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Abstract The wrist pulse signals can be used to analyze a
person’s health status in that they reflect the pathologic
changes of the person’s body condition. This paper aims to
present a novel time series analysis approach to analyze
wrist pulse signals. First, a data normalization procedure is
proposed. This procedure selects a reference signal that is
‘closest’ to a newly obtained signal from an ensemble of
signals recorded from the healthy persons. Second, an auto-
regressive (AR) model is constructed from the selected
reference signal. Then, the residual error, which is the
difference between the actual measurement for the new
signal and the prediction obtained from the AR model
established by reference signal, is defined as the disease-
sensitive feature. This approach is based on the premise that
if the signal is from a patient, the prediction model
previously identified using the healthy persons would not
be able to reproduce the time series measured from the
patients. The applicability of this approach is demonstrated
using a wrist pulse signal database collected using a
Doppler Ultrasound device. The classification accuracy is
over 82% in distinguishing healthy persons from patients
with acute appendicitis, and over 90% for other diseases.
These results indicate a great promise of the proposed
method in telling healthy subjects from patients of specific
diseases.
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Introduction

Wrist pulse signals contain vital information of health
activities and can reflect the pathologic changes of a person’s
body condition. Therefore, the practitioners can tell the
health conditions of a patient by feeling his wrist pulses, and
this method has been used in traditional Chinese medicine
for thousands of years. Modern clinical studies demonstrate
that there is premature loss of arterial elasticity and
endothelial function for patients with certain diseases, such
as hypertension, hypercholesterolemia and diabetes [1].
Such loss will eventually decrease the flexibility of
vasculature, whilst increase the stress to the circulatory
system. As a result, the shape, amplitude and rhythm of
patient wrist pulses will also alter in correspondence with
the hemodynamic characteristics of blood flow [1].

Although traditional Chinese pulse diagnosis has been
attracting more attention in recent years, the wrist pulse
assessment is a matter of technical skill and subjective
experience [2]. The intuitional accuracy mainly depends
upon the individual’s persistent practice and quality of
sensitive awareness. Different practitioners may not give
identical diagnosis results for the same patient. Therefore, it
is necessary to develop computerized pulse signal analysis
techniques to standardize and objectify the pulse diagnosis
method. A couple of methods have been proposed to
analyze the digitized pulse signals [3–7]. For example,
Leonard et al. [3] revealed that it is possible to distinguish
healthy and unwell children by using wavelet power
features and wavelet entropy of the pulse signal. Zhang et
al. [4] proposed a wavelet transform based method to
extract features from carotid blood flow signals, and used a
back-propagation (BP) neural network to make the classi-
fication among 30 samples. Some other researchers [5–6]
also proved that it is possible to identify human sub-health
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status based on pulse signals by using linear discriminant
classifier. Moreover, Zhang et al. [7] used the wavelet
method to extract different pulse features, including wavelet
powers, wavelet packet powers and Doppler ultrasonic
diagnostic parameters. Although some of the above
methods have achieved encouraging results, their effective-
ness are still subject to further assessment due to the limited
number of samples and types of diseases. For example, in
Leonard’s research [3], only 20 samples are used to
distinguish well and unwell children, while in Zhang’s
research [7], two kinds of diseases are investigated.

In this paper, an auto-regressive (AR) based method is
proposed to extract the pulse signal features. Since a wrist
pulse signal is in essence a time series, using AR model can
help to describe the characteristic of this signal and
therefore to capture its important features. This AR model
is first trained based on the healthy samples and then it is
used to predict the input signal. The mean and variance of
the prediction error are calculated and selected as features.
Except for the AR features, someDoppler ultrasonic diagnosis
parameters are also investigated in order to see if they can be
helpful to improve the classification accuracy. The selected
features are then taken as inputs to a support vector machine
(SVM) for pattern classification because the SVM performs
well on problems with low training set sizes. The applicability
of the proposed method is tested on the established dataset
including 100 healthy persons and 148 patients of diseases.
There are four kinds of diseases investigated in this paper, i.e.
46 patients with pancreatitis (P), 42 with Duodenal Bulb Ulcer
(DBU), 22 with appendicitis (A) and 38 with acute appendi-
citis (AA). It can be seen that both the sample numbers and
disease types are much larger than those of previous
researches mentioned above.

The rest of the paper is organized as follows. “The
proposed method” section presents the proposed method.
The “Experimental results” section performs experiments to
validate the developed technique. The “Conclusions and
future work” section concludes the paper and makes some
discussion.

The proposed method

Feature extraction via AR modelling

AR models [8] are widely used in time series analysis,
control and signal prediction. Considering the fact that wrist
pulse signals are naturally a time series, the AR model can
be used to analyze the time series and then extract the
disease-sensitive features. Then, one branch of statistical
hypothesis tests called support vector machine (SVM) is
applied to the aforementioned features to classify the
current subject to either a patient or a healthy person.

When one attempts to apply the time series analysis to
the real-world data, it is important to normalize these data
in an effort to account for operational and environmental
variability. For the wrist pulse signals collected by using the
Doppler ultrasound device, the ability to normalize the
measured data with respect to varying operational and
environmental conditions is essential if one is to avoid
false-positive classification. Therefore, each wrist pulse
signal f(t) is normalized prior to fitting an AR model:

bf tð Þ ¼ f tð Þ � mf

df
ð1Þ

where mf and δf are the mean and standard deviation of f (t),
respectively. The reference signal, denoted as f tð Þ, is
obtained by averaging the normalized pulse signals bf tð Þ
from all the available training samples from healthy persons.
The reference AR model with n terms is then constructed as:

f tð Þ ¼
Xn
i¼1

ai f t � ið Þþ"f tð Þ ð2Þ

where ai(i=1,2,…,n) is the ith AR coefficient and ɛf (t) is a
term representing the modelling error. The order of this AR
model can be determined by the Akaike information criteria
(AIC) [9] and the AR coefficients are calculated using the
least square method [10].

After the reference AR model is identified, it is used to fit
the input normalized pulse signals. For a given wrist pulse
signal g(t), which is obtained from a person with unknown
healthy status, it is fitted by the reference ARmodel as follows:

"g tð Þ ¼ g tð Þ �
Xn
i¼1

aig t � ið Þ ð3Þ

where ɛg(t) is the prediction error, representing the discrepancy
between the input pulse signal and the reference AR model.
The mean and standard deviation of ɛg(t), denoted by mean "g
and std "g, can then be calculated.

Factors like age, gender and the environment of collecting
the data, may also affect the sampled wrist pulse waveforms.
However, it has been validated in traditional Chinesemedicine
that these factors mainly affect the amplitude and rhythm
while the waveform shapes, which are used in this paper, are
less affected [11]. Moreover, the shape of a wrist pulse
waveform is mainly dependent on the type of the disease. It
can be expected that when a pulse signal is from a healthy
person, the reference model which is trained from healthy
persons will accurately predict the signal. As a result, the
mean and the standard deviation of the prediction error are
relatively small. Otherwise, when a pulse signal is from a
patient, the reference ARmodel will not be able to well predict
the signal and the mean and the standard deviation of the pre-
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diction error are expected to increase. Therefore, for a given
wrist pulse signal g(t), the associate mean "g and std "g
values are significant features for the classification of g(t).

SVM classification

After the pulse signal features have been extracted, an SVM
[12] is employed to classify this signal as being from either
healthy persons or patients. Particularly, a soft-margin SVM
is adopted in this study. SVM is a supervised learning
method for classification. Given a set of points of the form:

D ¼ xi; yið Þ xi 2 Rpj ; yi 2 �1; 1f gf gni¼1 ð4Þ

where yi is either 1 or −1, indicating the class to which the
point xi belongs. Each xi is a p-dimensional real vector. The
aim of the SVM is to find a separating hyperplane which
maximizes the margin between the points having yi=1 and
those having yi=−1. This hyperplane can be expressed as:

w � x� b ¼ 0 ð5Þ
where w is a vector and perpendicular to the hyperplane and
b is the offset. It can be found that the width of the margin is

2= wk k, where �k k represents the Euclidean norm. In case
there is no hyperplane that can split the two data sets, the
soft-margin SVM will choose a hyperplane that splits the two
data sets as cleanly as possible while maximizing the distance
to the nearest cleanly split examples [12]. The soft-margin
SVM introduces slack variables ξi which measure the degree
of misclassification of the datum xi:

yi w � x� bð Þ � 1� xi; 1 � i � n ð6Þ

The objective function then becomes:

min
w;b;x

1

2
wk k2 þ C

Xn
i¼1

xi ð7Þ

subject to yi wTxi � bð Þ � 1� xi and ξi ≥ 0, where C is the
trade-off parameter. Standard quadratic programming technique
is used to solve this constrained optimization problem [12].

The selection of Doppler ultrasonic diagnostic parameters

In this research, the wrist pulse signals are collected by
using a Doppler ultrasonic device. Compared with detecting
pulse signal by using the pressure sensor, which is heavily
interfered by the artery blood flowing in the wrist [13],
capturing pulse signal through ultrasound scanning is more
accurate by locating the probe directly on the Styloid
processes. In addition, ultrasound scanning can provide
new information, which is not available by using the
pressure sensor, because it can reflect the deep radial artery
changes beneath the skin. Therefore, it would be interesting
to see if the Doppler ultrasonic diagnosis parameters can be
helpful to improve the classification accuracy. Some
previous researchers have found that there are relationships

Table 1 Sample distribution of the testing database

Diseases Age Total

0–20 20–40 40–60 60 and older

Healthy 4 23 15 8 50

DBU 2 13 3 3 21

Pancreatitis 8 13 2 0 23

Appendicitis 0 11 0 0 11

Acute appendicitis 10 4 5 0 19

Fig. 1 The Doppler spectro-
gram of a wrist pulse signal
(left) and its maximum velocity
envelope after denoising (right)
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between the Doppler ultrasonic parameters (which can be
calculated from the Doppler spectrogram) and the status of
blood flow, after applying the Doppler ultrasound technique
to clinical diagnosis [14]. These ultrasonic parameters have
been taken as the evidence of medical diagnosis [7, 15].

Somewidely usedDoppler ultrasonic diagnostic parameters
are defined in appendix. It should be noted that, the sensitivities
of the Doppler parameters to different diseases are different.
Therefore, in order to increase the accuracy of diagnosis only
the Doppler parameters which are sensitive to the diseases are
selected as additional features [16]. The procedures of
selecting Doppler parameters are described as follows.

Assume that the training database contains a total of m sets
of pulse signals from healthy persons and n sets of pulse
signals from patients. For each pulse signal, a certain Doppler
parameter can be extracted. The Doppler parameters estimated
from healthy persons are denoted as DPH

1 ;DP
H
2 ; :::DP

H
m

� �

and those estimated from patients are DPP
1 ;DP

P
2 ; :::DP

P
n

� �
,

where DPH
i i ¼ 1; :::mð Þ and DPP

j j ¼ 1; :::nð Þ refer to the
Doppler parameters estimated from a health person and a
patient, respectively. The upper level limit (ULL) and lower
level limit (LLL) of DPH

1 ;DP
H
2 ; :::DP

H
m

� �
are estimated as:

ULL ¼ mean DPH þ std DPH ð8Þ

LLL ¼ mean DPH � std DPH ð9Þ
where mean DPH and std DPH are the mean and standard
deviation of DPH

1 ;DP
H
2 ; :::DP

H
m

� �
.

The obtained ULL and LLL are taken as the thresh-
olds which discriminate patients from healthy persons. If,
for example, the DP of an unknown pulse signal is
within the range defined by the ULL and LLL, the signal
is then classified as from a healthy person. Otherwise,
we have some confidence to conclude that the signal is

Fig. 2 SVM classification
results using the normalized AR
model: a for pancreatitis patients
and the healthy persons; b for
the DBU patients and the
healthy persons; c for the ap-
pendicitis patients and the
healthy persons; d for the acute
appendicitis patients and the
healthy persons

Table 2 Experimental results to distinguish patients from healthy people

Sample class Sample
number

Accuracy (%)
(AR features only)

Accuracy (%)
(AR and SW features)

Accuracy (%)
(WPT method [7])

Healthy 50 73 88.9 86.3 94.4 90.9 86.7 84.8
Pancreatitis 23 80.6 83.3 80.5

Healthy 50 71 85.7 82.3 91.4 88.0 88.9 85.4
DBU 21 74.3 80.0 77.1

Healthy 50 61 90.0 88.2 93.3 91.2 76.7 76.1
Appendicitis 11 80.0 81.8 73.3

Healthy 50 69 79.4 77.8 82.4 80.8 77.1 72.4
Acute appendicitis 19 73.5 76.5 60.0

Healthy 50 124 86.0 83.7 89.7 87.3 82.4 80.0
All kinds of diseases 74 77.1 80.4 72.7
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from a patient. Based on the above criteria, the percentage of
false-positive classification (indication of a disease for a
healthy person) can be estimated by counting the number of
DPH which falls outside the range defined by ULL and
LLL. Similarly, the percentage of false-negative classifica-
tion (no indication of disease for a patient) can be
calculated by the number of DPP which falls inside the
range. If the percentages of these two false classifications
are kept low, the Doppler parameter has a potential to be an
effective feature to distinguish healthy persons from
patients. After the Doppler parameters have been selected,
these parameters are adopted as the features to the pulse
signals. These features, combined with those estimated by
the AR method, constitute the inputs to the SVM.

Experimental results

Data description

The wrist pulse signals used in this paper were collected by
a Doppler ultrasonic blood analyzer module (Edan Instru-
ments, Inc.) from both healthy persons and patients who
had been previously diagnosed with certain diseases. There
are three steps in each measurement. First is to find the
rough position where the fluctuation of pulse is bigger than
other positions using the probe; then move the probe slowly
and carefully around the rough location and change the
angle of the probe against the skin in order to get the most
significant signals; finally, these Doppler spectrograms of
wrist pulses were recorded and saved. These steps were
repeated several times for each measurement to reduce the
measurement errors.

By collaborating with the Harbin 211 hospital (Harbin,
Heilongjiang Province, China), an experimental database
was established, including 248 wrist pulse Doppler ultra-
sonic blood images for testing. These pulses were collected
from people at different ages and with different kinds of
diseases, i.e. 100 healthy persons, 46 patients with
pancreatitis (P), 42 with Duodenal Bulb Ulcer (DBU), 22
with appendicitis (A) and 38 with acute appendicitis (AA).
In this study, the experimental database is split into a
training dataset and a testing dataset. For each group
(healthy persons and patients), half of the data are randomly
selected for the training use and the remaining are for the
testing use. Table 1 summarizes the composition of the
testing database.

The collected wrist pulse samples are pre-processed
before extracting features. First, the maximum velocity

Fig. 4 ROC curve of the four classifiers (asterisks classifiers using
normalized AR features, open circles classifiers using un-normalized
AR features)

Fig. 3 SVM classification
results using the un-moralized
AR model: a for pancreatitis
patients and the healthy persons;
b for the DBU patients and the
healthy persons; c for the ap-
pendicitis patients and the
healthy persons; d for the acute
appendicitis patients and the
healthy persons
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envelope of each pulse waves is extracted and normalized.
Then the noise and baseline drift are removed from the
normalized signal. In this paper, the wavelet transform is
used to remove the noise and baseline drift [17]. Figure 1
shows the Doppler spectrogram of a wrist pulse signal and
the extracted velocity envelope.

Experimental results by using the AR features

The method described in the “The proposed method”
section is applied to the experimental data. As was
discussed, the mean and standard deviation of the AR
model prediction error ɛg(t) can be used to distinguish
healthy persons from patients. Therefore, these two
features are taken as the inputs to the SVM for classifica-
tion. Figure 2a–d illustrate the classification results for
healthy persons versus patients with four kinds of
diseases, respectively. In this figure, the estimated
support vectors are marked with ‘o’. The classification
accuracies using these AR features are listed in Table 2.
The classification accuracy corresponding to the healthy

people is defined as the percentage of healthy people who
are identified as not having the condition (i.e. specificity).
The classification accuracy for the patients is defined as
the proportion of actual patients which are correctly
identified as such (i.e. sensitivity). Moreover, the average
of specificity and sensitivity is also calculated as the total
classification rate. It can be seen from Table 2 that the

Table 3 False classification rates (%) of four Doppler parameters for
different diseases

RI SW RT SD

Healthy 24.00 34.00 32.00 32.00

Pancreatitis 56.52 52.17 65.22 52.17

DBU 57.14 47.62 47.62 42.86

Appendicitis 57.89 57.89 52.63 47.37

Acute appendicitis 81.82 45.45 45.45 63.64

Average 55.48 47.43 48.58 47.61

Fig. 5 Illustration of the misclassification percentage of the Doppler parameter RI (left) and SW (right) for healthy persons and patients with
pancreatitis (P), duodenal bulb ulcer (DBU), appendicitis (A) and acute appendicitis (AA)
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features extracted by the AR model work well for wrist
pulse signal classification.

To demonstrate the effectiveness of normalization
procedure when estimating AR features, the classification
results using AR features obtained without normalization
are shown in Fig. 3a–d. Furthermore, the receiver operating
characteristic (ROC) curve of the classifiers using normal-
ized AR features (in Fig. 2) and un-normalized ones (in
Fig. 3) is illustrated in Fig. 4. It can be seen from Fig. 4 the
classifiers using normalized AR features yield 4 points in
the upper left corner of the ROC space, representing high
sensitivity (low false negatives) and high specificity (low
false positives). On the contrary, classifiers using un-
normalized AR features cannot provide comparable classi-
fication results.

Experimental results by using the Doppler parameters
as additional features

As described in the “The selection of Doppler ultrasonic
diagnostic parameters” section, the sensitivities of different
Doppler parameters may vary for different kinds of
diseases. Choosing Doppler parameters which can distin-
guish healthy persons from patients would help us for
further classification. As an example, Fig. 5 illustrates the
results of the false classification test for Doppler parameters
RI and SW. The ULL and LLL (dashed lines) were
determined using the pulse signals from the healthy
persons. Table 3 lists the false classification rates of four
Doppler parameters for different diseases. It can be seen
that the Doppler parameter SW has lower false classifica-

tion rates on average compared with other parameters, and
therefore is selected as a feature.

It should be noted that the false classification percentages
of SWare still high, which implies that it can not be used alone
for classification. Therefore, the Doppler parameter SW
should be combined with other features in order to obtain a
satisfactory result.

The Doppler parameter SW was selected as the
additional feature to the AR features for SVM classifi-
cation. As an example, Fig. 6 illustrates the classification
results for healthy persons versus patients with pancreatitis
and DBU, respectively, and the experimental results are
listed in Table 2. Compared with the results by using only
the AR features, it is clear that the selected Doppler
features further improve the classification results. In
Table 2, we also listed the classification results in
distinguishing between healthy persons and unhealthy
persons (i.e. all the patients with four kinds of disease).
Moreover, the results by using the wavelet packet
transform (WPT) method introduced in [7] are also shown
in Table 2 for comparison. It can be seen the proposed
method outperforms much the WPT method in most of the
cases.

Conclusions and future work

An auto-regressive (AR) modeling method was proposed
in this paper to extract features from the wrist pulse
signals. The extracted distinctive features were adopted
as inputs to a soft margin support vector machine (SVM)

Fig. 6 SVM classification result
to distinguish the healthy people
from patients with pancreatitis
(left) and healthy persons from
DBU patients (right), using the
AR model feature vectors (mean
and standard deviation) as well
as the Doppler parameter (SW)
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for classification. The applicability and performance of
this method was evaluated using wrist pulse signals,
including both healthy persons and patients. Moreover,
some Doppler ultrasonic diagnostic parameters were
selected and used as the additional inputs to the SVM. The
experimental results showed that, by using the AR method,
an accuracy of over 82% in telling the healthy persons from
the patients can be reached. A higher accuracy (about 90%)
can be achieved by using the combination of the AR method
with the Doppler parameters. These results demonstrate the
proposed methods have great potentials for computerized
pulse diagnosis.

In this research, the AR model was adopted because of
its ability to describe time series signals. However, more
types of models, such as the autoregressive moving average
(ARMA), and the state-space model, can also be used in
analyzing time series signals. The investigation of the
effectiveness of these models is beyond this paper and will
be investigated in the future.
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Appendix: Doppler ultrasonic diagnostic parameters

Figure 7 illustrates a typical Doppler waveform about the
wrist artery blood flow, where S and D are the Systolic
peak (maximum velocity) and the end of Diastolic velocity,
respectively. Two Doppler ultrasonic parameters, RT and

SW, are illustrated in Fig. 7. Other commonly used Doppler
parameters are defined as follows [15]:

1. Spectrum Broadening Index (SBI): SBI¼ Favpk�Fmean

� �
=

Favpk , where Favpk means frequency excursion of peak
systolic velocity and Fmean means frequency excursion of
mean velocity;

2. Stenosis Index (STI): STI ¼ 0:9 � 1� Vm=Sð Þ, where
Vm is the mean velocity;

3. Resistance Index (RI): RI ¼ S � Dð Þ=S;
4. Ratio of Systolic by Diastolic velocity (S/D).
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