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We are developing computerized feature extraction and classification methods to analyze malignant
and benign microcalcifications on digitized mammograms. Morphological features that described
the size, contrast, and shape of microcalcifications and their variations within a cluster were de-
signed to characterize microcalcifications segmented from the mammographic background. Texture
features were derived from the spatial gray-level dependence~SGLD! matrices constructed at
multiple distances and directions from tissue regions containing microcalcifications. A genetic
algorithm~GA! based feature selection technique was used to select the best feature subset from the
multi-dimensional feature spaces. The GA-based method was compared to the commonly used
feature selection method based on the stepwise linear discriminant analysis~LDA! procedure.
Linear discriminant classifiers using the selected features as input predictor variables were formu-
lated for the classification task. The discriminant scores output from the classifiers were analyzed
by receiver operating characteristic~ROC! methodology and the classification accuracy was quan-
tified by the area,Az , under the ROC curve. We analyzed a data set of 145 mammographic
microcalcification clusters in this study. It was found that the feature subsets selected by the
GA-based method are comparable to or slightly better than those selected by the stepwise LDA
method. The texture features (Az50.84) were more effective than morphological features (Az

50.79) in distinguishing malignant and benign microcalcifications. The highest classification ac-
curacy (Az50.89) was obtained in the combined texture and morphological feature space. The
improvement was statistically significant in comparison to classification in either the morphological
(p50.002) or the texture (p50.04) feature space alone. The classifier using the best feature subset
from the combined feature space and an appropriate decision threshold could correctly identify 35%
of the benign clusters without missing a malignant cluster. When the average discriminant score
from all views of the same cluster was used for classification, theAz value increased to 0.93 and the
classifier could identify 50% of the benign clusters at 100% sensitivity for malignancy. Alterna-
tively, if the minimum discriminant score from all views of the same cluster was used, theAz value
would be 0.90 and a specificity of 32% would be obtained at 100% sensitivity. The results of this
study indicate the potential of using combined morphological and texture features for computer-
aided classification of microcalcifications. ©1998 American Association of Physicists in Medi-
cine. @S0094-2405~98!00910-9#
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I. INTRODUCTION

Mammography is the most sensitive method for early de
tion of breast cancers. However, its specificity for differe
tiating malignant and benign lesions is relatively low. In t
United States, the positive predictive value of mammogra
ranges from about 15% to 30%.1,2 Various methods are bein
developed to improve the sensitivity and specificity of bre
cancer detection.3 Computer-aided diagnosis~CAD! is con-
sidered to be one of the promising approaches that may
prove the efficacy of mammography.4 Properly designed
CAD algorithms can automatically detect suspicious lesi
2007 Med. Phys. 25 „10…, October 1998 0094-2405/98/25 „1
c-
-

y

t

-

s

on a mammogram and alert the radiologist to these regio
They can also extract image features from regions of inte
~ROIs!and estimate the likelihood of malignancy for a give
lesion, thereby providing the radiologist with additional i
formation for making diagnostic decisions.

There are two major approaches to the developmen
CAD schemes for classification of mammographic abn
malities. One approach uses computer vision technique
extract image features from the digitized mammograms
classify the lesions based on the computer-extracted featu
The computer-extracted features can include morpholog
features that are commonly used by radiologists for diag
20070…/2007/13/$10.00 © 1998 Am. Assoc. Phys. Med.
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sis, as well as texture features that may not be readily
ceived by human eyes. The computerized analysis m
therefore increase the utilization of mammographic ima
information and improve the accuracy of differentiating m
lignant and benign lesions. The other approach uses rad
gists’ ratings of mammographic features or encodes the
diologists’ readings with numerical values. The lesions
then classified based on these radiologist-extracted feat
This approach assists radiologists by systematically extr
ing image features and by optimally merging the featu
with a statistical classifier to reach a diagnostic decisi
Additional risk factors based on patient demographic inf
mation and medical or family histories may also be includ
as input in either approach.

A number of investigators have developed feature extr
tion and classification methods for characterization of ma
mographic masses or microcalcifications. Ackermanet al.5

developed 4 measures of malignancy and classified les
recorded on 120 digitized xeroradiographs by 3 decis
methods. Kildayet al.6 used 7 shape descriptors and patie
age to classify 39 masses and could correctly classify 69%
the masses. Huoet al.7 analyzed the spiculation of mass
using a radial edge-gradient analysis technique and achi
an area,Az , under the receiver operating characteris
~ROC! curve of 0.88 in a data set of 95 masses. Sah
et al.8,9 developed a rubber-band straightening image tra
formation technique to analyze the texture in the region s
rounding a mass and obtained anAz of 0.94 in a data set o
168 masses. Pohlmanet al.10 extracted 6 morphological de
scriptors to classify 47 masses and obtainedAz values rang-
ing from 0.76 to 0.93. Weeet al.11 analyzed 51 microcalci-
fication clusters on specimen radiographs using the ave
gray level, contrast, and horizontal length of the microca
fications and obtained 84% correct classification. Foxet al.12

included cluster features in their classifier and obtained 6
correct classification in a data set of 100 clusters from sp
men radiographs. Chanet al.13–18 developed morphologica
and texture features and evaluated various feature class
for differentiation of malignant and benign microcalcific
tions. Shenet al.19 used 3 shape features, compactness,
ments, and Fourier descriptors to classify 143 individual m
crocalcifications with a nearest neighbor classifier a
obtained 100% classification accuracy. Wuet al.20 classified
80 pathologic specimens radiographs with a convolut
neural network and obtained anAz of 0.90. Jianget al.21

trained a neural network classifier to analyze 8 features
tracted from microcalcification clusters and obtained anAz

of 0.92 in a data set of 53 patients. Thieleet al.22 extracted
texture and fractal features from the tissue region surrou
ing a microcalcification cluster for classification an
achieved a sensitivity of 89% at a specificity of 83% for
clusters. Dhawanet al.23 used features derived from firs
order and second-order gray-level histogram statistics
obtained anAz of 0.81 with a neural network classifier for
data set of 191 clusters.

Computerized classification of mammographic lesions
ing radiologist-extracted features has also been reported
number of investigators. Ackermanet al.24 estimated the
Medical Physics, Vol. 25, No. 10, October 1998
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probability of malignancy of mammographic lesions by an
lyzing 36 radiologist-extracted characteristics with an au
matic clustering algorithm and obtained a specificity of 45
at a sensitivity of 100% in a data set of 102 cases. G
et al.25 analyzed 12 radiologist-extracted features of ma
mographic lesions with a computer algorithm and obtaine
specificity of 88% at a sensitivity of 79% in a data base
500 patients. Gettyet al.26 developed a computer classifier
enhance the differentiation of malignant and benign lesi
by a radiologist during interpretation of xeromammogram
Using a similar approach, D’Orsiet al.27 evaluated a com-
puter aid and obtained an improvement of about 0.05 in s
sitivity or specificity in mammographic reading. Wuet al.28

trained a neural network to merge 14 radiologist-extrac
features for classification of mammographic lesions and
tained anAz of 0.89. Bakeret al.29 trained a neural network
based on the lexicon of the Breast Imaging Recording
Data System of the American College of Radiology a
found that the neural network could improve the positi
predictive value from 35% to 61% in 206 lesions. Loet al.30

used a similar approach to predict breast cancer invasion
obtained anAz of 0.91 for 96 lesions. Although the results o
these studies varied over a wide range and the performa
of the computer algorithms are expected to depend stron
on data set, they indicate the potential of using CAD te
niques to improve the diagnostic accuracy of differentiat
malignant and benign lesions.

In our early studies, we found that texture features
tracted from spatial gray-level dependence~SGLD! matrices
at multiple distances were useful for differentiating mali
nant and benign masses on mammograms. This may b
tributed to the texture changes in the breast tissue due
developing malignancy. The usefulness of SGLD textu
measures in differentiating malignant and benign breast
sues was further demonstrated by analysis of mammogra
microcalcifications.17,18,31 In a preliminary study, we devel
oped morphological features to describe the size, shape,
contrast of the individual microcalcifications and their var
tion within a cluster. We used these features to classify
microcalcifications and obtained moderate results.13,15 In the
present study, we expanded the data set and explored
feasibility of combining texture and morphological featur
for classification of microcalcifications. The classification a
curacy in the combined feature space was compared
those obtained in the texture feature space or in the morp
logical feature space alone. We also studied the use
genetic algorithm32–34 ~GA! to select a feature subset from
the large-dimension feature spaces, and compared the cl
fication results to those obtained from features selected w
stepwise linear discriminant analysis~LDA!.35 Linear dis-
criminant classifiers36 were designed for the classificatio
tasks. The performance of the classifiers was analyzed
ROC methodology37 and the classification accuracy wa
quantified with the area,Az , under the ROC curve.
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II. MATERIALS AND METHODS

A. Data set

The data set for this study consisted of 145 clusters
microcalcifications from mammograms of 78 patients. T
cases were selected from the patient files in the Departm
of Radiology at the University of Michigan. The only sele
tion criterion was that it included a biopsy-proven microc
cification cluster. We kept the number of malignant and
nign cases reasonably balanced so that 82 benign an
malignant clusters were included. All mammograms w
acquired with a contact technique using mammography
tems accredited by the American College of Radiolo
~ACR!. The dedicated mammographic systems had mo
denum anode and molybdenum filter, 0.3 mm nominal fo
spot, reciprocating grid, and Kodak MinR/MinR E scree
film systems with extended processing. A radiologist exp
enced in mammography ranked the visibility of each mic
calcification cluster on a scale of 1~obvious! to 5 ~subtle!,
relative to the visibility range of microcalcification cluste
encountered in clinical practice. The histogram of the visib
ity ranking of the 145 clusters is shown in Fig. 1. The his
gram indicated the mix of subtle and obvious clusters
cluded in the data set.

The selected mammograms were digitized with a la
scanner~Lumisys DIS-1000!at a pixel size of 0.035 mm
30.035 mm and 12-bit gray levels. The digitizer has an
tical density~O.D.! range of about 0 to 3.5. The O.D. on th
film was digitized linearly to pixel value at a calibration o
0.001 O.D. unit/pixel value in the O.D. range of about 0
2.8. The digitizer deviated from a linear response at O
higher than 2.8.

B. Morphological feature space

For the extraction of morphological features, the locatio
of the individual microcalcifications have to be known. W
have developed an automated program for detection of i
vidual microcalcifications.38 However, the detection sensitiv
ity is not 100% and the detected signals include fal
positives. Furthermore, automated detection tends to ha
higher likelihood of detecting obvious microcalcification

FIG. 1. Distribution of the visibility rankings of the 145 clusters of micr
calcifications. Higher ranking corresponds to more subtle clusters.
Medical Physics, Vol. 25, No. 10, October 1998
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than subtle ones, which may bias the evaluation of the c
sification capability of the extracted features and the train
classifiers if microcalcifications detected by the automa
program are used for classifier development. Since th
variables are program dependent, we isolated the detec
problem from the classification problem in this study by u
ing manually identified true microcalcifications for the mo
phological feature analysis. The true microcalcificatio
were defined as those visible on the film mammograms w
a magnifier. Magnification mammograms were used oc
sionally for verification when they were available, but
most cases only contact mammograms were used.
present, there is no other method that can more reliably id
tify individual microcalcifications on mammograms. Spec
men radiographs can confirm the presence of the microca
fications but the locations of the individual micro
calcifications cannot be correlated with those on the ma
mograms because of the very different imaging geome
and techniques.

We have developed an automated signal extraction p
gram to determine the size, contrast, signal-to-noise r
~SNR!, and shape of the microcalcifications from a mamm
gram based on the coordinate of each individual microca
fication. In a local region of 1013101 pixels centered at eac
signal site, the low frequency structured background is e
mated by polynomial curve fitting in the horizontal and ve
tical directions and then averaging the fitted values obtai
in the two directions at each pixel. This background estim
tion method is used because it can approximate the b
ground more closely than two-dimensional surface fitting
the distance-weighted interpolation method~described be-
low! used for texture feature extraction. The centrall 3 l pix-
els that contain the signal are excluded from the curve fitt
and noise estimation. The sizel is chosen to be a constant o
15 pixels which is larger than the diameters of the microc
cifications of interest yet much smaller than the local regi
The background pixel values in thisl 3 l region are estimated
from the fitted and smoothed background surface. The ex
sion of the signal region is necessary so that the high con
pixel values of the microcalcification will not affect th
background estimation at the signal site. Other microcalc
cations that may locate within the 1013101 pixel region are
treated as background pixels because their effect on the
timated background levels at the signal site will be relativ
small.

After subtraction of the structured background, the lo
root-mean-square~rms! noise is calculated. A gray-leve
threshold is determined as the product of the rms noise
an input SNR threshold. With a region growing techniqu
the signal region is then extracted as the connected pi
above the threshold around the manually identified sig
location. A high threshold will result in extracting only th
peak pixels of the microcalcification which may not repr
sent its shape perceived on the mammogram. A low thre
old will cause the microcalcification region to grow into th
surrounding background pixels. Since there is no objec
standard what the actual shape of a microcalcification is o
mammogram, the proper threshold to extract the signals
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2010 Chan et al. : Mammographic microcalcifications 2010
determined by visually comparing the microcalcifications
the original image and the thresholded image of the mic
calcifications superimposed on a background of cons
pixel values. After an experienced radiologist compare
subset of randomly selected microcalcification clusters
tracted at different thresholds, an SNR threshold of 2.0 w
chosen for all cases. An example of a malignant cluster
the microcalcifications extracted at an SNR threshold of
is shown in Fig. 2.

The feature descriptors determined from the extracted
crocalcifications are listed in Table I. The size of a microc
cification ~SA! is estimated as the number of pixels in t

FIG. 2. An example of a cluster of malignant microcalcifications in the d
set: ~a! the cluster with mammographic background,~b! the cluster after
segmentation. Morphological features are extracted from the segmente
crocalcifications.
Medical Physics, Vol. 25, No. 10, October 1998
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signal region. The mean density~MD! is the average of the
pixel values above the background level within the sig
region. The second moments are calculated as

Mxx5(
i

gi~xi2Mx!
2/M0 , ~1!

M yy5(
i

gi~yi2M y!2/M0 , ~2!

Mxy5(
i

gi~xi2Mx!~yi2M y!/M0 , ~3!

where gi is the pixel value above the background, a
(xi ,yi) are the coordinates of thei th pixel. The moments
M0 , Mx andM y are defined as follows:

M05(
i

gi , ~4!

Mx5(
i

gixi /M0 , ~5!

M y5(
i

giyi /M0 . ~6!

The summations are over all pixels within the signal regio
The lengths of the major axis, 2a, and the minor axis, 2b, of
the effective ellipse that characterizes the second mom
are given by

2a5A2@Mxx1M yy1A~Mxx2M yy!
214Mxy

2 #, ~7!

2b5A2@Mxx1M yy2A~Mxx2M yy!
214Mxy

2 #. ~8!

The eccentricity~EC! of the effective ellipse can be derive
from the major and minor axes as

e5
Aa22b2

a
. ~9!

The moment ratio~MR! is defined as the ratio ofMxx to
M yy , with the larger second moment in the denominat
The axis ratio~AR! is the ratio of the major axis to the mino
axis of the effective eclipse.

To quantify the variation of the visibility and shape d
scriptors in a cluster, the maximum~MX!, the average~AV!
and the standard deviation~SD! of each feature for the indi-
vidual microcalcifications in the cluster are calculated. T
coefficient of variation~CV!, which is the ratio of the SD to
AV, is used as a descriptor of the variability of a certa

i-

TABLE I. The 21 morphological features extracted from a microcalcificat
cluster.

Average
Standard
deviation

Coefficient
of variation Maximum

Area AVSA SDSA CVSA MXSA
Mean density AVMD SDMD CVMD MXMD
Eccentricity AVEC SDEC CVEC MXEC
Moment ratio AVMR SDMR CVMR MXMR
Axis ratio AVAR SDAR CVAR MXAR
No. of microcalcifications

in cluster
NUMS
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2011 Chan et al. : Mammographic microcalcifications 2011
feature within a cluster. Twenty cluster features are there
derived from the five features~size, mean density, momen
ratio, axis ratio, and eccentricity!of the individual microcal-
cifications. Another feature describing the number of mic
calcifications in a cluster~NUMS! is also added, resulting in
a 21-dimensional morphological feature space.

C. Texture feature space

Our texture feature extraction method has been descr
in detail previously.31 Briefly, texture features are extracte
from a 102431024 pixel region of interest~ROI! that con-
tains the cluster of microcalcifications. Most of the cluste
in this data set can be contained within the ROI. For the f
clusters that are substantially larger than a single ROI, a
tional ROIs containing the remaining parts of the cluster
extracted and processed in the same way as the other R
The texture feature values extracted from the different R
of the same cluster are averaged and the average value
used as the feature values for that cluster.

For a given ROI, background correction is first perform
to reduce the low frequency gray-level variation due to
density of the overlapping breast tissue and the x-ray ex
sure conditions. The gray level at a given pixel of the lo
frequency background is estimated as the average of
distance-weighted gray levels of four pixels at the inters
tions of the normals from the given pixel to the four edges
the ROI.39 The estimated background image was subtrac
from the original ROI to obtain a background-corrected i
age. An example of the background correction procedur
shown in Fig. 3.

As discussed in our previous study,31 it was found that the
texture features derived from the SGLD matrix of the R
provided useful texture information for classification of m
crocalcification clusters. The SGLD matrix eleme
pu ,d( i , j ), is the joint probability of the occurrence of gra
levelsi andj for pixel pairs which are separated by a distan
d and at a directionu.40 The SGLD matrices were con
structed from the pixel pairs in a subregion of 5123512
pixels centered approximately at the center of the cluste
the background-corrected ROI so that any potential edge
fects caused by background correction will not affect
texture extraction. We analyzed the texture features in f
directions:u50°, 45°, 90°, and 135° at each pixel pair di
tanced. The pixel pair distance was varied from 4 to 4
pixels in increments of 4 pixels. Therefore, a total of
SGLD matrices were derived from each ROI. The SGL
matrix depends on the bin width~or gray-level interval! used
in accumulating the histogram. Based on our previous stu
a bin width of four gray levels was chosen for constructi
the SGLD matrices. This is equivalent to reducing the gr
level resolution~or bit depth! of the 12-bit image to 10 bits
by eliminating the 2 least significant bits.

From each of the SGLD matrices, we derived 13 text
measures including correlation, entropy, energy~angular sec-
ond moment!, inertia, inverse difference moment, sum av
age, sum entropy, sum variance, difference average, di
ence entropy, difference variance, information measure
Medical Physics, Vol. 25, No. 10, October 1998
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correlation 1, and information measure of correlation 2. T
formulation of these texture measures could be found in
literature.31,40 As found in our previous study,41 we did not
observe a significant dependence of the discriminatory po
of the texture features on the direction of the pixel pairs
mammographic textures. However, since the actual dista
between the pixel pairs in the diagonal direction was a fac

FIG. 3. An example of background correction for the ROIs before text
feature extraction. The ROI from the original image is shown in Fig. 2~a!.
~a! The estimated low frequency background gray level, and~b! the ROI
after background correction. The background gray-level variation due to
varying x-ray penetration in the breast tissue is reduced. The contourin
the background image is a display artifact that does not exist in the ca
lated image file. For display purpose, the background-corrected RO
contrast-enhanced to improve the visibility of the microcalcifications and
detailed structures.



th

-
e
ix
n

tu
te
on

a
r

o
e
n

se
in
a

er
ce
b
re
io

de
i-
ca
rg
e
ign
h

nd

en

are
mo-
ture

s-
or

s is
A,
a

ature
er’s

arti-
t is
of
f the
he
area,
ers
d a
rti-
the
d
.

fea-

a

se-

ver

er-
hro-
this
re-

tur
o-

2012 Chan et al. : Mammographic microcalcifications 2012
of& greater than that in the axial direction, we averaged
feature values in the axial directions~0° and 90°! and in the
diagonal directions~45° and 135°! separately for each tex
ture feature derived from the SGLD matrix at a given pix
pair distance. The average texture features at the ten p
pair distances and two directions formed a 260-dimensio
texture feature space.

D. Feature selection

Feature selection is one of the most important steps
classifier design because the presence of ineffective fea
often degrades the performance of a classifier on
samples. This is partly caused by the ‘‘curse of dimensi
ality’’ problem that the classifier is inadequately trained in
large-dimension feature space when only a finite numbe
training samples is available.42–45 We compared two feature
selection methods to extract useful features from the m
phological, texture, and the combined feature spaces. On
a genetic algorithm approach, and the other is the commo
used stepwise linear discriminant analysis method.

1. Genetic algorithm for feature selection

The genetic algorithm~GA! methodology was first intro-
duced by Holland in the early 1970s.32,33 A GA solves an
optimization problem based on the principles of natural
lection. In natural selection, a population evolves by find
beneficial adaptations to a complex environment. The ch
acteristics of a population are carried onto the next gen
tion by its chromosomes. New characteristics are introdu
into a chromosome by crossover and mutation. The proba
ity of survival or reproduction of an individual depends mo
or less on its fitness to the environment. The populat
therefore evolves toward better-fit individuals.

The application of GA to feature selection has been
scribed in the literature.46,47 We have demonstrated prev
ously that a GA could select effective features for classifi
tion of masses and normal breast tissue from a very la
dimension feature space.34 The GA was adapted to th
current problem for classification of malignant and ben
microcalcifications. A brief outline is given as follows. Eac
feature in a given feature space is treated as a gene a
encoded by a binary digit~bit! in a chromosome. A ‘‘1’’
represents the presence of the feature and a ‘‘0’’ repres
the absence of the feature. The number of genes~bits! on a
chromosome is equal to the dimensionality~k! of the feature

FIG. 4. A schematic diagram of the genetic algorithm designed for fea
selection used in this study.X1 ,...,Xn represents the set of parent chrom
somes andX18 ,...,Xn8 represents the set of offspring chromosomes.
Medical Physics, Vol. 25, No. 10, October 1998
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space, but only the features that are encoded as ‘‘1’’
actually present in the subset of selected features. A chro
some therefore represents a possible solution to the fea
selection problem.

The implementation of GA for feature selection is illu
trated in the block diagram shown in Fig. 4. To allow f
diversity, a large number,n, of chromosomes,X1 ,..., Xn , is
chosen as the population. The number of chromosome
kept constant in each generation. At the initiation of the G
each bit on a chromosome is initialized randomly with
small but equal probability,Pinit , to be ‘‘1.’’ The selected
feature subset on a chromosome is used as the input fe
variables to a classifier, which was chosen to be the Fisch
linear discriminant in this study.

The available samples in the dataset are randomly p
tioned into a training set and a test set. The training se
used to formulate a linear discriminant function with each
the selected feature subsets. The effectiveness of each o
linear discriminants for classification is evaluated with t
test set. The classification accuracy is determined as the
Az , under the ROC curve. To reduce biases in the classifi
due to case selection, training and testing are performe
large number of times, each with a different random pa
tioning of the data set. In this study, we chose to partition
dataset 80 times and the 80 testAz values were averaged an
used for determination of the fitness of the chromosome

The fitness function for thei th chromosome,F( i ), is for-
mulated as

F~ i !5F f ~ i !2 f min

f max2 f min
G2

, i 51,...,n, ~10!

where

f ~ i !5Az~ i !2aN~ i !,

Az( i ) is the average testAz for the i th chromosome over the
80 random partitions of the data set,f min and f max are the
minimum and maximumf ( i ) among then chromosomes,
N( i ) is the number of features in thei th chromosome, anda
is a penalty factor, whose magnitude is less than 1/k, to
suppress chromosomes with a large number of selected
tures. The value of the fitness functionF( i ) ranges from 0 to
1. The probability of thei th chromosome being selected as
parent,Ps( i ), is proportional to its fitness function:

Ps~ i !5F~ i !/(
i 51

n

F~ i !, i 51,...,n. ~11!

A random sampling based on the probabilities,Ps( i ), will
allow chromosomes with higher value of fitness to be
lected more frequently.

For every pair of selected parent chromosomes,Xi and
Xj , a random decision is made to determine if crosso
should take place. A uniform random number in~0,1# is
generated. If the random number is greater thanPc , the
probability of crossover, then no crossover will occur; oth
wise, a random crossover site is selected on the pair of c
mosomes. Each chromosome is split into two strings at
site and one of the strings will be exchanged with the cor

e
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sponding string from the other chromosome. Crossover
sults in two new chromosomes of the same length.

After crossover, another chance of introducing new f
tures is obtained by mutation. Mutation is applied to ea
gene on every chromosome. For each bit, a uniform rand
number in~0,1# is generated. If the random number is grea
thanPm , the probability of mutation, then no mutation wi
occur; otherwise, the bit is complemented. The processe
parent selection, crossover, and mutation result in a new
eration ofn chromosomes,X18 ,...,Xn8 , which will again be
evaluated with the 80 training and test set partitions as
scribed above. The chromosomes are allowed to evolve
a preselected number of generations. The best subset o
tures is chosen to be the chromosome that provides the h
est averageAz during the evolution process.

In this study, 500 chromosomes were used in the pop
tion. Each chromosome has 281 gene locations.Pinit was
chosen to be 0.01 so that each chromosome started with
to three features on the average. We variedPc from 0.7 to
0.9, Pm from 0.001 to 0.005, anda from 0 to 0.001. These
ranges of parameters were chosen based on our previou
perience with other feature selection problems using GA34

2. Stepwise linear discriminant analysis

The stepwise linear discriminant analysis~LDA! is a com-
monly used method for selection of useful feature variab
from a large feature space. Detailed descriptions of
method can be found in the literature.35 The procedure is
briefly outlined below. The stepwise LDA uses a forwa
selection and backward removal strategy. When a featur
entered into or removed from the model, its effect on
separation of the two classes can be analyzed by sev
criteria. We use the Wilks’ lambda criterion which min
mizes the ratio of the within-group sum of squares to
total sum of squares of the two class distributions; the s
nificance of the change in the Wilks’ lambda is estimated
F-statistics. In the forward selection step, the features
entered one at a time. The feature variable that causes
most significant change in the Wilks’ lambda will be in
cluded in the feature set if itsF value is greater than th
F-to-enter (F in) threshold. In the feature removal step, t
features already in the model are eliminated one at a ti
The feature variable that causes the least significant cha
in the Wilks’ lambda will be excluded from the feature set
its F value is below theF-to-remove (Fout) threshold. The
stepwise procedure terminates when theF values for all fea-
tures not in the model are smaller than theF in threshold and
theF values for all features in the model are greater than
Fout threshold. The number of selected features will decre
if either theF in threshold or theFout threshold is increased
Therefore, the number of features to be selected can be
justed by varying theF in andFout values.

E. Classifier

The training and testing procedure described above
used for the purpose of feature selection only. After the b
Medical Physics, Vol. 25, No. 10, October 1998
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subset of features as determined by either the GA or
stepwise LDA procedure was found, we performed the cl
sification as follows.

The linear discriminant analysis36 procedure in the SPSS
software package35 was used to classify the malignant an
benign microcalcification clusters. We used a cro
validation resampling scheme for training and testing
classifier. The data set of 145 samples was randomly p
tioned into a training set and a test set by an approxima
3:1 ratio. The partitioning was constrained so that ROIs fr
the same patient were always grouped into the same set.
training set was used to determine the coefficients~or
weights! of the feature variables in the linear discrimina
function. The performance of the trained classifier w
evaluated with the test set. In order to reduce the effec
case selection, the random partitioning was performed
times. The results were then averaged over the 50 partiti

The classification accuracy of the LDA was evaluated
ROC methodology. The output discriminant score from t
LDA classifier was used as the decision variable in the R
analysis. TheLABROC program,37 which assumes binorma
distributions of the decision variable for the two classes a
fits an ROC curve to the classifier output based
maximum-likelihood estimation, was used to estimate
ROC curve of the classifier. The ROC curve represents
relationship between the true-positive fraction~TPF!and the
false-positive fraction~FPF!as the decision threshold varie
The area under the ROC curve and the standard deviatio
the Az were provided by theLABROC program for each par-
tition of training and test sets. The average performance
the classifier was estimated as the average of the 50 tesAz

values from the 50 random partitions.
To obtain a single distribution of the discriminant scor

for the test samples, we performed a leave-one-case-ou
sampling scheme for training and testing the classifier.
this scheme, one of the 78 cases was left out at a time and
clusters from the other 77 cases were used for formulatio
the linear discriminant function. The resulting LDA classifi
was used to classify the clusters from the left-out case.
procedure was performed 78 times so that every case was
out once to be the test case. The test discriminant scores
all the clusters were accumulated in a distribution which w
then analyzed by theLABROC program. Using the distribu-
tions of discriminant scores for the test samples from
leave-one-case-out resampling scheme, theCLABROC pro-
gram could be used to test the statistical significance of
differences between ROC curves48 obtained from different
conditions. The two-tailedp value for the difference in the
areas under the ROC curves was estimated.

III. RESULTS

The variations of best feature set size and classifier p
formance in terms ofAz with the GA parameters were tabu
lated in Table II~a!–~c! for the morphological, the texture
and the combined feature spaces, respectively. The num
of generations that the chromosomes evolved was fixed a
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TABLE II. Dependence of feature selection and classifier performance on
parameters:~a! morphological feature space,~b! texture feature space, an
~c! combined feature space. The number of generations that the GA evo
was fixed at 75. The best result for each feature space is identified wit
asterisk.

~a!
Pc Pm a No. of features Az ~Training! Az ~Test!

0.7 0.001 0 6 0.84 0.79
0.8 3 0.77 0.76
0.9 4 0.80 0.77
0.7 0.003 7 0.82 0.78
0.8 6 0.82 0.79
0.9 6 0.84 0.79
0.7 0.001 0.0005 3 0.77 0.76
0.8 4 0.80 0.77
0.9 3 0.77 0.76
0.7 0.003 6 0.84 0.79*
0.8 6 0.84 0.79
0.9 6 0.82 0.79
0.7 0.001 0.0010 3 0.77 0.76
0.8 4 0.80 0.77
0.9 3 0.77 0.76
0.7 0.003 6 0.84 0.79
0.8 7 0.84 0.79
0.9 4 0.80 0.77

~b!
Pc Pm a No. of features Az ~Training! Az ~Test!

0.7 0.001 0 7 0.87 0.82
0.8 8 0.88 0.84
0.9 8 0.88 0.84
0.7 0.003 17 0.91 0.82
0.8 9 0.88 0.79
0.9 10 0.88 0.79
0.7 0.001 0.0005 9 0.88 0.85*
0.8 7 0.86 0.82
0.9 8 0.87 0.84
0.7 0.003 13 0.90 0.81
0.8 10 0.87 0.81
0.9 12 0.88 0.81
0.7 0.001 0.0010 7 0.87 0.83
0.8 9 0.88 0.83
0.9 8 0.88 0.83
0.7 0.003 10 0.88 0.83
0.8 21 0.94 0.82
0.9 12 0.88 0.80

~c!
Pc Pm a No. of features Az ~Training! Az ~Test!

0.7 0.001 0 13 0.93 0.88
0.8 12 0.92 0.88
0.9 12 0.92 0.89
0.7 0.003 12 0.91 0.86
0.8 16 0.94 0.88
0.9 17 0.95 0.88
0.7 0.001 0.0003 12 0.92 0.87
0.8 12 0.92 0.86
0.9 12 0.93 0.88
0.7 0.003 13 0.93 0.87
0.8 13 0.93 0.88
0.9 12 0.94 0.89*
0.7 0.005 12 0.89 0.80
0.7 0.001 0.0010 11 0.92 0.87
0.8 10 0.91 0.87
0.9 11 0.91 0.86
0.7 0.003 10 0.91 0.86
0.8 14 0.93 0.87
0.9 13 0.92 0.87
0.7 0.005 11 0.89 0.81
0.8 12 0.88 0.82
0.9 12 0.89 0.81
Medical Physics, Vol. 25, No. 10, October 1998
in these tables. The training and testAz values were obtained
from averaging results of the 50 partitions of the data s
using the selected feature sets.

The results of feature selection using the stepwise L
procedure with a range ofF in andFout thresholds were tabu
lated in Table III~a!–~c!. The thresholds were varied so th
the number of selected features varied over a wide ran
Often different choices ofF in andFout values could result in
the same selected feature set as shown in the tables b
number of features in the set. The averageAz values obtained
from the 50 partitions of the data set using the selected
ture sets were listed. The best feature sets selected in
different feature spaces are shown in Table IV.

A

ed
an

TABLE III. Dependence of feature selection and classifier performance
Fout andF in thresholds using stepwise linear discriminant analysis:~a! mor-
phological feature space,~b! texture feature space, and~c! combined feature
space. The best result for each feature space is identified with an ast
When the testAz is comparable, the feature set with fewer number of fe
tures is considered to be better.

~a!
Fout F in No. of features Az ~Training! Az ~Test!

2.7 3.8 2 0.76 0.76
1.7 2.8 4 0.79 0.76
1.7 1.8 6 0.83 0.79*
1.0 1.4
1.0 1.2 7 0.84 0.79
0.8 1.0 9 0.85 0.79
0.6 0.8
0.4 0.6 10 0.85 0.79
0.2 0.4 12 0.86 0.78
0.1 0.2

~b!
Fout F in No. of features Az ~Training! Az ~Test!

2.7 3.8 4 0.82 0.80
1.7 2.8
1.0 1.4 8 0.88 0.83
1.0 1.2 10 0.89 0.82
0.8 1.0 11 0.89 0.83
0.6 0.8 14 0.91 0.85*
0.4 0.6 17 0.92 0.84
0.2 0.4 18 0.92 0.81
0.1 0.2 16 0.90 0.80

~c!
Fout F in No. of features Az ~Training! Az ~Test!

3.0 3.2 6 0.84 0.80
2.9 3.2
2.8 3.1
2.0 3.1
3.0 3.1 10 0.88 0.83
2.9 3.0
2.7 2.8
2.0 2.3 11 0.90 0.86
2.0 2.2
1.9 2.0
1.7 1.8
1.3 1.5 14 0.92 0.86
1.0 1.2 19 0.95 0.86
1.0 1.1 23 0.96 0.87*
0.8 1.2 28 0.97 0.86
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TABLE IV. The best feature sets selected by the GA and stepwise LDA methods~indicated by asterisk in Tables II and III!in the three feature spaces. Th
number of generations for chromosome evolution in the GA algorithm to reach the selected feature sets is listed. The abbreviations for the texture fe
correlation~CORE!, energy~ENER!, entropy~ENTR!, difference average~DFAV!, difference entropy~DFEN!, difference variance~DFVR!, inertia~INER!,
inverse difference moment~INVD!, information measure of correlation 1~ICO1!, information measure of correlation 2~ICO2!, sum average~SMAV!, sum
entropy~SMEN!, sum variance~SMVR!. After an abbreviation, the letter ‘‘A’’ indicates diagonal features and the number indicates the pixel distanc
abbreviations for the morphological features can be found in Table I.

GA Stepwise LDA

Morphological
generation 39

Texture
generation 64

Combined
generation 169 Morphological Texture Combined

CMVD DFAVA –8 DFAVA –4 AVMD DFAV–12 CORE–40
CVMR DFEN–16 DFEN–28 CVMD DFEN–4 COREA–16
CVSA DFVRA–24 DFVRA–36 CVMR DFEN–8 COREA–40
MXMR DFVR–24 DFVR–12 CVSA DFENA–12 DFAVA –8
MXSA DFVR–4 DFVR–20 MXMR DFENA–24 DFEN–4
SDMD DFVR–8 ICO1A–20 MXSA DFVR–24 DFEN–8

ICO1A–12 ICO1A–32 DFVR–40 DFENA–36
ICO2A–28 SMEN–16 ICO1–16 DFVR–20
ICO2–40 SMEN–36 ICO1A–8 ICO1A–28

AVAR ICO2–40 ICO2–24
CVMD INER–8 ICO2–36
CVSA INVD –16 INER–12
MXEC INVD –4 INERA–16
NUMS INVDA –8 INVDA –36
SDMD SMEN–40

SMENA–4
AVAR
CVMD
CVSA
MXAR
MXEC
NUMS
SDMD
tu
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Table V compares the training and testAz values from the
best feature set in each feature space for the two fea
selection methods. The GA parameters that selected the
ture set with best classification performance in each fea
space after 75 generations~Table II!were used to run the GA
again for 500 generations. TheAz values obtained with the
best GA selected feature sets after 75 generations are l
together with those obtained after 500 generations. TheAz
Medical Physics, Vol. 25, No. 10, October 1998
re
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ted

values obtained with the leave-one-case-out scheme are
shown in Table V. The differences between the correspo
ing Az values from the two resampling schemes are wit
0.01. The two feature selection methods provided feat
sets that had similar testAz values in the morphological an
texture feature spaces. In the combined feature space,
was a slight improvement in the testAz value obtained with
the GA selected features. Although the difference in theAz
wise LDA
TABLE V. Classification accuracy of linear discriminant classifier in the different feature spaces using feature sets selected by the GA and the step
procedure.

Feature selection

Training Az Text Az

Morphological Texture Combined Morphological Texture Combined

Cross-validation
GA

0.8460.04 0.8860.03 0.9460.02 0.7960.07 0.8560.07 0.8960.05
~75 generations!
GA

0.8460.04 0.8860.03 0.9660.02 0.7960.07 0.8560.07 0.9060.05
~500 generations!
Stepwise LDA 0.8360.04 0.9160.03 0.9660.02 0.7960.07 0.8560.06 0.8760.06

Leave-one-case-out
GA

0.8360.03 0.8860.03 0.9460.02 0.7960.04 0.8460.03 0.8960.03
~75 generations!
GA

0.8360.03 0.8860.03 0.9560.02 0.7960.04 0.8460.03 0.8960.03
~500 generations!
Stepwise LDA 0.8360.03 0.9160.02 0.9660.02 0.7960.04 0.8560.03 0.8760.03
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2016 Chan et al. : Mammographic microcalcifications 2016
values from the leave-one-case-out scheme between the
feature selection methods did not achieve statistical sig
cance (p50.2), as estimated byCLABROC, the differences in
the pairedAz values from the 50 partitions demonstrated
consistent trend~40 out of 50 partitions! that theAz from the
GA selected features were higher than those obtained by
stepwise LDA. This trend was also observed in our previo
study in which mass and normal tissue were classified.34

The ROC curves for the test samples using the feature
selected by the GA were plotted in Fig. 5. The classificat
accuracy in the combined feature space was significa
higher than those in the morphological (p50.002) or the
texture feature space (p50.04) alone. The ROC curve usin
the feature set selected by the stepwise procedure in the
bined feature space was also plotted for comparison.
distribution of the discriminant scores for the test samp
using the feature set selected by the GA in the combi
feature space is shown in Fig. 6~a!. If a decision threshold is
chosen at 0.3, 29 of the 82~35%! benign samples can b
correctly classified without missing any malignant cluster

Some of the 145 samples are different views of the sa
microcalcification clusters. In clinical practice, the decisi
regarding a cluster is based on information from all views
it is desirable to provide the radiologist a single relative m
lignancy rating for each cluster, two possible strategies m
be used to merge the scores from all views: the average s
or the minimum score. The latter strategy corresponds to
use of the highest likelihood of malignancy score for t
cluster. There were a total of 81 different clusters~44 benign
and 37 malignant!from the 78 cases because 3 of the ca
contained both a benign and a malignant cluster. The di
butions of the average and the minimum discriminant sco
of the 81 clusters in the combined feature space were plo
in Fig. 6~b! and Fig. 6~c!, respectively. Using the averag
scores, ROC analysis provided testAz values of 0.9360.03

FIG. 5. Comparison of ROC curves of the LDA classifier performance us
the best GA selected feature sets in the three feature spaces. In additio
ROC curve obtained from the best feature set selected by the stepwise
procedure in the combined feature space is shown. The classification
performed with a leave-one-case-out resampling scheme.
Medical Physics, Vol. 25, No. 10, October 1998
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and 0.8960.04, respectively, for the GA selected and ste
wise LDA selected feature sets. Using the minimum sco
the testAz values were 0.9060.03 and 0.8560.04, respec-
tively. The difference between theAz values from the two
feature selection methods did not achieve statistical sign
cance in either case~p50.07 andp50.09, respectively!. If a
decision threshold is chosen at an average score of 0.2, 2
the 44~50%!benign clusters can be correctly identified wi
100% correct classification of the malignant clusters. I
decision threshold is set at a minimum score of 0.2, 14 of

g
the
A
as

FIG. 6. Distribution of the discriminant scores for the test samples using
best GA selected feature set in the combined texture and morpholo
feature space.~a! Classification by samples from each film,~b! classification
by cluster using the average scores,~c! classification by cluster using the
minimum scores.
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44 ~32%! benign clusters can be identified at 100% sensi
ity.

IV. DISCUSSION

The Fischer’s linear discriminant is the optimal classifi
if the class distributions are multivariate normal with equ
covariance matrices.42 Even if these conditions are not sati
fied, as in most classification tasks, the LDA may still be
preferred choice when the number of available train
samples is small. Our previous investigation43,45 of the de-
pendence of classifier performance on design sample
indicated that, in general, the training performance~resubsti-
tution! of a classifier is positively biased whereas the t
performance~hold-out! is negatively biased by the samp
size. The magnitudes of the biases increase when the dim
sionality of the input feature space or the complexity of t
classifier increases, or when the design sample size
creases. Therefore, the test performance of a linear clas
is generally better than that of a more complex classifier s
as a neural network or a quadratic classifier when the train
sample size is small. The training results should not be u
for comparison of classifier performance because a class
can often be overtrained and give a near-perfect classifica
on training samples while the generalization to any unkno
test samples is poor. In this study, we evaluated the ef
tiveness of using the morphological and the texture featu
extracted from mammograms for classification of a microc
cification cluster. Although we expanded the data set fr
our previous study, the current data set was still relativ
small. We therefore chose to use a linear discriminant c
sifier for this classification task. Stepwise feature selection
a GA was used to reduce the dimensionality of the feat
space.

In the morphological feature space, the features relate
three characteristics, mean density, the moment ratio, and
signal area, were chosen most often. The features relate
axis ratio, eccentricity, and the number of microcalcificatio
in a cluster were chosen only when they were combined w
texture features. These results indicate the usefulness of
sification in multi-dimensional feature spaces. Some featu
that are not useful by themselves can become effective
tures when they are combined with other features. The
sults also indicate that all six characteristics of the microc
cifications designed for this task have some discriminat
power to distinguish malignant and benign microcalcific
tions. The morphological features are not as effective as
texture features. This is evident from the smallerAz values in
the morphological feature space. However, when the m
phological feature space is combined with the texture fea
space, the resulting feature set selected from the comb
feature space can significantly improve the classification
curacy, in comparison with those from the individual featu
spaces.

The SGLD texture features characterize the shape of
SGLD matrix and generally contain information about t
image properties such as homogeneity, contrast, the pres
of organized structures, as well as the complexity and gr
Medical Physics, Vol. 25, No. 10, October 1998
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level transitions within the image.40 As an example, the en
tropy feature measures the uniformity of the SGLD matr
The entropy value is maximum when all the matrix eleme
are equal. The entropy value is small when large matrix
ements concentrate in a small region of the SGLD ma
while the other matrix elements are relatively small. The
fore, large entropy represents a large but random variatio
pixel values in an image without regular structures wher
small entropy represents an image with relatively unifo
pixel values if the SGLD matrix peaks along the diagon
and an image with regular texture patterns if it peaks off
diagonal. The ambiguity may be resolved when the sum
tropy and difference entropy measures are analyzed. Un
morphological features, it is difficult, in general, to find th
direct relationship between a texture measure and the s
tures seen on an image,40 and often a combination of severa
texture measures extracted at different angles and pixel
distances are required to describe a texture pattern. It
also be noted that some textures can only be describe
second-order statistics and may not be distinguishable
human eyes. The feature selection methods are used to
pirically find the combination of features that can most
fectively distinguish the malignant and benign lesions.

From Table IV, it can be seen that many of the features
the best feature sets selected by the GA method and
stepwise LDA method are similar. In the morphological fe
ture space, five of the six selected features are the sam
the two feature sets. In the combined feature space, six m
phological features~out of six and seven morphological fea
tures in the two sets, respectively! are the same. For the
texture features, there are more variations in the features
lected by the two methods. However, the differences
mainly in the pixel distances and the directions of the fe
tures, while the major types of the texture features are si
lar. For example, four types of texture features, energy,
tropy, sum average, and sum variance were not selecte
either the texture or the combined feature space by b
methods. Another four types of texture features, differen
average, difference entropy, difference variance, and in
mation measure of correlation 1 were chosen in each c
and information measure of correlation 2 was chosen in th
of the four cases. Inertia and inverse difference moment w
selected by the stepwise LDA method in both the texture
the combined feature spaces. Sum entropy was selecte
both methods in the combined feature space. These re
indicate that some features are more effective than the ot
for distinguishing benign and malignant microcalcification
The pixel distance and the direction of the texture featu
may be considered to be higher order effects that have
influence on the discriminatory ability of a given type
texture measure. The smaller differences in their discrimi
tory ability would subject them to greater variability of bein
chosen in the feature selection processes. It may also
noted that many of the features are highly correlated. T
correlated features can be interchanged in a classifier m
without a strong effect on its performance.

The GA solves an optimization problem based on a sea
guided by the fitness function. Ideally, the values for thePm ,
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Pc , anda parameters chosen in the GA only affect the co
vergence rate but will eventually evolve to the same glo
maximum. However, when the dimensionality of the featu
space is very large and the design samples are sparse, th
often reaches local maxima corresponding to different f
ture sets, as can be seen in Table II. Similarly, the stepw
feature selection may reach a different local maximum a
choose a feature set different from those chosen by the
The different feature sets may provide different or simi
performance. The latter is often a result of the correlat
among the features, as described above.

For the linear discriminant classifier, the stepwise LD
procedure can select near-optimal features for the classi
tion task. We have shown that the GA could select a fea
set comparable to or slightly better than that selected by
stepwise LDA. The number of generations that the GA h
to evolve to reach the best selection increased with the
mensionality of the feature space as expected. Howe
even in a 281-dimensional feature space, it only took 1
generations to find a better feature set than that selecte
stepwise LDA. Further search up to 500 generations did
find other feature combinations with better performance.
though the difference inAz did not achieve statistical signifi
cance, probably due to the large standard deviation inAz

when the number of case samples in the ROC analysis
small, the improvements inAz in this and our previous
studies34 indicate that the GA is a useful feature selecti
method for classifier design. One of the advantages of G
based feature selection is that it can search for near-opt
feature sets for any types of linear or nonlinear classifie
whereas the stepwise LDA procedure is more tailored to
ear discriminant classifiers. Furthermore, the fitness func
in the GA can be designed such that features with spe
characteristics are favored. One of the applications in
direction is to select features to design a classifier with h
sensitivity and high specificity for classification of maligna
and benign lesions.49,50 Although the GA requires much
longer computation time than the stepwise LDA to search
the best feature set, the flexibility of the GA makes it
increasingly popular alternative for solving machine learn
and optimization problems. Since feature selection is p
formed only during training of a classifier, the speed o
trained classifier for processing test cases is not affecte
the choice of the feature selection method. Therefore,
longer computation time of GA is not a problem in practi
if the GA can provide a better feature set for a given clas
fication task.

V. CONCLUSIONS

In this study, we evaluated the effectiveness of morp
logical and texture features extracted from mammograms
classification of malignant and benign microcalcificati
clusters. We also compared a GA-based feature selec
method and a stepwise feature selection procedure base
linear discriminant analysis. It was found that the best f
ture set was selected from the combined morphological
texture feature space by the GA-based method. A linear
Medical Physics, Vol. 25, No. 10, October 1998
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criminant classifier using the best feature set and a prop
chosen decision threshold could correctly identify 35%
the benign clusters without missing any malignant clusters
the average discriminant score from all views of the sa
cluster was used for classification, the accuracy improve
50% specificity at 100% sensitivity. Alternatively, if th
minimum discriminant score from all views of the same clu
ter was used, the accuracy would be 32% specificity at 10
sensitivity. This information may be used to reduce unn
essary biopsies, thereby improving the positive predict
value of mammography. Although these results were
tained with a relatively small data set, they demonstrate
potential of using CAD techniques to analyze mammogra
and to assist radiologists in making diagnostic decisio
Further studies will be conducted to evaluate the genera
ability of our approach in large data sets.
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