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Abstract 
Computerized classification testing (CCT) can be used to increase efficiency in educational 
measurement. The truncated sequential probability ratio test (TSPRT) has been widely studied as 
a decision algorithm in CCT for two or more categories.  Finkelman (2003) added an algorithm 
to the TSPRT in the form of stochastic curtailment, to classify an examinee in an even earlier 
stage of testing. This stochastically curtailed SPRT (SCSPRT) halts testing when a change of 
classification is possible, but unlikely.  Finkelman (2003) adapted the algorithm for two 
categories and with fixed item ordering. The current study replicates his results, replicates it in 
realistic settings, and subsequently generalizes the SCSPRT to three categories while using 
adaptive item selection. The results show increased efficiency both when using one and two cut 
points. Different item selection methods are discussed. 
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Computerized Classification Testing in More Than  
Two Categories by Using Stochastic Curtailment 

 
Applications of computerized classification testing (CCT) show how adaptive testing can be 

used to increase efficiency in educational measurement. CCT differs from conventional 
computerized adaptive testing (CAT) in that in CCT, a person’s exact (latent) ability level, θi, is 
not especially important, as long as the person is correctly classified after reaching a certain 
threshold. Classifying a person can be important in determining whether someone has reached a 
certain level of proficiency in, for instance, mathematics. For both CCT and CAT, most item 
banks used have been calibrated using item response theory (IRT).  

The SPRT is a widely used method for classification problems in CCT (see Thompson, 2007, 
for an overview of the different methods used). The SCSPRT (Finkelman, 2003, 2004, 2008) is 
an expansion of the SPRT, but as it is used now it is only applicable for mastery testing (CCT 
with one cut point). This is because it needs information of items N (the maximum number of 
items) minus k (the current number of items administered) to come to a classification decision. 
To be able to obtain information of these “future” items, using the SCSPRT as it is used now a 
test is needed that uses fixed item ordering.  Fixed item ordering is thus far only useful in 
classification problems that use one cut point.  

The Current Study 
In the current study the SCSPRT will be generalized to three levels or two cut points. 

Consequently, the item selection algorithm has to be adaptive and the result is that items cannot 
be fixed in the test (Eggen & Straetmans, 2000). Put differently, in order to be effective, the 
SCSPRT has to be adapted to make it work with three classification levels. First the SPRT will 
be explained, then the SCSPRT will be discussed. Subsequently, the SCSPRT will be modified 
for three proficiency levels. Then the simulations conducted by Finkelman (2003) will be 
replicated and the algorithm will be tested with realistic settings. This replication was carried out 
not only to test our implementation of the SCSPRT, but also because it is not an exact 
replication; in this study. a slightly different version of the item information function was used, 
together with a different likelihood estimator.  

Finally the adapted SCSPRT will be tested with two cut points, using simulated data with 
real parameters, realistic θ distributions, and sensible cut points. The goal of this study was to 
test the SCSPRT in somewhat more realistic settings, generalize it to more than two levels, and 
to explore which item selection method has the largest efficiency gain, while keeping usability in 
mind.  

The IRT Model 
Let uij be 1 if a given respondent i has answered item j correctly, and 0 if the respondent has 

answered the item incorrectly. In IRT, the ith examinee’s ability is regularly denoted as a latent 
variable θi. Although θ is assumed to vary from person to person, the subscript i is dropped at 
this point for simplicity. In this study, the IRT model used was the two-parameter logistic (2PL) 
model, which is given by (Birnbaum, 1968)  as 
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in which bj is the difficulty parameter and aj the discrimination parameter. The estimator of θ 
used here to estimate the maximum likelihood of θ is the weighed maximum likelihood (WML) 
estimator developed by Warm (1989). In the 2PL model the WML estimator is given by  
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which is the generally statistically superior variant of the unweighted maximum likelihood 
estimator (Eggen, 1999), in which k is the number of items and Ij(θ) is the Fisher item 
information of item j. In the 2PL model this function is given by  

2( ) ( ) 1 ( ) .j j j jI a p pθ θ θ = −   (3) 

The Sequential Probability Ratio Test 
The Sequential Probability Ratio Test (SPRT) is a widely used method in CCT for 

determining to which of a limited number of categories the θ level of an examinee belongs. The 
first applications of Wald’s (1947) SPRT in CCT (Lewis & Sheenan, 1990; Reckase, 1983; 
Spray & Reckase 1994, 1996) involved only one cut point on the θ scale with two categories 
(e.g. mastery and non-mastery). Eggen and Straetmans (2000) and Spray (1993) showed that the 
SPRT can also be utilized in a CCT for classification into one of three categories. Users of the 
SPRT procedure (e.g., Jiao, Wang, & Lau, 2004; Eggen & Straetmans, 2000) typically set a 
maximum to the number of items to be administered under real testing conditions. This is often 
implemented as an extra stopping rule at k = N items, where k is the number of currently 
administered items and N is the defined maximum number of items to be administered. This 
feature makes this procedure a truncated form of the conventional SPRT (TSPRT).  

The Truncated Sequential Probability Ratio Test (TSPRT) 
The TSPRT is a sequential testing procedure, in which the likelihoods of a statistical 

hypothesis and an alternative are compared. Cut points have to be set first on the θ  scale to 
separate the classification levels. Subsequently, indifference regions δ are assigned around these 
cut points (see Eggen & Straetmans, 2000). These indifference regions can be seen as the areas 
in which it is most difficult for the TSPRT to be able to classify an examinee. Therefore the outer 
bounds of these regions are used for comparing the ratio test. The cut points plus or minus the 
indifference regions mark the two values for which the TSPRT compares the likelihoods. The 
basic TSPRT rationale is the evaluation of the ratio of two likelihoods. These values are then 
used to test two statistical hypotheses against one another. In the case of two cut points, θ1 and 
θ2, these hypotheses are (Eggen & Straetmans, 2000)  

H01 : θ < θ1 – δ11 (Level 1)     H11 : θ < θ1 – δ12  (higher than 1)   

H02 : θ < θ2 – δ12 (lower than 3)     H12 : θ < θ2 – δ22 (Level 3)   

. Table 1 displays the ratio tests in the form of stopping rules of the TSPRT, as used by 
Eggen and Straetmans (2000) and Jiao, Wang and Lau (2004). These are in fact generalizations 
of the stopping rules as used by Finkelman (2003, 2008) in the one cut point case. In Table 1, α 
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and β are constants representing the allowed decision error rates of the two statistical tests. The 
first stopping rule stops testing and accepts Level 1 if the weighed sum score is smaller than or 
equal to the log of the constant (which depends on the error rates) minus the sum of the log 
likelihood ratios of the values at which the hypotheses are tested, divided by the sum of the δ 
values around that cut point. At k = N, testing is ceased and a classification decision is forced. 
The decision rules at k = N are the ratio tests as shown in Table 1, which are evaluated against 
the weighed sum. These decision rules are the same as the stopping rules, but without the ln(β/(1 
– α)) or ln( (1 – β)/α) parts.   

 
Table 1. Stopping Rules of the Truncated Sequential Probability Ratio Test 
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accept Level 3 if   
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else  continue testing   

 

Figure 1 represents a flow chart of how the different classification decisions take place. This 
flow chart is applicable to the SPRT as well as the SCSPRT.  
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Figure 1. Flow Chart of the Stopping Rules of the (SC)SPRT 

 
 

The SCSPRT 
Finkelman (2004) states that the TSPRT is inefficient in that there are cases in which it 

presents another item while this item cannot change the classification decision about the 
examinee. The SCSPRT intervenes in these cases and halts testing when a change in 
classification is impossible. This part is called curtailment. However, the SCSPRT also halts 
testing in cases in which the probability of a change of classification decision is smaller than a 
predefined value, which is called stochastic curtailment. Finkelman (2003, 2008) showed that the 
TSPRT can be stochastically curtailed in order to shorten test length, while gaining in 
classification accuracy. Usually, in CAT, it is optimal to choose items that  provide maximum 
information at the current θ estimate. In this way the test is adapted to the difficulty an examinee 
can handle. In mastery testing, it is optimal to choose items which have maximum information at 
the cut point (Eggen, 1999). This way the test only stays adaptive in test length, but is not 
adaptive in the selection of items. The problem of CCT with three levels is that there are two cut 
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points. With one cut point it would have been clear around which cut point items have to be 
administered, because there is only one. With two cut points there is no best choice. Around 
which cut point items will be most informative for an examinee differs from one examinee to the 
other. This difference is explained by differences in ability between examinees. The other 
problem is that the SCSPRT, as applied by Finkelman (2003), is constructed in such a way that it 
needs information of all to be administered (N - k) items to make a classification decision. The 
next section formulates an answer to these problems in order to make the SCSPRT work in the 
case of three proficiency levels.  

Extension. As can be seen in Finkelman (2003, 2008), the SCSPRT is an extension of the 
SPRT. It adds stochastic curtailment in the form of two extra stopping rules per level. Stochastic 
curtailment ceases testing and rejects H01 if given k observations, the probability that a decision 
D will accept H01, Pk(D = H01), is not higher than a set value 1 − γ. Testing stops and accepts H01 
if this probability is at least γ. As mentioned before, the TSPRT and the SCSPRT as used in a 
two-category problem have a set maximum number of items N (e.g. Spray & Reckase, 1996; 
Eggen, 1999; Finkelman 2003, 2004, 2008). When using one cut point, one can easily set item 
selection to be maximally informative at the cut point θ0. An advantage of maintaining this 
selection criterion is that all items that will be administered are known. If k is the current number 
of items, then the possible future items, N − k, are known. Consequently it can also be estimated 
whether, given the expected value of the rest of the items, future items would change the current 
classification at k items.  

Future items. However, in this study we would extend the SCSPRT to three proficiency 
levels. This means that there are two cut-scores, so maximum information at the cut-score cannot 
be used as a selection criterion (Eggen, 1999). How to provide the SCSPRT with information of 
future (N − k) items? It is not possible to know at which cut point one has to start administering 
items. So one solution is to calculate the optimal descending ordering of item information after 
every administered item and to plug that into the SCSPRT as information about “future items.” 
Other solutions could be to select items with highest information around the cut point nearest to 
the current θ estimate, or to select items in the middle, exactly between the two cut points.  

The SCSPRT for Three Proficiency Levels 
The SCSPRT uses fewer items than the SPRT. This means that there is less information to 

make a classification decision and this could cause higher decision error rates. In order to prevent 
misclassification due to imprecise estimations of θ, θ̂ , we set, following Finkelman (2003), a 
minimum number of k* < N items that have to be completed before the extra stopping rules of the 
SCSPRT can take effect. So until k* < k, only the stopping rules of the TSPRT apply (see Table 
1). Let (Finkelman, 2003)  
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This is the case in which the weighted sum of item scores that have highest information around 
the first cut point exceed the weighted sum of item scores of the administered items, plus the 
maximum score on the items to be administered which have highest information around the 
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If the normal approximation (Φ) of the weighted sum of item scores that have highest 
information around the first cut point, minus the expected value at N items, given k already 
administered items, divided by the standard error of that expected value, is greater than or equal 
to a set value of γ, then the SCSPRT stops testing and accepts H0. However, this must go 
together with 1

ˆ θθ < . Equation 7 is the stochastic curtailment stopping rule. The estimation of 
theta, θ~ , as used in Equation 7, is a somewhat more conservative estimator of θk than θ̂ . 
Finkelman (2003) sets this theta estimation to be  
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if the value of θ̂  is smaller than the respective cut point value, and  
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if the value of θ̂  is larger than the respective cut point value. These θ~  are the endpoints of the 
respective lower (Equation 8) and upper (Equation 9) one-sided confidence intervals of a θ 
estimate.   

As can be seen in Equations 6 and 7, both additional stopping rules need information of items 
that could be administered in the future (N− k), in order to be able to assign examinees to a 
certain level. To get around this potential problem, we calculate the optimal descending ordering 
of Fisher item information at kθ̂ after every administered item. Table 2 presents the stopping 
rules as they are applied when k*< k < N. At k = N, the test is ended, and the decision rules from 
the TSPRT are applied.  
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Table 2. Stopping Rules of the SCSPRT for Three Levels 

 
Simulation Studies 

Three simulation studies were conducted. Two studies were conducted using only one cut 
point, and one study using two cut points. In all studies, the same generated data was used per 
experiment for both sequential rules. The simulations were programmed in the R software 
environment for statistical computing and graphics (R Development Core Team, 2008). In our 
simulations we used the more conservative θ~  as an estimate for θ.   

Simulation 1: Replication Study 
The first study was conducted to replicate the results of Finkelman (2003). The same 

distribution and number of item parameters were used, aj U[0.5, 1.5], bj U[-4, 4], and the item 
bank consisted of 300 items. The same cut point, maximum number of items, and values for γ, α, 
and β were used: Nmax=50, θ0 = −0.325, γ = 0.95, δ = 0.2, α = 0.05, β = 0.05. The only differences 
were the use of the WML estimator (Equation 2) and the use of a slightly different version of the 
Fisher information function (Equation 3).  

Fifteen equidistant θ values were used as ability parameters for the simulees, with 2,000 
replications per value. Figure 2 depicts the percentage of correctly classified simulees per θ value 
and the mean number of items used before a classification decision was taken.  

Results. The percentage of correctly classified simulees was the same for the TSPRT as for 
the SCSPRT. The difference in mean number of items used between the SPRT and SCSPRT was 
quite large, with a minimum of 6.93 items, and a maximum of 13.12 items near the cut point. 
This is a larger mean difference than Finkelman (2003) reported.   
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Figure 2. Study 1: Mean Number of Items Used Before a Classification Decision 
Was Made and Percentage of Correctly Classified Simulees Per θ Value  

 

 
Simulation 2: Study With Real Item Parameters 

The second study was conducted using real item parameters from the Eggen and Straetmans 
(2000) study. These item parameters originated from a mathematics item bank consisting of 250 
calibrated items. To satisfy the necessary scaling constraints, the geometric mean of the 
estimated discrimination indices was fixed at ( ) 250/1ˆ∏ ja , and the sum of the estimated difficulty 

parameters was fixed at 0ˆ
1

=∑ =

N

j jb . The cut points between the three θ levels, θ1 = −0.13 and θ2 

= 0.33, were set as realistic values (see Eggen & Straetmans, 2000). However, because only one 
cut point was needed in this study, we used θ2 as the one cut point. The error rates were set at α1 
= β1 = 0.05, and the δ regions at δ11 = δ22 = 0.2. The maximum number of items N was set at 
Nmax= 40. The value of γ was set at γ = 0.975. The θj of every simulee was randomly drawn from 
a distribution with a mean of 0.294, and a standard deviation of 0.522; this was the θ distribution 
as estimated in the calibration study. The point at which further measures of truncation could 
start was set to, following Finkelman (2003), k*  = 20. The number of simulees was set to 5,000.  

Results. Results showed that with a realistic cut point, θ distribution, realistic parameters, δ 
regions, and error rates, the percentage of correctly classified simulees was exactly the same for 
the SPRT and the SCSPRT, 95.05%. The mean difference between the number of items used by 
the SPRT and SCSPRT was 0.42 items, in favor of the SCSPRT. This is a much smaller 
difference than what had been shown in Study 1. Figure 3 shows the results for 10 equidistant θ 
points with 2,000 replications per point. This figure shows that the SCSPRT used slightly fewer 
items than the SPRT, especially near the cut point, while maintaining virtually the same 
percentage of correctly classified simulees. An explanation for this relatively small observed 
difference (Finkelman, 2008) is that the SCSPRT works less efficiently when there are items 
administered with high a parameters, with b parameters around the cut point. In the studied 
mathematics item bank there are such items, which have high information  around the cut point, 
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so this might be the reason for the smaller observed difference. To test this hypothesis, we 
reduced the mathematics item bank to the items with low a parameters. The items with an a 
parameter above 3.0 were omitted, resulting in an item bank consisting of 52 items with a = 2, 
and 115 items with a = 3 (167 items total). The result of this exploration was exactly as 
Finkelman (2008) predicted. With 2,000 simulees, the difference between the TSPRT and 
SCSPRT in number of items used, before a classification decision was made, was 2.71 items. 
This is still a more modest result than with the theoretical item bank, but it is a substantial 
difference. The percentage of correctly classified simulees was 94.35% for the TSPRT and 
94.45% for the SCSPRT.   

Figure 3. Study 2: Mean Number of Items Used Before a Classification  
Decision Was Made and Percentage of Correctly Classified Simulees Per θ Value  

 

 
 Simulation 3: Study With 2 Cut Points 

Item bank.  The same item bank, model configurations, and data simulation methods were 
used as in Study 2. The θ parameters were also randomly drawn from the same distribution. The 
difference in terms of data and item configuration was the use of an additional cut point, θ1 = 
−0.13 (see Eggen & Straetmans, 2000). In order to be able to produce figures for the most 
efficient item selection method, ten equidistant θ values were used as ability parameters for the 
simulees, with 2,000 replications per value.  

Item selection. The most important difference was that with two cut points, it was not clear 
which item selection method would produce the best results. Therefore, three different item 
selection methods were explored: selection in the exact middle between the two cut points, 
selection at the nearest cut point, and selection at the current θ estimate kθ̂ . Information about 
“future” items was also chosen at these points. For the third method this resulted in different 
“future” items after every item administration.   

Results. As can be seen in Table 3, the results of selection with maximum information at the 
nearest cut point and selection at the current θ estimate were similar. Results of item selection in 
the middle, between the two cut points, were somewhat worse. The preferred method here was 
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selection with maximum information at the current θ estimate, because this method is much 
more flexible regarding exposure control and content balancing methods. This means that this 
selection method is of much more practical use, because a larger part of the item bank can be 
used.  

Table 3. Results of Different Item Selection  
Methods With the SPRT vs SCSPRT 

 

Figure 4 gives the mean number of items used per equidistant θ value and the mean 
percentage correct per θ value. This figure shows that the percentage correctly classified 
simulees was similar for the SCSPRT and SPRT, but that the SCSPRT used fewer items on 
average, especially near the cut points.  

Figure 4. Study 3: Mean Number of Items Used Before a Classification  
Decision Was Made and Percentage of Correctly Classified Simulees Per θ Value 

 
Discussion 

One Cut Point 
When using one cut point, the performance of the SCSPRT with a theoretical item bank was 

much more efficient compared to the SPRT. With a real item bank, under realistic circumstances, 
the gain in efficiency of the SCSPRT compared to the SPRT was more modest, but still quite 
substantial. Finkelman (2008) is correct in his conclusion that when highly discriminating items 
are omitted, the performance of the SCSPRT increases. However, our conclusion is that the 
results must be highly item bank dependent because the results with realistic settings, even when 
highly discriminating items are omitted, are more modest compared to our results with the 
theoretical item bank.  



- 11 - 
 

Two Cut Points 
A generalization to more than two categories is possible. The performance of the SCSPRT 

with a real item bank was in general better than the SPRT with respect to the number of items 
needed for classification. This cost only a minimal loss in the percentage correct classification 
decisions. For both the SCSPRT and SPRT the selection method which chooses items with 
maximum information at the midpoint between the cutting points performed worse than the two 
other explored methods. As is the case with the SPRT, there were no large differences in 
performance between the remaining item selection methods; maximum information at the nearest 
cut point and maximum information at the current θ estimate performed similarly.  

Future Research 
Additional results showed that if the cut points were set further apart, while keeping 

everything else the same, the efficiency gain became larger for the SCSPRT as opposed to the 
SPRT. This must be due to the effect Finkelman (2008) described that the gain is larger when 
there are only low discriminating items available in a certain θ area. However, different types of 
item banks should be explored to test the SCSPRT in different situations.    
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