
Computing 2D Constrained Delaunay Triangulation Using the GPU∗

Meng Qi Thanh-Tung Cao Tiow-Seng Tan

School of Computing

National University of Singapore

Abstract

We propose the first GPU solution to compute the 2D constrained
Delaunay triangulation (CDT) of a planar straight line graph
(PSLG) consisting of points and edges. There are many CPU algo-
rithms developed to solve the CDT problem in computational ge-
ometry, yet there has been no known prior approach using the par-
allel computing power of the GPU to solve this problem efficiently.
For the special case of the CDT problem with a PSLG consisting
of just points, which is the normal Delaunay triangulation problem,
a hybrid approach has already been presented that uses the GPU
together with the CPU to partially speed up the computation. Our
work, on the other hand, accelerates the whole computation by the
GPU. Our implementation using the CUDA programming model
on NVIDIA GPUs is numerically robust with good speedup, of up
to an order of magnitude, compared to the best sequential imple-
mentations on the CPU. This result is reflected in our experiment
with both randomly generated PSLGs and real world GIS data with
millions of points and edges.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—[Geometric algorithms]; I.3.1
[Computer Graphics]: Hardware Architecture—[Graphics proces-
sors]

Keywords: GPGPU, Computational Geometry, Voronoi Diagram

1 Introduction

Delaunay triangulation (DT) is one of the most important geometric
structures. Due to its nice property of avoiding long, skinny trian-
gles, the DT has many practical applications in different fields. The
constrained Delaunay triangulation is a direct extension of the De-
launay triangulation where some edges in the output are enforced
before hand [Chew 1989]; these edges are referred to as constraints.
Given a set S of n points (or sites) in the 2D plane and a set of non-
crossing constraints, the constrained Delaunay triangulation (CDT)
is a triangulation of S having all the constraints included, while be-
ing as close to the DT of S as possible. Constraints occur naturally
in many applications. For example, in path planning, they are obsta-
cles; in GIS, boundaries between cities; in surface reconstruction,
contours in the slices of the body’s skull; in modeling, characteris-
tic curves [Boissonnat 1988; Kallmann et al. 2003]. In short, CDT
is a very useful structure in many fields, complementing the DT;
see Figure 1.

∗Research is supported by the National University of Singapore under

R-252-000-337-112. Project website: http://www.comp.nus.edu.sg/∼tants/

cdt.html. Emails: {qimeng | caothanh | tants}@comp.nus.edu.sg.

(a)

(b)

Figure 1: CDT applications. (a) A contour map. (b) An edge map.

Recently, the graphics processing unit (GPU) with its enormous
parallel computing power has been used for general purpose com-
putation in many disciplines, including computational geome-
try. Early works include computing the digital Voronoi diagram
(VD) [Hoff et al. 1999; Fischer and Gotsman 2006; Cao et al.
2010b], a structure that is closely related to the DT. Recently Rong
et al. [2008] present a serious attempt to derive the DT from the dig-
ital VD. Their algorithm, however, is hybrid, where parallel com-
putation is only used in the first part, leaving the rest to a sequen-
tial CPU algorithm. As for the CDT problem, there is no efficient
GPU algorithm as far as we know. In another view, the DT prob-
lem, as well as the CDT problem, does not present itself readily to
parallel computation. Specifically, it is not clear how to adapt tra-
ditional complex parallel techniques, such as divide-and-conquer,
while achieving regularized work and localized data access to best
utilize the computing power of the GPU.

Our main contribution here is a novel algorithm, termed GPU-
CDT, to compute the CDT for a given PSLG, fully parallelized
on the GPU. Our experiment shows that our implementation us-
ing the CUDA programming model is robust and efficient. Com-
paring to popular software such as Triangle [Shewchuk 1996a] and
CGAL [CGAL 2011], as well as to the hybrid approach of Rong et
al. [2008], GPU-CDT runs up to an order of magnitude faster.

Section 2 introduces some basic definitions and reviews the previ-
ous works. Section 3 presents our GPU approach to the DT prob-
lem, and Section 4 extends it to compute the CDT. Experimental
results and applications are described in Section 5. Finally, Sec-
tion 6 concludes the paper.

http://www.comp.nus.edu.sg/~tants/cdt.html
http://www.comp.nus.edu.sg/~tants/cdt.html
dcstants
Typewritten Text
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, March 2012,pp. 39-46.

dcstants
Typewritten Text

2 Preliminaries

Let S = {p1, p2, . . . , pn} be a set of n points in the Euclidean
space R

2. A planar straight line graph (PSLG) G = (S,E) is a
plane graph with vertex set S and edge set E where all edges in E
are straight segments.

Definition 1 (Digital Voronoi Diagram) In the 2D digital space,
consider a grid of size m × m, and assume all points of S are on
grid points (which are centers of grid cells). We say that a grid
point x is colored by the point p ∈ S if p is nearest to x among all
points in S. In case x is of equal distance from two points pi and
pj with i < j, we color x by pi. The grid with all grid points col-
ored is called the digital Voronoi diagram (VD) of S. This coloring
procedure is referred to as the Euclidean coloring.

Definition 2 (Delaunay Triangulation) A triangulation of S is a
PSLG T = (S,E) such that |E| is maximal. An edge ab ∈ E
satisfies the empty circle property (with respect to S) if there exists
a circle passing through a and b such that points in S are not inside
the circle. A triangulation T of S is a Delaunay triangulation (DT)
if every edge of T satisfies the empty circle property.

Definition 3 (Constrained Delaunay Triangulation) Given a
PSLG G = (S,E), two points a and b in S are visible from each
other if the (open) line segment ab does not intersect any other
edge in E. A triangulation T = (S,E′) is a constrained Delaunay
triangulation of G if E ⊆ E′ and each edge ab ∈ E′ \ E satisfies
the empty circle property with respect to those points of S visible
from both a and b. If E = ∅, then the CDT of G is exactly the same
as the DT of G.

There are many sequential algorithms developed for the CPU
to compute the DT [Aurenhammer 1991; Fortune 1997; Su
and Scot Drysdale 1997]. All these algorithms in general
follow one of the three well-known paradigms: divide-and-
conquer [Dwyer 1987], sweep-line [Fortune 1987] and incremental
insertion [Guibas et al. 1992]. On the other hand, algorithms for
constructing the CDT can be grouped into two categories: (a) pro-
cessing points and constraints simultaneously and (b) processing
points and constraints separately. In category (a), Chew [1989]
shows that the CDT can be built by using a divide and conquer
approach to partition the problem into smaller subproblems within
vertical strips. In category (b), since the CDT is a generalization of
the DT with the notion of constraints [Lee and Lin 1986], we can
first construct the DT of the given point set, then insert constraints
one by one into it. Such an insertion can be done either by remov-
ing triangles pierced through by each constraint and re-triangulate
the region due to the removal of these triangles, or by flipping some
edges in a certain order until the constraint appears in the trian-
gulation. Our approach of computing the CDT on the GPU lies
in-between these two categories. We first construct a triangulation
of the given point set, then insert all the constraints using edge flip-
ping, followed by transforming the resulting triangulation into the
CDT, also using edge flipping.

3 Computing the DT on the GPU

Our algorithm derives from the digital VD defined from the input
point set S an approximation of the DT, then transforms it into
the needed DT. Specifically, the algorithm consists of the follow-
ing phases:

Phase 1. Digital Voronoi diagram construction. Map the input
points into a grid and compute its digital VD. If more than
one point is mapped to a same grid point, keep just one and
treat the other as missing points.

Phase 2. Triangulation construction. Find all the digital Voronoi
vertices to construct triangles for a triangulation. This trian-
gulation is an approximation of the DT.

Phase 3. Shifting. Points have been moved due to the mapping in
Phase 1. Shift points back to their original coordinates and
modify the triangulation if necessary.

Phase 4. Missing points insertion. Insert all missing points to be
a part of the triangulation.

Phase 5. Edge flipping. Verify the empty circle property for each
edge in the triangulation, and perform edge flipping if neces-
sary.

Compared to the previous hybrid approach [Rong et al. 2008], the
transformation (Phase 3 to Phase 5) in our algorithm is now com-
pletely done on the GPU. Some technicality in the approximation
construction (Phase 1 and Phase 2) is also provided. We adopt the
triangulation data structure used by Shewchuk [1996a] in our com-
putation. A list of triangles is stored in a pre-allocated array of size
no more than 2|S|, each one has the indices of up to three other
triangles that are edge adjacent to it. Each vertex in S also has a
linked list of triangles incident to it.

3.1 Phase 1: Digital Voronoi diagram construction

We first translate and then scale the points such that their bounding
box fits inside a 2D grid Q of m ×m cells. Each point is mapped
to the nearest lower left grid point as a site for computing a digital
VD. In case several points are mapped to a same grid point, only
one among them is recorded, while the rest become missing points
and will be handled later. Applying the Parallel Banding Algorithm
(PBA) of Cao et al. [2010b], we can compute the mentioned digital
VD on the GPU.

Cao et al. [2010a] show that by dualizing the output of the Standard
flooding algorithm, one gets a valid triangulation of the points. The
output of the Standard flooding is very close to that of PBA except
that each region (of a same color) is connected. We adopt PBA
as it is a much faster process than the Standard flooding, but the
dual of its output may not be a geometrically valid triangulation.
In particular, a region obtained by PBA can be disconnected and
the dual of the digital VD thus can have duplicate and intersecting
triangles; see Figure 2. We can quickly amend the output of PBA so
that the claim in [Cao et al. 2010a] remains applicable. The detailed
discussion on this modification can be found in Appendix A.

u

v

(a)

u v

(b)

Figure 2: (a) Duplicate and (b) intersecting triangles due to the
digital Voronoi vertices u and v.

3.2 Phase 2: Triangulation construction

We dualize the result from the previous phase. A corner shared by
up to four grid cells is incident to one to four different colors. For a
corner with three (or four) colors, i.e., a digital Voronoi vertex, we
add one (or two) triangle(s) into the triangulation.

During Phase 1, points are translated, scaled, and then slightly
shifted from their original positions. We reverse this process in two

steps. First, we reverse the scaling without destroying the validity
of the triangulation. Second, we shift the points and fix the trian-
gulation if necessary. The second step is done with care in Phase
3. On the other hand, the first step, though looks trivial, can result
in an invalid triangulation if the possible numerical error during the
scaling is not handled. Further discussion about this issue, which
was neglected in the previous work [Rong et al. 2008] (that can
result in a wrong output), can be found in the Appendix B.

3.3 Phase 3: Shifting

We say two points are neighbors when they are endpoints of an edge
in the triangulation. Assuming the neighbors of s are static, shifting
s may (bad case) or may not (good case) cause any intersection
(Figure 3). The former happens when s moves across the boundary
formed by its neighbors. As expected due to the very small shifting
distance, majority of the cases in practice are the good cases.

s

s
′

(a) Bad case.

s s
′

(b) Good case.

Figure 3: Shifting a point s to s′ (a) may or (b) may not require
some modifications to the triangulation.

To achieve regularized work while shifting points in parallel, we
separate the processing into two stages. During the first stage, we
only shift a point if that does not require any fixing on the triangula-
tion. To do so, we perform this stage in multiple iterations with all
the points initially unmarked. In each iteration, each parallel thread
in charge of an unmarked point si first checks if all its neighbors
having indices smaller than i are marked. We skip the processing
of si if this condition is not met. Then, if shifting si while all its
neighbors remain static does not cause any intersection, then we
shift it. Otherwise, we leave it for the second stage. After a point is
processed, it is marked. Since most points would be processed and
marked in the first few iterations, after each iteration we use com-
paction to remove marked points to speed up the later iterations.

During the second stage, we delete all points that are bad cases,
treating them as missing points for later processing. Note that we
also need the above-mentioned multiple iterations to avoid deleting
in parallel two points that are neighbors. For a parallel thread to
delete one point, it first marks all triangles in its fan as deleted and
then uses the ear-cutting method [Highnam 1982] to re-triangulate
the resulting star-shape hole. Since the number of new triangles to
be created is no more than the number of deleted triangles, we can
use the deleted slots in the triangle list to store new triangles, with
no racing memory access during parallel computation.

3.4 Phase 4: Missing points insertion

Missing points were identified in Phase 1 and Phase 3. We enclose
S in a pre-defined regular polygonal boundary so that when we
insert the missing points, they fall inside the triangulation. This
boundary is removed at the end of this phase.

The insertion for each missing point pi starts by identifying the tri-
angle(s) in the triangulation that contains pi, or has an edge passing
through pi. For a missing point obtained from Phase 1, we can start
searching from a triangle incident to the point of S mapped to the
same grid point as pi; as for one from Phase 3, we can start search-
ing from a triangle incident to a neighbor pj of pi before pi was

deleted. During the processing of pi, if pj is not yet inserted, we
delay the insertion of pi to a later iteration. This searching is done
in parallel with one thread handling one point.

To avoid concurrent modification of a triangle during the parallel
insertion, this phase is also done in multiple iterations. In one iter-
ation, each thread handling an insertion first uses the index of the
point to be inserted to mark on those triangles to be modified. Then
each thread checks the marks on the triangles and only performs
the insertion if its marks are not overwritten by other threads. A
global synchronization, which is fairly cheap for the GPU, is re-
quired to make sure that all the markings are done before any check
is performed. This process is repeated until all missing points are
inserted. The marking is done using an atomic minimum opera-
tion [NVIDIA 2011], which is readily available in the GPUs. This
guarantees the termination of the algorithm, since in each iteration
the missing point with the smallest index can always be inserted.

3.5 Phase 5: Edge flipping

We now verify the empty circle property for each edge in our tri-
angulation in parallel. For an edge ab of the triangle abc, we only
have to check if the point d of the adjacent triangle adb is inside
the circumcircle of abc. If so, an edge flip is performed replacing
abc and adb with the triangles adc and cdb. This process is done in
multiple iterations, and the same strategy as in the previous phase
is used to avoid concurrent modification of a triangle by multiple
threads. We use one parallel thread to process one triangle, and we
mark those that do not need any flipping, so we do not need to check
it again in the next iteration. Note that when a pair of triangles is
flipped, both of them need to be unmarked.

4 Computing the CDT on the GPU

To introduce constraints into the DT computation, we use the ap-
proach of computing a triangulation T of the point set first be-
fore incorporating the constraints. This is because considering con-
straints earlier in the digital VD computation makes the dualization
much more difficult, and the correctness of the resulting triangula-
tion might not be guaranteed.

The naı̈ve approach of having one parallel thread to handle one con-
straint, deleting triangles that it pierces through and re-triangulating
the created region is not ideal: each constraint can intersect a dif-
ferent number of triangles in T , resulting in unbalanced workloads.
Furthermore, two different threads handling two constraints may
intersect some common triangles and the threads cannot proceed
without some sort of locking, which is very costly on the GPU.

To achieve good parallelism, we employ the flipping approach to in-
sert constraints. Multiple pairs of triangles intersected by the same
constraint can possibly be flipped in parallel. Also, when two con-
straints intersect some common triangles, we can still possibly flip
some of these common triangles. To regularize work among differ-
ent threads, this flipping is done before Phase 5 of the DT algorithm
in Section 3, so that we can focus on inserting the constraints first,
before worrying about the empty circle property. Our algorithm can
be summarized as follows:

Step 1 Compute a triangulation T for all points (Phases 1 to 4);

Step 2 Insert constraints into T in parallel;

Step 3 Verify the empty circle property for each edge (that is not
constraint), and perform edge flipping if necessary.

Step 3 is similar to Phase 5 of the DT algorithm, with some slight
modification to avoid flipping constraints. Our proposed Step 2,
with an outer loop and an inner loop, is given in Algorithm 1. The
idea is to identify constraint-triangle intersections with the outer
loop, and use edge flipping to remove them in the inner loop, all in
parallel using multiple passes.

Algorithm 1 Inserting constraints into the triangulation

repeat /* outer loop */
for each constraint ci do in parallel

mark triangles intersecting ci with i using atomic minimum
end for
repeat /* inner loop : see Algorithm 2 */

do edge flipping to remove intersections to constraints
until no edge is flippable

until all constraints are inserted

4.1 Outer loop: Find constraint-triangle intersections

For each triangle in the triangulation, we find the index of a con-

straint intersecting it, if any. Let ci = ab be the ith constraint in the
input, we go through the triangle fan of a to identify the triangle A
intersected by ci. If ci is an edge of A, the constraint is already there
in the triangulation and no further processing is needed. Otherwise,
from A we start walking along the constraint towards b, visiting
all triangles intersected by ci. For each triangle found, we mark
it with the index i using the atomic minimum operation. Letting
the minimum index remain as the marker is required in our proof
of correctness. Since we do not modify anything in the triangula-
tion in this step, no locking is needed. The work done in this outer
loop achieves coarse-grained parallelism on GPU with one parallel
thread processing one constraint.

4.2 Inner loop: Remove intersections

The inner loop of Algorithm 1 performs edge flipping to reduce the
number of constraint-triangle intersections. Here, the parallelism is
fine-grained with each thread processing a triangle. Consider a pair
of triangles sharing an edge and both triangles are marked by the
same constraint. Such a pair is classified as a double intersection,
single intersection or zero intersection, respectively, if flipping it
results in a new pair having two, one or zero intersections, respec-
tively, with the constraint. If the flipping is not allowed as its un-
derlying space is a concave quadrilateral, the pair is classified as
concave.

Though it might seem reasonable to avoid flipping a double inter-
section case since it does not “improve” the situation and we may
enter into some infinite loop, restricting flipping to only zero and
single intersection may not be sufficient to remove all the intersec-
tions. We use a one-step look-ahead to overcome this dilemma.
Consider a triangle A in the chain of triangles intersected by a con-
straint from one end point to the other, and let B and C be the pre-
vious and the next triangle in that chain. The triangle pair (A,C) is
flippable in one of the following cases (Figure 4):

Case 1 (A,C) is a single intersection or zero intersection.

Case 2 (A,C) and (B,A) are both double intersections, and flip-
ping (A,C) would result in B with its new next triangle form-
ing a single intersection.

Case 3 (A,C) is a double intersection and (B,A) is concave, and
flipping (A,C) would result in B with its new next triangle
no longer concave.

A C
C ′

A′

p p qq

(a) Case 1a

p p qqA C C ′

A′

(b) Case 1b

p p qq

A

B
C

B A′

C ′

(c) Case 2

p p qq
A

B B

A′

C ′

C

(d) Case 3

Figure 4: Flipping consideration of triangle pairs involving A.
Constraint pq intersects triangles from left to right.

Note that Case 2 is equivalent to (B ∪ A ∪ C) being a convex
polygon. We perform the flipping in multiple iterations; see Algo-
rithm 2. In each iteration, we first identify triangle pairs and their
cases. Then for any flippable pair (A,C) as described above, we
mark A, C, and possibly the previous triangle of A (which is B in
our discussion) if the case involves 3 triangles, with the index of
A, using the atomic minimum operation. Lastly, we flip a pair of
triangles only if all their marks remain. This is to prevent possi-
ble conflicts when updating the triangulation, and for the one-step
look-ahead to be achieved. We also introduce extra weight into the
label used in the marking to favor Case 1. For each step to be done
in parallel, we assign one thread to process one triangle. As an op-
timization, we maintain a compact list of active triangles, i.e. those
that still intersect their recorded constraints, after each iteration so
that we do not have too many idle threads.

Algorithm 2 Processing of constraint-triangle intersections

repeat
for each triangle A intersecting a constraint do in parallel

if C is also marked by the same constraint then
determine the case of (A,C)

end if
end for
for each triangle A intersecting a constraint do in parallel

if (A,C) is flippable then
mark A,C (and B for Case 2) using atomic minimum

end if
end for
for each triangle A intersecting a constraint do in parallel

if A,C (and B for Case 2) retain the same mark then
flip (A,C) and update the links between the new
triangles and their neighbors

end if
end for

until no edge is flippable

In practice, the repeat-until loop of Algorithm 2 should be exe-
cuted only a few times per each outer loop iteration instead of re-
peating until no edge is flippable. This is because as the algorithm
progresses, there is a drastic reduction in the number of flippable
cases, and the parallelism thus reduces. By switching to the outer
loop after a few (say 5 to 10) iterations of inner loop, the algorithm
can discover more flippable cases to improve the parallelism and
thus improving performance without compromising the correctness
of the algorithm proven in the next section.

4.3 Proof of correctness and complexity analysis

We show here that Algorithm 1 indeed terminates with all con-
straints inserted into the triangulation. Consider one iteration of
the outer loop, and let ci = ab be the constraint with the small-
est index i that still intersects some triangles in our triangulation.
By using the atomic minimum operation, we ensure that all trian-
gles intersecting ci are marked with i. It thus suffices to prove the
following:

Claim 1. The inner loop can always successfully insert a constraint
into the triangulation.

Proof. Consider the chain of triangles intersecting ci from a to b.
Among these triangles, if there is one or more triangle pairs that
are single or zero intersection, then the claim is true as the mark-
ing favor each of these cases and flipping is indeed carried out to
reduce one intersection with ci. Otherwise, consider the chain of
triangles having only double intersection or concave. We argue in
the following that there exists a triangle pair (A,C) among them
that is flippable, and each flipping is a step closer to removing in-
tersections of triangles with ci.

If we would remove all triangles intersecting ci, a polygonal hole is
created with vertices p1, p2, . . . as its upper part and q1, q2, . . . as its
lower part, excluding a and b; see Figure 5. Any polygon has an ear,

a

p1
p2

pj−2

pj−1

pj

q1
q2

qk−1

qk

qk+1

b

A

C
B

A

B
C

Figure 5: Consideration when triangle pairs intersecting con-
straint ci = ab are either double intersection or concave.

so let qk−1qkqk+1 be the ear such that the triangle C = qkqk+1pj
incident to qkqk+1 and intersected by ab is the earliest in the chain.
We exclude a and b themselves to be qk. Let A be the previous tri-
angle of C, B be the previous of A. We have A = qkpjpj−1 since
if it were qkpjqk−1, (A,C) would have been a single intersection
pair. The triangle pair (A,C) is a double intersection, since the two
angles pj−1pjqk+1 and pj−1qkqk+1 are both less than π. We claim
that (A,C) is flippable. If B = qkpj−1qk−1 then (B,A) is a dou-
ble intersection; the union of triangles B,A,C is a convex polygon
as needed in Case 2. If B = qkpj−1pj−2 then (B,A) is a concave
pair; because pj−2pj−1qk+1qk is convex by the choice of qk, trian-
gles B,A,C fulfill Case 3. As long as there is one flippable triangle
pair, the marking in the second for loop will successfully mark one
for flipping, and flipping is indeed performed for each pass of the
inner loop.

We next show that our inner loop does not continue forever. Let
us assign to each triangle pair a value of 0, 1 and 2, respectively,
according to its being zero/single intersection, double intersection
and concave, respectively. Then, we have a base 3 number, N , to
record the cases of the chain of triangles intersecting ci. A flipping
due to Case 1 deletes a digit in N , Case 2 turns 11 into 01, and
Case 3 turns 21 into 11. In other words, each flipping decreases the
value of N . Since N is finite, our algorithm clearly terminates, and
a constraint is inserted as claimed. �

The above concludes that our proposed algorithm computes cor-
rectly the CDT. It also indirectly shows that no flip is wasteful with
the following bound on the number of flips per constraint:

Claim 2. The total number of flipping performed by the inner loop
to add one constraint is O(k2) where k is the number of triangles
intersecting the constraint.

Proof. Flipping due to Case 1 cannot be done more than k times
since each flipping removes an intersection. Flipping due to Case 2
immediately gives rise to a flipping of Case 1 (with highest prior-
ity), and thus cannot be done more than k times too.

There are initially O(k) concave pairs. A flipping due to Case 1 (or
Case 2) can introduce at most two (or one) concave pair(s), thus at
most O(k) concave pairs can be introduced by these two flipping
cases. Flipping due to Case 3 either eliminates a concave pair, or
pushes it towards one end of the constraint. As such, Case 3 can be
performed no more than O(k2) times. As a result, the total number
of flipping is O(k2). �

5 Experimental Results

Our algorithm is implemented using the CUDA programming
model by NVIDIA. All the experiments are conducted on a PC
with an Intel i7 2600K 3.4GHz CPU, 16GB of DDR3 RAM and an
NVIDIA GTX 580 Fermi graphics card with 3GB of video memory.
Visual Studio 2008 and CUDA 4.0 Toolkit are used to compile all
the programs, with all optimizations enabled. To achieve exact and
robust result during our computation, we only use orientation and
in-circle predicates from the exact predicates of Shewchuk [1996b].

The input to the program is a PSLG containing possibly no edges.
All numbers and computations are done in double precision. To
assess the efficiency of our GPU-CDT program, we compare its
running time, on both synthetic and real-world data (contour maps
freely available at https://www.ga.gov.au/), with that of the most
popular computational geometry softwares available, Triangle and
CGAL version 3.9. As a side note, we can deduce indirectly that
our work is superior to the prior work reported by Rong et al. [Rong
et al. 2008] for the DT computation since a majority of their work
is still performed sequentially. According to our tests, CGAL
runs faster than Triangle for the DT computation. However, when
constraints are introduced, Triangle runs much faster than CGAL.
Here, we only show the result of the faster between the two.

5.1 Synthetic Dataset

To generate synthetic data, we first randomly generate constraints
of different lengths that do not intersect each other, then randomly
generate points which do not lie on any constraint.

5.1.1 Comparison on DT results

For different number of points, our approach achieves 4 to 4.5 times
speedup over CGAL; see Figure 6. Different grid sizes used for the

Figure 6: Comparison on DT computation between GPU-CDT and
CGAL. The running time of GPU-CDT on grid sizes 10242 and
40962 are omitted for clarity.

(a) (b) (c)

Figure 7: (a) Speedup over Triangle when computing the CDT with 1M constraints and varying the number of points, and (b) with 10M
points and varying the number of constraints. (c) Total number of triangle-constraint intersections with different grid sizes.

digital VD computation significantly affect the running time of our
program. Generally, a larger grid gives a better approximation and
less missing points, thus Phase 4 and Phase 5 run faster, although
with some penalty on the digital VD computation time; see Fig-
ure 8(a). Here the running time of Phase 3 is also increased since
more points (that can be mapped onto the grid) need to be shifted
for larger grid. As a general guideline, given a larger set of input
points, a larger grid is preferable.

The same conclusion is also true when the input points are of a
Gaussian distribution. For small grid, the speedup achieved is
slightly lower due to more points being concentrated in the center of
the grid and become missing points. The speedup increases quickly
when using larger grid. However, this is no longer true on extreme
cases such as when points are co-circular, since our uniform digital
VD is not a good approximation to the continuous one.

5.1.2 Comparison on CDT results

When constraints are introduced, we observe a substantial speedup,
of up to an order of magnitude, compared to both Triangle and
CGAL (with CGAL being much slower than Triangle). Triangle
inserts constraints one by one (also using an edge-flip method) on
the DT of the point set. We compare the time for constraints inser-
tion by subtracting the time for the DT computation from the time
for the CDT computation on the same point set.

Figure 7(a) and 7(b) show the performance comparison of Trian-
gle with GPU-CDT on different number of points and constraints,
with different grid sizes. Clearly, the more constraints there are, the
higher is the speedup we can achieve. This is because only a small
part of our algorithm in inserting constraints is done with coarse-
grained parallelism, while the majority of the processing is done
with fine-grained parallelism. As such, our algorithm scales well
with the amount of work available. Note that we achieve better per-
formance for constraints insertion when using bigger grid sizes be-
cause the number of constraint-triangle intersections decreases (see
Figure 7(c)), possibly due to the fact that the triangulation produced
by Step 1 is closer to the DT with grid size getting bigger.

Figure 8(b) and 8(c) shows the running time of different phases
of GPU-CDT using 81922 grid size. Similar behavior is also ob-
served for other grid sizes. The time for inserting constraints for
our program occupies less than 20% of the total time. On the same
datasets, Triangle spends most of its time inserting constraints. For
example, given 10M points and 1M constraints, Triangle spends 62
seconds for constructing the CDT, in which 46 seconds are spent on
constraints insertion. As such, when comparing the total running
time of our program with that of Triangle, we achieve significant
speedup, ranges from 10 to 45 times.

(a) (b) (c)

Figure 8: Running time for different phases/steps for computing
DT and CDT. (a) DT with 10M points where running time on grid
sizes 10242 and 40962 are omitted for clarity. (b) CDT with 1M
constraints and varying the number of points. (c) CDT with 10M
points and varying the number of constraints.

5.2 Real-world dataset

Figure 1(a) shows an example of the contour maps we used for our
experiment and its CDT. The running times are presented in Table 1.

Example # Points # Constraints
Constraints insertion (sec)

Speedup
Triangle GPU-CDT

a 1,177,332 1,176,943 0.665 0.046 14×
b 3,180,037 3,179,251 1.982 0.071 28×
c 4,461,519 4,460,506 2.526 0.097 26×
d 5,721,142 5,719,895 3.181 0.133 24×
e 8,569,881 8,568,121 4.755 0.245 19×
f 9,546,638 9,544,461 6.036 0.244 24×

Table 1: Running time of contour dataset.

GPU-CDT generally runs faster than Triangle. In these real-world
data, most constraints are very short and do not intersect many tri-
angles (if at all). Figure 9 shows the distribution of the number
of intersections per constraint collected by our GPU-CDT for the
Example f contour dataset (with about 10M points and 10M con-
straints) and a representative synthetic dataset of 10M points with
1M constraints. The maximum number of intersections is 51 for the

Figure 9: The distribution of the number of intersections per con-
straint.

contour dataset as compared to 7073 for the synthetic dataset.

For both cases, the total number of constraint-triangle intersections
is around 6M. Triangle inserts constraints much slower when the
constraints are long (one constraint intersects many triangles), tak-
ing 46 seconds for the synthetic dataset, while only 6 seconds for
the contour dataset with mostly short constraints. On the other
hand, due to our fine-grained approach, our program can easily
process the synthetic dataset consisting of both long and short con-
straints with similar parallelism as the contour dataset with all very
short constraints. Our running time for both cases is roughly the
same, achieving a significant speedup over the sequential approach.

5.3 Image vectorization

As mentioned earlier, the CDT can be used in many applications.
Prasad and Skourikhine [2006] present a framework for transform-
ing a raster image into a vector image comprised of polygons that
can be subsequently used in image analysis. Their algorithm con-
sists of the following steps. First, edges are recognized using some
standard edge detection algorithm. Second, contiguous edge pixel
chains are extracted and an edge map consisting of straight line seg-
ments is constructed. Third, the CDT to the edge map (which is ac-
tually a PSLG) is computed. Finally, adjacent trixels (triangles) are
merged based on certain grouping filters, and the connected com-
ponents of the trixel grouping graph yield polygons that represent
the image. Figure 1(b) shows the result after computing the CDT
of the edge map of the Lena image. In practice, depending on the
resolution of the image, the edge map might consist of hundreds of
thousands of line segments (constraints) of different lengths, thus
using our GPU-CDT can help speed up the computation. The con-
straints here are similar in nature to those in the contour datasets,
so the performance of GPU-CDT here is similar to that for contour
datasets.

6 Concluding Remarks

This paper presents a new, efficient and robust parallel approach to
construct the 2D constrained Delaunay triangulation on the GPU.
Our approach is scalable, capable of maximizing the parallelism on
the GPU. That has been shown in our experiment with both syn-
thetic and real-world data. We have shown that our implementation
can achieve an order of magnitude better performance than the best
CPU libraries available. One current limitation of our approach
is that we construct the DT using the digital VD computed on a
uniform grid. As a result, our algorithms is very fast when the in-
put points are uniformly distributed, while performs less efficiently
when the input points are in a highly skewed distribution. Never-
theless, we believe our approach is useful for many practical appli-
cations.

References

AURENHAMMER, F. 1991. Voronoi diagrams – a survey of a fun-
damental geometric data structure. ACM Computing Surveys 23,
3, 345–405.

BOISSONNAT, J.-D. 1988. Shape reconstruction from planar cross
sections. Computer Vision, Graphics, and Image Processing 44,
1, 1–29.

CAO, T.-T., EDELSBRUNNER, H., AND TAN, T.-S. 2010.
Proof of correctness of the digital Delaunay triangu-
lation algorithm. http://www.comp.nus.edu.sg/∼tants/
delaunay2DDownload files/notes-30-april-2011.pdf.

CAO, T.-T., TANG, K., MOHAMED, A., AND TAN, T.-S. 2010.
Parallel banding algorithm to compute exact distance transform
with the GPU. In I3D ’10: Proc. ACM Symp. Interactive 3D
Graphics and Games, ACM, New York, NY, USA, 83–90.

CGAL, 2011. CGAL, Computational Geometry Algorithms Li-
brary. http://www.cgal.org.

CHEW, L. P. 1989. Constrained Delaunay triangulations. Algorith-
mica 4, 97–108.

DWYER, R. 1987. A faster divide-and-conquer algorithm for con-
structing delaunay triangulations. Algorithmica 2, 137–151.

FISCHER, I., AND GOTSMAN, C. 2006. Fast approximation
of high-order voronoi diagrams and distance transforms on the
GPU. J. Graphics Tools 11, 4, 39–60.

FORTUNE, S. 1987. A sweepline algorithm for Voronoi diagrams.
Algorithmica 2, 153–174.

FORTUNE, S. 1997. Handbook of discrete and computational ge-
ometry. CRC Press, Inc., Boca Raton, FL, USA, ch. Voronoi
diagrams and Delaunay triangulations, 377–388.

GUIBAS, L., KNUTH, D., AND SHARIR, M. 1992. Randomized
incremental construction of Delaunay and Voronoi diagrams. Al-
gorithmica 7, 381–413.

HIGHNAM, P. T. 1982. The ears of a polygon. In Information
Processing Letters, 196–198.

HOFF, III, K. E., KEYSER, J., LIN, M., MANOCHA, D., AND

CULVER, T. 1999. Fast computation of generalized Voronoi
diagrams using graphics hardware. In Proc. ACM SIGGRAPH
’99, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 277–286.

KALLMANN, M., BIERI, H., AND THALMANN, D. 2003. Fully
dynamic constrained Delaunay triangulations. In Geometric
Modelling for Scientific Visualization, G. Brunnett, B. Hamann,
and H. Mueller, Eds. Springer-Verlag.

LEE, D., AND LIN, A. 1986. Generalized Delaunay triangula-
tion for planar graphs. Discrete and Computational Geometry 1,
201–217.

NVIDIA, 2011. NVIDIA CUDA C Programming Guide, Version
4.0. http://developer.download.nvidia.com/compute/DevZone/
docs/html/C/doc/CUDA C Programming Guide.pdf.

PRASAD, L., AND SKOURIKHINE, A. N. 2006. Vectorized image
segmentation via trixel agglomeration. Pattern Recognition 39
(April), 501–514.

RONG, G., TAN, T.-S., CAO, T.-T., AND STEPHANUS.
2008. Computing two-dimensional Delaunay triangulation us-
ing graphics hardware. In I3D ’08: Proc. Symp. Interactive 3D
Graphics and Games, ACM, New York, NY, USA, 89–97.

SHEWCHUK, J. 1996. Triangle: Engineering a 2D quality mesh
generator and Delaunay triangulator. In Applied Computa-
tional Geometry Towards Geometric Engineering, M. Lin and
D. Manocha, Eds., vol. 1148 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, 203–222.

SHEWCHUK, J. R. 1996. Robust adaptive floating-point geometric
predicates. ACM, New York, NY, USA, SoCG ’96, 141–150.

SU, P., AND SCOT DRYSDALE, R. L. 1997. A comparison of se-
quential Delaunay triangulation algorithms. Computational Ge-
ometry: Theory and Applications 7 (April), 361–385.

http://www.comp.nus.edu.sg/~tants/delaunay2DDownload_files/notes-30-april-2011.pdf
http://www.comp.nus.edu.sg/~tants/delaunay2DDownload_files/notes-30-april-2011.pdf
http://www.cgal.org
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

A Our Flooding Algorithm

Phase 1 of our proposed algorithm is to compute a digital VD of
a collection of points, or called seeds, in a grid. Technically, we
want and will prove in the following that the output of this phase is
the same as that of the Standard flooding mentioned in [Cao et al.
2010a]. Then, we can apply their result to conclude that Phase 2 of
our algorithm indeed produces a triangulation.

In our algorithm, we use the efficient Parallel Banding Algorithm
(PBA) [Cao et al. 2010b] running on the GPU to start the color-
ing, which results in an Euclidean coloring. Each of the Voronoi
region resulted has a connected component called bulk which is
path-connected to its seed, and debris (if any) which are discon-
nected from the seed. Cao et al. show that bulks are subsets of the
result of the Standard flooding. So, our challenge is to identify and
recolor the debris to be the same as in the Standard flooding. Since
there are very few debris in general, the recoloring is done using
the CPU and then the result is sent back to the GPU to complete
the coloring. Algorithm 3 is our proposed approach. We use Q to
mean a priority queue, N(A) the set of grid points neighboring grid
point A, and pi a seed with color i. The operation min(Q) on Q is
to remove and return the pair with minimum distance between the
grid point and the seed of the color; ‖A− pi‖ ≺ ‖B − pj‖ means
‖A− pi‖ < ‖B − pj‖, or ‖A− pi‖ = ‖B − pj‖ with consistent
tie breaker (using, for example, the coordinates of the points).

Algorithm 3 Flooding Algorithm

Compute coloring with PBA, and identify all debris as uncolor.
Q = ∅
for each debris A do

Q = Q ∪ {(A, i) | B ∈ N(A) having been colored i, and
‖B − pi‖ ≺ ‖A− pi‖}

while Q 6= ∅ do
(A, i) = min(Q)
if A is not colored then

Color A with color i
Q = Q∪{(B, i) | B ∈ N(A) and ‖A−pi‖ ≺ ‖B−pi‖}

end if
end while

Consider, on the contrary, the very first instance when Algorithm 3
colors a debris A with color r (inside the while-loop) whereas the
Standard flooding produced grid point A with color s 6= r. There
are two situations to consider:

CASE 1: ‖A− pr‖ ≺ ‖A− ps‖. From Algorithm 3, there exists a
neighbor B of A colored by r earlier, and ‖B−pr‖ ≺ ‖A−pr‖. It
follows that ‖B− pr‖ ≺ ‖A− pr‖ ≺ ‖A− ps‖. According to our
choice of A, grid point B is colored by r in the Standard flooding.
By the Ordered Coloring Lemma [Cao et al. 2010a], (A, r) must
have been considered in the Standard flooding before (A, s) and A
should thus have been colored by r then, a contradiction.

CASE 2: ‖A − ps‖ ≺ ‖A − pr‖. In the result of the Standard
flooding, there is a monotonic path from ps to A. Part of this path
has been colored the same (with s) in Algorithm 3 when we are
about to color A. Let C be the grid point closest to ps in that path
not yet colored by Algorithm 3. With the previous grid point before
C has been colored with s, (C, s) must have been added to Q in
Algorithm 3. Since ‖C − ps‖ ≤ ‖A− ps‖ ≺ ‖A− pr‖, we must
have (C, s) inside Q to be extracted before (A, r), a contradiction.

The argument in Case 2 also implies the algorithm colors all grid
points. This concludes our claim of correctness of our flooding
algorithm.

B Transforming the Point Set

To work on points with floating point coordinates, Phase 1 needs
to map them to an m × m grid. We want precise computation
so that the triangulation computed with respect to points mapped
to the grid remains a triangulation when we do a part of the inverse
mapping to the original coordinates of the points. We discuss below
that precise computation can be achieved by representing the scale
and translation used in the mapping with a certain number of bits.

We just consider the 1D coordinate in x-axis; the discussion can
be generalized to 2D with scale be the larger one calculated from
both dimensions, while translation is simply a vector of two com-
ponents. Let the points be such that their minimum and maxi-
mum x-coordinates are xmin and xmax, respectively. Let x be
the original coordinate of a point. The coordinate of the point
mapped to the grid is thus x̄ = ⌊(x − translation)/scale⌋ where
translation = xmin and scale = (xmax − xmin)/m. The compu-
tation of a triangulation in Phase 1 and Phase 2 is performed using
these integer coordinates.

Then, Phase 3 is to eventually shift all points in the grid back to their
positions given in the input. To maintain as many good cases of
shifting as possible, we first perform the inverse scaling and shifting
for the whole bounding box with all the points. Specifically, we
have x′ = (x̄×scale+translation) as our new coordinate of a point
before shifting it (to negate the effect of the truncation to integer
coordinate) to the original coordinate x. To ensure we still have
the same triangulation with x′ in place of x̄, we must compute the
floating point number x′ with no rounding error.

Let (pMax + 1) be the maximum number of bits available for the
mantissa in our floating point representation. Note that the explicit
mention of “+1” here is a provision for possible overflow of (x̄ ×
scale + translation). Let the number of bits used to represent the
mantissas of the two constants scale and translation be pS and pT ,
respectively. Note that x̄ is a non-negative integer with maximum
value of (m − 1) and thus needs pM = (logm) bits to represent.
We keep pT = pMax.

We are ready to discuss how to set scale and translation before
doing the actual mapping to the grid. First, the result of the
(x̄ × scale) is accurately represented using no more than pMax
bits, as long as we do some necessary rounding up on scale such
that its mantissa is representable by pS = (pMax − pM) bits. The
round up can just increase scale by a little bit at its least significant
bit and thus we are still able to spread out the mapping of points on
the grid. Second, the addition of (x̄ × scale) with translation can
result in rounding error as translation can be much smaller or much
larger than (x̄×scale). Let range = (xmax−xmin) = (m×scale).
We consider two cases to guarantee that the computation of x′ is
accurate:

CASE 1: translation ≤ range. Let 2t be the largest term in
the binary representation of range. We reduce translate by
removing all terms in its binary representation that are smaller than

2t−(pMax−1).

CASE 2: translation > range. Let 2r be the largest term
in the binary representation of translation. We round up all
terms in the binary representation of scale that are smaller

than 2r−(pMax−1)+pM . Because range = xmax − xmin ≥

2r−(pMax−1), we have scale represented by pS bits is larger than

2r−(pMax−1)+pM for any meaningful input and is thus non-zero.
Also, the round up does not increase more than twice the value of
scale, and we thus still be able to spread out the mapping of points
on the grid.

