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Abstract

Goal—Chest auscultations offer a non-invasive and low-cost tool for monitoring lung disease. 

However, they present many shortcomings including inter-listener variability, subjectivity, and 

vulnerability to noise and distortions. The current work proposes a computer-aided approach to 

process lung signals acquired in the field under adverse noisy conditions, by improving the signal 

quality and offering automated identification of abnormal auscultations indicative of respiratory 

pathologies.

Methods—The developed noise-suppression scheme eliminates ambient sounds, heart sounds, 

sensor artifacts and crying contamination. The improved high-quality signal is then mapped onto a 

rich spectro-temporal feature space before being classified using a trained support-vector machine 

classifier. Individual signal frame decisions are then combined using an evaluation scheme, 

providing an overall patient-level decision for unseen patient records.

Results—All methods are evaluated on a large data set with > 1,000 children enrolled, 1–59 

months old. The noise suppression scheme is shown to significantly improve signal quality; and 

the classification system achieves an accuracy of 86.7% in distinguishing normal from 

pathological sounds, far surpassing other state-of-the art methods.

Conclusion—Computerized lung sound processing can benefit from the enforcement of 

advanced noise-suppression. A fairly short processing window size (< 1 s) combined with detailed 
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spectro-temporal features is recommended, in order to capture transient adventitious events 

without highlighting sharp noise occurrences.

Significance—Unlike existing methodologies in the literature, the proposed work is not limited 

in scope or confined to laboratory-settings: this work validates a practical method for fully 

automated chest sound processing applicable to realistic and noisy auscultation settings.

Index Terms

Computerized lung sound diagnosis; lung auscultation; multi-resolution analysis; noisy setting; 
pediatric

I. INTRODUCTION

The stethoscope is the most ubiquitous technology for accessing auscultation signals from 

the chest in order to evaluate and diagnose respiratory abnormalities or infections [1]. Since 

its invention in the early 1800s, the basic system has not changed much except for 

improvements in sound quality using shape modification and the introduction of enhanced 

materials. Despite its universal use, it remains an outdated tool, riddled with a number of 

issues. The stethoscope’s value for clinical practice is limited by inter-listener variability and 

subjectivity in the interpretation of lung sounds. It is also restricted to well-controlled 

medical settings; the presence of background noise affects the quality of lung auscultations 

and may mask the presence of abnormalities in the perceived signal. It requires the 

interpretation of auscultation signals by properly trained medical personnel, which further 

limits its applicability within clinical settings without appropriate resources and medical 

expertise. These limitations are further compounded in impoverished settings and in 

pediatric populations. Close to 1 million children under five years of age die each year of 

acute lower respiratory tract infections (ALRI); more deaths than from HIV, malaria and 

tuberculosis combined [2]. Yet, access to medical expertise is not readily available and is 

further exacerbated by limited access to alternative diagnostic tools. Despite its limitations, 

the stethoscope remains a valuable tool in ALRI case management. Its potential is even more 

critical in resource-poor areas where low-cost exams are of paramount importance, access to 

complimentary clinical methods may be scarce or nonexistent, and medical expertise may be 

limited.

Computerized auscultation analyses (CAA) provide a reliable and objective assessment of 

lung sounds that can inform clinical decisions and may improve case management, 

especially in resource-poor settings. The challenges in developing such computerized 

auscultation analysis stem from two main hurdles. Firstly, there is great variability in the 

literature regarding a reliable description of lung signals and their pathological markers. For 

instance, adventitious sounds of wheeze have been reported to span a wide range of 

frequencies varying within 100–2500 Hz or 400–1600 Hz; similarly crackles have been 

characterized as sounds with frequency content < 2 kHz or > 500 Hz or within 100–500 Hz 

[3], [4]. Secondly, ambient noise often contaminates the auscultation signal and masks 

important signature cues, as it often exhibits time-frequency patterns that greatly overlap 

with characteristic events in lung sounds [5].
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Over the past few decades, few CAA approaches have been proposed to offer solutions to 

automated monitoring and diagnosis of lung pathologies. Nonetheless, the proposed 

approaches remain limited in their applicability, and tend to be confined to laboratory or 

well-controlled clinical settings or to simulated additive noise conditions [6]–[8]. These 

artificial settings greatly oversimplify environments in the field or the Emergency 

Department, where noisy and raucous clinical conditions incur unpredictable non-additive 

noise contamination. Few studies have explored analysis and classification techniques for 

breath sound diagnostics under more realistic clinical settings [9]–[13]; yet the majority 

suffers from limited patient evaluation or low protocol versatility. Unfortunately, the 

applicability of such methods to child auscultation is unknown and expected to be hampered 

by common pediatric challenges including irregular breathing, motion artifacts, crying or 

other body sounds that cannot be held back during examination. Finally, most proposed 

methods offer analysis techniques best suited to only identify context-specific pathological 

sound patterns [11]–[15].

A parallel challenge to the development of fully automated CAA systems is the need for 

hand-labeled information that can parse the respiratory phases in auscultation signals, 

identify specific signal instances with pathological markers as well as offer a reference 

medical interpretation of the auscultation signals. The need for such labeled ground-truth 

annotations is crucial for the development and training of supervised techniques, which 

explains why most studies are developed depending on it. Yet, a fully-annotated reference 

database is unrealistic because: (i) it is an extremely expensive and laborious effort in a large 

sample size; and (ii) it is not consistent with common medical practices where health care 

professionals rely on a global listening of the auscultation signal and recurrence of specific 

patterns indicative of pathologies while ignoring irrelevant information. Requiring an 

instant-by-instant labeling of hours of auscultation recordings is both unreasonable and 

impractical.

To tackle these challenges, we introduce an integrated scheme shown in Fig. 1 that (i) 

encompasses noise suppression to improve the signal quality, (ii) offers a rich feature 

representation to address the unpredictable nature of adventitious auscultation patterns, and 

(iii) provides patient-level assessment of pathological status by combining partial signal-

level assessments without the need for exhaustively detailed annotations. For validation and 

evaluation, we use a large realistic dataset collected in developing countries in non-ideal 

rural and outpatient clinics. When it comes to distinguishing between normal vs. 

pathological lung sounds, we demonstrate the need for noise-free quality signals by using 

objective quality measures; we further demonstrate the advantages of the proposed feature 

extraction against state-of-the-art methods, which are shown here to lack the robustness to 

perform effectively on a diverse set of adventitious sounds, especially when noise events 

further mask the signal signatures. Section II provides an overview of the digital data 

collection protocol and section III presents the multi-step noise suppression scheme and 

evaluation. The rich feature space, classification and decision-making process follow in 

section IV. Section V discusses patient diagnostic results as compared to other methods; and 

section VI concludes the work with a discussion on the significance of these results.
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II. DATA DESCRIPTION AND PREPARATION

All data and annotations were provided by the Pneumonia Etiology Research for Child 

Health (PERCH) study [16].

A. Data Collection

Digital auscultation recordings were acquired from children, ages 1 to 59 months (median 

age 7±11.43 months), in outpatient or busy clinical settings in Africa (The Gambia, Kenya, 

South Africa, Zambia) and Asia (Bangladesh, Thailand). In total, 1157 children were 

enrolled into the digital auscultation study and were classified into one of the two categories: 

cases, having World Health Organization-defined severe or very severe pneumonia [17], or 

age-matched community controls, without clinical pneumonia.

The auscultation protocol called for recordings over 8 body locations (sites): four across the 

child’s back, two in the axilla and two on the chest area (Fig. 2). To ensure two full breath 

cycles, at least 7 s of body sounds were obtained per site. A commercial digital stethoscope 

was used for data acquisition (ThinkLabs Inc. ds32a), sampling at 44.1 kHz. An independent 

Sony-ICD-UX71-81 microphone was affixed on the back of the stethoscope, recording 

concurrent ambient sounds. During examination the infant was seated, laid down or held to 

the most comfortable position.

B. Annotations

Nine expert reviewers (pediatricians or pediatric-experienced physicians) were enrolled for 

the annotation process. For each patient recording, two distinct primary reviewers annotated 

the 8 sites (per site or site annotation) as being Normal or Abnormal (Table I), with an 

accompanying descriptor label: ”definite”, ”probable” or ”non-interpretable”. A ”definite” 

label was provided when two or more full breaths could be heard, and the reviewer could 

classify them with certainty. If only one breath could be heard with certainty or if more than 

2 breaths could be heard with uncertainty, then a ”probable” descriptor was given. If no full 

breath sounds could be distinguished (due to poor sound quality, technical errors, or 

unrecognizable contamination), a ”non-interpretable” label descriptor was assigned.

The above process ensured that every site recording was assigned an annotation explaining 

breath sound findings, along with a confidence indicator for each finding. In case of 

disagreement between the two primary reviewers, more reviewers listened to the recording 

to resolve ambiguities, and provided additional labeling as needed (see [18] for details on 

the annotation process). Finally, within each per site label, reviewers were asked to specify a 

sub-interval label containing one segment of arbitrary length that best exemplified the given 

per site label (Fig. 2).

C. Datasets

Based on the sub-interval and per site labels, two types of data sets were created for the 

evaluation of this work:

• Sub-interval set: including all patients’ sub-interval recordings of arbitrary 

length, grouped into Normal and Abnormal (Table I, 1st row).
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• Full patient set: including all patients’ records, grouped as Normal or Abnormal 

(Table I, 2nd–3rd row).

A few key-observations on the formed data groups: (i) adventitious events may still exist 

within a normal annotation, as long as their occurrence was not regarded a pathological lung 

sound; (ii) a per site recording was considered abnormal if there was full or partial 

agreement among reviewers over an abnormal annotation. Full or partial agreement means 

that a ”definite” or ”probable” presence of an abnormal sound was agreed by both primary 

reviewers or by at least two of the total reviewers. Augmenting the data sets to include both 

full and partial agreement cases ensured the minimization of excluded data, making the 

study more realistic, but at the expense of infusing uncertainty to the classification model; 

(iii) a patient record labeled as Abnormal (Table I, 3rd row), may contain one or more 

abnormal sites (Table I, 2nd row); (iv) patient records obtaining a ”non-interpretable” label 

or failing to obtain full or partial agreement, were excluded from evaluation.

In total, 62 patients were excluded due to missing annotations, along with 29% of remaining 

site recordings, due to: ”non-interpretable” labels, missing audio, recording malfunctions in 

one of the two microphones, or high disagreement among reviewer labels. The final included 

data set consisted of more than 250 hours of recorded lung sounds.

D. Preprocessing

All acquired recordings were low-pass filtered with an anti-aliasing 4th order Butterworth 

filter at 4 kHz cutoff; then resampled at 8 kHz and whitened to zero mean and unit variance. 

No crucial information loss was anticipated after down-sampling, given the nature of the 

recorded signals and the suggested guidelines [19]: normal respiratory sounds are typically 

found between 50–2500 Hz, tracheal sounds can reach energy contents up to 4000 Hz, 

abnormal sounds including wheeze, crackles, stridors, squawks, rhonchi or cough exhibit a 

frequency profile below 4000 Hz, and heart beat sounds can be found in the range of 20–150 

Hz.

III. SIGNAL ENHANCEMENT

Auscultation recordings acquired in busy clinical settings are often prone to environmental 

noise contamination, and result in inherent difficulties for both the physician and 

computerized methods. PERCH recordings were also heavily corrupted by contamination of 

various noise sources such as family members talking close to the patient, children crying in 

the waiting room, musical toys, vehicle sirens, mobile or other electronic interference, and 

other. An effective noise suppression scheme was developed below, crucial for suppressing 

exterior contamination before further analysis.

A. Clipping distortions

Clipping distortions are produced when the allowed amplitude range of the stethoscope 

sensor or recording device is exceeded. The incoming sound signal is then truncated, 

enforcing the loss of high amplitude content and resulting in significant distortion. Both the 

time and spectral signal signatures are heavily affected by the non-trivial high frequency 

harmonics formed. Clipped regions were identified as consecutive time samples with 
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constant maximum-value amplitude, up to a small 3% perturbation tolerance (Fig. 3a). Then, 

the identified regions were repaired using spline piecewise cubic interpolation; given the 

brief duration of clipping intervals (a few consecutive data samples), this method was 

adequate for replacing the distorted portions without distorting the physiological sound 

signal.

B. Mechanical or Sensor Artifacts

Mechanical or sensor noise is usually generated when the physician moves the stethoscope 

to various body locations or when the stethoscope is unintentionally and abruptly displaced. 

This is a common distortion, and especially prominent during pediatric auscultation. Sharp 

stethoscope movements are typically associated with skin friction and produce irregular 

short-time broadband energy bursts in the sound signal, resembling profiles of abnormal 

lung sounds such as crackles. In the current dataset, the stethoscope transition noise was 

identified as follows: the auditory spectrogram (ASP) representation was calculated on an 8 

ms window (described in details later in (6)), and normalized to [0,1]. Mostly interested in 

broadband events, the region of interest ROIASP within the ASP spectrum, was defined as 

high spectral content above 1 kHz, with a span greater than 1.5 kHz. Consecutive frames, of 

8 up to 100 ms, exhibiting high energy content within ROIASP were identified and discarded.

C. Heart Sound Interference

In the context of auscultation recordings, heart sounds (HS) are yet another added 

component masking respiratory sounds. Heart signal suppression has been addressed in 

several studies using various techniques including wavelets and Short Time Fourier Analysis 

[20], [21]. In order to maintain the integrity of the lung sounds, particularly any adventitious 

events, a conservative approach was used here, utilizing a wavelet multiscale decomposition 

[22].

i. HS identification: The original lung sound signal was band-pass filtered in [50, 

250] Hz and down-sampled to 1 kHz, using a 4th order Butterworth filter. This 

step enhanced heart beat components by suppressing lung sounds and noise 

components outside this range. Next, the discrete Static Wavelet Transform 

(SWT) was obtained at depth 3, using Symlet decomposition filters (due to their 

appropriate shape): after Detail Dj(t), and Approximation Aj(t) coefficients were 

obtained, signals did not undergo down-sampling, which allows for the time-

invariance of the transform. Signal reconstruction was the easily obtained by 

averaging the inverse wavelet transforms [23]. Let SWTj{s(t)} be the wavelet 

decomposition at the jth scale level of the lung sound signal s(t) and Aj(t) be the 

obtained normalized approximation coefficient. Then P1:J(t) is the multiscale 

product of all J approximation coefficients, defined in (1). Intervals achieving 

high values for Pi:j, were identified as heart sounds and were replaced using an 

ARMA model.

Pi: j(t) = ∏
j = 1

J
A j(t)/max( | A j(t) | ) (1)
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ii. HS replacement: Assuming that lung sounds are locally stationary, an ARMA 

model was employed to replace missing data of x(n) using past or future values. 

First a stationarity check – explained next – was performed on the neighboring 

area of the removed segment. If the post-neighboring segment was found non 

stationary, then a forward linear prediction model was used (2a); otherwise, a 

backward model was used (2b):

x(n) = − ∑
k = 1

p
αp(k)x(n − k) (2a)

x(n − p) = − ∑
k = 0

p
βp(k)x(n − k) (2b)

where {−αp(k), −βp(k)} denote the prediction coefficients of the order-p 
predictors. Solving for the coefficients by minimizing the mean-square value of 

the prediction error x(n) − x(n)  leads to the normal equations involving the 

autocorrelation function, γxx(l): ∑k = 0
p αp(k)γxx(l − k) = 0, with lags l = 1, 2, …, p 

and coefficient ap(0) = 1. The Levinson-Durbin algorithm was used to efficiently 

solve the normal equations for the prediction coefficients. The order of each 

linear prediction model was determined by the length of the particular heart 

sound gap, using an upper bound of pmax = 125 ms.

For the stationarity check, the two neighboring intervals around the missing data, of length 

Ti = 200 ms, were partitioned into M non-overlapping windows of length L. Using the 

Wiener-Khintchine theorem, the power spectral density of the m-th segment, Γxx
m (l), was 

computed via the multitaper periodogram and the following spectral variation measure was 

introduced [24]

V(x) = 1
ML ∑

l = 0

L − 1
∑

m = 0

M − 1
(Γxx

m (l) − 1
M ∑

k = 0

M − 1
Γxx

k (l))
2

(3)

with V (x) = 0 signifying a wide-sense stationary process.

Among identified HS intervals, only the very prominent ones were chosen to be replaced, 

i.e. the ones achieving increased product values Pi:j > 0.2. Additionally, if the peak-to-peak 

interval for identified heart sounds was too short for pediatric standards (< 0.28 s), then the 

corresponding identified regions (possibly indicative of other adventitious sounds) were not 

replaced. Fig. 3b shows an example of a heart sound suppressed segment.
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D. Subject’s Intense Crying

Depending on the cause of irritation, infants and young children can broadcast crying 

vocalizations of varying temporal and frequency signature modes [25], [26]: phonation, 

consisting of the common cry with a harmonic structure and a fundamental frequency 

ranging in 350–750 Hz; hyperphonation, a sign of major distress or pain, also harmonically 

structured but with rapidly changing resonance and a shifted fundamental frequency of 1–2 

kHz or higher; and dysphonation (beyond the scope of this work), a sign of poor control of 

the respiratory cycle, containing aperiodic vibrations.

Because of their spectral span and harmonic structure, instances of phonation and 

hyperphonation cry were identified using properties of the signal’s time-frequency 

representation. However, since adventitious lung sounds (particularly wheezes) can produce 

patterns of similar or overlapping specifications (Fig. 3c), here the focus was on longer, 

intense crying intervals bearing limited value for clinical assessment.

For the detection of phonation mode cry: (i) The ASP representation was calculated for 

every 8 ms frame (described in details later in (6)). A pitch estimate for every frame was 

calculated, using an adaptation of a template matching approach [27]. Each spectrogram 

slice was compared to an array of pitch spectral templates, generated by harmonically-

related sinusoids, modulated by a Gaussian envelope. The dominant pitch per frame was 

then extracted and the average pitch (excluding 20% of distribution tails) constituted the 

resulting pitch estimation per region. Frames with an extracted pitch lower than 250 Hz were 

immediately rejected. To avoid confusion with possible adventitious occurrences during 

inspiration or expiration, an identified interval was required to be of duration Tdur > 600 ms, 

considering respiratory rate standards for infants [28]; typical rates in the current dataset 

were 18 – 60 breaths per minute. (ii) Features of spectrotemporal dynamics (6) – (10) were 

extracted from all candidate time-segments, and fed to a pre-trained, binary SVM classifier 

using radial basis functions, to distinguish crying from other voiced adventitious sounds like 

wheezes.

For hyperphonation, simpler steps were required as lung sounds were unlikely to overlap 

with this type of cry: regions with high ASP spectral content above 1 kHz, and exceeding a 

duration of Tdur, were detected as hyperphonation cry.

In total, 20% of all recorded lung signals were identified as phonation or hyperphonation 

cry, demonstrating the necessity of such processing step.

E. Ambient noise

Lung auscultation is highly vulnerable to ambient noise interference, especially when 

patients are examined in busy clinics or non-soundproof rooms. Natural occurring 

environmental sounds, vehicle sounds, electronic machinery sounds, phones ringing, 

conversational speech or distant crying all fall under the umbrella of ambient noise 

commonly found in realistic auscultation protocols, like the PERCH study.

A modified spectral subtraction scheme was employed for suppressing such complex noise 

contamination. The general spectral subtraction scheme assumes a known measured signal 
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quantity s (noisy lung sounds) to be comprised of two signal components s = x + d: the 

unknown desired signal x (pure clean lung sounds) and a known or approximated 

interference signal d (ambient sound pick-up signal). The algorithm operates in the spectral 

domain, in short frames to allow for short-term stationarity assumptions, and the content of 

the clean signal is obtained by |S|2 = |X|2 − |D|2, where X, S, D correspond to the short time 

discrete Fourier Transform (STFT) of x, s, d respectively.

An extension of this general framework to chest sounds would not be readily sufficient or 

effective, due to the intricate nature of these signals. The design above was extended as part 

of our previous work [9], to account for (i) the preservation of the sensitive lung sound 

content present in both low and high frequencies (ii) localized frequency treatment, by 

adaptively splitting the frequency range and ensuring robustness over unpredicted noise 

environments; (iii) localized time window treatment, by using the local Signal To Noise 

Ratio (SNR) information to individually adjust the amount of subtracted information; this 

way, both slow and fast-varying contamination can be treated; and finally account for (iv) 

the elimination of reconstruction distortions such as ”wind tunnel” noise effects, by 

smoothing signal estimates along adjacent frames and frequency bands. This modified, 

adaptive spectral-subtraction scheme was validated by 17 medical experts, who confirmed 

that the valuable breath sound was faithfully preserved in the recovered signals, while the 

ambient noise was successfully suppressed (Fig. 4).

F. Objective quality assessment of enhanced lung sounds

A subjective sound quality assessment before and after the ambient noise suppression 

scheme had been previously shown, by enrolling medical experts that evaluated sounds 

based on their quality and preservation of the lung sound content [9]. Here we attempt a 

sound quality assessment offered by the overall noise suppression scheme, based on 

objective measures. The choice of an appropriate metric is not a trivial task since (i) there is 

no available standardized method for evaluating quality of lung sound content (ii) most 

quality measures proposed for speech or sound enhancement require knowledge of the true 

clean signal [29], [30], which in our case, would be the true clean lung sound of the 

individual patient, a quantity that is unknown for non-simulated environments.

In absence of the true underlying lung sound content, here we assess each step of the 

proposed noise-suppression framework by comparing the amount of shared information with 

the picked-up background noise. Evidently, this approach is not a conventional measure for 

signal quality improvement, but offers a practical alternative to quality assessment adjusted 

to the problem at hand. It assesses how much information is shared between the background 

or subject-specific noise and the signals before, during and after the sound enhancement 

process. Two objective metrics were explored:

• Normalized-Covariance

NCM = ∑
k = 1

K
wkSNRN(k)/ ∑

k = 1

K
wk (4)
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NCM is a measure used specifically for estimated speech intelligibility (SI) by 

accounting for audibility of the signal at various frequency bands. It is a measure 

based on the speech-based Speech Transmission Index (STI). It captures a 

weighted average of a Signal to Noise quantity SNRN, calculated from the 

covariance of the envelopes of the two signals over different frequency bands k 
[31] and normalized to [0,1]. A value equal to 1 is achieved when the signals 

under comparison are identical. The band-importance weights wk followed 

ANSI-1997 standards [32]. Though this metric is speech-centric, it is constructed 

to account for audibility characteristics of the human ear hence reflecting a 

general account of improved quality of a signal as perceived by a human listener.

• Three-level Coherence Speech Intelligibility Index

CSIIx = 1
T ∑

τ = 1

T
{ ∑

k = 1

K
wkSNRESI

N (k, τ)/ ∑
k = 1

K
wk} (5)

The CSII metric is also a speech intelligibility-based metric, based on the ANSI 

standard for the Speech Intelligibility Index (SII). Unlike NCM, CSII uses the 

signal-to-residual SNRESI
N , an estimate of Signal-to-Noise ratio in the spectral 

domain, for each frame τ = 1, …, T; it is calculated using the ro-ex filters and the 

Magnitude-Squared Coherence (MSC) followed by [0,1] normalization, with a 

value of 1 signifying identical signals. A 30 ms Hanning window was used and 

the three-level CSII approach divided the signal into low, mid, and high-

amplitude regions, using each frame’s root mean square (rms) level information. 

The high-level region CSIIhigh consisted of segments at or above the overall rms 

level of the whole utterance. The mid-level CSIImid consisted of segments 

ranging from the overall rms level to 10 dB below, and the low-level CSIIlow 

consisted of segments ranging from rms −10 dB to rms −30 dB [33].

IV. CLASSIFICATION MODEL

A. Acoustic analysis

After signal enhancement, an analysis of the joint spectral and temporal characteristics of 

the auscultation signal was performed. A biomimetic approach was employed, and the 

acoustic signal was projected onto a high-dimensional space spanning time, frequency as 

well temporal dynamics and spectral modulations. The analysis followed the model 

proposed in [34], [35] by adapting it to auscultation signals; and is summarized below:

The auscultation signal s(t) was first analyzed through a bank of 128 cochlear filters h(t; f), 
with 24 channels per octave. These filters were modeled as constant-Q asymmetric band-

pass filters and tonotopically arranged with their central frequencies logarithmically spaced. 

Then, signals were pre-emphasized by a temporal derivative and spectrally sharpened using 

a first-order difference between adjacent frequency channels, followed by half-way 
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rectification and a short-time integration μ(t; τ), with τ=8 ms. The result was an enhanced 

representation, the auditory spectrogram:

y(t, f ) = max(∂ f ∂t s(t) ∗ f h(t, f ), 0) ∗t μ(t; τ) (6)

This time-frequency representation was further expanded to extract signal modulations using 

a multiscale wavelet analysis, akin of processes that take place in the central auditory 

pathway, particularly at the level of auditory cortex [35]. This analysis yields a rich feature 

representation that captures intrinsic dependencies and dynamics in the lung sound signals 

along both time and frequency. This stage is implemented by filtering the auditory 

spectrogram y(t, f) through a bank of modulation-tuned filters G, selective to specific ranges 

of modulation in time (rates r in Hz) and in frequency (scales s in cycles/octave or c/o):

G+(t, f ; 𝔯, 𝔰) = A∗(hr(t; 𝔯))A(hs( f ; 𝔰)) (7a)

G−(t, f ; 𝔯, 𝔰) = A(hr(t; 𝔯))A(hs( f ; 𝔰)) (7b)

where A(.) indicates the analytic function, (.)* is the complex conjugate, and +/− indicates 

upward or downward orientation selectivity in time-frequency space, i.e., detecting upward 

or downward frequencies sweeping over time: a positive rate corresponds to downward 

moving energy contents and a negative rate corresponds to upward moving energy contents. 

The seed functions h𝔯(t) and h𝔰( f ) were shaped as Gamma and Gabor functions respectively

h𝔯(t) = t3e−4tcos(2πt), h𝔰( f ) = f 2e1 − f 2
(8)

A filter bank was constructed by dilating the seed function and creating 31 filters of the form 

hr(t; 𝔯) = 𝔯h𝔯(𝔯t) to capture slow/fast temporal variations for modulations 𝔯 = 2[1.4:0.22:8]; and 

21 filters of the form h𝔰( f ; 𝔰) = 𝔰h𝔰(𝔰 f ), to capture narrow/broadband spectral content, with 

𝔰 = 2[ − 5:0.4:3]. Each modulation filter output modeled the response of differently-tuned 

filters, mapping the time waveform onto a high-dimensional space:

r±(t, f ; 𝔯, 𝔰) = y(t, f ) ∗t, f G±(t, f ; 𝔯, 𝔰) (9)

where *t,f corresponds to convolution in time and frequency and G± is the 2D modulation 

filter response. The final representation was obtained by integrating the response along time, 

achieving a frequency-rate-scale description:
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R±( f ; 𝔯, 𝔰) = ∫
t

r±(t, f ; 𝔯, 𝔰) δt (10)

Note that even though the time axis is integrated in the equation above, details of the 

temporal changes in the signal are captured along the rate axis 𝔯.

B. Reduction of feature space dimension

To reduce the size of the feature space, tensor Singular Value Decomposition (SVD) was 

used. Data was unfolded along each dimension of the SVD space, created by the training 

data set only. Let R be the feature tensor of order 3 seen above, where the R− axis is 

concatenated with the R+ axis, so that R ∈ ℝd1×d2×d3, where d1=128 for the frequency axis, 

d2= 31×2 = 62 for both ± rates, and d3 = 21 for scales. When unfolding R along mode 

(dimension) 1, an order-2 tensor (or matrix) was created, R(1), of dimensions d1×(d2×d3). 

Similar order-2 tensors were also created when unfolding along dimension 2 and 3, creating 

matrices R(2) and R(3). Singular value decompositions were obtained for each of the mode 

unfoldings R(n), for n = 1, …, 3 as:

R(n) = U(n)∑(n)V (n)T (11)

For mode-1 unfolding, Σ(1) is a diagonal matrix of dimension r, with the nonzero singular 

values on its diagonal; r ≤ min{d1, (d2×d3)} is the rank of R(1), i.e. the dimension of the 

space spanned by the columns or rows of R(1) and U(1) and V(1) T are unitary matrices. The 

singular values in Σ(1) are presented ranked, as σ1
(1) > σ2

(1) > … > σr
(1) > 0. Similar 

expressions were obtained for mode-2 and mode-3 decomposition. For each R(n), only 

components capturing up to 99% of the total variance were kept (i.e. 

r(n) = arg minx f (x): = ∑i = 1
x σi

(n) ≥ 0.99 | x = 1, …, dn . The final space projection was 

achieved by tensor-matrix multiplication (mode-n product), significantly reducing the 

feature dimensions from 128×62×21 to about 5×3×3 (exact dimension can vary depending 

on the training subset).

C. Auscultation classification

The classification of feature vectors into Normal vs. Abnormal was obtained using a soft-

margin non-Linear Support Vector Machine (SVM) classifier. Let x be the matrix 

comprising of all xi SVD-projected feature vectors ∈ ℝr, where r = ∏n = 1
3 r(n); and let Φ be 

a kernel mapping where data is believed to be separable, so that Φ(x): x → Φ(x), mapping 

data from ℝr → ℝD, D > r. Given knowledge of data points x, and their true class y, a 

binary SVM classifier, seeks to learn an optimal hyperplane wTΦ (x), w ∈ ℝD, where

f (x) = wTΦ(x) + b (12)
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is the output class participation (f(xi) = ±1) of example xi; b = +1 − wT Φ (x) for examples 

in class 1; b = −1 −wT Φ(x) for examples in class −1; and |w| = 1 The optimal hyperplane is 

found by solving the unconstrained quadratic minimization problem over w:

min
w ∈ ℝD

w
2

+ C∑
i

N
max(0, 1 − yi f (xi)) (13)

where N is the number of learning data points and C is a regularization parameter. The 

second term represents the loss function, where yif(xi) > 1 if a data point xi falls over the 

correct side of the separating hyperplane margin and yif(xi) = 1 if it falls on the margin; 

finally, yif(xi) < 1 if the data point falls on the wrong side of the margin. The optimization 

problem can also be expressed in its dual form:

f (x) = ∑
i

N
αiyiK(xi, x) + b (14)

max
ai ≥ 0

∑
i

ai − 1
2 ∑

j, k
a jaky jykk(x j, xk) (15)

subject to 0 ≤ ai ≤ C, ∀i, and ∑iaiyi = 0. In the present work, radial-basis kernels (RBF) 

were used K(xi, xj) = Φ(xi)TΦ(xj) = exp(−|x(i) − x(j)|2). This way, only the learning of N-

dimensional vector a is needed, avoiding the learning of D-dimensional w in the primal 

problem.

D. Timescale of diagnosis

Choosing the timescale (analysis window) over which to perform classification is a 

nontrivial task. An ideal parsing of the signal would require a window segmentation aligned 

to the breathing cycle. While this is often the chosen parsing method in studies of limited 

data [7], [36], [37], it is an impractical solution for large datasets recorded in the field: 

obtaining pre-annotated breath cycles for all subjects is unrealistic and cannot be automated 

in a straight-forward manner, especially when considering the irregularity of infant 

breathing. Alternatively, one could opt for a fixed-size window, which will likely have an 

impact on the classification outcome. On one end of the spectrum, a very short window will 

highlight short adventitious events, at the expense of great heterogeneity among training 

data, especially under noisy conditions. On the other end of the spectrum, a very long 

window would capture average characteristics of normal vs. abnormal lung sound events but 

could blend details pertaining to short pathological patterns. We investigated a variety of 

analysis windows ranging from shorter to longer duration: Wi ∈ [ 0.3, …, 5] s with 50% 

overlap.
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E. Evaluation of classification results

A closely related issue is the timescale of evaluating classification results. The available 

auscultation dataset contained one annotation per each 7s recording site (see section II.C); 

full-scale, extensive annotations of all sounds of interest were not available and are not a 

realistic feature, thus, we propose the following algorithmic performance evaluation 

technique:

a. Sub-interval evaluation (used for study comparison in section VI): all arbitrary-

length sub-interval annotations of all available patient records were included in 

this dataset, grouped into two groups (Normal/Abnormal). A decision for each 

sub-interval clip was made by the SVM classifier, leading to performance 

evaluation on the sub-interval level;

b. Full patient evaluation (used for extended evaluation of proposed method in 

section V): this dataset combined individual frame decisions of each site into an 

overall patient decision. This is not a trivial task, and our approach was designed 

to be highly sensitive to abnormal occurrences. First, all grouped site recordings 

were split into individual frames of length Wi ∈ [0.3, …, 5] s with 50% overlap, 

and a classifier decision was made at the frame level. Next, a combined decision 

for each site was obtained as follows: a site received an abnormal output label if 

at least (i) 2 consecutive intervals of α duration were found to be abnormal by 

the classifier or if at least (ii) β% of all overlapping frames were found to be 

abnormal; (this approach was partially inspired by the annotation protocol that 

the medical experts followed – section III.B). Finally, a full patient record was 

assigned an abnormal label if at least one of its sites was found to be abnormal; 

otherwise the patient record was assigned a normal output label. For each time 

window Wi, parameters α and β were optimized in [0, 2] s and [30, 70] % 

respectively.

V. RESULTS

A. Objective quality assessment of enhanced lung sounds

Objective metrics NCM and CSII were employed to quantify improvements to the signal 

quality before, during and after the signal enhancement. The metrics were calculated 

between the clipping corrected ambient noise signal and (i) the original clipping corrected 

noisy lung sound (Stage 1 in Fig. 5); (ii) the processed lung sound after additionally 

applying sensor artifact correction, heart sound suppression and crying elimination (Stage 2 

in Fig. 5); and (iii) the fully enhanced lung sound after applying all noise suppression steps 

including the ambient sound suppression (Stage 3 in Fig. 5). All metrics demonstrated an 

attenuating trend in the amount of information shared between ambient noise and processed 

signals, along various stages of the noise suppression scheme. An analysis of statistical 

signficance of these trends indicate that they are significant at the 0.0005 level for both 

ANOVA and kruskalwallis tests. The attenuating trend is an indication that the processed 

lung signal shares less content with the noise, when compared to the original lung recording. 

It further depicts the necessity for efficient noise suppression techniques which can play an 

important role in improving the quality of auscultation signals and facilitating the work of 
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physicians for diagnostic purposes, allowing data re-usability for educational or training 

purposes and also improving further computerized analysis with the extraction of more 

robust features.

B. Full patient diagnostics

After combining the noise suppression scheme with the rich feature analysis and decision 

integration, the accuracy of the complete system was assessed for patient-level decisions, 

using the full-patient evaluation process of section IV.E b. As outlined earlier, the system 

performance depends crucially on the choice of analysis window Wi (timescale of 

diagnosis). Fig. 6 shows the system accuracy for different analysis windows. On one hand, 

large windows > 1 s capture the coarse characteristics of the lung sounds at the expense of 

the refined detection of adventitious events such as crackle which can be very localized in 

time and are integrated in these longer time windows. Such coarse analysis yields an 

accuracy of about 77%. On the other hand, a very short analysis window < 0.5 s can be 

sensitive to very small or transient changes in the signal hence failing to track sustained 

patterns of interest such as wheezes which tend to be very musical in nature and can last few 

hundreds of milliseconds. Such short windows also yield a smaller drop in accuracy. 

Overall, it is observed that a balanced time window of about 0.5 s is preferred as it balances 

the detailed analysis with the tracking of events of interest. Using the recommended 0.5 s, 

our proposed integrated system yields an overall patient-level accuracy of 84.08% in Fig. 6. 

The shaded area shows the standard deviation in accuracy over 10 Monte-Carlo runs.

C. Comparison with other methods

The effectiveness of the proposed biomimetic features was furthered explored via a 

comparison with state of the art methods in the literature. Palaniappan et al. demonstrated 

the use of the Mel-frequency cepstral coefficients (MFCCs) for capturing spectral 

characteristics of normal and pathological respiratory sounds [38]. MFCCs are powerful 

features commonly used in audio signal processing, particularly in speech applications; it is 

a type of nonlinear cepstral representation calculated on a mel frequency axis, which 

approximates spectral perception of human listeners [39]: first, the logarithm of the Fourier 

transform was calculated using the mel scale followed by a cosine transform. One MFCC 

coefficient was obtained per frequency band, and in total, 13 MFCCs were derived for each 

data excerpt, averaged over a processing window of 50 ms with 25% overlap. This method is 

referred to as MFCC_P.

In a different study by Jing et al [40], a new set of discriminating features was proposed for 

identifying adventitious events in respiratory sounds, based on spectral and temporal signal 

characteristics. The features were extracted from a refined spectro-temporal representation, 

the Gabor time-frequency (Gabor TF) distribution. As the order of the Gabor TF 

representation increases, it converges to a Wigner-Ville distribution, and we used the latter to 

extract multiple features from each frequency band, as proposed by the authors: MISK: 

mean instantaneous kurtosis, used as feature for adventitious sound localization; DFc and 

DFm denoting the contrast and minimum value of the calculated discriminating function, 

used for signal predictability features; and SEHD: sample energy histogram distortion, used 
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as a nonlinear separability criterion for breath discrimination. This method is referred to as 

WVILLE.

For a comparison focused on the effectiveness of the extracted features, we used the data 

pool created from the sub-interval annotations (Section IV.E) of all subjects in the PERCH 

database, after full signal enhancement. Recall that the sub-interval annotations can be of 

arbitrary length (with an average duration of 1.8 s in this database). In order to create a 

relatively uniform database, the intervals were clipped or augmented to 2 s, while intervals 

shorter than 1 s were discarded.

Fig. 7 illustrates the differences of all the feature extraction techniques, as applied on a 

normal and a wheezing lung sound clip. Row 1 depicts the sound spectrograms calculated on 

a 30 ms, 50% overlap window simply shown here for reference. Row 2 shows MFCC 

coefficients #2 and #5 tuned at 75 Hz and 200 Hz respectively, extracted by MFCCP method. 

Row 3 shows the WVILLE features: the 10 maximum average instantaneous kurtosis values 

(left plot); the minimum achieved value of the enclosed discriminating function (MISK) and 

its center-surround contrast (DFc) and minimum (DFm) values (center plot); and the 

histogram distortion value SEHD (right plot). Row 4 shows the ASP spectrogram used in the 

proposed method for extracting the spectro-temporal breath dynamics. Rows 5–7 depict the 

3-dimensional Frequency-Rate-Scale space, shown on individual two-dimensional 

projections. Notice the high discriminatory nature of the proposed set of features: the 

wheezing breath is highlighted by the presence of strong energy components ~ 1 c/o in the 

Scales-Rates plot (capturing its harmonic structure), and the energy concentration around 

200 Hz along the y-axis of the Frequency-Rates and Scales-Frequency space (capturing its 

pitch). Compared to the normal breath, the wheezing breath exhibits much higher temporal 

dynamics as captured by the rates axis.

The RBF SVM classifier was used for all compared methods evaluated on a 10-fold cross 

validation and 20 Monte Carlo repetitions. Subjects in the training and testing sets were 

again, mutually exclusive, to avoid classification bias. Recall, that while a normal annotation 

rules out wheeze or crackle occurrences, the lack of other abnormal sounds such as upper 

respiratory sounds (URS) or remaining noise cannot be guaranteed, adding real life 

challenges to the data. Comparative results are shown in Table II, with the accuracy index 

depicting the average of sensitivity (True Positives Rate) and specificity (True Negatives 

Rate). The superiority of the proposed feature extraction method was revealed; the rich 

spectro-temporal space spans intricate details in the lung signal and results in better 

discriminatory features. Importantly, the proposed features appear to be equally robust in 

identifying normal and abnormal breath sounds without any bias. In contrast, low accuracy 

percentages of the WVILLE method are noticeable; the WVILLE features were designed to 

detect unexpected abnormal patterns within specific breath context, and the feature space 

seems to lack the ability of separating respiratory-related abnormal sounds from noise-

related sounds, signal corruption, or breaths containing possible URS. MFCCP features were 

better qualified for identifying abnormal breaths, but when it came to normal segments, both 

WVILLE and MFCCP fail to distinguish from noise or other contamination. The MFCCP 

and WVILLE methods were previously reported in [38] and [40] to obtain an average 

accuracy of 77.42% and Area Under the Curve accuracy of 95.60% respectively, in 
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distinguishing normal from pathological lung sounds. However findings of the current work 

clearly illustrate the inherent difficulty of these feature extraction methods to generalize 

findings to more realistic or challenging databases and auscultation scenarios.

VI. CONCLUSIONS

Over the last decades, there has been an increased interest in computer-aided lung sound 

analysis. Despite the enthusiasm about possibilities in automated diagnosis, the literature is 

still shy in tackling real-life challenges. The presented method addresses some of these 

limitations by proposing a robust discriminative methodology for distinguishing normal and 

abnormal sounds. Validated on a large-scale realistic dataset, it tackles two aspects crucial in 

the development of automated auscultation analysis: noise and signal-mapping.

The proposed framework addresses the need for improved lung sound quality by using 

noise-suppression techniques suitable for auscultation applications. It tackles various noise-

sources including ambient noise, signal artifacts, patient-intrinsic maskers (heart-sounds, 

crying); and explores the use of a rich biomimetic feature-mapping that covers the intricate 

spectro-temporal details of lung sounds, and yields a notable improvement in distinguishing 

normal/abnormal events when compared to state-of-the-art systems, that tend to fixate on 

specialized pathologies and global features.

Crucially, this system is further validated on a large patient dataset acquired in the field 

under realistic clinical conditions. The use of such validation data highlights an additional 

aspect of the analysis; notably the need for full-patient decisions. Previous studies 

commonly propose methods for localized interpretations on limited pre-segmented breaths; 

this entails restricted real-life applicability since it requires a pre-segmentation process that 

is extremely challenging. Instead, this study hopes to take a step towards realistic 

applicability of computer-aided diagnosis. In lieu of breath-aligned signal parsing, a short 

analysis-window is recommended for capturing the manifestation of adventitious sounds of 

interest while avoiding fixation to highly transient events. A number of challenges remain to 

be addressed including establishing the association between auscultations and other clinical 

markers; identifying overlapping non-pathological sounds which can incur significant false 

positives; and calibrating analysis-windows with respiratory cycles which can benefit the 

interpretation of the observed patterns.
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Fig. 1. 
Proposed integrated framework for complete auscultation solutions
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Fig. 2. 
Illustration of the 8 auscultation sites and the annotation process. A reviewer labeled the 

depicted site as crackles, C, in red/solid line, and then provided an indicative label of a 

crackling excerpt in purple/dashed line.
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Fig. 3. 
(a) Waveform of a lung sound excerpt distorted by clipping (flat amplitude regions in 

panel ”before”), and the corresponding output of the correction algorithm (panel ”after”); (b) 

waveform of a lung sound excerpt illustrating the effects of the heart sound interference 

suppression; notice the suppressed heart sound patterns (panel ”after”) when compared to 

the original waveform (”before”); (c) two spectrogram representations of lung sound 

excerpts illustrating the inherent difficulty in differentiating between wheezing patterns and 

crying contamination.
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Fig. 4. 
Pipeline illustration of the ambient noise suppression scheme.
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Fig. 5. 
Objective quality metrics illustrating the amount of shared information between the ambient 

noise and the different noise suppression stages. Low values indicate that signals under 

comparison have less content in common. Standard deviation error bars show variation 

among all site recordings. The asterisk (*) indicates that the trends across all stages of 

denoising are statsitically significant at the 0.0005 level, using both ANOVA and 

kruskalwallis tests.
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Fig. 6. 
Final patient-classification results. Performance was calculated based on the full-patient 
decision; Accuracy = (TP+TN)/All %, where TP: number of True Positives (abnormal 

patients), TN: number of True Negatives (normal patients), All: total number of patients. 

Grey shading depicts the standard deviation in patient accuracy among 10 MC runs.
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Fig. 7. 
Comparison of feature extraction methods for a normal (left) ad a wheeze (right) lung sound. 

Row 1: time-frequency breath characteristics; Row 2: binned MFCC coefficient #2 (75Hz) 

and #5 (200Hz) extracted as part of the MFCCP method. Row 3: features MISK, DFc, DFm 

and SEHD, extracted as part of the WVILLE method; Rows 4-7: the proposed 

discriminating features including the auditory spectrogram ASP and the combined spectral 

and temporal breath dynamics. Notice the high discriminatory nature of the proposed 

features: the wheezing breath is highlighted with high energy concentration in the Scales-

Rates plot ~ 1 c/o, capturing its harmonic structure, and in the Frequency-Rates and Scales-

Frequency plots ~ 200 Hz, capturing its pitch. Comparatively, the normal breath exhibits 

much lower temporal and spectral dynamics.
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TABLE I

Available Annotations of Patients’ Recordings

Annotation Label Abnormal (Intervals with wheeze and/or crackles) Normal (Intervals without wheeze nor crackles)

SUB-INTERVAL annotated clip of arbitrary length found in abnormal site 
recordings of full or partial reviewer agreement

annotated clip of arbitrary length found in normal site 
recordings of full or partial reviewer agreement

PER-SITE (or SITE) a site recording found abnormal by full or partial reviewer 
agreement

a site recording labeled normal by full or partial 
reviewer agreement

FULL-PATIENT includes all site recordings of a patient if at least one site 
was found abnormal

includes all site recordings of a patient when all sites 
were found normal
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TABLE II

COMPARATIVE CLASSIFICATION RESULTS

Sensitivity (TP)% Specificity (TN)% Accuracy%

PROPOSED 86.82 (±0.42) 86.55 (±0.36) 86.67

MFCC_P 91.88 (±0.36) 53.40 (±0.74) 72.64

WVILLE 63.86 (±0.55) 58.47 (±0.60) 61.16

*
Performance based on sub-interval decision
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