Computerized analysis of mammographic microcalcifications
in morphological and texture feature spaces
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We are developing computerized feature extraction and classification methods to analyze malignant
and benign microcalcifications on digitized mammograms. Morphological features that described
the size, contrast, and shape of microcalcifications and their variations within a cluster were de-
signed to characterize microcalcifications segmented from the mammographic background. Texture
features were derived from the spatial gray-level dependé8Gi D) matrices constructed at
multiple distances and directions from tissue regions containing microcalcifications. A genetic
algorithm(GA) based feature selection technique was used to select the best feature subset from the
multi-dimensional feature spaces. The GA-based method was compared to the commonly used
feature selection method based on the stepwise linear discriminant an@lipg#s procedure.

Linear discriminant classifiers using the selected features as input predictor variables were formu-
lated for the classification task. The discriminant scores output from the classifiers were analyzed
by receiver operating characteristROC) methodology and the classification accuracy was quan-
tified by the areaA,, under the ROC curve. We analyzed a data set of 145 mammographic
microcalcification clusters in this study. It was found that the feature subsets selected by the
GA-based method are comparable to or slightly better than those selected by the stepwise LDA
method. The texture feature®\{=0.84) were more effective than morphological featurés (
=0.79) in distinguishing malignant and benign microcalcifications. The highest classification ac-
curacy A,=0.89) was obtained in the combined texture and morphological feature space. The
improvement was statistically significant in comparison to classification in either the morphological
(p=0.002) or the textureg=0.04) feature space alone. The classifier using the best feature subset
from the combined feature space and an appropriate decision threshold could correctly identify 35%
of the benign clusters without missing a malignant cluster. When the average discriminant score
from all views of the same cluster was used for classificationAthealue increased to 0.93 and the
classifier could identify 50% of the benign clusters at 100% sensitivity for malignancy. Alterna-
tively, if the minimum discriminant score from all views of the same cluster was used, thalue

would be 0.90 and a specificity of 32% would be obtained at 100% sensitivity. The results of this
study indicate the potential of using combined morphological and texture features for computer-
aided classification of microcalcifications. €998 American Association of Physicists in Medi-
cine.[S0094-2405(98)00910-9]
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[. INTRODUCTION on a mammogram and alert the radiologist to these regions.
They can also extract image features from regions of interest
Mammography is the most sensitive method for early detec(ROIs)and estimate the likelihood of malignancy for a given
tion of breast cancers. However, its specificity for differen-lesjon, thereby providing the radiologist with additional in-
tiating malignant and benign lesions is relatively low. In theformation for making diagnostic decisions.
United States, the positive predictive value of mammography There are two major approaches to the development of
ranges from about 15% to 3086 Various methods are being CAD schemes for classification of mammographic abnor-
developed to improve the sensitivity and specificity of breasinalities. One approach uses computer vision techniques to
cancer detectioh.Computer-aided diagnosi€AD) is con-  extract image features from the digitized mammograms and
sidered to be one of the promising approaches that may inelassify the lesions based on the computer-extracted features.
prove the efficacy of mammograpAyProperly designed The computer-extracted features can include morphological
CAD algorithms can automatically detect suspicious lesiongeatures that are commonly used by radiologists for diagno-
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sis, as well as texture features that may not be readily peiprobability of malignancy of mammographic lesions by ana-
ceived by human eyes. The computerized analysis malyzing 36 radiologist-extracted characteristics with an auto-
therefore increase the utilization of mammographic imagematic clustering algorithm and obtained a specificity of 45%
information and improve the accuracy of differentiating ma-at a sensitivity of 100% in a data set of 102 cases. Gale
lignant and benign lesions. The other approach uses radiolgg 525 analyzed 12 radiologist-extracted features of mam-

gists’ ratings of mammographic features or encodes the rg;,,qaphic lesions with a computer algorithm and obtained a
diologists’ readings with numerical values. The lesions are

e 0 o o
then classified based on these radiologist-extracted feature%gecmcny of 88% at a sensitivity of 79% in a data base of

This approach assists radiologists by systematically extract- 0 patients. Gettgt al.™ developed a computer classifier to

ing image features and by optimally merging the featuresenhance the differentiation of malignant and benign lesions

with a statistical classifier to reach a diagnostic decisionPy @ radiologist during interpretation of xeromammograms.

Additional risk factors based on patient demographic infor-Using a similar approach, D'Orsit al*’ evaluated a com-
mation and medical or family histories may also be includedputer aid and obtained an improvement of about 0.05 in sen-
as input in either approach. sitivity or specificity in mammographic reading. Wi al?®

A number of investigators have developed feature extractrained a neural network to merge 14 radiologist-extracted
tion and classification methods for characterization of mamfeatures for classification of mammographic lesions and ob-
mographic masses or microcalcifications. Ackernearal®  tained anA, of 0.89. Bakeret al? trained a neural network
developed 4 measures of malignancy and classified lesiornggzsed on the lexicon of the Breast Imaging Recording and

recorded on 120 digitized xeroradiographs by 3 decisiorhaiq System of the American College of Radiology and
methods. Kildayet al® used 7 shape descriptors and patientf

1o classify 39 d d tv classify 69% found that the neural network could improve the positive
;gee n?a(;:?fyHuetrr;??::a?;zegotlile g%:gi?azocnasflzassgsopredictive value from 35% to 61% in 206 lesions. &bal *°

using a radial edge-gradient analysis technique and achievet ed a similar approach to predict breast cancer invasion and

an area,A,, under the receiver operating characteristic® tained ar, of 0.91 for 96 lesions. Although the results of

(ROC) curve of 0.88 in a data set of 95 masses. Sahinelhese studies varied over a wide range and the performances
et al®? developed a rubber-band straightening image transof the computer algorithms are expected to depend strongly
formation technique to analyze the texture in the region suron data set, they indicate the potential of using CAD tech-
rounding a mass and obtained Apof 0.94 in a data set of niques to improve the diagnostic accuracy of differentiating
168 masses. Pohimagt al° extracted 6 morphological de- malignant and benign lesions.

scriptors to classify 47 masses and obtaifed/alues rang- In our early studies, we found that texture features ex-
ing from 0.76 to 0.93. Weet allt analyzed 51 microcalci- tracted from spatial gray-level depender8&LD) matrices
fication clusters on specimen radiographs using the averagg multiple distances were useful for differentiating malig-
gray level, contrast, and horizontal length of the microcalci-ygnt and benign masses on mammograms. This may be at-

ot : e 12
_flcthlgnz alnd obt?med 84% cr?r_reclt cla_?_sﬁmatéonbﬁt_)al.d &7 0/tributed to the texture changes in the breast tissue due to a
Included cluster features in their classifier and obtaine developing malignancy. The usefulness of SGLD texture

correct classification in a data set of 100 clusters from SpeCir"neasures in differentiating malianant and benian breast tis-
men radiographs. Chaet al*~8 developed morphological 9 9 9

and texture features and evaluated various feature classifietsc> Was further demonstrated by analysis of mammographic

for differentiation of malignant and benign microcalcifica- microcalcifications.”***!In a preliminary study, we devel-
tions. Sheret al® used 3 shape features, compactness, maPPed morphological features to describe the size, shape, and
ments, and Fourier descriptors to C|assify 143 individual mi.ContraSt of the individual microcalcifications and their varia-
crocalcifications with a nearest neighbor classifier andion within a cluster. We used these features to classify the
obtained 100% classification accuracy. \al?° classified ~ microcalcifications and obtained moderate resti#ts.In the

80 pathologic specimens radiographs with a convolutiorpresent study, we expanded the data set and explored the
neural network and obtained ak, of 0.90. Jianget al?  feasibility of combining texture and morphological features
trained a neural network classifier to analyze 8 features eXor classification of microcalcifications. The classification ac-
tracted from microcalcification clusters and obtainedAgn curacy in the combined feature space was compared with
of 0.92 in a data set of 53 patients. Thieleal*” extracted  {hose obtained in the texture feature space or in the morpho-

texture and fractal features from the tissue region surrounqbgical feature space alone. We also studied the use of a
ing a microcalcification cluster for classification and

. : 34
achieved a sensitivity of 89% at a specificity of 83% for 54?hen:at|c aldgonthr?f f(G,'[A) to select a fgature SUbjetL fro:n .
clusters. Dhawaret al?® used features derived from first- € large-dimension feature spaces, and compare € classi-

order and second-order gray-level histogram statistics an@'1cation results to those obtained from features selected with

. . . . . 35 . .
obtained arA, of 0.81 with a neural network classifier for a St€PWise linear discriminant analysitDA).™ Linear dis-
data set of 191 clusters. criminant classifier§ were designed for the classification

Computerized classification of mammographic lesions ustasks. The performance of the classifiers was analyzed with
ing radiologist-extracted features has also been reported byROC methodology/ and the classification accuracy was
number of investigators. Ackermaet al?* estimated the quantified with the area),, under the ROC curve.
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30 than subtle ones, which may bias the evaluation of the clas-
Malignant Benign sificaFi_on cr_:lpat_)ility of t_h_e e_xtracted features and the trained
classifiers if microcalcifications detected by the automated
\ program are used for classifier development. Since these
variables are program dependent, we isolated the detection
problem from the classification problem in this study by us-
ing manually identified true microcalcifications for the mor-
phological feature analysis. The true microcalcifications
were defined as those visible on the film mammograms with
a magnifier. Magnification mammograms were used occa-
0- sionally for verification when they were available, but in
1 2 3 4 5 most cases only contact mammograms were used. At
VISIBILITY RANK present, there is no other method that can more reliably iden-
Fic. 1. Distribution of the visibility rankings of the 145 clusters of micro- tify individual microcalcifications on mammograms. Speci-
calcifications. Higher ranking corresponds to more subtle clusters. men radiographs can confirm the presence of the microcalci-
fications but the locations of the individual micro-
calcifications cannot be correlated with those on the mam-
mograms because of the very different imaging geometry
A. Data set and techniques.

We have developed an automated signal extraction pro-
ram to determine the size, contrast, signal-to-noise ratio
rQIQ"NR)’ and shape of the microcalcifications from a mammo-
gram based on the coordinate of each individual microcalci-

201

101

NUMBER OF CASES

II. MATERIALS AND METHODS

The data set for this study consisted of 145 clusters of
microcalcifications from mammograms of 78 patients. Th
cases were selected from the patient files in the Departme

of Radiology at the University of Michigan. The only selec- fication. In a local region of 102101 pixels centered at each

tion criterion was that it included a biopsy-proven microcal- . . . :
e . signal site, the low frequency structured background is esti-
cification cluster. We kept the number of malignant and be- . ) oo .
ated by polynomial curve fitting in the horizontal and ver-

nign cases reasonably balanced so that 82 benign and 6. L7t . . )
malignant clusters were included. All mammograms Were|cal directions and then averaging the fitted values obtained

acquired with a contact technique using mammography Syslg the two directions at each pixel. This background estima-

tems accredited by the American College of Radiologyt'on method is used because it can approximate the back-

(ACR). The dedicated mammographic systems had mc)beground more closely than two-dimensional surface fitting or

denum anode and molybdenum filter, 0.3 mm nominal focarhe distance-weighted interpolation methaiescribed be-

spot, reciprocating grid, and Kodak MinR/MinR E Screen_;\;V)thu;tego;cft;itrel)gwueresifer?;?;eree )giﬁ;loend gzaiﬁgkiﬂr\?lex;ittin
film systems with extended processing. A radiologist experi- 9 9

- PO, ; and noise estimation. The siké& chosen to be a constant of
enced in mammography ranked the visibility of each m|cro-15 ixels which is larger than the diameters of the microcal
calcification cluster on a scale of (bbvious)to 5 (subtle), P 9

relative to the visibility range of microcalcification clusters cifications of interest yet much smaller than the local region.

encountered in clinical practice. The histogram of the visibiI-The background pixel values in this| region are estimated

ity ranking of the 145 clusters is shown in Fig. 1. The histo-fr.Om the f|ttgd and smoo.thed background surface..The exclu-
sion of the signal region is necessary so that the high contrast

gram indicated the mix of subtle and obvious clusters in-". . PO .
cluded in the data set pixel values of the microcalcification will not affect the

The selected mammograms were digitized with a Iasepackground estimation at the signal site. Other microcalcifi-

scanner(Lumisys DIS-1000)at a pixel size of 0.035 mm cations that may locate within the 18101 pixel region are

%0.035 mm and 12-bit gray levels. The digitizer has an Op_treated as background pixels because their effect on the es-

tical density(O.D.) range of about 0 to 3.5. The O.D. on the timated background levels at the signal site will be relatively

. 7N ) : g . small.
film was digitized linearly to pixel value at a calibration of .
0.001 O.D. unit/pixel value in the O.D. range of about 0 to After subtraction of the structured background, the local

2.8. The digitizer deviated from a linear response at 0.pfoot-mean-squardrms) noise is calculated. A gray-level
higher than 2.8. threshold is determined as the product of the rms noise and

an input SNR threshold. With a region growing technique,
the signal region is then extracted as the connected pixels
above the threshold around the manually identified signal
For the extraction of morphological features, the locationdocation. A high threshold will result in extracting only the
of the individual microcalcifications have to be known. We peak pixels of the microcalcification which may not repre-
have developed an automated program for detection of indisent its shape perceived on the mammogram. A low thresh-
vidual microcalcification$® However, the detection sensitiv- old will cause the microcalcification region to grow into the
ity is not 100% and the detected signals include falsesurrounding background pixels. Since there is no objective
positives. Furthermore, automated detection tends to havestandard what the actual shape of a microcalcification is on a
higher likelihood of detecting obvious microcalcifications mammogram, the proper threshold to extract the signals was

B. Morphological feature space
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TasLE |. The 21 morphological features extracted from a microcalcification

cluster.
Standard Coefficient

Average deviation of variation Maximum
Area AVSA  SDSA CVSA MXSA
Mean density AVMD SDMD CVMD MXMD
Eccentricity AVEC  SDEC CVEC MXEC
Moment ratio AVMR SDMR CVMR MXMR
AXxis ratio AVAR  SDAR CVAR MXAR
No. of microcalcifications NUMS

in cluster

signal region. The mean densifyID) is the average of the
pixel values above the background level within the signal
region. The second moments are calculated as

M= 2 9i(xi—M,)2/My, (1)
Myy=2 gi(yi—M,)%/ My, )
Mxy=2 9i(x— M) (yi— M)/ My, 3)

where g; is the pixel value above the background, and
(xj,y;) are the coordinates of thi¢gh pixel. The moments
My, M, andM, are defined as follows:

Mo=2 g, ()
My= > gixi/Mo, (5)
My=2 giyi/Mo. (6)

The summations are over all pixels within the signal region.
The lengths of the major axisa2 and the minor axis, 12, of

the effective ellipse that characterizes the second moments
are given by

b
(b) 2= \2[ Myt Myy+ V(M= M, )2+ 4MZ, ], (7)

Fic. 2. An example of a cluster of malignant microcalcifications in the data \/ > >
set: (a) the cluster with mammographic backgrouritd) the cluster after 2b= 2[ Myx+M yy \/( Myx— Myy) +4M xy]' (8)

i?ogcrgff:ftligggngﬂ orphological features are extracted from the segmented ™Fhe eccentricity EC) of the effective ellipse can be derived
from the major and minor axes as
. . . . e VaZ—b?

determined by visually comparing the microcalcifications in =~ ¢= —— 9)
the original image and the thresholded image of the micro- a
calcifications superimposed on a background of constarithe moment ratidMR) is defined as the ratio ofl,, to
pixel values. After an experienced radiologist compared a,,, with the larger second moment in the denominator.
subset of randomly selected microcalcification clusters exThe axis ratiqAR) is the ratio of the major axis to the minor
tracted at different thresholds, an SNR threshold of 2.0 wasaxis of the effective eclipse.
chosen for all cases. An example of a malignant cluster and To quantify the variation of the visibility and shape de-
the microcalcifications extracted at an SNR threshold of 2.Gcriptors in a cluster, the maximu¢vX), the averagéAV)
is shown in Fig. 2. and the standard deviatig®8D) of each feature for the indi-

The feature descriptors determined from the extracted mividual microcalcifications in the cluster are calculated. The
crocalcifications are listed in Table I. The size of a microcal-coefficient of variation(CV), which is the ratio of the SD to
cification (SA) is estimated as the number of pixels in the AV, is used as a descriptor of the variability of a certain
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feature within a cluster. Twenty cluster features are therefore
derived from the five feature@ize, mean density, moment
ratio, axis ratio, and eccentricitpf the individual microcal-
cifications. Another feature describing the number of micro-
calcifications in a clustefNUMS) is also added, resulting in

a 21-dimensional morphological feature space.

C. Texture feature space

Our texture feature extraction method has been describe:
in detail previously’! Briefly, texture features are extracted
from a 10241024 pixel region of interegfROI) that con-
tains the cluster of microcalcifications. Most of the clusters
in this data set can be contained within the ROI. For the few
clusters that are substantially larger than a single ROI, addi-
tional ROIs containing the remaining parts of the cluster are
extracted and processed in the same way as the other ROI
The texture feature values extracted from the different ROIs
of the same cluster are averaged and the average values a
used as the feature values for that cluster.

For a given ROI, background correction is first performed
to reduce the low frequency gray-level variation due to the
density of the overlapping breast tissue and the x-ray expo-
sure conditions. The gray level at a given pixel of the low
frequency background is estimated as the average of th
distance-weighted gray levels of four pixels at the intersec-
tions of the normals from the given pixel to the four edges of
the ROI*® The estimated background image was subtractec
from the original ROI to obtain a background-corrected im-
age. An example of the background correction procedure is
shown in Fig. 3.

As discussed in our previous stutfyit was found that the
texture features derived from the SGLD matrix of the ROI
provided useful texture information for classification of mi-
crocalcification clusters. The SGLD matrix element,
p,.d(i,]), is the joint probability of the occurrence of gray
levelsi andj for pixel pairs which are separated by a distance
d and at a directiond.** The SGLD matrices were con-
structed from the pixel pairs in a subregion of X212
pixels centered approximately at the center of the cluster in (
the background-corrected ROI so that any potential edge ef-
fects caused by background correction will not affect ther 3. an example of background correction for the ROIs before texture
texture extraction. We analyzed the texture features in foufeature extraction. The ROI from the original image is shown in Fig).2
directions:#=0°, 45°, 90°, and 135° at each pier pair dis- (@ The estimated low frequency background gray level, @ndthe ROI

. T . after background correction. The background gray-level variation due to the
tanced. The pixel pair distance was varied from 4 to 40 varying x-ray penetration in the breast tissue is reduced. The contouring in

pixels in increments of 4 pixels. Therefore, a total of 40the background image is a display artifact that does not exist in the calcu-
SGLD matrices were derived from each ROI. The SGLDlated image file. For display purpose, the background-corrected ROI is
matrix depends on the bin widtler gray-level intervalused contrast-enhanced to improve the visibility of the microcalcifications and the
. . . . detailed structures.
in accumulating the histogram. Based on our previous study,
a bin width of four gray levels was chosen for constructing
the SGLD matrices. This is equivalent to reducing the gray-
level resolution(or bit depth of the 12-bit image to 10 bits correlation 1, and information measure of correlation 2. The
by eliminating the 2 least significant bits. formulation of these texture measures could be found in the
From each of the SGLD matrices, we derived 13 texturditerature>1° As found in our previous stud},we did not
measures including correlation, entropy, enef@ygular sec- observe a significant dependence of the discriminatory power
ond moment), inertia, inverse difference moment, sum averef the texture features on the direction of the pixel pairs for
age, sum entropy, sum variance, difference average, differmammographic textures. However, since the actual distance
ence entropy, difference variance, information measure obetween the pixel pairs in the diagonal direction was a factor

b)
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Classification Fitness | ( ) space, but only the features that are encoded as “1” are
ith Functi .
" etares @ ‘Fa) | . parent '@ actually present in the subset of selected features. A chromo-
selection | some therefore represents a possible solution to the feature
oCrossover| * selection problem.
Mutati : The implementation of GA for feature selection is illus-
Classification Fitness | | uration . . . .
with selected W Function @ trated in the block diagram shown in Fig. 4. To allow for
features F(A) .

diversity, a large numben, of chromosomesX,,..., X,, is

I chosen as the population. The number of chromosomes is

kept constant in each generation. At the initiation of the GA,

Fic. 4. A schen_ﬁatic‘ diagram of the genetic algorithm designed for featurea5:h bit on a chromosome is initialized randomly with a

selection used in this stud¥,,..., X, represents the set of parent chromo- . A

somes anij ,..., X represents the set of offspring chromosomes. small but equal probabilityP;yt, tO' be “1.” The S_eleCted
feature subset on a chromosome is used as the input feature
variables to a classifier, which was chosen to be the Fischer’s

of v2 greater than that in the axial direction, we averaged thdinear discriminant in this study.

feature values in the axial directiof@® and 90} and in the The available samples in the dataset are randomly parti-

diagonal directiong45° and 135f separately for each tex- tioned into a training set and a test set. The training set is

ture feature derived from the SGLD matrix at a given pixelused to formulate a linear discriminant function with each of

pair distance. The average texture features at the ten pixéhe selected feature subsets. The effectiveness of each of the

pair distances and two directions formed a 260-dimensiondinear discriminants for classification is evaluated with the

Iteration

texture feature space. test set. The classification accuracy is determined as the area,
A,, under the ROC curve. To reduce biases in the classifiers
D. Feature selection due to case selection, training and testing are performed a

Feature selection is one of the most important steps illlarge number of times, each with a different random parti-

classifier design because the presence of ineffective featur88"ING of th_e data set. In this study, we chose to partition the
often degrades the performance of a classifier on tesgataset 80 times and the 80 téstvalues were averaged and

samples. This is partly caused by the “curse of dimension-used for. determinat_ion of th_e fitness of the chrpmpsome.
The fitness function for theth chromosomek=(i), is for-

ality” problem that the classifier is inadequately trained in a

large-dimension feature space when only a finite number gfulated as
training samples is availabfé=*°*We compared two feature £(i)— f i
selection methods to extract useful features from the mor- F(i)= o
phological, texture, and the combined feature spaces. One is max. - min
a genetic algorithm approach, and the other is the commonlyhere
used stepwise linear discriminant analysis method. F(i) = A1) — aN(i),

2
, i=1..n (10)

1. Genetic algorithm for feature selection

. . o A,(i) is the average te%, for theith chromosome over the
The genetic algorithniGA) methodology was first intro- 80 random partitions of the data sét,, and f,.., are the

; 33
duced by Holland in the early 19785 A GA solves an minimum and maximun (i) among then chromosomes,

opti.mization problem bqsed on the pr'inciples of natural .SeN(i) is the number of features in théh chromosome, ana
Ec:of?'i”: ngturflltis?ec;tlon, arﬂopl)u)l(atlrc:\r)ire\:‘%lqvenst b_l)_/hflndlhngris a penalty factor, whose magnitude is less thak 16
eneticial adaptations o a complex environment. 1he ¢ asuppress chromosomes with a large number of selected fea-

acteristics of a population are carried onto the next genera: .o The value of the fitness functiBii) ranges from 0 to

fuon by its chromosomes. New characterlstl_cs are mtroduce_ . The probability of theth chromosome being selected as a
into a chromosome by crossover and mutation. The probabil-

ity of survival or reproduction of an individual depends more parent,P(i), is proportional to its fitness function:

or less on its fithess to the environment. The population n

therefore evolves toward better-fit individuals. P(i)=F(i)/2, F(i), i=1..n (11
The application of GA to feature selection has been de- =t

scribed in the literaturé®*’ We have demonstrated previ- A random sampling based on the probabiliti®s(i), will

ously that a GA could select effective features for classificaallow chromosomes with higher value of fitness to be se-

tion of masses and normal breast tissue from a very largdected more frequently.

dimension feature spac&.The GA was adapted to the For every pair of selected parent chromosomésand

current problem for classification of malignant and benignX;, a random decision is made to determine if crossover

microcalcifications. A brief outline is given as follows. Each should take place. A uniform random number (1] is

feature in a given feature space is treated as a gene andgenerated. If the random number is greater tifan the

encoded by a binary digithit) in a chromosome. A “1”  probability of crossover, then no crossover will occur; other-

represents the presence of the feature and a “0” representsise, a random crossover site is selected on the pair of chro-

the absence of the feature. The number of gébééss) on a  mosomes. Each chromosome is split into two strings at this

chromosome is equal to the dimensionality of the feature site and one of the strings will be exchanged with the corre-

Medical Physics, Vol. 25, No. 10, October 1998
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sponding string from the other chromosome. Crossover resubset of features as determined by either the GA or the
sults in two new chromosomes of the same length. stepwise LDA procedure was found, we performed the clas-
After crossover, another chance of introducing new feasification as follows.
tures is obtained by mutation. Mutation is applied to each The linear discriminant analysfsprocedure in the SPSS
gene on every chromosome. For each bit, a uniform randorsoftware packag® was used to classify the malignant and
number in(0,1]is generated. If the random number is greaterbenign microcalcification clusters. We used a cross-
thanP,,, the probability of mutation, then no mutation will validation resampling scheme for training and testing the
occur; otherwise, the bit is complemented. The processes alassifier. The data set of 145 samples was randomly parti-
parent selection, crossover, and mutation result in a new gettioned into a training set and a test set by an approximately
eration ofn chromosomesX,...,X},, which will again be  3:1 ratio. The partitioning was constrained so that ROIs from
evaluated with the 80 training and test set partitions as dethe same patient were always grouped into the same set. The
scribed above. The chromosomes are allowed to evolve ovéraining set was used to determine the coefficie(ds
a preselected number of generations. The best subset of feaeights) of the feature variables in the linear discriminant
tures is chosen to be the chromosome that provides the higlfunction. The performance of the trained classifier was
est averagd\, during the evolution process. evaluated with the test set. In order to reduce the effect of
In this study, 500 chromosomes were used in the populacase selection, the random partitioning was performed 50
tion. Each chromosome has 281 gene locatidfg, was times. The results were then averaged over the 50 partitions.
chosen to be 0.01 so that each chromosome started with two The classification accuracy of the LDA was evaluated by
to three features on the average. We vafiedirom 0.7 to ROC methodology. The output discriminant score from the
0.9, P, from 0.001 to 0.005, and from O to 0.001. These LDA classifier was used as the decision variable in the ROC
ranges of parameters were chosen based on our previous eaalysis. TheLABROC program®’ which assumes binormal
perience with other feature selection problems using®6A. distributions of the decision variable for the two classes and
fits an ROC curve to the classifier output based on
maximum-likelihood estimation, was used to estimate the
ROC curve of the classifier. The ROC curve represents the
The stepwise linear discriminant analyéifA) is a com-  relationship between the true-positive fractidPF) and the
monly used method for selection of useful feature variablegalse-positive fractiorfFPF)as the decision threshold varies.
from a large feature space. Detailed descriptions of thiSThe area under the ROC curve and the standard deviation of
method can be found in the literatufeThe procedure is the A, were provided by theABrOC program for each par-
briefly outlined below. The stepwise LDA uses a forwardtition of training and test sets. The average performance of
selection and backward removal strategy. When a feature e classifier was estimated as the average of the 5R\jest
entered into or removed from the model, its effect on thevalues from the 50 random partitions.
separation of the two classes can be analyzed by several To obtain a single distribution of the discriminant scores
criteria. We use the Wilks' lambda criterion which mini- for the test samples, we performed a leave-one-case-out re-
mizes the ratio of the within-group sum of squares to thesampling scheme for training and testing the classifier. In
total sum of squares of the two class distributions; the sigthis scheme, one of the 78 cases was left out at a time and the
nificance of the change in the Wilks’ lambda is estimated byclusters from the other 77 cases were used for formulation of
F-statistics. In the forward selection step, the features ar¢he linear discriminant function. The resulting LDA classifier
entered one at a time. The feature variable that causes theas used to classify the clusters from the left-out case. The
most significant change in the Wilks’ lambda will be in- procedure was performed 78 times so that every case was left
cluded in the feature set if itF value is greater than the out once to be the test case. The test discriminant scores from
F-to-enter E;,) threshold. In the feature removal step, theall the clusters were accumulated in a distribution which was
features already in the model are eliminated one at a timghen analyzed by theaBRoC program. Using the distribu-
The feature variable that causes the least significant chand®ns of discriminant scores for the test samples from the
in the Wilks' lambda will be excluded from the feature set if leave-one-case-out resampling scheme, ¢heBROC pro-
its F value is below theF-to-remove F,,) threshold. The gram could be used to test the statistical significance of the
stepwise procedure terminates when Ehealues for all fea-  differences between ROC curfBobtained from different
tures not in the model are smaller than hg threshold and  conditions. The two-tailegh value for the difference in the
the F values for all features in the model are greater than thereas under the ROC curves was estimated.
Fout threshold. The number of selected features will decrease
if either theF;, threshold or the-, threshold is increased.
Therefore, the. number of features to be selected can be aﬂi_ RESULTS
justed by varying thé-;, andF values.

2. Stepwise linear discriminant analysis

The variations of best feature set size and classifier per-
formance in terms oA, with the GA parameters were tabu-
lated in Table I(a)—(c) for the morphological, the texture,

The training and testing procedure described above waand the combined feature spaces, respectively. The number
used for the purpose of feature selection only. After the besdf generations that the chromosomes evolved was fixed at 75

E. Classifier
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TasLE Il. Dependence of feature selection and classifier performance on GA asLE |ll. Dependence of feature selection and classifier performance on
parameters(a) morphological feature spacéh) texture feature space, and F,, andF;, thresholds using stepwise linear discriminant analygismor-

(c) combined feature space. The number of generations that the GA evolveghological feature spacéh) texture feature space, aft) combined feature

was fixed at 75. The best result for each feature space is identified with aspace. The best result for each feature space is identified with an asterisk.
When the tes#, is comparable, the feature set with fewer number of fea-
tures is considered to be better.

(@

asterisk.

(a)
P Pm o No. of features A, (Training) A, (Test)
0.7 0.001 0 6 0.84 0.79
0.8 3 0.77 0.76
0.9 4 0.80 0.77
0.7 0.003 7 0.82 0.78
0.8 6 0.82 0.79
0.9 6 0.84 0.79
0.7 0.001  0.0005 3 0.77 0.76
0.8 4 0.80 0.77
0.9 3 0.77 0.76
0.7 0.003 6 0.84 0.79
0.8 6 0.84 0.79
0.9 6 0.82 0.79
0.7 0.001 0.0010 3 0.77 0.76
0.8 4 0.80 0.77
0.9 3 0.77 0.76
0.7 0.003 6 0.84 0.79
0.8 7 0.84 0.79
0.9 4 0.80 0.77

(b)
P Pm a No. of features A, (Training) A, (Test)
0.7 0.001 0 7 0.87 0.82
0.8 8 0.88 0.84
0.9 8 0.88 0.84
0.7 0.003 17 0.91 0.82
0.8 9 0.88 0.79
0.9 10 0.88 0.79
0.7 0.001 0.0005 9 0.88 0.85
0.8 7 0.86 0.82
0.9 8 0.87 0.84
0.7 0.003 13 0.90 0.81
0.8 10 0.87 0.81
0.9 12 0.88 0.81
0.7 0.001 0.0010 7 0.87 0.83
0.8 9 0.88 0.83
0.9 8 0.88 0.83
0.7 0.003 10 0.88 0.83
0.8 21 0.94 0.82
0.9 12 0.88 0.80

(c)
P, Pm a No. of features A, (Training) A, (Test)
0.7 0.001 0 13 0.93 0.88
0.8 12 0.92 0.88
0.9 12 0.92 0.89
0.7 0.003 12 0.91 0.86
0.8 16 0.94 0.88
0.9 17 0.95 0.88
0.7 0.001 0.0003 12 0.92 0.87
0.8 12 0.92 0.86
0.9 12 0.93 0.88
0.7 0.003 13 0.93 0.87
0.8 13 0.93 0.88
0.9 12 0.94 0.89
0.7 0.005 12 0.89 0.80
0.7 0.001 0.0010 11 0.92 0.87
0.8 10 0.91 0.87
0.9 11 0.91 0.86
0.7 0.003 10 0.91 0.86
0.8 14 0.93 0.87
0.9 13 0.92 0.87
0.7 0.005 11 0.89 0.81
0.8 12 0.88 0.82
0.9 12 0.89 0.81
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Fout Fin No. of features A, (Training) A, (Test)
2.7 3.8 2 0.76 0.76
1.7 2.8 4 0.79 0.76
17 1.8 6 0.83 0.79
1.0 1.4
1.0 1.2 7 0.84 0.79
0.8 1.0 9 0.85 0.79
0.6 0.8
0.4 0.6 10 0.85 0.79
0.2 0.4 12 0.86 0.78
0.1 0.2
(b)
Fout Fin No. of features A, (Training) A, (Test)
2.7 3.8 4 0.82 0.80
1.7 2.8
1.0 1.4 8 0.88 0.83
1.0 1.2 10 0.89 0.82
0.8 1.0 11 0.89 0.83
0.6 0.8 14 0.91 0.85
0.4 0.6 17 0.92 0.84
0.2 0.4 18 0.92 0.81
0.1 0.2 16 0.90 0.80
(©)
Fout Fin No. of features A, (Training) A, (Test)
3.0 3.2 6 0.84 0.80
29 3.2
2.8 3.1
2.0 3.1
3.0 3.1 10 0.88 0.83
29 3.0
2.7 2.8
2.0 2.3 11 0.90 0.86
2.0 2.2
19 2.0
1.7 1.8
13 15 14 0.92 0.86
1.0 1.2 19 0.95 0.86
1.0 11 23 0.96 0.87
0.8 1.2 28 0.97 0.86

in these tables. The training and téstvalues were obtained
from averaging results of the 50 partitions of the data sets

using the selected feature sets.

The results of feature selection using the stepwise LDA
procedure with a range &, andF, thresholds were tabu-
lated in Table llli(a)-(c). The thresholds were varied so that
the number of selected features varied over a wide range.
Often different choices df;, andF,; values could result in
the same selected feature set as shown in the tables by the
number of features in the set. The averagevalues obtained
from the 50 partitions of the data set using the selected fea-
ture sets were listed. The best feature sets selected in the
different feature spaces are shown in Table IV.
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TaBLE IV. The best feature sets selected by the GA and stepwise LDA methatisated by asterisk in Tables Il and i) the three feature spaces. The

number of generations for chromosome evolution in the GA algorithm to reach the selected feature sets is listed. The abbreviations for the texture features are:
correlation(CORE), energfENER), entropyENTR), difference averagddFAV), difference entrop¥DFEN), difference variancé€OFVR), inertia(INER),

inverse difference momerfiNVD), information measure of correlation (1CO1), information measure of correlation(Z£02), sum averagéSMAV), sum
entropy(SMEN), sum variancéSMVR). After an abbreviation, the letter “A” indicates diagonal features and the number indicates the pixel distance. The
abbreviations for the morphological features can be found in Table I.

GA Stepwise LDA
Morphological Texture Combined
generation 39 generation 64 generation 169 Morphological Texture Combined
CMVD DFAVA_8 DFAVA_4 AVMD DFAV_12 CORE_40
CVMR DFEN_16 DFEN_28 CVMD DFEN_4 COREA_16
CVSA DFVRA_24 DFVRA_36 CVMR DFEN_8 COREA 40
MXMR DFVR_24 DFVR_12 CVSA DFENA_12 DFAVA_8
MXSA DFVR_4 DFVR_20 MXMR DFENA_24 DFEN_4
SDMD DFVR_8 ICO1A_20 MXSA DFVR_24 DFEN_8
ICO1A_12 ICO1A_32 DFVR_40 DFENA_36
ICO2A_28 SMEN_16 ICO1_16 DFVR_20
1ICO2_40 SMEN_36 ICO1A_8 ICO1A_28
AVAR ICO2_40 ICO2_24
CVMD INER_8 1ICO2_36
CVSA INVD _16 INER_12
MXEC INVD _4 INERA_16
NUMS INVDA _8 INVDA _36
SDMD SMEN_40
SMENA_4
AVAR
CVMD
CVSA
MXAR
MXEC
NUMS
SDMD

Table V compares the training and téstvalues from the values obtained with the leave-one-case-out scheme are also
best feature set in each feature space for the two featurghown in Table V. The differences between the correspond-
selection methods. The GA parameters that selected the fegg A, values from the two resampling schemes are within
ture set with best classification performance in each featur8.01. The two feature selection methods provided feature
space after 75 generatiofi&able Il) were used to run the GA sets that had similar te#t, values in the morphological and
again for 500 generations. Th¥, values obtained with the texture feature spaces. In the combined feature space, there
best GA selected feature sets after 75 generations are listeghs a slight improvement in the teA value obtained with
together with those obtained after 500 generations. Ahe the GA selected features. Although the difference in Ahe

TaBLE V. Classification accuracy of linear discriminant classifier in the different feature spaces using feature sets selected by the GA and the stepwise LDA
procedure.

Training A, TextA,
Feature selection Morphological Texture Combined Morphological Texture Combined
Cross-validation
GA ) 0.84+0.04 0.88:0.03 0.94:0.02 0.7920.07 0.85:0.07 0.89:0.05
(75 generations)
GA . 0.84+0.04 0.88:0.03 0.960.02 0.7920.07 0.8520.07 0.9020.05
(500 generations)
Stepwise LDA 0.83+0.04 0.9120.03 0.9620.02 0.7920.07 0.8520.06 0.8720.06
Leave-one-case-out
GA . 0.83+0.03 0.88:0.03 0.9420.02 0.7920.04 0.8420.03 0.8920.03
(75 generations)
GA . 0.83+0.03 0.88:0.03 0.9520.02 0.7920.04 0.8420.03 0.8920.03
(500 generations)
Stepwise LDA 0.83+0.03 0.910.02 0.960.02 0.7920.04 0.85:0.03 0.8720.03

Medical Physics, Vol. 25, No. 10, October 1998



2016 Chan et al.: Mammographic microcalcifications 2016

m 15 | I T N T VN O U N N T N T N O R N N N N N N O Y T A Y |
Q _
g | Malignant Benign |
3 c /i 3
= 810+ L
(&) o E L
< w
o o
L >
w ] B
g g
Z 3
o / Combined (GA) s
I.IIJ f i o rTrrTrTT
S 0.2 /i — —Texture (GA) B -2.0 -1.5 1.0 -0.5 0.0 0.5 1.0
f — - —Morpho (GA) DISCRIMINANT SCORES
----- Combined (Stepwise) [ @
0.0 T M T ¥ T T T T T
0‘0 0.2 0.4 0.6 0.8 1'0 10 | N T T N T T N Ty T N O U Y N o U VY VO OO N S O TN O T A N |
FALSE-POSITIVE FRACTION .
Malignant _ Benign

Fic. 5. Comparison of ROC curves of the LDA classifier performance using ]

the best GA selected feature sets in the three feature spaces. In addition, thQ

ROC curve obtained from the best feature set selected by the stepwise LDA® 6 7 N B
procedure in the combined feature space is shown. The classification wask- 7 n I
performed with a leave-one-case-out resampling scheme.
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values from the leave-one-case-out scheme between the tw 0 i I
feature selection methods did not achieve statistical signifi- 20 1.5 10  -05 o 05 1.0
cance p=0.2), as estimated byLABROC, the differences in AVERAGE DISCRIMINANT SCORES

the pairedA, values from the 50 partitions demonstrated a (b)

consistent tren@40 out of 50 partitionsthat theA, from the
GA selected features were higher than those obtained bythEunz e I T S T A T A A
stepwise LDA. This trend was also observed in our previous & 2
study in which mass and normal tissue were classifted. E ] Malignant Benign
The ROC curves for the test samples using the feature set g
selected by the GA were plotted in Fig. 5. The classification 8
accuracy in the combined feature space was significantlys ©
higher than those in the morphologicgb=0.002) or the
texture feature spac@& 0.04) alone. The ROC curve using i
the feature set selected by the stepwise procedure in the comg 2 7
bined feature space was also plotted for comparison. The&

UENCY
»
1

distribution of the discriminant scores for the test samples -2.0 1.5 -1.0 0.5 0.0 0.5 1.0
using the feature set selected by the GA in the combined MINIMUM DISCRIMINANT SCORES
feature space is shown in Fig@. If a decision threshold is ©

chosen at 0.3, 29 of the 885%) benign samples can be Fic. 6. Distribution of the discriminant scores for the test samples using the

correctly classified without missing any malignant clusters. best GA selected feature set in the combined texture and morphological
Some of the 145 samples are different views of the saméature spacea) Classification by samples from each filth) classification

microcalcification clusters. In clinical practice, the deCISIOI’Iby cluster using the average scorés) classification by cluster using the

minimum scores.

regarding a cluster is based on information from all views. If

it is desirable to provide the radiologist a single relative ma-

lignancy rating for each cluster, two possible strategies may

be used to merge the scores from all views: the average scoamd 0.8910.04, respectively, for the GA selected and step-

or the minimum score. The latter strategy corresponds to theiise LDA selected feature sets. Using the minimum scores,

use of the highest likelihood of malignancy score for thethe testA, values were 0.906.03 and 0.85:8.04, respec-

cluster. There were a total of 81 different clusteét$ benign tively. The difference between th&, values from the two

and 37 malignantjrom the 78 cases because 3 of the caseg$eature selection methods did not achieve statistical signifi-

contained both a benign and a malignant cluster. The distrieance in either casgp=0.07 andp=0.09, respectively). If a

butions of the average and the minimum discriminant scoredecision threshold is chosen at an average score of 0.2, 22 of

of the 81 clusters in the combined feature space were plottetthe 44(50%) benign clusters can be correctly identified with

in Fig. 6(b) and Fig. &c), respectively. Using the average 100% correct classification of the malignant clusters. If a

scores, ROC analysis provided tést values of 0.930.03  decision threshold is set at a minimum score of 0.2, 14 of the
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44 (32%) benign clusters can be identified at 100% sensitivlevel transitions within the imag¥.As an example, the en-
ity. tropy feature measures the uniformity of the SGLD matrix.
The entropy value is maximum when all the matrix elements
are equal. The entropy value is small when large matrix el-
IV. DISCUSSION ements concentrate in a small region of the SGLD matrix
The Fischer’s linear discriminant is the optimal classifierwhile the other matrix elements are relatively small. There-
if the class distributions are multivariate normal with equalfore, large entropy represents a large but random variation of
covariance matrice¥ Even if these conditions are not satis- pixel values in an image without regular structures whereas
fied, as in most classification tasks, the LDA may still be asmall entropy represents an image with relatively uniform
preferred choice when the number of available trainingpixel values if the SGLD matrix peaks along the diagonal
samples is small. Our previous investigafidfr of the de-  and an image with regular texture patterns if it peaks off the
pendence of classifier performance on design sample siatiagonal. The ambiguity may be resolved when the sum en-
indicated that, in general, the training performafesubsti-  tropy and difference entropy measures are analyzed. Unlike
tution) of a classifier is positively biased whereas the tesimorphological features, it is difficult, in general, to find the
performance(hold-out) is negatively biased by the sample direct relationship between a texture measure and the struc-
size. The magnitudes of the biases increase when the dimetures seen on an imag®and often a combination of several
sionality of the input feature space or the complexity of thetexture measures extracted at different angles and pixel pair
classifier increases, or when the design sample size delistances are required to describe a texture pattern. It may
creases. Therefore, the test performance of a linear classifialso be noted that some textures can only be described by
is generally better than that of a more complex classifier sucBecond-order statistics and may not be distinguishable by
as a neural network or a quadratic classifier when the traininguman eyes. The feature selection methods are used to em-
sample size is small. The training results should not be usegirically find the combination of features that can most ef-
for comparison of classifier performance because a classifidectively distinguish the malignant and benign lesions.
can often be overtrained and give a near-perfect classification From Table 1V, it can be seen that many of the features in
on training samples while the generalization to any unknowrthe best feature sets selected by the GA method and the
test samples is poor. In this study, we evaluated the effecstepwise LDA method are similar. In the morphological fea-
tiveness of using the morphological and the texture featuresire space, five of the six selected features are the same in
extracted from mammograms for classification of a microcalthe two feature sets. In the combined feature space, six mor-
cification cluster. Although we expanded the data set fronphological featuregout of six and seven morphological fea-
our previous study, the current data set was still relativelytures in the two sets, respectivelgre the same. For the
small. We therefore chose to use a linear discriminant clastexture features, there are more variations in the features se-
sifier for this classification task. Stepwise feature selection olected by the two methods. However, the differences are
a GA was used to reduce the dimensionality of the featurenainly in the pixel distances and the directions of the fea-
space. tures, while the major types of the texture features are simi-
In the morphological feature space, the features related ttar. For example, four types of texture features, energy, en-
three characteristics, mean density, the moment ratio, and theopy, sum average, and sum variance were not selected in
signal area, were chosen most often. The features related &ither the texture or the combined feature space by both
axis ratio, eccentricity, and the number of microcalcificationsmethods. Another four types of texture features, difference
in a cluster were chosen only when they were combined wittaverage, difference entropy, difference variance, and infor-
texture features. These results indicate the usefulness of claswation measure of correlation 1 were chosen in each case,
sification in multi-dimensional feature spaces. Some featureand information measure of correlation 2 was chosen in three
that are not useful by themselves can become effective feaf the four cases. Inertia and inverse difference moment were
tures when they are combined with other features. The reselected by the stepwise LDA method in both the texture and
sults also indicate that all six characteristics of the microcalthe combined feature spaces. Sum entropy was selected by
cifications designed for this task have some discriminatoryppoth methods in the combined feature space. These results
power to distinguish malignant and benign microcalcifica-indicate that some features are more effective than the others
tions. The morphological features are not as effective as thtor distinguishing benign and malignant microcalcifications.
texture features. This is evident from the smafewvalues in ~ The pixel distance and the direction of the texture features
the morphological feature space. However, when the mormay be considered to be higher order effects that have less
phological feature space is combined with the texture featurefluence on the discriminatory ability of a given type of
space, the resulting feature set selected from the combinddxture measure. The smaller differences in their discrimina-
feature space can significantly improve the classification actory ability would subject them to greater variability of being
curacy, in comparison with those from the individual featurechosen in the feature selection processes. It may also be
spaces. noted that many of the features are highly correlated. The
The SGLD texture features characterize the shape of theorrelated features can be interchanged in a classifier model
SGLD matrix and generally contain information about thewithout a strong effect on its performance.
image properties such as homogeneity, contrast, the presenceThe GA solves an optimization problem based on a search
of organized structures, as well as the complexity and grayguided by the fitness function. Ideally, the values forhe,
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P., anda parameters chosen in the GA only affect the con-criminant classifier using the best feature set and a properly
vergence rate but will eventually evolve to the same globathosen decision threshold could correctly identify 35% of
maximum. However, when the dimensionality of the featurethe benign clusters without missing any malignant clusters. If
space is very large and the design samples are sparse, the @# average discriminant score from all views of the same
often reaches local maxima corresponding to different feaeluster was used for classification, the accuracy improved to
ture sets, as can be seen in Table Il. Similarly, the stepwisB0% specificity at 100% sensitivity. Alternatively, if the
feature selection may reach a different local maximum andaninimum discriminant score from all views of the same clus-
choose a feature set different from those chosen by the GAer was used, the accuracy would be 32% specificity at 100%
The different feature sets may provide different or similarsensitivity. This information may be used to reduce unnec-
performance. The latter is often a result of the correlatioressary biopsies, thereby improving the positive predictive
among the features, as described above. value of mammography. Although these results were ob-
For the linear discriminant classifier, the stepwise LDAtained with a relatively small data set, they demonstrate the
procedure can select near-optimal features for the classificgotential of using CAD techniques to analyze mammograms
tion task. We have shown that the GA could select a featurand to assist radiologists in making diagnostic decisions.
set comparable to or slightly better than that selected by thEurther studies will be conducted to evaluate the generaliz-
stepwise LDA. The number of generations that the GA hadhbility of our approach in large data sets.
to evolve to reach the best selection increased with the di-
mensionality of the feature space as expected. However,
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