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Background: Resting electrocardiogram (ECG) shows limited sensitivity and specificity for the detection of 
coronary artery disease (CAD). Several methods exist to enhance sensitivity and specificity of resting ECG for 
diagnosis of CAD, but such methods are not better than a specialist’s judgement. We compared a new 
computer-enhanced, resting ECG analysis device, 3DMP, to coronary angiography to evaluate the device’s 
accuracy in detecting hemodynamically relevant CAD. 

Methods: A convenience sample of 423 patients without prior coronary revascularization was evaluated with 
3DMP before coronary angiography. 3DMP's sensitivity and specificity in detecting hemodynamically relevant 
coronary stenosis as diagnosed with coronary angiography were calculated as well as odds ratios for the 3DMP 
severity score and coronary artery disease risk factors. 

Results: 3DMP identified 179 of 201 patients with hemodynamically relevant stenosis (sensitivity 89.1%, 
specificity 81.1%). The positive and negative predictive values for identification of coronary stenosis as diagnosed 
in coronary angiograms were 79% and 90% respectively. CAD risk factors in a logistic regression model had 
markedly lower predictive power for the presence of coronary stenosis in patients than did 3DMP severity score 
(odds ratio 3.35 [2.24-5.01] vs. 34.87 [20.00-60.79]). Logistic regression combining severity score with risk factors 
did not add significantly to the prediction quality (odds ratio 36.73 [20.92-64.51]). 

Conclusions: 3DMP’s computer-based, mathematically derived analysis of resting two-lead ECG data provides 
detection of hemodynamically relevant CAD with high sensitivity and specificity that appears to be at least as 
good as those reported for other resting and/or stress ECG methods currently used in clinical practice. 

Key words: coronary artery disease, electrocardiography, computer-enhanced, coronary imaging: angiography, sensitivity, 
specificity. 

1. Introduction 

Coronary artery disease (CAD) is the leading 
single cause of death in the developed world. Between 
15% and 20% of all hospitalizations are the direct 
results of CAD [1]. Electrocardiography-based 
methods are routinely used as the first tools for initial 
screening and diagnosis. Still, in clinical studies they 
show sensitivities for prediction of CAD of only 20% to 
70% [2,3]. Even sensitivity and specificity of stress test 
methods are limited, especially in single-vessel CAD 
[4-6].  

Coronary angiography remains the gold standard 
for the morphologic diagnosis of CAD and also allows 
revascularization during the same procedure [7,8]. 
However, it is resource-intensive, expensive, invasive, 
and bears a relevant procedure-related complication 

rate (< 2%), morbidity (0.03-0.25%), and mortality 
(0.01-0.05%) [9,10]. 

Risk factors for CAD such as smoking, arterial 
hypertension, diabetes mellitus, obesity, or 
hypercholesterolemia (of which at least one is present 
in the vast majority of symptomatic CAD patients) can 
also be used to screen for hemodynamically relevant 
coronary stenosis [11-14].  

Several methods have been proposed and 
developed to enhance sensitivity and specificity of the 
resting electrocardiogram (ECG) for diagnosis of 
symptomatic and asymptomatic CAD. However, 
diagnostic ECG computer programs have not yet been 
shown to be equal or superior to the specialist 
physician’s judgment [15]. Moreover, studies 
comparing computerized with manual ECG 
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measurements in patients with an acute coronary 
syndrome have shown that computerized 
measurements have diagnostic cut-offs that differ from 
manual measurements and therefore may not be used 
interchangeably [16]. This is one of the likely reasons 
underlying the limited acceptance of such techniques 
in clinical practice. 

The present study compared a new 
computer-enhanced, resting ECG analysis device, 
3DMP, to coronary angiography to evaluate the 
device’s accuracy in detecting hemodynamically 
relevant CAD. 

2. Materials and Methods 

Patients 

The study comprised 562 patients scheduled for 
coronary angiography between July 1, 2001, and June 
30, 2003, at the Heart Center Siegburg, Siegburg, 
Germany. They represented a convenience sample of 
patients in that each was already scheduled for 
coronary angiography for any indication and had no 
history of a coronary revascularization procedure prior 
to the scheduled angiography. Forty-four patients had 
a history of myocardial infarction (MI) more than six 
weeks prior to angiography. No patients presented 
with acute coronary syndrome at the time of study. 
Seventeen patients were excluded from the final 
analysis due to poor ECG tracing quality, and risk 
factor information for 122 patients could not be 
retrieved. 

The study protocol conformed with the Helsinki 
Declaration and was approved by the local 
institutional committee on human research. Written 
informed consent was waived by each participant as a 
result of the disclosed non-risk designation of the 
study device. All patients received a full explanation 
and gave verbal informed consent to the study and the 
use of their de-identified data. 

The patient population had no overlap with any 
previous study or with the actual 3DMP database. The 
3DMP reference database was not modified or 
updated during the study period. Medical history and 
risk factors for each patient were retrieved from the 
standard medical documentation. The following risk 
factors were grouped into “present” or “not present” 
[11-14]: 
• Arterial hypertension (systolic blood pressure 

>140 mm Hg and/or diastolic blood pressure >90 
mm Hg), 

• Diabetes mellitus of any type, 
• Hypercholesterolemia (total cholesterol >200 

mg/dl or LDL-cholesterol >160 mg/dl) and/or 
hypertriglyceridemia (triglycerides >200 mg/dl), 

• Active or former smoking (cessation less than 5 
years prior to inclusion in the study), 

• Obesity (BMI >30 kg/m2), 
• Family history (symptomatic CAD of one parent), 

and 
• Other risk factors, including established diagnosis 

of peripheral artery disease. 

Study device 

The study device, 3DMP (Premier Heart, LLC, 
Port Washington, NY, USA), records a 2-lead resting 
ECG from leads II and V5 for 82 seconds each using 
proprietary hardware and software. The analog ECG 
signal is amplified, digitized, and down-sampled to a 
sampling rate of 100 Hz to reduce data transmission 
size; subsequent data transformations performed on 
the data do not require higher than 100 Hz/sec 
resolution. The digitized ECG data is encrypted and 
securely transmitted over the Internet to a central 
server. 

At the server, a series of Discrete Fourier 
Transformations are performed on the data from the 
two ECG leads followed by signal averaging. The final 
averaged digital data segment is then subjected to six 
mathematical transformations (power spectrum, 
coherence, phase angle shift, impulse response, 
cross-correlation, and transfer function) in addition to 
an amplitude histogram, all of which is used to 
generate indexes of abnormality. The resulting 
patterns of the indexes are then compared for 
abnormality to the patterns in the reference database to 
reach a final diagnostic output. In addition to the 
automatic differential diagnosis and based on the 
database comparison, a severity score from 0 to 20 is 
calculated that indicates the level of myocardial 
ischemia (if present) resulting from coronary disease. 

The database against which the incoming ECG 
results are compared originated from data gathering 
trials conducted from 1978 to 2000 in more than 30 
institutions in Europe, Asia, and North America on 
individuals of varying ages and degrees of disease 
state including normal populations [17,18]. All ECG 
analyses in this database have been validated against 
the final medical diagnosis of at least two independent 
expert diagnosticians in the field, including results of 
angiography and enzyme tests. The current diagnostic 
capability for identification of local or global ischemia 
and the disease severity score used in this clinical 
study are based on 3DMP’s large proprietary database 
of validated ECG analyses accumulated since 1998. 

One important difference between 3DMP and 
other ECG methods is that the ECG is locally recorded 
but remotely analyzed at a central data facility due to 
the size and complexity of the reference database. A 
detailed description of the 3DMP technology is given 
in Appendix I.  

ECG acquisition and processing 

3DMP tests were conducted as follows by a 
trained trial site technician as part of a routine 
electrophysiological workup received by each patient 
prior to angiography. 
• Patients were tested while quietly lying supine 

following 20 minutes of bed rest. 
• Five ECG wires with electrodes were attached 

from the 3DMP machine to the patient at the four 
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standard limb lead and precordial lead V5 
positions. 

• An automatic 82-second simultaneous two-lead 
(leads V5 and II) ECG sample was acquired with 
amplification and digitization. 

• During the sampling, the ECG tracings displayed 
on the 3DMP screen were closely monitored for 
tracing quality. 
The digital data was then de-identified, 

encrypted, and sent via a secure Internet connection to 
www.premierheart.com. A second identical copy of 
the data was saved on the remote 3DMP machine for 
post-study verification purposes before the data 
analysis was carried out. The quality of the tracing was 
visually rechecked and graded as “good,” “marginal,” 
or “poor.” A poor tracing was defined by one of the 
following: 
• five or more 5.12-second segments of ECG data 

contain idiopathic extrema that deviate from the 
baseline by ≥ 2 mm and appear ≥ 10 times,  

• two or more 5.12-second segments of ECG data 
contain idiopathic extrema that deviate from the 
baseline by ≥ 5 mm, 

• in a 25-mm section of waveform in any 
5.12-second segment of the ECG data, the 
waveform strays from the baseline by ≥ 3 mm, 

• a radical deviation away from the baseline 80° of ≥ 
2 mm from the baseline, occurring two or more 
times, 

• a single radical deviation away from the baseline 
80° episode of ≥ 5 mm from the baseline. 
A marginal tracing was defined by significant 

baseline fluctuations that did not meet the above 
criteria. Tracings consistently graded as poor after 
repeated sampling were excluded from the present 
study. All other tracings were included in the study. 
Examples of different tracings are shown in Appendix 
II.  

3DMP provided automatic diagnosis of regional 
or global ischemia, including silent ischemia, due to 
coronary artery disease, and calculated a severity 
score. This severity score has a maximum range from 0 
to 20 where a higher score indicates a higher likelihood 
of myocardial ischemia due to coronary stenosis. 
Following the 3DMP manufacturer’s recommendation, 
a cut-off of 4.0 for the severity score was used in this 
study, with a score of 4.0 or higher being considered 
indicative of a hemodynamically relevant coronary 
artery stenosis of >70% in at least one large-sized 
vessel. 

Angiographers and staff at the study site were 
blinded to all 3DMP findings. The 3DMP technicians 
and all Premier Heart staff were blinded to all clinical 
data including pre-test probabilities for CAD or 
angiography findings from the study patients. 

Retest reliability of 3DMP was assessed in 45 
patients on whom a second 3DMP test was done 
within 4 hours after the first test. The ECG electrodes 
were left in place for these repeat measurements. For 

comparison with angiography, the first test was 
always used in these patients. 

Angiography 

After the 3DMP test, coronary angiography was 
performed following the standards of the institution. 
Angiograms were classified immediately by the 
respective angiographer and independently by a 
second interventional cardiologist within 4 weeks after 
the angiogram. If the two investigators did not agree 
on the results, they discussed the angiograms until 
agreement was reached. Angiograms were classified as 
follows: 
• Non-obstructive CAD: angiographic evidence of 

coronary arterial stenosis of ≤70% in a single or 
multiple vessels. Evidence included demonstrable 
vasospasm, delayed clearance of contrast medium 
indicating potential macro- or micro-vascular 
disease, documented endothelial abnormality (as 
indicated by abnormal contrast staining), or CAD 
with at least 40% luminal encroachment 
observable on angiograms. These patients were 
classified as negative for hemodynamically 
relevant CAD (= “stenosis: no”). 

• Obstructive CAD: angiographic evidence of 
coronary arterial sclerosis of > 70% in a single or 
multiple vessels, with the exception of the left 
main coronary artery, where ≥50% was considered 
obstructive. These patients were classified as 
positive for hemodynamically relevant CAD (= 
“stenosis: yes”). 
The angiographic results represent the diagnostic 

endpoint against which 3DMP was tested. 

Statistical methods 

An independent study monitor verified the 
double-blindness of the study and the data integrity 
and monitored the data acquisition process, all 
angiography reports, and all 3DMP test results. 
Descriptive statistics were calculated for all variables 
(mean +/- standard deviation). Differences between 
two variables were tested with the t-test. Differences in 
2x2 tables were assessed for significance with Fisher’s 
exact test. Logistic regression was used to analyze 
effects of multiple categorical variables. Odds ratios 
including 95% confidence intervals were calculated. 
Sensitivity and specificity were calculated as were 
receiver operating characteristic (ROC) curves 
including an estimate of the area under the curve 
(AUC). Positive and negative predictive values (PPV, 
NPV) for the assessment of coronary stenosis were 
calculated with adjustment to prevalence of stenosis 
[19]. Moreover, in order to assess the performance of 
the prediction of stenosis independent of the 
prevalence of stenosis the positive and negative 
likelihood ratios (LR) were calculated [20]. A value of P 
< 0.05 was considered statistically significant. All 
analyses were done with SPSS for Windows Version 14 
(SPSS Inc., Chicago, IL, USA). 
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3. Results 

A final analysis was performed on 423 of the 
original 562 patients: 139 patients were excluded, 17 
due to poor ECG tracings and 122 because of 
unavailability of full risk factor information. The 
excluded patients were not significantly different from 
the included patients with respect to age (62.6 +/- 11.3 
vs. 61.4 +/- 11.1 years; P = 0.774), gender (39% female 
vs. 36.7% male; P = 0.688), or diagnosis of coronary 
stenosis (stenosis: yes, 47.5% vs. stenosis: no, 43.9%; P 
= 0.493). Available patients comprised 258 men and 
165 women, average age 61.4 +/- 11.1 years (24-89). 
Women were significantly older than men (64.0 +/- 11 
vs. 59.7 +/- 11 years; P < 0.01). 

Only 23 (5.4%) patients had no known risk factors 
for CAD, whereas 216 (51%) had at least three risk 
factors (Table 1). All 44 patients with a history of MI 
had at least one risk factor. Patients with arterial 

hypertension and patients with diabetes were 
significantly older than those without; smokers were 
significantly younger than non-smokers (each, P < 
0.01). Hypertension was significantly more frequent in 
women (P < 0.01), whereas smoking was more 
frequent in men (P < 0.01) as was a history of MI (p< 
0.05). 

Hemodynamically relevant coronary stenosis 
was diagnosed with angiography in 201 patients 
(47.5%). Female patients were diagnosed with 
coronary stenosis significantly less frequently than 
were male patients (32.1% vs. 57.4%; P < 0.01). Patients 
with coronary stenosis were significantly older than 
patients without (63.6 +/- 10.1 vs. 59.3 +/- 11.7 years). 
This age difference could also be observed within each 
gender group (all differences significant at P < 0.01; 
Table 2). Five patients with a history of MI did not 
have a hemodynamically relevant stenosis. 

Table 1: Risk factors, MI history, gender, and age distribution. 

All Patients Gender 

Female Male   
Age (years) 

Age (years)   Age (years)   

 
  
  
  

Mean SD 

N 
  
  

% 
  
  

Mean SD N % Mean SD N % 

Total 61.4 11.1 423 100.0% 64.0 11.3 165 100.0% 59.7 10.7 258 100.0% 

no 57.7 11.5 159 37.6% 59.4 12.2 50 30.3% 56.9 11.1 109 42.2% Arterial hypertension 
  

yes 63.6 10.4 264 62.4% 66.0 10.3 115 69.7% 61.7 10.1 149 57.8% 

no 60.8 10.9 166 39.2% 63.5 11.1 71 43.0% 58.7 10.4 95 36.8% Hyperlipidemia 
  

yes 61.7 11.3 257 60.8% 64.3 11.4 94 57.0% 60.2 10.9 163 63.2% 

no 64.5 9.9 264 62.4% 67.0 9.1 121 73.3% 62.4 10.1 143 55.4% Active or former smoking  
  

yes 56.1 11.1 159 37.6% 55.6 12.5 44 26.7% 56.3 10.5 115 44.6% 

no 60.5 11.3 350 82.7% 62.8 11.8 133 80.6% 59.1 10.7 217 84.1% Diabetes of any type 
  

yes 65.4 9.7 73 17.3% 68.9 7.3 32 19.4% 62.6 10.4 41 15.9% 

no 61.9 11.5 300 70.9% 64.5 11.8 112 67.9% 60.3 11.1 188 72.9% Family history 
  yes 60.1 10.1 123 29.1% 62.9 10.0 53 32.1% 58.0 9.8 70 27.1% 

no 61.8 11.0 241 57.0% 65.1 10.8 93 56.4% 59.8 10.7 148 57.4% Obesity 
  

yes 60.7 11.3 182 43.0% 62.6 11.8 72 43.6% 59.5 10.9 110 42.6% 

no 61.2 11.2 407 96.2% 63.9 11.3 163 98.8% 59.4 10.8 244 94.6% Other risk factors 
  

yes 65.3 9.9 16 3.8% 75.0 2.8 2 1.2% 63.9 9.8 14 5.4% 

0 59.5 12.4 23 5.4% 63.6 10.9 8 4.8% 57.3 12.9 15 5.8% 

1 62.5 10.9 71 16.8% 66.4 9.8 25 15.2% 60.4 11.0 46 17.8% 
2 61.7 11.4 113 26.7% 64.2 11.9 48 29.1% 59.9 10.7 65 25.2% 

3 61.4 11.0 124 29.3% 62.6 12.0 52 31.5% 60.4 10.1 72 27.9% 
4 59.8 11.2 64 15.1% 63.8 11.1 28 17.0% 56.6 10.3 36 14.0% 

5 59.6 10.8 19 4.5% 60.0  1 0.6% 59.6 11.1 18 7.0% 

Number of risk factors 
  
  
  
  
  
  

6 67.9 9.8 9 2.1% 69.0 6.2 3 1.8% 67.3 11.8 6 2.3% 

no 61.3 11.3 379 89.6% 63.9 11.4 154 93.3% 59.5 10.9 225 87.2% Myocardial infarction in 
patient history 

yes 61.8 10.1 44 10.4% 65.0 10.4 11 6.7% 60.8 10.0 33 12.8% 

Table 2: Frequency of coronary stenosis, distribution of gender, age, risk factors, and MI history. 

 Coronary 
Stenosis 

All Patients 

 No Yes   

All patients Age (years): Mean 59.3 63.6 61.4 
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 Coronary 
Stenosis 

All Patients 

    SD 11.7 10.1 11.1 

    N 222 201 423 

Gender Female Age (years) Mean 62.1 68.0 64.0 

      SD 11.7 9.1 11.3 

      N 112 53 165 

  Male Age (years) Mean 56.5 62.1 59.7 

      SD 10.9 10.0 10.7 

      N 110 148 258 

Arterial hypertension no N 100 59 159 

 yes N 122 142 264 

Hyperlipidemia no N 100 66 166 

  yes N 122 135 257 

Active or former smoking no N 142 122 264 

 yes N 80 79 159 

Diabetes of any type no N 196 154 350 

 yes N 26 47 73 

Family history no N 157 143 300 

  yes N 65 58 123 

Obesity no N 135 106 241 

  yes N 87 95 182 

Other risk factors no N 217 190 407 

  yes N 5 11 16 

Number of risk factors 0 N 16 7 23 

  1 N 50 21 71 

  2 N 59 54 113 

  3 N 60 64 124 

  4 N 28 36 64 

  5 N 7 12 19 

  6 N 2 7 9 

no N 217 162 379 Myocardial infarction 
in patient history 

yes N 5 39 44 

 
 

Risk factors were more frequently encountered in 
patients with coronary stenosis. Only 7 (3.5%) patients 
had no risk factors, whereas 173 (86.1%) had at least 
two risk factors. The majority of patients without 
coronary stenosis had at least one risk factor (Table 2). 
In a logistic regression model including all risk factors, 
age, and gender, the following factors were associated 
with an increased risk of coronary stenosis: age over 65 
years (OR 1.96 [2.23-5.61]), male gender (OR 3.54 
[2.23-5.61]), arterial hypertension (OR 1.97 [1.25-3.09]), 
and diabetes of any type (OR 2.11 [1.18-3.77]; all P < 
0.01). A weak and not significant association could also 

be seen with hyperlipidemia of any type (OR 1.47 
[0.95-2.25]; P = 0.08). On the basis of this model, 64.8% 
of all patients were correctly classified (OR 3.35 
[2.24-5.01]; see the summary in Table 3). 

When a history of MI was included in the model, 
history of MI showed the strongest effect (OR 10.59 
[3.51-31.93]), while the effects age over 65 years (OR 
2.16 [1.31-3.56]), male gender (OR 3.48 [2.12-5.73]), 
arterial hypertension (OR 2.11 [1.29-3.45]; all P < 0.01), 
and diabetes of any type (OR 2.17 [1.18-3.96]; P < 0.05) 
were similar. On the basis of this model, 69% of all 
patients were correctly classified (OR 5.01 [3.30-7.61], 
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summary in Table 3). 
The severity score ranged from 0 to 15, mean 3.8 

+/- 2.6, with 47.8% of all patients having a severity 
score of less than 4. There was no patient whose 
severity score was greater than 15 in this cohort. For 
patients with hemodynamically relevant coronary 
stenosis as diagnosed at angiography, the severity 
score was significantly higher than that for patients 
without stenosis (5.3 +/- 1.9 vs. 2.5 +/- 2.5; P < 0.01; 
Figure 1). For the association between severity score 
and coronary stenosis, the area under the ROC curve 
was calculated to be 0.843 [0.802-0.884]. The 
coordinates of the curve indicated that the cut-off of 4.0 
(as pre-defined by the manufacturer) provided the best 
combination of sensitivity and specificity for the 
prediction of hemodynamically relevant coronary 
stenosis from the 3DMP test. 

 

Figure 1 Severity score versus coronary stenosis as diagnosed 
by angiography. Boxplots of severity score. Circles denote 
outliers, asterisk denotes extremes. 

 
Patients without coronary stenosis had a severity 

score below 4.0 significantly more frequently than did 
those with stenosis (P < 0.01) with 84.9% of all patients 
correctly classified (OR 34.87 [20.00-60.79]). The results 
listed in Table 4 indicate a sensitivity of 89.1% and a 
specificity of 81.1% for the 3DMP test in the prediction 
of coronary stenosis (positive predictive value = 0.794, 
negative predictive value = 0.900). A positive 
likelihood ratio of nearly 5 and a negative likelihood 
ratio of less than 0.15 indicate a good to strong 
diagnostic value for this test (Table 3).  

Sensitivity and specificity varied between gender 
and age groups. Logistic regression showed that both 
gender and age had a significant independent 
influence on the classification results. For females less 
than 65 years of age, the sensitivity was lowest and the 

specificity highest; for females over 65 years of age, 
sensitivity was highest, whereas specificity was lowest 
for males over 65 years of age (Table 3). Analysis of 
ROC also showed that the best cut-off for each 
subgroup remained at 4.0 (Figure 2). 

 

 

Figure 2 ROC curves for severity score for the detection of 
coronary stenosis for different gender and age groups. yoa = 
years of age 

 
 

 

Figure 3 ROC curves of severity score alone (“SC”), risk 
factors (logistic regression model, “RF”), risk factors and MI 
history (logistic regression, “RF + MI”), risk factors plus 
severity score (logistic regression model, “SC + RF”), and risk 
factors plus severity score and MI history (logistic regression 
model, “SC + RF+ MI”), for detecting coronary stenosis. 

 
Logistic regression also showed that the addition 

of all risk factors did not significantly improve the 
classification of coronary stenosis (85.1% correct; OR 
36.73 [20.92-64.51]). When information about MI 
history was added to this model again the 
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classification, performance did not change markedly 
(85.6% correct; OR 39.95 [20.53-70.85]. 

The ROC AUC for a regression model with all 
risk factors, all risk factors plus information about MI 
history, the severity score alone, a regression model 
with the severity score plus all risk factors, and a 
regression model with the severity score plus all risk 
factors and information about MI history were 0.715 
[0.667-0.763], 0.757 [0.712-0.802], 0.843 [0.802-0.884], 
0.890 [0.857-0.922], and 0.903 [0.874-0.933] respectively 
(Figure 3). Similar results could be found for each 
gender and age group (Table 3). 

If patients with history of MI were excluded the 
diagnostic performance of 3DMP did not change 
significantly with 83.6% of these patients correctly 
classified (details in Table 3). The calculation of a 
regression model in the group of patients with MI 
history was meaningless due to the high prevalence of 
stenosis in this group of patients. But of those 5 
patients with a history of MI who did not show 
relevant coronary in angiography none tested positive 

with 3DMP. 
To further evaluate performance of 3DMP, 

sensitivity and specificity were evaluated at different 
cut-offs for severity (Table 5). This comparison also 
showed that a cut-off of 4.0 provided the best 
compromise of sensitivity and specificity. At lower 
cut-offs such as 3.0, the negative predictive value is 
over 90%, which may be advantageous for screening 
applications. 

A second 3DMP test was performed on 45 
patients within 4 hours of the first test and before 
angiography. The test results were identical in 36 of 
the 45 patients. Only 3 patients had a difference in 
severity score of greater than 1. In only one patient 
would the difference have led to a change in 
classification (3.8 for the first test, 6.0 for the second 
test). Angiography showed hemodynamically relevant 
CAD in this patient.  

Verification after the end of the data acquisition 
period confirmed that locally stored and transmitted 
ECG data were identical for all recordings. 

 

Table 3: Prediction of coronary stenosis by logistic regression with risk factors (“RF”), by logistic regression with risk factors and 
MI history (“RF + MI”), by logistic regression with risk factors and severity score (cut-off 4.0; “SC + RF”), by logistic regression 
with risk factors and MI history and severity score (cut-off 4.0; “SC + RF + MI”), and by severity score (cut-off 4.0; “SC”) alone for 
total population, gender, age groups, and MI history. 

OR 95% CI ROC AUC 
95% CI 

 n TP TN FP FN a 
piori 

Correct Sens Spec PPV NPV LR+ LR- Odds 
Ratio 

Lower Upper 

ROC 
AUC 

Lower Upper 

RF 423 120 154 68 81 0.475 0.648 0.597 0.694 0.615 0.677 1.949 0.581 3.36 2.25 5.01 0.715 0.667 0.763 

RF + MI 423 124 168 54 77 0.475 0.690 0.617 0.757 0.675 0.707 2.536 0.506 5.01 3.30 7.61 0.757 0.712 0.802 

SC + RF 423 180 180 42 21 0.475 0.851 0.896 0.811 0.795 0.904 4.733 0.129 36.73 20.92 64.51 0.890 0.857 0.922 

SC + RF + MI 423 181 181 41 20 0.475 0.856 0.900 0.815 0.800 0.909 4.876 0.122 39.95 22.53 70.85 0.903 0.874 0.933 

Total 

SC 423 179 180 42 22 0.475 0.849 0.891 0.811 0.794 0.900 4.707 0.135 34.87 20.00 60.79 0.843 0.802 0.884 

RF 165 15 100 12 38 0.321 0.697 0.283 0.893 0.371 0.848 2.642 0.803 3.29 1.41 7.67 0.691 0.607 0.776 

RF + MI 165 18 106 6 35 0.321 0.752 0.340 0.946 0.587 0.865 6.340 0.698 9.09 3.34 24.69 0.762 0.682 0.841 

SC + RF 165 45 100 12 8 0.321 0.879 0.849 0.893 0.640 0.964 7.925 0.169 46.88 17.93 122.58 0.922 0.872 0.972 

SC + RF + MI 165 45 103 9 8 0.321 0.897 0.849 0.920 0.703 0.965 10.566 0.164 64.38 23.34 177.59 0.932 0.883 0.981 

Female 

SC 165 47 98 14 6 0.321 0.879 0.887 0.875 0.614 0.972 7.094 0.129 54.83 19.82 151.70 0.861 0.799 0.923 

RF 258 111 55 55 37 0.574 0.643 0.750 0.500 0.731 0.525 1.500 0.500 3.00 1.77 5.08 0.687 0.622 0.751 

RF + MI 258 104 65 45 44 0.574 0.655 0.703 0.591 0.757 0.523 1.718 0.503 3.41 2.03 5.73 0.728 0.668 0.789 

SC + RF 258 136 82 28 12 0.574 0.845 0.919 0.745 0.867 0.835 3.610 0.109 33.19 16.00 68.85 0.864 0.817 0.912 

SC + RF + MI 258 137 82 28 11 0.574 0.849 0.926 0.745 0.868 0.847 3.637 0.100 36.47 17.24 77.15 0.884 0.842 0.926 

Male 

SC 258 132 82 28 16 0.574 0.829 0.892 0.745 0.864 0.792 3.504 0.145 24.16 12.32 47.37 0.825 0.768 0.882 

RF 246 53 113 30 50 0.419 0.675 0.515 0.790 0.560 0.758 2.453 0.614 3.99 2.29 6.98 0.709 0.645 0.773 

RF + MI 246 56 119 24 47 0.419 0.711 0.544 0.832 0.627 0.779 3.239 0.548 5.91 3.29 10.61 0.757 0.697 0.818 

SC + RF 246 90 121 22 13 0.419 0.858 0.874 0.846 0.747 0.928 5.680 0.149 38.08 18.21 79.64 0.892 0.849 0.934 

SC + RF + MI 246 92 120 23 11 0.419 0.862 0.893 0.839 0.742 0.938 5.553 0.127 43.64 20.24 94.07 0.906 0.866 0.945 

< 65 
years 

SC 246 89 121 22 14 0.419 0.854 0.864 0.846 0.744 0.923 5.617 0.161 34.96 16.95 72.11 0.873 0.826 0.919 

RF 177 70 50 29 28 0.554 0.678 0.714 0.633 0.750 0.590 1.946 0.451 4.31 2.29 8.12 0.718 0.643 0.793 

RF + MI 177 70 54 25 28 0.554 0.701 0.714 0.684 0.776 0.609 2.257 0.418 5.40 2.83 10.30 0.746 0.675 0.818 

SC + RF 177 91 60 19 7 0.554 0.853 0.929 0.759 0.856 0.874 3.861 0.094 41.05 16.27 103.62 0.897 0.846 0.949 

SC + RF + MI 177 87 61 18 11 0.554 0.836 0.888 0.772 0.857 0.817 3.896 0.145 26.80 11.82 60.76 0.907 0.860 0.953 

> 65 
years 

SC 177 90 59 20 8 0.554 0.842 0.918 0.747 0.848 0.856 3.628 0.109 33.19 13.72 80.27 0.789 0.712 0.865 
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OR 95% CI ROC AUC 
95% CI 

 n TP TN FP FN a 
piori 

Correct Sens Spec PPV NPV LR+ LR- Odds 
Ratio 

Lower Upper 

ROC 
AUC 

Lower Upper 

RF 79 0 60 1 18 0.228 0.759 0.000 0.984 0.000 0.919 0.000 1.017 NaN NaN NaN 0.712 0.590 0.835 

RF + MI 79 5 61 0 13 0.228 0.835 0.278 1.000 1.000 0.941 NaN 0.722 NaN NaN NaN 0.838 0.739 0.938 

SC + RF 79 13 59 2 5 0.228 0.911 0.722 0.967 0.657 0.976 22.028 0.287 76.70 13.38 439.76 0.919 0.849 0.988 

SC + RF + MI 79 13 59 2 5 0.228 0.911 0.722 0.967 0.657 0.976 22.028 0.287 76.70 13.38 439.76 0.934 0.876 0.993 

Female, 
< 65 
years 

SC 79 13 57 4 5 0.228 0.886 0.722 0.934 0.490 0.975 11.014 0.297 37.05 8.72 157.35 0.845 0.730 0.959 

RF 86 14 42 9 21 0.407 0.651 0.400 0.824 0.516 0.745 2.267 0.729 3.11 1.16 8.35 0.678 0.562 0.794 

RF + MI 86 15 46 5 20 0.407 0.709 0.429 0.902 0.673 0.770 4.371 0.634 6.90 2.21 21.58 0.718 0.607 0.830 

SC + RF 86 34 42 9 1 0.407 0.884 0.971 0.824 0.722 0.984 5.505 0.035 158.67 19.14 1315.13 0.960 0.925 0.995 

SC + RF + MI 86 33 46 5 2 0.407 0.919 0.943 0.902 0.819 0.971 9.617 0.063 151.80 27.74 830.69 0.973 0.944 1.001 

Female, 
> 65 
years 

SC 86 34 41 10 1 0.407 0.872 0.971 0.804 0.700 0.984 4.954 0.036 139.40 16.98 1144.41 0.834 0.741 0.927 

RF 167 52 55 27 33 0.509 0.641 0.612 0.671 0.666 0.617 1.858 0.579 3.21 1.70 6.05 0.656 0.573 0.739 

RF + MI 167 44 61 21 41 0.509 0.629 0.518 0.744 0.685 0.589 2.021 0.648 3.12 1.62 5.99 0.712 0.635 0.790 

SC + RF 167 77 64 18 8 0.509 0.844 0.906 0.780 0.816 0.885 4.127 0.121 34.22 13.96 83.87 0.881 0.827 0.935 

SC + RF + MI 167 78 64 18 7 0.509 0.850 0.918 0.780 0.818 0.898 4.180 0.106 39.62 15.58 100.77 0.898 0.850 0.946 

Male,  
< 65 
years 

SC 167 76 64 18 9 0.509 0.838 0.894 0.780 0.814 0.873 4.073 0.136 30.02 12.62 71.42 0.860 0.799 0.920 

RF 91 55 8 20 8 0.692 0.692 0.873 0.286 0.861 0.308 1.222 0.444 2.75 0.91 8.31 0.712 0.603 0.821 

RF + MI 91 54 7 21 9 0.692 0.670 0.857 0.250 0.853 0.257 1.143 0.571 2.00 0.66 6.06 0.735 0.633 0.837 

SC + RF 91 60 17 11 3 0.692 0.846 0.952 0.607 0.925 0.716 2.424 0.078 30.91 7.73 123.54 0.834 0.739 0.929 

SC + RF + MI 91 60 17 11 3 0.692 0.846 0.952 0.607 0.925 0.716 2.424 0.078 30.91 7.73 123.54 0.853 0.768 0.938 

Male,  
> 65 
years 

SC 91 56 18 10 7 0.692 0.813 0.889 0.643 0.926 0.533 2.489 0.173 14.40 4.78 43.36 0.745 0.620 0.869 

RF 379 86 170 47 76 0.427 0.675 0.531 0.783 0.577 0.750 2.451 0.599 4.09 2.62 6.40 0.719 0.668 0.770 

SC + RF 379 142 177 40 20 0.427 0.842 0.877 0.816 0.726 0.922 4.755 0.151 31.42 17.58 56.14 0.881 0.845 0.918 

No MI 
in 

history 

SC 379 142 175 42 20 0.427 0.836 0.877 0.806 0.716 0.921 4.529 0.153 29.58 16.62 52.66 0.834 0.791 0.878 

n = number of cases; TP = true positives; TN = true negatives; FP = false positives; FN = false negatives; a priori = a priori probability of stenosis; 
Correct = fraction of correctly predicted cases; Sens = sensitivity; Spec = specificity; PPV = positive predictive value; NPV = negative predictive value; 
LR+ = positive likelihood ratio; LR- = negative likelihood ratio; OR = odds ratio; ROC AUC = receiver operating curve area under the curve (for 
continuous severity score and probabilities from logistic regression models); 95% CI = 95% confidence interval; Lower = Lower boundary of 95% CI; 
Upper = Upper boundary of 95% CI; NaN = Not a number; MI = Myocardial infarction 

Table 4: Prediction of coronary stenosis by severity score (cut-off 4.0). 

 Prediction Cut-off 4.0 Total 

  No stenosis Stenosis   

no   180 42 222 

    42.6% 9.9% 52.5% 

yes   22 179 201 

Coronary 
stenosis 

 

    5.2% 42.3% 47.5% 

Total   202 221 423 

   47.8% 52.2% 100.0% 

Table 5: Prediction of coronary stenosis by severity score at different cut-offs for total population (n = 423, a priori probability of 
stenosis = 0.475). 

 OR 95% CI 

  

TP TN FP FN Sens Spec PPV NPV Correct OR 

Lower Upper 

Cut-Off 2.0 193 91 131 8 0.960 0.410 0.572 0.926 0.671 16.76 7.87 35.69 

Cut-Off 2.5 191 109 113 10 0.950 0.491 0.605 0.923 0.709 18.42 9.26 36.66 

Cut-Off 3.0 187 128 94 14 0.930 0.577 0.643 0.910 0.745 18.19 9.93 33.30 

Cut-Off 3.5 183 152 70 18 0.910 0.685 0.703 0.903 0.792 22.08 12.60 38.68 
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 OR 95% CI 

  

TP TN FP FN Sens Spec PPV NPV Correct OR 

Lower Upper 

Cut-Off 4.0 179 180 42 22 0.891 0.811 0.794 0.900 0.849 34.87 20.00 60.79 

Cut-Off 4.5 146 186 36 55 0.726 0.838 0.786 0.789 0.785 13.72 8.55 22.01 

Cut-Off 5.0 129 189 33 72 0.642 0.851 0.780 0.744 0.752 10.26 6.42 16.40 

TP = true positives; TN = true negatives; FP = false positives; FN = false negatives; correct = fraction of correctly predicted cases; Sens = sensitivity; Spec 
= specificity; PPV = positive predictive value; NPV = negative predictive value; OR = odds ratio; 95% CI = 95% confidence interval; Lower = Lower 
boundary of 95% CI; Upper = Upper boundary of 95% CI 

 

4. Discussion 

The age and gender distributions in the studied 
patient group matched those in the literature with a 
lower incidence and older age for women at the time of 
initial diagnosis of CAD [21]. The incidence of 
clinically identified risk factors for CAD among the 
studied patients was very high in both patients with 
and without coronary stenosis. The calculated relative 
risk for coronary stenosis resulting from the risk 
factors in the study group is in the range of that 
reported in the literature from larger epidemiologic 
studies [11-14].  

The overall sensitivity of 89.1% and specificity of 
81.1% provided by the 3DMP device in the detection of 
hemodynamically relevant CAD confirms the results 
of the smaller study from Weiss et al comparing 3DMP 
and 12-lead ECG with coronary angiography in 136 
patients (sensitivity 93%, specificity of 83%), although 
their results were based on a qualitative assessment of 
ischemia by the 3DMP system [18]. The quantitative 
severity score used in the present study was not 
available at that time; this may allow for greater 
flexibility when it is used for screening or monitoring 
of CAD to determine the level of disease or 
quantifying the patient’s myocardial ischemic burden 
at the time of the testing. 

Resting ECG analysis, including that of the 
12-lead ECG, typically has significantly less sensitivity 
in detecting ischemia. Clinical studies report a wide 
range of sensitivity from 20% to 70% for acute 
myocardial infarction and typically less for 
hemodynamically significant CAD [2,22].  

Diagnostic yield from the ECG can be improved 
by exercise testing. Exercise ECG has a reported 
specificity of over 80% under ideal conditions. 
Clinically, however, the sensitivity is typically not 
better than 50-60% and shows significant gender bias 
[4,23-25]. Performance of exercise ECG testing can 
further be enhanced by multivariate analysis of ECG 
and clinical variables. First studies into computerized, 
multivariate exercise ECG analysis showed good to 
excellent sensitivity in men and women (83% and 70%, 
respectively) and specificity (93%, 89%) [26, 27]. These 
results were confirmed by a second group of 
researchers [28] and are similar to our findings with 
3DMP. Other researchers used different statistical 
approaches and models of multivariate stress ECG 
analysis with different sets of variables included in the 

models [29, 30, 31, 32]. While these approaches 
provided significantly better diagnostic performance 
than standard exercise ECG testing, it appears that 
none of these methods has been implemented in broad 
clinical practice or a commercial product. 

In a comprehensive systematic review of 16 
prospective studies myocardial perfusion scintigraphy 
showed better positive and negative likelihood ratios 
than exercise ECG testing [33]. But wide variation 
between studies was reported with positive LR 
ranging from 0.95 to 8.77 and negative LR from 1.12 to 
0.09. Another review of stress scintigraphy studies 
showed similar results with a diagnostic accuracy of 
85% by wide variation between studies (sensitivity 
44%-89%, specificity 89%-94%, for 2+vessel disease) 
[34]. In one study the combination of stress ECG 
testing with myocardial scintigraphy using 
multivariate analysis provided only limited 
improvement of diagnostic accuracy [35]  

Stress echocardiography performed by 
experienced investigators may provide better 
sensitivity and specificity than does stress ECG. 
Numerous studies into exercise echocardiography as a 
diagnostic tool for CAD have been done. Reported 
sensitivities range from 31% to over 90% and 
specificities from 46% to nearly 100% [36, 37, 38]. With 
experienced investigators, sensitivities of over 70% 
and specificities better than 85% can be expected. 

While the reported diagnostic performance of 
stress echocardiography, myocardial scintigraphy and 
stress scintigraphy are not unsimilar to that we found 
for 3DMP, imaging modalities can provide additional 
information such as spatial localization that a resting 
ECG method cannot. 

All exercise testing methods requires significant 
personnel and time resources, have relevant 
contraindications, and bear a small but measurable 
morbidity and mortality [5,6,24,25]. 

Although 3DMP’s sensitivity and specificity for 
the detection of coronary stenosis was good to 
excellent in all age and gender groups, there were 
obvious differences between groups. The lowest 
sensitivity of 72.2% was observed in female patients of 
65 or less years of age. Although this observation 
might be a statistical epiphenomenon due to the small 
number of positives, it may also be explained by the 
less frequent occurrence of specific ECG changes in 
women with CAD reported in other studies [40]. 
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Similar differences have been reported from exercise 
ECG and exercise echocardiography [36, 40]. Despite 
the differences in sensitivity and specificity between 
age and gender groups, the optimal cut-off for the 
severity score was not different between groups. 

On the basis of the risk factors identified clinically 
in the studied patients, the odds ratio for CAD was 
3.35 [2.24-5.01] in a logistic regression model. This is in 
concordance with large epidemiological studies 
[11-14]. Still, this model could predict coronary 
stenosis only with a sensitivity of 59.7% and a 
specificity of 69.4%, which is markedly less than for the 
severity score. Adding all risk factors with or without 
information about previous MI to the severity score in 
a logistic regression model improved prediction of 
CAD only marginally (details in Table 3). Moreover, 
performance of 3DMP was not significantly different 
whether or not patients with previous MI were 
excluded. This may have clinical relevance as silent 
myocardial infarction may not be known prior to 
performing the test in a relevant number of patients 
[41, 42]. Based on the findings of our study it can be 
assumed that diagnostic yield of 3DMP will not be 
affected by this. 

The endpoint of this study was the morphological 
diagnosis of CAD made with coronary angiography, 
whereas the investigated electrophysiological method 
(3DMP) assesses functional changes of electrical 
myocardial function secondary to changes in coronary 
blood flow. Therefore, even under ideal conditions, 
100% concordance between angiographic findings and 
3DMP results cannot be expected. This is probably true 
for every electrophysiological diagnostic method. 

Resting and stress ECG in CAD patients 
primarily focuses on ST-segment analysis and the 
detection of other conduction abnormalities such as 
arrhythmias. This is not comparable to the 3DMP 
approach in which a severity score for CAD is 
calculated from a complex mathematical analysis. A 
comparison between 3DMP, 12-lead resting ECG, and 
coronary angiography in the study by Weiss et al. 
showed a higher sensitivity and specificity for the 
detection of coronary stenosis by 3DMP than by 
12-lead ECG [18]. 

One limitation of the present study was that the 
angiography results were not explicitly quantified 
using a scoring system [43]. Still, the assessment of 
coronary lesions in the present study was consistent 
between the two experienced angiographers who 
independently evaluated the angiograms. Because the 
target criterion was hemodynamically relevant 
coronary stenosis and a dichotomous classification 
(“stenosis” or “no stenosis”) was used, sub-clinical or 
sub-critical lesions may have been classified as 
non-relevant. This may have artificially reduced the 
calculated sensitivity and specificity of the 3DMP 
method and may explain some of the differences from 
the study by Weiss et al., which used a graded 
assessment of coronary lesions [18]. Another limitation 

may have been in patient recruitment. The patient 
population represented a convenience sample of 
patients drawn from a larger group of consecutive 
patients scheduled for coronary angiography in a 
single heart center. Whereas this may limit the 
generalizability of the patient sample employed 
herein, the demographic distribution of this sample 
matches well with the distributions reported in the 
literature for patients with CAD as well as with the 
incidence and distribution of risk factors. In addition, 
52.5% of the participants did not have 
hemodynamically significant CAD so that the a priori 
probability of coronary stenosis in the study 
population should not affect the estimates for 
sensitivity and specificity. Finally, 3DMP was 
compared to angiography but not to any other 
non-invasive diagnostic technology in this study. 
Therefore, inference about the potential superiority or 
inferiority of 3DMP to other ECG-based methods can 
only be drawn indirectly from other studies. 

In conclusion, the mathematical analysis of the 
ECG done by 3DMP appears to provide very high 
sensitivity and specificity for the prediction of 
hemodynamically relevant CAD as diagnosed with 
coronary angiography. In the present study and in the 
previous study by Weiss et al [18], 3DMP showed at 
least as good sensitivity and specificity for the 
prediction of CAD as do standard resting or stress 
ECG test methods reported in other clinical studies. 
However, these results will require further 
confirmation through studies directly comparing 
3DMP with such methods. 
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Appendix I – Premier Heart 3DMP Technology 

Overview 

The Premier Heart 3DMP technology 
investigated in this study is based on systems theory, 
in which mathematical modeling is used in the 
analysis of complex systems and the interactions of 
internal and external environments with those 
systems. In the case of the heart, analysis is performed 
on the signals emitted by the heart, such as the surface 
resting electrical signal recorded by an ECG. 

In systems analysis, the ECG signals are therefore 
not analyzed conventionally, such as when each 
individual cardiac cycle (P-QRS-T complex) of each 
ECG lead is measured and analyzed in a single time 
domain (milliseconds vs. millivolts) in sequence. 
Rather, multiple cardiac cycles from both ECG leads 
are sampled, digitized, and analyzed individually and 
in relation to each other. This means that analysis 
focuses not only on the variations of heart harmonics 
in the frequency domain from each lead independently 
but also on other linear or non-linear correlations 
between the two leads in both frequency and time 
domains, in combination. 

3DMP records a short (82-second) resting analog 
ECG signal from two left ventricular leads (V5 and II). 
The use of leads V5 and II has been empirically tested 
over many years and confirmed to provide the 
information required to build the analysis software. 
Following the principles of Systems Analysis this 
approach is considered adequate, as one only needs an 
input and an output of the systems of interest. The 
signal is amplified and digitized at a sampling rate of 
100 Hz in multiple time series. As it could consistently 
be demonstrated that far more than 90% of the power 
output of the autopower spectra of the human ECGs in 
the 3DMP database fall within 50 Hz, 100 Hz are an 
adequate sampling rate as they are the respective 
Nyquist frequency. The signal is then converted to the 
frequency domain via DFT (Discrete Fourier 
Transforms) intervals [44]. These frequency intervals 
are then averaged following DFT procedures. The 
result is a signal-averaged digital data segment in the 
frequency domain with maximum signal-to-noise 
ratio. In the next step, post-averaging digital signal 
deconstruction takes place using a series of signal 
analysis functions. A sequence of abnormal indexes 
from a total of 166 discovered thus far is derived from 
each analysis, which quantify abnormalities in the 
ECG signals that are not expressed by conventional 
ECG methods. Over the years, an accumulation of 
abnormal elements or indexes has been discovered. 
The efforts to verify, validate in clinical trials, and 
quantify the thresholds of each index are largely 
complete. Clusters of indexes and their permutations, 
representing potential diagnoses, are compared 
probalistically with a proprietary database containing 
the abnormal index patterns of tens of thousands of 
patients with known and clinically verified diagnoses 
as well as with the patterns of several thousand normal 
individuals, male and female, from ages 14 to 91. The 
primary focus has been on the automatic detection of 
myocardial ischemia; the final diagnosis produced by 
the system includes the presence (or absence) of local 
or global myocardial ischemia and an associated 
severity score. 

History and Development of 3DMP 

Research into the theoretical models underlying 
3DMP began in 1976 in the People’s Republic of China 
in a project that investigated the effect of noise 
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exposure on cardiac function under the auspices of the 
Academia Sinica, Institute of Dynamics, Beijing. 
Electrocardiographic analysis was found to be 
inadequate because although previous clinical 
observations correlated with noise exposure, 
electrocardiogram waveforms were consistently 
unremarkable. 

The Chinese research group focused on ECG 
analysis and transformations and used a mathematical 
model of the myocardium and blood to address this 
problem. The first models of ECG transformations 
were tested using an animal model of acute 
myocardial infarction. This showed the potential of 
this mathematical approach to ECG analysis for 
detecting myocardial ischemia and stimulated further 
experimental and clinical research 1 . Several very 
ambitious clinical studies were conducted in the 1980s 
to test the system’s ability to detect and differentiate 
eight differential diagnoses. As a result of these studies 
and from a better understanding of the mathematical 
approach, the research concentrated more and more on 
myocardial ischemia. The first DOS stand-alone PC 
version received FDA approval in 1995 (FDA 510(k) 
K953470). 

After 1983, research continued outside China 
until the present day. An initial PC (DOS)-based 
version of the analytical system was used in clinical 
trials in 30 hospitals. Further research with this version 
was done in France, Belgium, and the US. During these 
trials, data from approximately 23,000 subjects (7,000 
patients qualified as normal, 16,000 patients with 
confirmed cardiac pathologies) were collected for the 
construction of the initial 3DMP database 
(unpublished data).  

Since then the system has evolved from a 
stand-alone version due to the need for an expanding 
centralized database and new algorithmic 
developments to prioritize the differential diagnosis of 
myocardial ischemia detection along with other 
secondary clinical diagnoses, such as myocardial 
infarction. A new quantitative scoring system has also 
been created and added to the analysis. The most 
recent version of the 3DMP system has been developed 
on a web-based paradigm which allows the analysis of 
remote ECGs on a centralized database. This new 
version of 3DMP, which also uses relational database 
architecture, received FDA clearance in 1999 (FDA 
510(k) K992703). This version has been used in all 
current trials including the one in Siegburg, Germany, 
reported herein. 

Basic principles of 3DMP 

3DMP is based on a purely mathematical 

                                                 

1  Presented at the 11th International Congress on Acoustics: 

Paris July 19-27, 1983: “Effect of Noise on EKG (with Computer 

Analysis)” 

approach to ECG description that is validated against a 
very large clinical database. Whereas Einthoven 
historically presumed the myocardium to be a 
single-point electrical generator, research leading to 
the development of 3DMP began by using two 
mathematic descriptions of two intrinsic physiologic 
properties of the heart: 
• First, the myocardium is a viscoelastic solid [45].  
• Second, blood is a non-Newtonian fluid at low and 

intermediate shearing states [46].  
To unify these two properties, these two 

mathematic relations can be fused into one using the 
Laplace transform. 

Mathematical transformations of ECG data 

The 3DMP ECG analysis employs six 
mathematical transformations. All these 
transformations are based on the power spectrum of 
the recorded ECG leads (Gxx for lead V5, and Gyy for 
lead II). The power spectrum uses both real and 
imaginary number sets where the domain of the 
coordinate plane is the set of real numbers [R] and the 
range encompasses the imaginary number set [I]. The 
autopower spectrum remains within the respective 
lead (V5 or II), and the cross-power spectrum (Gxy) is 
used when the attributes of each lead are to be 
compared. Empirical observation has elicited patterns 
among the six transformations that have consistently 
correlated with specific patient conditions. 

Autopower Spectrum 

The autopower spectrum, Gxx = Sx(f) ⋅ Sx(f)i and 
Gyy = Sy(f) ⋅ Sy(f)I, where S(f) and S(f)i represent the 
real and imaginary components of the FFT (f) function, 
respectively, depicts the power distribution along a 
frequency range of 0.1 to 50 Hz. Gxx is obtained from 
V5; thus, “x” represents the lead V5 input. Gyy is 
obtained from lead II; thus, “y” represents the lead II 
input. The autopower spectrum is a measure of the 
power in watts of each frequency of an ECG signal. 
The peak with the lowest frequency in the autopower 
spectrum represents the heart rate, which is generally 
around 1.2 Hz (72 bpm); higher frequency peaks will 
generally have less power than lower frequency peaks, 
with the signal generally fading out at approximately 
35 Hz. On the basis of analysis of 23,000 ECGs with 
confirmed clinical diagnoses, it has been established 
that approximately 80% of the power exerted by the 
myocardium is represented in the first 10 peaks of the 
autopower spectrum graphic output. Based on the 
power spectra, 3DMP uses the remaining 
transformations, described below. The autopower 
spectrum data can be used to identify physiological or 
pathological conditions such as fast or slow heart rate, 
arrhythmias, and fibrillation. In addition, various 
peak-to-peak power amplitude abnormal distributions 
correlated well with clinical conditions such as 
myocardial ischemia, hypertensive heart disease, 
congestive heart failure, and cardiogenic shock. 
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Transfer Function 

The transfer function Txy = Gxy / Gxx , Txy = A,φ 
has two components or phases. Dividing the 
cross-power spectrum (Gxy) by the lead V5 autopower 
spectrum (Gxx) yields two complementary 
components of phases of the frequency and power 
axes, namely amplitude and phase angle. The 
amplitude of this result is referred to as the transfer 
function. Transfer function is a measure of deviations 
away from 1, where 1 is the ideal ratio between Gxy 
and Gxx. Deviations from 1 may reflect myocardial 
abnormalities. 

Phase Angle Shift of Transfer Function 

The phase shift angle θxy = tan-1 {Txy(I) / Txy(R)} = 
tan-1 [{Gxy / Gxx(I)} / {Gxy / Gxx(R)}] is a comparison of 
an actual waveform (the combined autopower spectra 
of each lead) to an ideal waveform (the cross-power 
spectrum of the two leads). This is expressed as the 
angle in degrees of the phase shift for each frequency: 
essentially, the relative angles of the harmonics at a 
specific frequency to each other. The angle represents 
the delay between the two leads, so that a greater angle 
is evidence of higher degrees of asynchronization; 
positive angles indicate angle shift favoring the input 
lead (V5), and negative angles indicate angle shift 
favoring the output lead (II). Asynchrony between the 
leads may be due to infarction, myocardial ischemia, 
and myocardial hypertrophies.  

Impulse Response 

The impulse response function Pih = F-1Txy 
measures the continuous activation and response of 
the cardiac system between input (lead V5) and output 
(Lead II). It is derived from the transfer function using 
a reverse DFT and is expressed in the time domain as 
the latency for each amplitude peak in millivolts. The 
impulse response function uses the V5 lead as system 
input and lead II as system output; this makes the 
impulse response function as an idealized system, 
which generates Lead II from Lead V5 in response to a 
unit impulse. Changes in myocardial compliance 
correlate with changes in impulse response. Increased 
compliance as represented in the impulse-response 
graph can be associated with ventricular dilatation and 
overall system quality, i.e., better signal-to-noise ratio. 
Decreased compliance may indicate left ventricular 
hypertrophy or damage due to ischemia or infarction.  

Coherence Function 

The coherence function γ2 = (Gxy)2/{(Gxx)(Gyy)} 
generates a unitless number that reflects the net 
disparity between the cross-power spectrum and the 
product of the two power spectra of leads II and V5. It 
represents the correspondence of the amplitude, 
frequency, and phase shift of the two ECG leads. 
Coherence is expressed as the amplitude ratio of the 
two leads squared for each frequency; the result is a 
measure of the correspondence of the output energy of 
the two leads. The coherence function is primarily 
useful in the frequency band of the heart harmonics 
because higher frequencies show little variation in 
amplitude ratio. The distortion of the myocardial 
coherence function away from a predefined threshold 
is reflected here. This is a universal threshold of degree 
of coherence for the autopower spectra and the 
cross-power spectrum of both ECG leads at the 
system’s fundamental frequency. A value of 1 would 
indicate a theoretically perfect spherical order (where 
the products of auto- and cross-power spectra from 
both leads are equal), whereas a value of 0 is undefined 
and clinically represents chaotic ventricular 
interaction. 

Cross-Correlation 

Cross-correlation Vxy = F-1Gxy is the reciprocal of 
the cross-power spectrum. It provides the linear 
relation between the R waves of the ECG signals, 
expressed as the measure of amplitude in millivolts 
over time. Only the shared qualities of both leads are 
studied here. The commonalties of both leads are 
compared during one 5.12-second cycle, and this 
inversion is reflected in the cross-correlation graph. 

Final Diagnostic Output 

Each of these transformations generates 
numerous indexes that can be related to certain 
pathological changes in the myocardium. Whereas 
each transformation or single index by itself does not 
have sufficient diagnostic significance to allow a 
conclusive diagnosis, the combination of these six 
transformations and the resulting 166 indexes does. To 
reach the final diagnosis, the index patterns of the 
individual subject or patient are compared to the 
patterns stored in a database of healthy subjects and 
patients with confirmed, detailed diagnoses. The end 
result is a confirmed and verified diagnostic report 
that is typically transmitted back to the remote ECG 
site within 2 minutes after reception of the ECG data. 
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Appendix II – Grading of Tracing Quality 

 

 

Figure 4 Examples of good tracings from both ECG leads (top: lead V5; bottom: lead II). ECG recording is acceptable for 3DMP 
analysis. 

 
 
 

 

Figure 5 Examples of marginal tracings from both leads (top: lead V5; bottom: lead II). ECG recording is acceptable for 3DMP 
analysis. 

 
 
 

 

Figure 6 Examples of a poor tracing from lead II and a good tracing from lead V5 (top: lead V5; bottom: lead II). ECG recording is 
not acceptable for 3DMP analysis and will be rejected. 

 


