information about the speckle appearance.

The final contours were automatically extracted by applying

a maximum a posteriori (MAP) estimator iteratively. The

algorithm was tested on 29 in vivo frames and achieved

satisfactory results. Similarly, the authors in [125] introduced

a fully automatic method to estimate the luminal contour in

intra-coronary ultrasound images using a MAP estimator and a

constraint on the first zero crossing of image derivatives on the

borders. The image brightness appearance was modeled by a
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Fig. 16. Lumen and media-adventitia contours of an IVUS image in the original and rectangular domains [119].

Fig. 17. Examples of lumen and media-adventitia contours: (Top) without feature extraction for cases with no/minor calcifications and branch openings, and
(Bottom) with feature extraction for cases with calcifications and branch openings [119].

Rayleigh distribution. In [126], Cardinal et al. developed a 3D

segmentation model for IVUS pullback image volumes based

on the fast-marching framework [178] and applying a mixture

of Rayleigh distributions modeling the gray level probability

density functions corresponding to the vessel wall structures.

The regions were initialized using manually traced lumen

and media borders in several frames on longitudinal image

cuts. The proposed algorithm was evaluated using different

initializations on 9 in vivo IVUS pullbacks of superficial

femoral arteries and a simulated volume. They obtained accu-

rate results on simulated data with small average point-to-point

distances between detected vessel wall borders and ground

truth. On in vivo IVUS volumes, a good overall performance

was achieved with acceptable average distance between seg-

mentation results and manually traced contours. Likewise, a

2D semi-automatic technique was presented in [122] using

a parameterization of the lumen region with a mixture of

Gaussian distributions. The lumen border was finally detected

by minimizing a cost function that linearly combines the

steepest descent technique and the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method [179], resulting a faster convergence

toward a global minimum.

The assumption of grayscale intensities in IVUS images

satisfying parametric Rayleigh or Gaussian distributions may

not be true in all situations. Alternatively, Unal et al. [119]

proposed an automatic shape-driven approach for the segmen-

tation of arterial wall boundaries from IVUS images in the

rectangular domain (see Fig. 16). They first built a statistical

shape space using PCA and then evolved an initialized contour

from the surface of the transducer in polar coordinates by

minimizing a region-based non-parametric probabilistic energy

function. The probability distribution inside and outside the

lumen was estimated by using intensity profiles from a training

data set. The lumen borders were automatically extracted,

while the media-adventitia (MA) borders were detected using

edge information instead to evolve the curve. The performance

evaluation on a large data set demonstrated the effectiveness

of the presented technique. Fig. 17 shows several examples of

detected lumen and MA contours.

C. Model-based approaches

Due to the limited image quality (e.g., low contrast) of the

volumetric data acquired during the transcatheter procedure,

model-based approaches may be most appropriate for the

segmentation of anatomical structures containing in these

volumes. To improve the robustness of segmentation, model-

based methods exploit the prior knowledge such as shape

information to guide the image segmentation process. With

the prior constraints, the model-based segmentation can avoid

leakage around weak or missing boundaries. However, it may

be difficult for them to handle the structural variations.

1) Active contour models: Active contour models (snakes)

have been widely used in many medical image segmentation

applications, which represent contours or surfaces in their

parametric form during deformation. The main idea is to

place an approximate contour close to the desired features

in an image and then allow the contour to deform under the

influence of external and internal forces in the energy function

to snap to the desired features. The external force pushes the

contour toward the desired image features, while the internal

force ensures that the contour maintains its overall shape and
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Fig. 18. Segmentation process using topology adaptive snakes: (Top) a corpus callosum from MRI brain image slice, and (Bottom) a cross-sectional images
of a human vertebra phantom [180].

continuity in the process. The deformation stops when the

forces balance each other and the contour no longer moves

significantly. Fig. 18 gives two examples of the deformation

process, illustrating the high flexibility of snakes. The contour

models are able to track the points on the curves or surfaces

across time, and are suitable for real-time applications. How-

ever, they generally have difficulties in handling topological

changes due to the parameterization of the curves or surfaces.

The traditional parametric snake models [127], [128] are

popularly adopted for the segmentation of IVUS image da-

ta [8]. Rather than implicit shape surface representation to

retrieve lumen and media-adventitia boundaries, parametric

model formulation is more intuitive since the topology of

different boundaries is simple and underlying parameterization

remains simple and computationally efficient. However, it re-

lies on good initialization and fine parameter tuning. Generally,

the vessel borders in IVUS images are not well distinguished,

which hinders the application of the classical snake mod-

els. Hence, preprocessing techniques (e.g., nonlinear filter-

ing [181]) or energy optimization skills (e.g., Hopfield neural

network [182]) are incorporated prior to the use of the snake

framework. By modifying the terms of the energy function,

several approaches have been proposed to detect the lumen

and media-adventitia borders. Shekhar et al. [129] developed

an active surface model for the identification of both borders.

In this 3D segmentation algorithm, an initial surface template

is placed close to the desired arterial wall and then deformed

to snap to it according to the external, internal and damping

forces. The external force is the gradient of a 3D potential field

computed by convolution of the image volume with three 3D

Sobel-like kernels, which draws the vertices of the template

towards the desired arterial border. The internal force is based

on the transverse and longitudinal curvature vectors in the

local radial direction, which maintains the smoothness of the

surface model. The damping force is used to help the model

to converge to its final shape. The presented technique is

statistically accurate, robust to image artifacts, and capable

of segmenting volumetric IVUS images rapidly. It enables

geometrically accurate 3D reconstruction and visualization of

coronary arteries and volumetric measurements. In addition,

it can be applied to segment 3D images of other modalities.

Nevertheless, the algorithm requires user intervention to place

an initial contour every ten slices. To automatically identify

the lumen and media-adventitia borders, Kovalski et al. [130]

proposed a 3D segmentation approach. The elasticity term

in the snake framework [127] is removed from the internal

energy. To control the contour smoothness, they introduced a

priori on the final desired shape through regularization along

the longitudinal direction, and a balloon force to control the

point motion along the radial direction. Compared to manual

tracing of both borders, the automatic results demonstrates

high correlation and low variability, which indicate that the

suggested method may potentially provide a clinical tool for

accurate lumen and plaque assessment.

To make the geometric snake model more robust to weak

edges and noise in medical images, the authors in [183]

integrated the gradient flow forces with region constraints. An

alternative approach to this hybrid image force can be found

in [184], [185], where Jones et al. combined the edge-based

and region-based constraints with graph cut and superpixel for

interactive segmentation of the MA border in IVUS images

and lumen border in OCT images. Compared with other

approaches, this combinatorial method demonstrated improved

versatility and better segmentation results. To deal with more

complex topological changes and enable free initialization

of contour/surface in the image, Xie and Mirmehdi [186]

introduced the radial basis function interpolated level sets

into the region-based active contour model. Unlike traditional

level set based schemes, the proposed implicit active model

does not require periodic re-initialisation and allows coarser

computational grid, leading to great potential in modelling in

high-dimensional spaces.

2) Shape constrained deformable models: Among many

others, active shape models [131]–[133] are fast and robust,

where the object shapes are represented by a point distri-

bution model [131], [132] or a hierarchical parametric de-

scriptor [133]. However, the segmentation accuracy is limited

because the deformations of these models are restricted by a
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few statistical parameters of training samples. Furthermore, a

large training set is required to build a representative shape

model. Elastically deformable models [134], [135] are more

flexible and provide a straightforward way to involve prior

information for image segmentation by incorporating prior

statistics to constrain the variation of the model parameters.

However, the initialization is critical, which often needs to be

very close to the object contour to produce good segmentation

results. This is due to the presence of disturbing attractors

in the image, which do not belong to the object of interest,

but force the models towards undesired object boundaries. To

overcome difficulties and take advantage of both approaches,

Weese et al. [136] embedded an active shape model into an

elastically deformable surface model, where the shape model

restricts the flexibility of the surface mesh and maintains an

optimal distribution of mesh vertices. Adaptation to the image

boundaries is controlled by an external energy derived from

local surface detection and an internal energy that constrains

the deformable surface to stay close to the subspace defined by

the shape model. The internal energy is defined with respect to

the shape model, where the pose and parameters of the shape

model are adapted together with the mesh vertices representing

the deformable elastic model. Moreover, the external energy

has been designed to reduce the risk that the mesh is trapped by

false object boundaries, as it attracts the deformable model to

locally detected surfaces. Such a shape constrained deformable

model can capture anatomical structures even though they

cannot be exactly described by the model, as it is not restricted

to the subset of modeled shapes. In [187], Yeo et al. proposed a

novel variational approach for level set segmentation with sta-

tistical shape prior. By applying kernel density estimation, the

incorporated shape information enables the described model

to efficiently handle complex shapes from occluded and noisy

images.

To segment the left atrium and pulmonary veins (LAPV) in

the rotational X-ray angiography images for the transcatheter

atrial fibrillation ablation procedure, Manzke et al. [139]

presented an automatic model-based segmentation algorithm,

where the anatomical prior knowledge is encoded within a

geometric LAPV shape model. This technique is based on

the shape-constrained deformable models [136] and follows

the general framework in [137] with several extensions: i)

the LAPV model is based on the four chamber model [137]

with extension of the major vascular structures [138], ii)

the detection of the left atrium with the generalized Hough

transform has been slightly modified and takes only boundaries

with distinct gray value properties in a 3 × 3 × 3 neighbor-

hood into account, iii) a histogram-based calibration method

is used to reduce intensity variations between images, and

boundary detection is performed on calibrated gray-values,

iv) the progressive adaptation technique introduced in [138]

for the adaptation of major vessels attached to the heart is

used to segment the pulmonary veins, and v) some aspects

of the generation of the reference meshes are specific for the

presented LAPV surface generation.

As shown in Fig. 19, shape constrained deformable mod-

els can be used for the segmentation of various anatomical

structures such as vertebra, femur, aorta in CT images [136],

and LAPV surface in 3D rotational X-ray angiography im-

ages [139].

3) Marginal space learning: In many applications, instead

of uniform and exhaustive search, the posterior distribution

can be clustered in a small region in the high-dimensional

parameter space. For example, in 2D space search, a classifier

trained on p(y) can quickly delete a large portion of the search

space, and the classifier for joint distribution p(x, y) can then

be trained in a much smaller region (see Fig. 20a). Based

on this observation, Zheng et al. [140] proposed marginal

space learning (MSL), an efficient method to search such

clustered parameter spaces. The idea of MSL is not to learn a

classifier directly in the full similarity transformation space

but to incrementally learn classifiers on projected sample

distributions. In MSL, the dimensionality of the search s-

pace is gradually increased, e.g., a 3D object localization

problem can be split into three steps: position estimation,

position-orientation estimation, and position-orientation-scale

(full similarity transformation) estimation. After each step,

only a limited number of candidates are reserved to reduce

the search space. To further improve the efficiency, a pyramid-

based coarse-to-fine strategy can be applied.

The MSL has been successfully demonstrated on many

medical image segmentation problems. To quantitatively ana-

lyze the heart function from 3D cardiac CT volumes, Zheng

et al. [140] developed an efficient and robust approach for

automatic four-chamber heart segmentation (see Fig. 20),

which consists of two steps: anatomical structure localization

and boundary delineation. In this work, the MSL algorithm is

first employed to solve the 9D similarity transformation search

problem for automatic heart localization. After determining

the pose of the heart chambers, a learning-based 3D boundary

detector is then applied to guide the non-rigid heart shape

deformation. To handle the structural variations and obtain

robust performance on emerging C-arm CT images, Zheng

et al. [141] proposed an automatic model-based method for

the left atrium (LA) segmentation. Instead of using a holistic

mean shape model [139], the authors applied a multi-part-

based model to address the variations in pulmonary veins

(PVs), which splits the whole LA into six parts: chamber body,

appendage and four major PVs (left inferior, left superior,

right inferior, and right superior). Compared to the mean shape

model in [139], each part has a simpler anatomical structure

that can be detected and segmented well using MSL. After

segmentation, all the six parts are then merged into a consol-

idated mesh, with different anatomical structures labeled by

different colors. However, it is still hard to accurately segment

the connection region to the LA chamber (the region around

the PV ostia and appendage). To overcome this shortcoming,

Zheng et al. [87] suggested a way to precisely segment the

ostia region by enforcing both the image boundary delineation

accuracy and mesh smoothness.

D. Graph cut-based approaches

The catheter-based imaging techniques such as IVUS and

OCT provide 2D cross-sectional images of the coronary artery.

Accurate segmentation of the inner/outer arterial wall in these
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Fig. 19. Segmentation results of (Top) vertebra, femur, aorta in CT images [136], and (Bottom) 3D rotational X-ray angiography data of two patients in
(from left to right) axial, sagittal, coronal views [139].

Fig. 20. MSL-based segmentation of 3D cardiac CT volumes. (a) MSL, and (b-d) extracted heart chamber in axial, sagittal, coronal views with green for LV
endocardium, magenta for LV epicardium, cyan for LA, brown for RV, and blue for RA [140].

images is a prerequisite for clinical investigations, which

provides critical information for coronary disease diagnosis

and treatment. Among many others, graph cut-based approach-

es [8], [11], [12] have shown to be very promising for the

segmentation of IVUS images.

In [142], Wahle et al. applied the novel s-t cut algorith-

m [188] (see Fig. 21) to segment 3D IVUS images, where

the cost function used for identifying the lumen-plaque and

media-adventitia (MA) surfaces contains three-tiered infor-

mation at both global and local levels: intensity patterns

along the borders, Rayleigh distribution of ultrasound image

data, and regional homogeneity based on Chan-Vese minimum

variance criterion. However, these intensity-based features are

susceptible to IVUS image variations such as calcification

and shadow. Based on the efficient graph construction method

presented in [143], Essa et al. developed an initialization-free

approach for automatic extraction of MA border in IVUS

images using double-interface graph cut segmentation [11].

The images are first transformed from Cartesian coordinates

to polar coordinates, which removes the catheter regions and

transforms a closed contour segmentation into a ‘height-field’

segmentation. This transformation facilitates the construction
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Fig. 21. Graph cut-based segmentation of a liver image on an undirected graph and a directed graph (a cut divides the nodes between the source terminal S

and sink terminal T that represent ‘object’ and ‘background’, respectively) [188].

Fig. 22. Automatic segmentation of IVUS media-adventitia borders on a directed graph with shape priors (green: ground truth, red: proposed method) [11],
[12].

of an arc-weighted directed graph, on which a minimum s-

t cut can be computed without any user initialization. The

authors applied the arc-weighted directed graph construction

to impose geometrical and smooth constraints learned/derived

from the generalized shape priors [12] of multiple training

shapes, and built novel cost functions using a combination of

complementary texture features. Fig. 22 shows a qualitative

comparison between the manually labeled results and those

by Essa’s method [11].

E. Multiscale wavelet-based approaches

Taking advantage of spectral analysis or spatial-frequency

expansions, Katouzian et al. [144] introduced the first multi-

scale expansion approach based on discrete wavelet packet

frames to automatically detect the lumen borders in IVUS

images. First, the images are decomposed onto orthogonal

Lemarie-Battle filters and the envelope of the complex co-

efficients is then computed as features. An unsupervised

K-means clustering algorithm is applied to generate binary

masks corresponding to blood and non-blood regions. The

lumen border is evaluated by iterative Spline interpolation

among nearest detected edge sets in the radial direction.

However, the presence of the guide wire, ring-down artifacts,

and attenuation of signals in regions far from the transducer

limits the proposed method. Similarly, the authors in [145]

applied the discrete wavelet frames to identify both the lumen

and MA borders in IVUS images, where the decomposition

trees were constructed by the Haar filters (see Fig. 23). Both

techniques are able to automatically delineate borders with

four decomposition levels in polar coordinates.

Motivated by the procedure used by interventional cardi-

ologists, Katouzian et al. [146], [147] developed an auto-

matic technique to trace the lumen borders in IVUS images

acquired with high-frequency transducers. IVUS subvolumes

were projected onto orthogonal brushlet basis functions in

an overcomplete fashion in polar coordinates, as the brushlet

coefficients are invariant to intensity and only depend on the

spatial frequency content of the IVUS signals. In this work,

two approaches were proposed for the estimation of the lumen

border. They binarized the brushlet coefficients by assuming

that those corresponding to plaque regions have higher magni-

tude, and then applied the iterative conditional model segmen-

tation framework with Markovian regularization to identify

the lumen borders in different classes [146]. The evaluation

on in vitro data demonstrated that distinct histogram peaks

correspond to blood and non-blood regions. Thresholding of

these peaks leads to binary masks exploited for the detection of

the lumen border with the surface function active framework.

In addition, techniques for removing catheter marker, ring-

down, and guide wire artifacts were introduced as well.

F. Combined approaches

The combination of different segmentation approaches (e.g.,

model-based and graph cut-based methods) can take advan-

tage of them to produce better results or more anatomical

structures, which is potentially helpful for medical diagnosis,
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Fig. 23. Automatic IVUS contour detection. (a) Fast iterative 2D discrete wavelet frames decomposition of four levels (only two levels are shown), the input
IVUS image is in the polar coordinates (rectangular domain), R and C denote filters applied row-wise and column-wise respectively, and (b) segmentation
results of different images [145].

preoperative planning, and intraoperative guidance during the

transcatheter procedures.

Zheng et al. [87], [141] developed a robust and efficient

model-based method to automatically segment the LA from

469 C-arm CT volumes using MSL. However, on some image

data, the final consolidated mesh may slightly deviate from

the true LA boundary since the method does not make full use

of local voxel-wise intensity information. Furthermore, due to

the large variations of the PV drainage pattern, the extra right

middle PVs between two major right PVs are not included

in the multi-part-based LA model, although these anatomies

are important for cardiac diagnosis and treatment planning. To

refine the LA segmentation and extract the right middle PVs,

Yang et al. [149] proposed an automatic approach combining

the model-based method with graph cut-based method (see

Fig. 24). Based on the initial segmentation results by the

model-based approach, two regions of interest (ROIs) are

first determined for the LA segmentation refinement and right

middle PVs extraction, respectively. The initial segmentation

also provides positive (foreground) and negative (negative)

seeds to automatically initialize the graph cuts. The graph is

then constructed within the corresponding ROI by a region

growing process, which connects the seeds and voxels of ROI

together without duplication. By performing the graph cut

optimization, the voxels within the two ROIs are relabeled as

foreground and background. The foreground voxels are used

to update the initial segmentation and refined segmentation

results. To reduce the leakage of graph cuts for the extraction

of right middle PVs, a pruning procedure is exploited to

remove occasional false positive PVs by examining multiple

criteria. Finally, the initial segmentation is refined and further

expanded with newly detected right middle PVs. Fig. 25 shows

the final extraction results of the LA and right middle PV.

To automatically detect the MA border, Gil et al. [148]

combined a statistical strategy with a supervised classifica-

tion approach to achieve optimal performance. The presented

segmentation method consists of three main steps. First, a

restricted anisotropic diffusion filter is applied to enhance

the border. Second, a feature space consisting of horizontal

edges, radial standard deviation, and radial cumulative mean is
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Fig. 24. The flowchart of Yang’s combined approach [149].

Fig. 25. Segmentation results of (a) LA and (b) right middle PV. The small defect of LA and non-detected right middle PV (yellow arrows) in the model-based
segmentation (odd columns) are corrected after refinement (even columns) [149].

constructed. The edge feature represents the MA border, while

the other two features can be used to differentiate between

calcified and fibrotic tissue within the plaque. Fisher linear

discriminant analysis (LDA) is then performed to achieve a

maximum separability among the projected classes followed

by Bayesian thresholding in the feature space to generate

two binary masks corresponding to calcified regions and the

MA border, respectively. Third, the MA border is identified

through modeling the fragmented segments in the MA border

mask by computing an implicit closed representation using an

anisotropic contour closing and an explicit B-spline compact

parameterization.

In conventional sequential approaches, segmentation and

interpolation are carried out separately in turn. Some methods

first perform segmentation of the slices and then interpolate

a 3D surface from the segmented 2D contours, while other

methods perform interpolation of the slices first to reconstruct

a 3D volume, followed by 3D segmentation. Both of them

have limitations in processing 3D and 4D sparse medical data

sets. In [189], Paiement et al. accomplished both segmentation

and interpolation simultaneously by integrating them into a

radial basis function (RBF) interpolated level set framework,

which combines the flexibility of level set methods, the

numerical stability of RBF interpolated level set segmentation

methods, and the interpolation abilities of RBFs. In this

work, the interpolation exploits the segmenting surface and its

shape information instead of pixel intensities, thus achieved

improved robustness and accuracy. Moreover, the proposed

method supports any spatial configurations of 2D slices with

arbitrary positions and orientations.

G. Applications

In this section, we review some of the computer vision

techniques applied in transcatheter interventions with respect

to applications, such as the measurement of aortic valve

annulus for valve selection in TAVI, detection of ventricle

and atrium for assessing the heart functional and guiding

the intraoperative procedure, extraction of vessel centerline

in coronary angiographic images for estimation of vessel

parameters, and so on.

1) Annulus measurement: The success of TAVI highly

depends on proper preoperative planning and accurate intra-

operative valve placement. During preoperative planning of
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Fig. 26. Measurement of the aortic valve annulus (blue curve). (a) Annulus tracking in 5 (out of 20) frames at selected instances over a complete cardiac cycle,
(b) annulus position with respect to short and long axis slices for one frame, and (c) color-coded annulus positions at different instants in one cycle [155].

valve implantation, one of the major steps is to determine

the prosthetic valve size and type based on the accurate

measurement of the geometric features of the aortic valve

annulus including its diameter, center and orientation (the

direction along which the prosthetic valve can be deployed).

Generally, these features can be estimated by ultrasound or X-

ray based imaging technologies such as TTE, TEE and mul-

tislice CT [151]. MRI can be used for evaluating the annulus

features during the preoperative planning as well as tracking its

motion during TAVI to guide the valve placement [42], [150].

Robotic assistance can also be integrated into the MRI-guided

cardiac interventions (e.g., transapical valve implantation) to

increase its feasibility [153], [154]. In [155], Navkar et al.

presented a method to extract the geometric features from MRI

images by finding an optimal fit for a circular ring mimicking

the valve annulus in the aortic root (see Fig. 26). Moreover,

this approach can be used for MRI-guided annuloplasty [150],

[152] by dynamically tracking the motion of the annulus.

2) Ventricle segmentation: Cardiac MRI provides impor-

tant information for diagnosis and treatment of cardiovascular

diseases by enabling quantitative assessment of functional

parameters of the heart such as ejection fraction, myocardium

mass, wall motion, and wall thickness [190]. To measure

these functional parameters, many approaches were suggested

to identify the main structures of the heart such as the left

ventricle (LV) and right ventricle (RV). Fleagle et al. [156]

developed a system to delineate the myocardium borders using

a minimum-cost path graph search algorithm after the user

initialized the center of the LV cavity and the ROI. In [157],

Geiger et al. applied dynamic programming to refine the

contours indicated by the user to make them correspond to

image edges. Goshtasby and Turner [158] proposed a two-

step algorithm combining intensity thresholding to recover the

bright blood and local gradient to outline the strong edges

using elastic curves. Weng et al. [191] developed an algorithm

to threshold the image based on parameters estimated during

a learning phase and gain a good approximation of the

segmentation.

A number of automatic approaches incorporated pri-

or knowledge of heart shape and motion to improve

the segmentation accuracy and robustness. Montagnat and

Delingette [162] developed a framework to track the LV

motion in 4D noisy or low contrast medical images based on

4D deformable surface models. The proposed method relies on

complementary spatial and temporal constraints to regularize

the deformation while introducing prior information of the LV

shape and motion during the segmentation process. The result-

ing surface models are well suited for estimating quantitative

parameters such as endocardium volume or wall thickness.

In [160], Lorenzo-Valdes et al. proposed a method for the

segmentation and tracking of the LV, RV and myocardium in

4D cardiac MRI images. Taking advantage of the temporal

relation between images, they achieved convincing results by

volumetric atlas matching using B-spline registration. Howev-

er, the efficiency of this approach is low. In [163], Mitchell et

al. combined the fast and robust active shape and appearance

models [132], [192] in a multistage fashion to extract the LV

and RV borders from MRI images. The developed method

yielded promising results (see Fig. 27a). However, statistical

shape models cannot capture variability outside the training

set, which is likely to occur in clinical setting. In addition,

appearance modeling may fail in the presence of large gray

value variability across subjects and time. The authors in [193]

presented a segmentation technique to automatically extract
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Fig. 27. Segmentation of ventricle borders in cardiac MRI images. (a) LV
and RV contours extracted by a multistage hybrid method [163], and (b) LV
borders detected by a deformable model in three orthogonal views from the
end-diastolic phase [159].

the myocardium in 4D cardiac MR images for quantitative

cardiac analysis and the diagnosis of patients. In [159], Kaus

et al. proposed to integrate several sources of prior information

learned from annotated image data into a deformable model

including a deterministic, parametric model of the variation of

surface features, inter- and intra-subject shape variation, and

spatial relationships of the epicardium and endocardium to

handle multiple objects. The presented technique was applied

for automatic LV segmentation in 3D cardiac MRI time series.

Fig. 27b gives an example. Quantitative validation of 121 data

sets in end-diastolic/end-systolic phase demonstrates its high

robustness and accuracy.

3) Atrium segmentation: Extracting a patient-specific left a-

trium (LA) model from intraoperative volumetric data (e.g., C-

arm CT images) is important in the preoperative planning for

transcatheter LA intervention, and it can provide intraoperative

visual guidance as well. However, automatic segmentation of

the LA along with the left atrial appendage (LAA) and the

pulmonary vein (PV) trunks is a challenge problem, due to

the large structural variations in the PV drainage patterns [90]

and imaging artifacts. Various approaches have been proposed

for the LA segmentation, which can be classified into two cat-

egories: model-based [87], [139], [141], [164]–[166] and non-

model-based methods [86], [167]. The former methods exploit

the prior LA shape information to guide the segmentation,

while the latter methods do not involve any prior knowledge

of the LA shape. With the prior LA shape constraint, the

model-based segmentations can avoid leakage around weak

or missing boundaries. However, it may be difficult for them

to handle the PV structural variations [139]. On the contrary,

the non-model-based approaches [86], [167] address the PV

variations well, although they cannot provide the underlying

anatomical information such as the left inferior PV. Practically,

non-model-based segmentations achieve good results on both

CT and MRI data sets.

In order to deal with the structural variations and achieve

robust performance on emerging C-arm CT image data, Zheng

et al. proposed an automatic part-based LA segmentation

algorithm [141]. Instead of utilizing a holistic mean shape

model [139], they employed a multi-part-based model to

handle the PV variations, which divide the whole LA into

chamber body, appendage and four major PVs. In comparison

with the mean shape model [139], each part has a simpler

anatomical structure. Therefore, it can be segmented well

using a model-based approach, namely marginal space learn-

ing [140]. After segmentation, all the six parts are merged into

one consolidated mesh, with different anatomical structures

represented by distinct colors (see Fig. 28). However, it is

still hard to accurately segment the connection region to the

LA chamber. To tackle this problem, in [87], Zheng et al.

suggested a way to precisely segment the ostia region by

enforcing both the image boundary delineation accuracy and

mesh smoothness.

4) Vessel centerline extraction: Quantitative coronary an-

giography (QCA) [168], [173], [194] plays an important role

in the analysis of coronary artery disease. An important step

in QCA is the estimation of vessel centerline, which has been

widely used in computing edge gradients and searching for

border positions, deriving video-densitometric profiles, mea-

suring the vessel diameters, calculating the lesion symmetry,

and reconstructing the 3D structure of vessel segments or the

entire artery.

The earlier approach to determine coronary lumen centerline

is commonly based on manual tracing of the entire center-

line or identifying several centerline points and producing

the continuous centerline by interpolation [171], [195]. The

manual centerline identification may result in large vessel

orientation errors. On the other hand, the lumen centerline

can be calculated as a midline between the left and right

coronary borders [168], which can be detected at each cross

section separately along the vessel [169] or simultaneously

extracted [170]. Given an initial start-of-search point, some

coronary lumen centerline detection algorithms are based on

vessel tracking by preserving the spatial continuity of vessel

position, curvature, diameter, and density [171], [172]. Other

approaches utilize active contour models (snakes) [173], which

are suitable for analysis of angiographic sequences where the

vessel centerline is manually or semi-automatically identified

in the first frame and the centerlines in subsequent frames

are then tracked by the snakes. In arterial tree extraction,

the recursive sequential tracking is generally used for the

extraction of the artery network skeleton and the directional

resampling of the angiogram is utilized to identify the artery

borders based on the extracted skeleton [196]. The accuracy

of the skeleton affects the artery border extraction. In [197],

Haris et al. proposed a method to detect and label the coronary

arterial tree using minimal user supervision in single-view

angiograms. Each artery segment was analyzed for skeleton

and border extraction using morphological operations and

watershed transform. Zhou et al. [174] presented an efficient

approach for 3D skeleton and centerline generation based

on approximate minimum distance field. This method was

later extended to volumetric objects in [175], where the

skeletons were interpreted as connected centerlines consisting
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Fig. 28. Extraction of atrium contours in a large CT volume. (a) Part-based LA mesh model (cyan: chamber, red: appendage, green: left inferior PV, magenta:
left superior PV, orange: right inferior PV, and blue: right superior PV), and (b-d) LA segmentation results in three orthogonal views with different colors for
different mesh parts [141].

of sequences of medial points of consecutive clusters. These

centerlines were initially extracted as paths of voxels, followed

by medial point replacement, refinement, smoothing and con-

nection operations.

Blondel et al. [198] described a novel method to generate

3D reconstruction of coronary artery centerlines, enabling a

3D tomographic reconstruction of coronary arteries from one

single rotational X-ray projection sequence. In [199], Tyrrell

et al. employed cylindroidal superellipsoids to model complex

tumor microvasculature in 3D imagery, which allows joint

estimation of the vessel boundary and centerline, thus approx-

imating the medial axis. The authors in [200] proposed an

approach for accurate estimation of vessel centerlines utilizing

a ray casting and vote accumulation algorithm (see Fig. 29).

Later on, Wong et al. [201] developed an energy-minimization-

based framework for the extraction of arterial lumen centerline

according to the theory of nonlinear principal curves. They

applied a nonparametric model for the representation of lumen

centers, and achieved an accuracy of subvoxel level, benefiting

the geometric study of aneurysmal neck. The proposed algo-

rithm is adaptive to the vasculature complexity and robust to

strongly bended lumen as well as branching vasculature. By

registering an elliptical cross-sectional tube with the desired

constituent vessel in every major bifurcation of the arterial

tree, Wang and Liatsis [202] proposed a deformable tube

model-based technique for precise estimation of the centerline

and reference lumen surface for both the main vessel and the

side branches in the area of bifurcations. Meanwhile, a com-

pletely automatic method based on graph-cuts was designed

for the accurate extraction of coronary centerline in X-ray

angiography imagery [203]. Both methods perform as good

as human experts. Motivated by the diffusion tensor image

(DTI) field, Cetin et al. [204] proposed an approach using

an intensity-based tensor model for the location of coronary

artery centerlines from computed tomography angiography

(CTA) scans. In [205], a hybrid scheme was reported for

the detection of vessel centerlines in preoperative multislice

computed tomography (MSCT) sequences, making use of

a minimum cost path technique with a fast-marching front

propagation. The extracted centerlines are refined in the second

procedure by applying an iterative multiscale method based

on geometrical moments. Fig. 30 illustrates several vascular

centerline extraction results overlaid on the original images in

coronary X-ray angiography volumes.

Most of the techniques mentioned above may have difficulty

to handle images of poor quality and little work has been done

in examining accuracy of the estimated centerline. In most

QCA algorithms [173], [194], [213], the validation was based

on comparing the extracted centerlines with manually labeled

results or generating phantoms with known parameters. The

former suffered from a lack of an objective criteria and inter-

observer variability, while the latter required a full imaging

system to test the software without standard results. Sonka et

al. [213] first attempted to evaluate the accuracy of the estimat-

ed vessel centerline using indexes that express the position and

orientation similarities of two centerlines. In [214], Greenspan

et al. described a method to provide an objective accuracy

measure for evaluating centerline extraction algorithms. The

method compared estimated results with a priori data that

was used to generate the centerline. Images of blood vessels

with known geometry and centerline were synthesized. They

presented a method for an objective comparison of different

QCA algorithms and a way for the evaluation of a specific

QCA algorithm performance under different geometrical pa-

rameters of the vessel. A synthetic vessel-generation tool was

applied for the evaluation and comparison of two well-known

centerline estimation algorithms. To quantitatively evaluate

and compare the performance of existing coronary artery

centerline extraction techniques, Schaap et al. [215] presented

a standardized evaluation methodology along with a reference

database containing 32 cardiac CTA data sets.

IV. COMPARATIVE STUDIES AND DISCUSSIONS

A number of imaging modalities are involved in the min-

imally invasive transcatheter procedure. Table V shows a

summary list of some of these pre-procedural and intra-

procedural imaging techniques. The catheter-based imaging

techniques like intravascular ultrasound (IVUS) and optical

coherence tomography (OCT) are widely used in imaging

coronary artery structures, diagnosing and treating coronary

diseases such as atherosclerosis [5], [106]. During the whole

transcatheter aortic valve implantation (TAVI) procedure [30],

[31], various imaging approaches are applied to help place

the valve appropriately and minimize the major complications,

including multislice computed tomography (MSCT), magnetic

resonance imaging (MRI), X-ray angiography/fluoroscopy, and

transthoracic/transesophageal echo (TTE/TEE) (refer to Ta-

ble I for details). To guide the TAVI interventions, MSCT and
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Fig. 29. Voting-based centerline extraction. (a) Maximum-intensity projection of a confocal data set, (b) enlarged and rendered volume of the selected vessel
segment in (a), (c) voting results overlaid on the surface rendering (sliced region shows the cross-section), and (d) detected centerline in red and the surface
rendering [200].

Fig. 30. Detected centerlines overlaying on original coronary angiography images [206].

TABLE V
IMAGING MODALITIES AND THEIR APPLICATIONS.

Imaging Modality Applicability

Intravascular ultrasound (IVUS)
Imaging and assessment of coronary arteries and atherosclerosis [5],
[106]

Optical coherence tomography (OCT)
Imaging and assessment of coronary arteries and atherosclerosis [5],
[106]
Transcatheter aortic valve implantation [30], [31]

Multislice computed tomography (MSCT) Aortic annulus feature evaluation [151]
Left atrium segmentation [164]

C-arm computed tomography (C-arm CT) Left atrium modeling [87], [141], [149]

Computed tomography angiography (CTA) Left atrium segmentation [86]

Transcatheter aortic valve implantation [30], [31]Magnetic resonance imaging (MRI)
Aortic annulus feature evaluation and motion tracking [42], [150], [155]

Magnetic resonance angiography (MRA) Left atrium segmentation [86]

X-ray angiography/fluoroscopy Transcatheter aortic valve implantation [30], [31]

Rotational X-ray angiography (RA)
Intraoperative imaging of left atrium and pulmonary veins to guide
catheter ablation of atrial fibrillation [207], [208]

Transthoracic/Transesophageal echo Transcatheter aortic valve implantation [30], [31]
(TTE/TEE) Aortic annulus feature evaluation [151]

Electroanatomical mapping (EAM) + CT/MRI
Imaging cardiac anatomy to guide catheter ablation of atrial fibrilla-
tion [209]–[211] and ventricular tachycardia [210], [212]

TTE/TEE are generally employed to preoperatively measure

the geometric features (e.g., diameter, center, orientation) of

the aortic valve annulus [151]. Moreover, MRI is utilized

to evaluate the aortic annulus features and tracking its mo-

tion [42], [150], [155], benefiting both preoperative planning

and intraoperative guidance for TAVI. It should be noted that

there are certain limitations with these imaging technologies.

For example, MSCT involves ionizing radiation, TTE provides

a limited field of view (FOV), TEE requires access through

the esophagus, and MRI offers limited access to the patients

inside cylindrical MR scanners.

Interventional cardiac electrophysiology (EP) procedures

such as transcatheter left atrial fibrillation ablation require

accurate segmentation and labeling of the left atrium (LA)

and pulmonary veins (PVs). Computed tomography angiog-

raphy (CTA), magnetic resonance angiography (MRA), and

MSCT can provide preoperative images for this purpose [86],

[164]. The integration of preoperative CT or MRI with

electroanatomical mapping (EAM) produces more anatom-

ical information of the LA and PVs, which can be used

for the guidance of the catheter ablation procedure [209]–

[211]. Recently, C-arm computed tomography (C-arm CT) is
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TABLE VI
MEASUREMENT OF SEGMENTATION ACCURACY.

Performance Metric Reference

Jaccard similarity coefficient (Jaccard score) [219], [220]

Dice similarity coefficient (F-measure) [221], [222]

Symmetric surface-to-surface distance [87], [140], [141]

Average surface distance [219]

Receiver operating characteristic (ROC)
curve

[222]–[224]

Hausdorff distance [126], [129], [219]

Maximum Hausdorff distance [219]

Mutual information (entropy) [222]

Average distance [129]

Chi-square measure [223]

C-Factor measure [218]

Kappa statistic [221], [225]

Root-mean-square error [116]

emerged as a new 3D imaging technique to provide images

for extracting patient-specific LA model [87], [141], [149].

Compared to conventional CT or MRI, it reflects the current

state of the patient’s heart chamber anatomy.

Performance evaluation of medical image segmentation

techniques is of great significance, which addresses the sim-

ilarity between the segmentation outcome and desired result,

the clinical impact of such a similarity, along with the robust-

ness of the segmentation method in the context of variation

in patient anatomies and fluctuations in image properties. A

variety of evaluation schemes and criteria (e.g., robustness,

precision, accuracy and efficiency) have been presented in

the literature [216]–[218], taking clinical relevancy and im-

pact into account. In this work, we focus on metrics for

the accuracy measurement. Among many other approaches,

cross validation [87], [140], [141] is popularly utilized in

the assessment of segmentation accuracy, and the results are

generally presented in a confusion matrix. A large number of

different metrics have been applied to measure the similarity

between the segmentation results by an algorithm and the

ground truth labeled by an expert. Table VI shows a summary

list of these metrics. Most of them are statistical measures

as no spatial relations between image pixels/voxels or edges

are considered, assuming spatial independence between those

elements.

V. CONCLUSIONS

In this paper, we review the computer vision techniques that

are widely used in transcatheter intervention for many medical

applications. This review gives us some insights into the

state-of-the-art imaging technologies, segmentations and user

interventions. Even though the research on transcatheter inter-

vention is expanding rapidly, there are still many challenges

to be faced. Based on this review, we make the following

observations.

1) Compared to traditional open-heart surgery, the minimal-

ly invasive transcatheter interventions are less traumatic

and offer faster recovery time for patients. In the long

term, the transcatheter procedures may encroach upon

the conventional surgical approaches.

2) Transcatheter aortic valve implantation (TAVI) emerges

as an extremely promising life-saving therapy without

requiring a full open-heart surgery. A number of obser-

vational clinical studies have demonstrated its feasibility,

safety and effectiveness. It will potentially represent the

standard of care for patients with severe aortic stenosis.

Now it is time to further develop the less traumatic

transcatheter valve implantation technology to make it

applicable to a wider range of patients.

3) Transcatheter mitral valve repair/replacement (TMVR)

is still under development. Innovative solutions properly

addressing prosthesis anchoring and sealing in mitral

position are highly desirable for clinical applications.

4) With the advent of less invasive and safer transcatheter

technologies like TAVI, TMVR, TPVR and TTVI, a new

treatment option has become available for patients with

inoperable cardiovascular valve stenosis or regurgitation

and this treatment may change significantly over the next

few years.

5) Percutaneous valve-in-valve implantation has gained in-

creasing acceptance as a feasible treatment option for

selected non-surgical patients with degenerated biopros-

theses in the aortic, mitral, pulmonary and tricuspid

positions. It is also worth noting that manufacturers need

to further improve the design of current bioprosthetic

valves and more testing is required.

6) While intravascular ultrasound (IVUS) remains the most

widely used and validated intravascular imaging tech-

nique in clinical practice, optical coherence tomography

(OCT) has the potential to become the most accurate

imaging modality to assess the lumen dimensions and

facilitate the application of automatic measurement al-

gorithms.

7) The good estimation of the guide-wire position is crucial

to the elimination of guide-wire shadow artifacts, which

will finally benefit the accurate segmentation of the

vessel wall in OCT image sequences.

8) Most of current techniques detect the lumen and media-

adventitia borders in IVUS images on two distinct data

sets. It is desirable to develop algorithms to identify both

borders simultaneously.

9) Mid-term and long-term results of a large patient popu-

lation are highly expected, which will provide useful

insights of the transcatheter interventions in the real

world. Despite current promising results on transcatheter

interventions, there are unsolved issues such as proce-

dural failure and rate of complications. Computer vision

techniques could help to minimize these risks and play

an important role before, during and after the procedure.

10) Segmentation algorithms could greatly benefit the

image-guided transcatheter intervention procedures.

There is a clear need of designing efficient and robust

segmentation methods with minimal user interaction

for the extraction of anatomical structures with higher

accuracy during the procedure.

11) Energy minimization-based segmentation approaches

like deformable models and graph-cut are very popular

in segmenting vessel geometries, providing efficient and
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precise knowledge in support of transcatheter proce-

dures.

12) For the extraction of anatomical vessel structures, the

integration of prior information (e.g., shape priors) into

the segmentation framework could impressively reduce

its complexity.

13) The segmentation results allow the construction of

anatomical databank, which could possibly be used

for exploring the morphological variations, pathological

evolution, or growth of organs.

14) These segmentation algorithms are not mutually ex-

clusive. Approaches combining different segmentation

techniques are able to produce better results or more

anatomical structure information, which is potentially

helpful for both preoperative planning and intraoperative

guidance during the transcatheter procedures.

15) Machine learning-based segmentation techniques such

as marginal space learning are of special interest since

the learning algorithms in computer vision are being

developed rapidly and promisingly.

16) Performance evaluation in medical image segmentation

measures the amount of similarity between the seg-

mented results and the gold standard. Unlike traditional

image processing, it needs to consider the clinical as-

pects including relevancy and impact. Thus, it is fairly

important to design or adopt medically-oriented metrics

for the measurement of segmentation accuracy, as in-

appropriate ones may result in serious consequences for

transcatheter intervention and consequently the health of

patients.
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