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Item Cloning - 1
Abstract

To reduce the cost of item writing and to enhance the flexibility of item presentation,
items can be generated by item-cloning techniques. An important consequence of cloning
is that it may cause variability on the item parameters. Therefore, a multilevel item
response model is presented were it is assumed that the item parameters of a 3-parameter
logistic model describing response behavior are sampled from a multivariate normal
distribution associated with a parentitem. In the present approach to item calibration, only
distributions of item parameters are estimated. Therefore, the savings in item calibration
costs for the item cloning model are potentially enormous. A marginal maximum
likelihood and a Bayesian item calibration procedure are formulated. Further, a two-
stage item selection procedure for computerized adaptive testing is presented: First, a set
of items cloned from the same parent item is selected to be optimal at the abilit); estimate.
Second, a random item from this set is administered. Simulation studies illustrate the
accuracy of the item pool calibration and ability estimation procedures.

Keywords: computerized adaptive testing, item clones, item shells, multilevel item

response theory, marginal maximum likelihood, Bayesian item selection.
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Introduction

A major impediment to cost-effective implementation of computerized adaptive
testing (CAT) is the amount of resources needed for item pool development. One of the
solutions to the problem currently pursued is generating pools of items by using item-
cloning techniques. Early pioneers of this idea were Bormuth (1970), Hively, Patterson
and Page (1968) and Osburn (1968). Common to their approaches is a formal description
of a set of ”parent items” along with algorithms to derive a larger set of operational items
from them. These parent items are known as "item forms”, "item templates”, or "item
shells”, whereas the items generated from them are now widely known as ”item clones”.
We will use the term “parent item” to denote both the initial item and the set of clones
generated from it.

Parent items may take the form of a syntactic description of a test item with one or
more variable places for which substitution sets are specified. Clones are then generated
by random draws from the substitution sets. In these “replacement set procedures”
(Millman & Westman, 1989) the computer puts the answers to multiple-choice items in
random order, picks distractors from a list of possible wrong answers, and, in numerical
problems, substitutes random numbers in a specific spot in the item stem and adjusts
the alternatives accordingly. Parent items may also consists of intact items from which
clones are generated using transformation rules. Examples of such rules are linguistic
rules that transform one verbal item into others, geometric rules that present objects
from a different angle for spatial ability testing, transformations that allow one molecular
structure to be derived from another in testing of knowledge of organic chemistry, or rules
from proposition logic that generate items for testing of the ability in analytic reasoning.
Comprehensive reviews of the technology of item cloning are given in Bejar (1993) and
Roid and Haladyna (1982).

An important question is whether clones from the same parent item have comparable
statistical characteristics. If they do, important savings in the costs of item pool calibration
are possible, because it would then suffice to calibrate the characteristics of the parent

only. In an extreme case, one might assume that the item parameters are constant over
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Item Cloning - 3

the clones derived from the same parent. Empirical studies addressing this question are
reported in, for example, Hively, Patterson and Page (1968), Macready (1983), Macready
and Merwin (1973) and Meisner, Luecht and Reckase (1993). The general impression
from these studies is that the variability between clones from the same parent is much
smaller than between parents, but not small enough to justify the assumption of identical
values. Of course, the size of the remaining variability depends on various factors, such as
the type of knowledge or skill tested and the implementation of the item cloning technique.

The current paper is based on the expectation that attempts to improve item cloning
techniques are desirable but that some degree of within-parent variability will always
remain. The best way to deal with this variability is not to ignore it, but to model the
distribution of the item parameters and allow for the uncertainty about their individual
values when selecting the adaptive test.

A design for adaptive testing that fits in naturally with this approach is one with
item selection based on stratified or two-staged sampling of items from the pool. In
this sampling design, each item is selected in the following two steps: (1) A parent is
selected from the pool with a set of clones that is optimal at the current ability estimate
of the examinee; (2) A clone is randomly sampled from the set and administered to the
examinee. This design capitalizes on the statistical advantage of administering tests with
items adapted to the examinee’s ability but, as will be discussed below, due the random
sampling in the second step, also saves an important part of the resources needed for item
calibration in regular CAT.

The proposed sampling design leads to a two-level item response theory (IRT)
approach-with a lower level at which item clones are represented by a three-parameter
logistic (3PL) model and a higher level at which the item parameters in this model are
random with a (joint) distribution that represents within-parent variability. To capture
between-parent variability in item parameter values, these distributions are allowed to
vary in location and variance.

In.the model below, the distributions of the item parameters for the parents are

characterized by nine hyperparameters each. The values for these hyperparameters are
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estimated from a data set where, for each examinee in the sample, one clone sampled
from its parent. Because sampling is at random, the fact that the responses to the other
clones from the same parent are missing can be ignored. Estimating nine hyperparameters
per parent is the equivalent of calibrating three items under the 3PL model. Since item-
cloning techniques easily lead to much large numbers of clones per parent, the savings in
the resources needed when collecting calibration data are potentially enormous.

When selecting parent items in the first stage of the item-selection procedure, we
have to cope with distributions rather than individual values for the item parameters.
An obvious solution is to base selection of the parents on a Bayesian criterion with
the distribution of the item parameters averaged out. The result is a reduction in the
accuracy of ability estimation. Numerical examples of this reduction are shown in the
empirical examples presented below, both relative to the case of regular CAT from a pool
of individual items and a pool of cloned items calibrated under the regular 3PL model.

It is instructive to observe how the proposed type of adaptive testing can be viewed
as an intermediate case of (1) classical domain-referenced testing under a binomial model
(e.g., Lord & Novick, chap. 23) and (2) regular CAT from a pool of individual items. This
type of CAT shares the idea of random item selection with the former and optimal selection
at ability estimates with the latter. If all variability between the item-parameter values is
within the parents, it is identical to domain-referenced testing. If all variability is between
the parents, it is identical to CAT from a pool of individually written and calibrated items.
However, if item cloning is effective, much smaller within-parent than between-parent
variability is expected, and the proposed type of adaptive testing has efficiency close to
regular CAT.

From a practical point of view it often is necessary to have test specialist review items
generated by cloning algorithms before they are administered. The necessity of review
becomes more crucial if (1) the domain of knowledge or skills contains socially sensitive
material and (2) the algorithms can not be fully trusted. However, from a statistical point
of view, it does not make much difference if in the second stage of item selection clones

are drawn randomly from large sets of items generated and reviewed earlier that are stored
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physically in computer memory or if they are generated on the fly by computer algorithms
with a random seed. In either case the critical assumption of random sampling is met, and

sampling is from approximately the same parameter distributions.

Model

Consider an item pool generated from parents p = 1, ..., P. The clones from parent
p will be labeled i, = 1, ..., I,. The first-level model is the 3PL model, which describes

the probability of success on item i, as

expla;, (6 — b,)]

,%w)zpqxﬁz1}zq,+u—q91+am@(o—mﬂ’

1

where X;  is the response variable for item ¢, with X;, = 1foracorrect and X;, = 0 for
an incorrect response. The values of the item parameters (a;,, b;,, ¢;,) are realizations of
a random vector. The second-level model describes the distribution of this vector through

the transformation
&ip = (lOg a"ipa bi,,; ].Oglt cip) (2)

with a multivariate normal distribution

&ip ~ N(,‘l’p’ EP)’ (3)

where p, is the vector with the mean values of the item parameters for parent p and
3., their covariance matrix. The transformation in (2) is introduced to give the item
parameters scales for which the assumption of multivariate normality in (3) is reasonable.

In the calibration and item selection procedures below, we will assume that € has a

standard normal prior distribution, that is,

6~ N(0,1). 4)
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This assumption holds if j is from a population of exchangeable examinees with a normal
distribution of abilities.

The model presented in (1)-(4) has several relatives. The multilevel IRT models for
testlets in Bradlow, Wainer & Wang (1999) and Wainer, Bradlow, and Zu (2000) differ
fro the present model in having a random component for difficulty parameter b; but fixed
parameters a; and ¢;. The random component is used to allow for dependence between
responses to fixed items in the same testlet. Because our items are randomly sampled
from parents, all item parameters need to be random and dependence between résponses
to items from the same parent is captured by the covariance matrix in (3). The present
model also differ from the one in Albers, Does, Imbos and Jansen (1989) and Janssen,
Tuerlinckx, Meulders and de Boeck (2000) who also assume item sampling but model the

process by a version of the 1PL model with a random difficulty parameter.

Item Pool Calibration

In the present approach, item pool calibration amounts to estimation of the values
for each parent of the hyperparameters in the distribution in (3). It is assumed that
these parameters are stacked in a vector 7 = (;1.1, 31,y p, Xp). The values of these
parameters can be estimated by the methods of marginal maximum likelihood (MML) or
Bayes modal estimation (MAP).

The response vector of examinee j is denoted as x; = (:cz-pj) = (24,5, Tipj)» Where
ip is item clone 7 randomly drawn from parent p. As already noted, estimation of vector 7
is from a data set with for each examinee j the responses to one item clone sampled from
its parent. Because the responses to the other item clones are missing at random, they can
be ignored. In practice, the adaptive nature of the test will also involve sets of calibration
data with examinees missing parents. These data are missing at random too. However, to

save unnecessary complexity, our notation will not make this incompleteness explicit.
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MML Calibration

In MML estimation, a distinction in made between structural and nuisance
parameters. The structural parameters are estimated from a log-likelihood marginalized
with respect to the nuisance parameters. In the present case, the structural parameters
are in the vector 77, whereas the nuisance parameters are the ability parameters 6 and the
random item parameters §; . These nuisance parameters are supposed to be stacked in
vectors @ and &, respectively.

The marginal probability of observing response pattern x; is given by

(x5 m) = / / p(x; | 6, €)£(&,6|m)déds ©)
- / / T (x5 16, )&, 1y, 5)$(8)dE, 6 ©)

B / [H//P(Xm ' 0’€ip)h(€’ip‘[up’ p)d€; | #(0)dd. ()

The marginal log-likelihood of 7 is given by

log L(nx ) = _ logp( x;;m). (®)

J

The marginal likelihood equations for 7) can be easily derived using Fisher’s identity

(Efron, 1977; Louis 1982). The first-order derivatives with respect to 77 can be written as
9 1og Limx) = 3 B( logf;(€,05m) | x5,m) = O ©)
a,r’ - a,r’ 2 2 J ’

where log f;(€, 6;|n) is the so-called “complete data” log-likelihood

log f(&;,,0ln) =

> logp(xi,; | 6,€;) + > logp(§; |n) + log $(6),
P P
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and the expectation is with respect to the conditional posterior density for the nuisance

parameters, that is, with respect to
p(ﬁip)e l xj)n) X Hp(xfipj l 0)€ip)p(€ip|p'p) Zp)¢(0) (10)
P

It follows that the likelihood equations are given by

o = D E(&p | X5,m), (11)
J
20 =D B(&, 1%5,m) — 1, (12)
J
and
Opuw = Z E(Epu.gp‘UXJ)n) ~ Hpullpy, (13)
J

where indices u and v # u denote the uth and vth element in the parameter vectors. These
equations can be solved using an EM or Newton-Raphson algorithm.

Computation of the standard errors of the parameters estimates is a straightforward
generalization of the method for the 3PL model presented in Glas (2000). These estimates

are found upon inverting the approximate information matrix

!

0
ZE[ logf;(&,0;|ps, 3s) | x;, n]E[ %logfj(ﬁ,(?jlup,ﬂp)lxj, n

Bayes Modal Calibration
The use of Bayes modal estimation can be motivated by the fact that the parameters
in the 3PL model are sometimes hard to estimate because they are poorly determined by
: the available data. In such instances, the behavior of the item response functions over the

region of the ability scale where the respondents are located can be described by different

oA
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combinations of parameter values. As a result, the estimates of the paranieters in the 3PL
model are highly correlated. Adding a covariance matrix for every parent may worsen -
the identifiability of the model for such data sets.

To obtain “reasonable”, finite estimates, Mislevy (1986) considered a number of
Bayesian approaches. Each of them entails the introduction of prior distributions on |
the item parameters. Parameter estimates are computed maximizing the log-posterior
density of 77, which is proportional to log L(n; x) + logp(n | ) + logp(¢), where
p(n | €) is the prior density of the 7, characterized by parameters ¢, which in turn
follow a density p( ¢). In one approach, the prior distribution p( ) | {) is postulated by
fixed the item calibrator; in another, often labeled empirical Bayes, the parameters of the
prior distribution are estimated along with the other parameters, for example, as the modes
of their posterior distribution. In our case, the second approach is formally identical to
Bayes modal or maximum a posterior (MAP) estimation of the parent parameters, albeit
that the estimates have to be found for all parents simultaneously. The approach involves
a change of the likelihood equations to dlog L(n | x)dn+0logp(n | x)dn = 0, while
simultaneously the equations dlogp( 1 | ¢)/0¢+01og p(¢)/I¢ = 0 must be solved. An

outline of the procedure for the current item cloning model is given in Appendix A.

Discussion

The assumption that all respondents are drawn from one population can be replaced
by the assumption of multiple populations of respondents each with a normal ability
distribution indexed by a unique mean and variance parameter. Bock and Zimowski
(1997) point out that this generalization, together with the possibility of analyzing
incomplete item-calibration designs, provides a unified approach to such problems
as differential item functioning, item parameter drift, non-equivalent groups equating,
vertical equating and matrix-sampled educational assessment. Though not illustrated

here, calibration under the item-cloning model can also be extended to fit this framework.

Lo
Do
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Adaptive Selection of Parent Items

Our initial estimate of the ability of examinee 7 is the prior distribution in (4), which
has a density denoted as ¢(6). Suppose parents 1,..., k — 1 have been selected. For each
parent a clone has been administered, the responses to which are denoted by a vector

(k—-1) __ (k~1)

S (Zj1y ooy :l)j(k_l)). Then the posterior distribution of 6 given x is

k—1
p(0 | ) o 6(0) [ / P(3p | 0,€,)D(E, |1y, S)dE, (14)
p=1

The variance of this posterior distribution is denoted as Var(9|x§k_l)).

The kth parent should be selected to be optimal at this posterior distribution. Several
Bayesian criteria of optimality have been suggested; for studies of several old and new
criteria, see van der Linden (1998) and van der Linden and Pashley (2000). The one used
in the computer simulations below is the criterion of minimum expected posterior variance
adapted for use with the item-cloning model. It selects the kth parent to have minimum
posterior variance averaged both over the set of clones associated with the parent and the
responses to the clones predicted from the examinees current ability estimate:

If parent p in the pool would be selected as the kth parent in the test, the posterior
predictive distribution of the response of examinee j to a random item from this parent

. . k—
given the previous responses x{

)
] is given by

F(@ip, | V) = / [ / P(Zjp, | 0,€,)09(Ep, [ Bp, » Tp )dE,, | P(6 | xF7V)dB.  (15)

Note that the probability of the response is first averaged over the distribution of the
item parameters for parent p; and then over the posterior distribution of the ability of the
examinee.

The two possible responses lead to updates of the posterior variance which we denote

as Var(0|x§-k_l), Xp. = 0) and Var(9|x§-k_l), Xjp. = 1). The proposed criterion for the

S
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selection of the kth parent is the expected value of this update. That is,

Py = arg min, {Var(ol)ék_”, ime = 0)f(0] X§~'°"”)
(16)
FVar(Ob D, X, = DL )ir € Raf

where R is the set of parents in the pool from which the kth parent is chosen.

Simulation Studies

Two simulation studies were conducted. One study was to address the accuracy of
the MML calibration procedure for the item cloning model in (11)-(13) under a variety
of conditions. The other to address the accuracy of the ability estimator from the item
selection procedure based on the criterion in (16) under the same conditions.

Three different types of CAT were studied, namely CAT from a pool of:

(1) cloned items calibrated and administeréd under the item cloning model;

(2) individual items calibrated and administered under the regular 3PL model;

(3) cloned items calibrated and administered under the regular 3PL. model.

The comparison bétween Typel and Type 2 helps us to identify the potential loss in
accuracy due to second-stage item sampling and the presence of random item parameters
in the item cloning model. The comparison between Type 1 and Type 3 shows us
the statistical consequences of adaptive testing from a pool of cloned items under a
conventional model that ignores the dependences between responses to items cloned from
the same parent. These dependences are created by the fact that such items share certain
structural features and attributes. The regular 3PL model in Type 3 CAT does not allow
for such dependences, whereas the multilevel IRT model in (1)-(3) for Type 1 CAT does.

Items
Because the composition of the item pool can have a substantial impact on item
calibration and ability estimation results in CAT, the items used in each of the three

types of CAT were generated using a common multivariate normal distribution for the
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(transformed) item parameters (log a, b, logit ¢), with mean
Ko = (.0,.0, logit(.2)) (17)

and covariance matrix

0.20 0.05 -0.05
Yo = 0.06 1.00 0.10 |. (18)

-0.05 0.10 0.10
Item pools with a cloning structure were obtained by sampling the values for the
vector of means of the distribution of the item parameters for each parent in (3), Eps
from (17)-(18). The covariance matrices of these distributions were all equated to the
matrix in (18); that is, 3, was set equal to 3 for all p. Pools with individual items were
obtained sampling their true item parameter values from the distribution in (17)-(18). To
approximate the composition of the previous type of pool as closely as possible, the pools

were refreshed for each replication.

Calibration

In this simulation study, the following additional variables were manipulated:

(1) test length: n=20, 30 and 40 items;

(2) sample size: N=100, 400 and 1,000 examinees.

For each condition, N examinees were simulated, drawing random values for
from the standard normal distribution. The mean absolute error in the estimates of the
parameter in the item cloning model (Type 1 CAT) or the 3PL model used to calibrate the
item pools (Type 2 CAT) are shown in Table 1.

Insert Table 1 about here

The pattern in the errors for the two models are approximately the same. As expected,
the errors decreased both in the size of the sample and the length of the test, and generally

larger errors were obtained for the discrimination than for the difficulty parameters. The

O
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last three columns show the differences in mean absolute error between the parameters
estimates for the two models. The differences between the errors in the estimates of the
guessing parameter are negligible. The differences between the errors in the estimates of
the difficulty and discrimination parameters are small but, as expected, systematically in
favor of those for the regular CAT model. (Observe that these two sets of parameters are
on identical scales but have distributions true values that show random differences. For
the given item pool size, the effect on the comparison in Table 1 can be assumed to be
negligible, though.)

In Table 2, the same comparison is made for the parameters estimates for a pool of
cloned items calibrated under fhe item cloning model in this paper (Type 1 CAT) and a
regular 3PL model that ignores the item cloning structure (Type 3 CAT). The differences

are generally larger than in the previous comparison.

Insert Table 2 about here

The covariance matrix in (18) could be estimated only for calibration under the item
cloning model. The mean absolute estimation errors are given in Table 3. Observe that the
errors in the estimates of the variances decrease both in the sample size and the test length
but that the decrease is negligible for the estimates of the covariances. Generally, but not
unanticipated, estimation of the covariance matrix appeared to be much less accurate than

estimation of the vector of means of the parameters in the item cloning model.

Insert Table 3 about here

Ability Estimation

The same three types of CAT as in the calibration study were studied. The size of the
pool was always equal to 400. The final ability estimates in Type 1 CAT were calculated
as the expected value of the posterior distribution (EAP estimate) in (14). In the other

b,
()]
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two types of CAT, EAP estimates under the regular 3PL model with the prior in (4) were
calculated.

The following additional variables were manipulated:

(1) test length: n=20, 30 and 40 items.

(2) true ability value: §=-2.0. -1.0, 0.0, 1.0, and 2.0, and 6 ~ N (0, 1).

For each condition, 400 examinees were simulated. The item parameters were
redrawn for every simulee. The mean absolute errors in the ability estimates are shown in
Table 4. The comparison between the errors for Type 1 and Type 2 CAT shows the price in
efficiency to be paid for item cloning with second-stage random sampling of clones from
parent items. The differences were negligible for 6 values close to zero but increased
toward the tails of the @ distribution. This change is due to the use of the standard normal
prior in (4) which favors item selection near § = 0 at the beginning of the test for both
types of CAT. The comparison between Type 3 and Type 1 CAT shows the additional loss
of accuracy if the dependencies between responses to items cloned from the same parent
is not modeled. These differences were negligible for 8 values close to zero but again
increased toward the tails of the 6 distribution. The average error across sampling of
examinees from a standard normal population showed the same pattern but with smaller
values. Also, both series of differences showed a tendency to decrease in the length of
the test, albeit the tendency was smaller for the types of CAT with item cloning than for
regular CAT.

Insert Table 4 about here

Conclusion

The advantage of CAT with item cloning is a potentially large reduction in the
resources needed for item pool development. The price to be paid for this advantage
is a reduction in the accuracy of the ability estimates. For the typical test length in the

current adaptive testing programs of n = 30, the decrease in the average accuracy of
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ability estimation across a normal population of examinees was slightly over 10% for the
multilevel model in this paper. The decrease can easily be compensated by added 2-4
items to the test. It is left to the testing agent to decide if the trade-off by the reduction in

item pool development costs and test length is advantageous.
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Appendix A: Bayes Model Estimates for the Item Cloning Model

The marginal probability of observing response pattern x; is enhanced with a
conjugate prior p(p,, Xy | po, o). The conjugate prior distribution for p, and I, is
a product of a normal and an inverse-Wishart distribution (see, for instance, Box & Tiao,

1973). The marginal probability of examinee j’s response vector now becomes

(x5 M) = / / [T (x5 16, &5)p(& 5511250 Zo)P(#25 B | 12, Z0)$(6) dE ;8.
p
(A.1)

Consider the complete data specification
p(x, &0 | 1, 5) =[] p(xs0 | 6, &)P(Esp | 100 Zo)P(ts Zp | B0, T0)$(6).  (19)
j P
The factors

H Hp(ejplll'pa Ep)p(ll’p’ EP | Ho» E0)
j P
entail a normal model with a normal-inverse-Wishart prior, with parameters, pyand g,
vo the degrees of freedom for the prior of X, and x, the degrees of freedom for £4y. Then

the posterior is also inverse-Wishart distributed with parameters

H, = ;ﬁ;&.;"‘;ﬁ;l‘o
v = v+n
K = Ko+n

EP = SP + %(Ep - I"’O)(Ep - I"’O)T + an

n

where SP = 2:1(617 - Ep) (ep - Ep)T'
_”=
As can be verified in (9), the likelihood equations are the posterior expectations of

the first-order derivatives of the complete data likelihood. Analogous to (11)-(13), we
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now have

1
Kg+n

]
Ko +n

Ky = Z E(¢, | x;,m) + o, (A.3)
J

and

Zp = Z E[(€ - &)~ &) | x;,m] + (&, — o) (€, — po)T + o, (A4)

Ko
- Kg+n
J
with

& =2 E|x;n)
J

2l
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Table 1
Mean absolute error in item parameter estimates

Type 1 Type 2 1-2
n N o B v a B v a B ~«
20 100 312 395 .061 .304 .385 .060 .008 .010 .001
400 238 292 .056 .219 .278 .057 .019 .014 -.001
1000 201 241 .051 .172 .222 .051 .029 .019 .000

30 100 306 .384 .059 .295 .369 .059 .011 .015 .000
400 228 281 .054 213 .261 .054 .015 .020 .000
1000 189 .251 052 .165 .230 .052 .024 .021 .000

40 100 299 .384 .060 .287 .374 .060 .012 .010 .000
400 222 286 .055 .202 .264 .055 .020 .022 .000
1000 189 229 .051 .161 .219 .050 .028 .010 .001
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Table 2
Mean absolute error in item parameter estimates

Type 3 Type 1 3-1
n N o B 1 o B ~« a B~
20 100 353 409 .061 .312 .395 .061 .041 .014 .000
400 277 310 .054 .238 .292 .056 .039 .018 -.002
1000 244 275 .051 .201 .241 .051 .043 .034 .000

30 100 321 407 .058 .306 .384 .059 .015 .023 -.001
400 259 303 .054 .228 .281 .054 .029 .022 .000
1000 241 277 .052 .189 .251 .052 .052 .026 .000

40 100 321 400 .057 .299 .384 .060 .022 .016 -.003
400 257 303 .054 .222 .286 .055 0.35 .017 -.001
1000 238 277 .052 .189 .229 .051 .049 .048 .001
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Table 3
Mean absolute error for estimates of item covariance matrix
S N Oioga 0B  Ologity Ologaf Tlogalogity I Blogity

20 100 040 278 0070 .149 .024 122
400 028 223 0066 .136 017 125

1000 026 .218 .0053 .132 .017 122

30 100 042 241 0070 .141 .024 123
400 027 223 0068 .132 .017 122

1000 027 215 .0050 .137 .017 126

40 100 034 275 0058 .134 .020 .110
400 026 206 .0055 .116 016 .105

1000 025 207 .0050 .116 .016 .107

-
o




Table 4

Mean absolute error in ability estimates
Type of 0 Standard
n CAT 20 -1.0 0.0 1.0 20 Normal
20 1 560 285 0.263 .268 .421 291
2 438 256 0.257 202 .348 282
3 557 292 0.264 .248 468 .290
30 1 476 285 261 225 .365 .260
2 364 240 257 153 .275 .230
3 489 279 256 .207 .403 258
40 1 436 265 0.255 .175 .307 223
2 332 .219 0.255 .132 .248 .204
3 453 247 0.264 .152 341 234

s M
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