
SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1286-1302, December 1993

() 1993 Society for Industrial and Applied Mathematics
011

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS AND
RELATED PROBLEMS*

BERNARD CHAZELLEt, HERBERT EDELSBRUNNERt, LEONIDAS GUIBAS, MICHA SHARIR, AND

JACK SNOEYINK1

Abstract. This paper presents a randomized incremental algorithm for computing a single face in an arrangement
of n line segments in the plane that is fairly simple to implement. The expected running time of the algorithm is
O (not (n) log n). The analysis of the algorithm uses a novel approach that generalizes and extends the Clarkson-Shor
analysis technique [in Discrete Comput. Geom., 4 (1989), pp. 387-421]. A few extensions of the technique, obtaining
efficient randomized incremental algorithms for constructing the entire arrangement of a collection of line segments
and for computing a single face in an arrangement of Jordan arcs are also presented.

Key words, computational geometry, arrangements, randomized incremental algorithms, probabilistic back-
wards analysis, Davenport-Schinzel sequences

AMS subject classifications. 68P05, 68Q20, 68R99, 51M99

1. Introduction. We consider the following problem. Let S {s1, $2 s be a
collection of n line segments in the plane, and let p be a point not lying on any of the
segments. We wish to compute the face that contains p in the arrangement A of S. This
problem arises in many applications, such as motion planning [9]. It has been shown in [9],
15] that the combinatorial complexity of such a single face is O (not (n)), where ot (n) is the

inverse Ackermann function. This bound is shown in 19] to be tight in the worst case; as a
matter of fact, the construction in 19] gives a set S of n line segments whose lower envelope
has complexity f2 (not (n)).

The problem of computing a single face has been studied by Edelsbrunner, Guibas, and
Sharir [6]; they have given a deterministic algorithm that takes time O(not(n) log2 n) in the
worst case. This is less efficient than the best-known algorithm for computing the envelope of
n segments, due to Hershberger 10], which runs in optimal O(n log n) time. This discrepancy
between the two algorithms is intriguing because the maximum combinatorial complexity of
a single face and of the lower envelope in an arrangement of n segments is asymptotically the
same. We remark that in the special case where S is a collection of lines, computing a single
face can be trivially done in time O (n log n). Another special case is when S is a collection
of rays. A recent paper shows that the complexity of a single face in this case is O (n) and
that the face can be constructed in time O (n log n). Both these algorithms are deterministic.

In this paper we (almost) close the gap by providing a simple randomized incremental
algorithm for computing a single face in an arrangement of general segments, whose expected

*Received by the editors June 27, 1991; accepted for publication (in revised form) July 21, 1992. A prelimi-
nary version of this paper appeared in Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms, Association for
Computing Machinery, New York, 1991, pp. 441-448.

Department of Computer Science, Princeton University, Princeton, New Jersey 08540. The research of this
author was supported by National Science Foundation grant CCR-87-00917.

tDepartment of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801. The
research of this author was supported by National Science Foundation grant CCR-89-21421.

DEC Systems Research Center, Digital Equipment Corporation, Palo Alto, California, 94301, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of
Computer Science, Stanford University, Stanford, California 94305.

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute of Math-
ematical Sciences, New York University, New York, New York 10012. The research of this author was supported
by Office of Naval Research grant N00014-90-J-1284, by National Science Foundation grants CCR-89-01484 and
CCR-91-22103, and by grants from the U.S.-Israeli Binational Science Foundation, the Fund for Basic Research
administered by the Israeli Academy of Sciences, and the German-Israeli Foundation for Scientific Research and
Development.

1Department of Computer Science, Stanford University, Stanford, California 94305.

1286

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1287

running time is O(net(n) log n). (The expectation is taken over the randomizations used by
the algorithm, and the bound holds for any input data.) We have learned that Clarkson has
obtained a similar result in an unpublished work, using a different approach. The algorithm is
similar in some features to the trapezoidal decomposition algorithm of 18], the intersection
algorithms of [2] and [14], and the Delaunay triangulation algorithm of [8]. Like the latter,
it is a purely on-line algorithm that needs no prior information about the as-yet uninserted
segments. We also mention that recently Mitchell 13] has obtained a deterministic algorithm
for constructing a single face, whose running time is O (n log2 n).

A main novel feature of our algorithm is its analysis, which provides a useful extension of
the probabilistic technique of Clarkson and Shor [5] to a domain where the interesting events
that need to be counted are more difficult to specify. The reason is that the decision of what
features of the arrangement of the segments in S appear on the desired face is global and
cannot be determined from the local structure of the features. Such a locality is required in
Clarkson and Shor’s analysis and, for that matter, in all the randomized algorithms we have
mentioned. Our analysis finesses this issue by applying a more general framework, which,
as a consequence, also leads to simplified proofs. We expect that there will be additional
applications of our technique to other contexts, thus extending the usefulness of the Clarkson-
Shor method.

Our technique also can be generalized to other contexts, as discussed in 4. These
problems include the construction of the entire arrangement of a given collection of line
segments (4.1) and computing a single face in an arrangement of curved segments (4.2). In
these extensions our technique yields algorithms with optimal or close-to-optimal expected
time and storage complexities, matching or improving previously known algorithms. Section
2 presents the incremental algorithm, developing it to a level of detail that shows that it is
indeed easy to implement. Section 3 gives the analysis of the algorithm. We conclude the
paper in 5 with a discussion of our results and some open problems.

2. The algorithm. As mentioned in the introduction, the algorithm to be described in
this section is incremental, that is, it computes the desired face by adding the segments one at a
time. Section 3 will show that if the segments are inserted in a random order, then the expected
behavior of the algorithm is very good. We describe the algorithm in detail, to convince the
reader that the algorithm is easy to implement. A compact description of the algorithm in
pseudocode is given at the end of this section. Let sl, s2 Sn be the insertion sequence,
so that at the ith step the algorithm adds si to the data structure built for Sl through si-. For
convenience we start with a rectangular frame big enough to enclose all line segments in S, as
well as the special point p defining the face f that we want to compute. We will be interested
only (without loss of generality) in the portion of f within the frame. For 0 < < n let f
denote the face in the arrangement defined by s, s2 si that contains p, clipped to within
the frame (j is just the frame). We also assume that there are no degenerate cases, such as
three segments meeting at a point, an endpoint of one segment lying on another segment, or
two intersections with the same x coordinate; this assumption is justified by the algorithmic
method of [7].

Although the face f is uniquely determined by the first line segments, the data structure
that we use to represent it is not- it also depends on the sequence in which the line segments
are added. This is very much like in the case of a binary search tree constructed by repeated
insertions, but without a balancing operation: the sorted sequence of the input is unique, but
the tree that represents it depends on the sequence of insertions.

The main idea that leads to the data structure and algorithm of this paper is that while
the central aim is to construct the face marked by p, we keep around everything ever built
(typically portions of the earlier versions of the same face) as an aid in the search operations.

1288 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

An important rule is that these older parts of the structure are not further refined during the
insertion process this helps keep the size of the extra structure within limits.

2.1. The conceptual level. The data structure that represents f, the face after adding the
first line segments, consists of three sorts of geometric information. These three parts should
be considered as fundamentally different at a conceptual level, although we will represent
them in a uniform way at a lower level. The three parts are the city (the face), the suburbs (the
complement of the face), and the history.

2.1.1. The city. After line segments are added, the face f is the city. It is a (not
necessarily simply connected) polygonal region, as shown in Fig. 1. Its boundary consists
of a finite number of contour cycles; one is the outer cycle (which, in case f is unbounded,
coincides with the frame boundary), and all others define holes in the city. We represent the
city by a collection of trapezoids generated by drawing a vertical line up and down from each
vertex until it hits the boundary of the city again. These vertical edges, called sides, are drawn
only inside the citymsee Fig. 2. Two trapezoids are said to be adjacent if they (partially) share
a vertical side.

FIG. 1. The input consists ofa set of line segments and a point inside a frame. It defines a face, which we call
the city.

FIG. 2. The city is decomposed into trapezoids by drawing vertical sides through endpoints and intersection points.

There is a small number of different types of trapezoids, each defined by at most four line
segments. A unique line segment contributes the floor (the bottom edge) of a trapezoid A,
and, similarly, a unique line segment contributes the ceiling (the top edge). The left and right
sides are each defined

(a) by an endpoint of another line segment,
(b) by another line segment intersecting the floor line segment,
(c) by another line segment intersecting the ceiling line segment, or

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1289

(d) as the intersection of the floor with the ceiling.
This makes 16 types of trapezoids altogether. One of the types is impossible, namely,

where both the left and the right sides are case (d). Four of the 15 remaining types are shown
in Fig. 3.

(a) and (b) (b) and (b) (c) and (b) (d) and (a)

FI. 3. Four possible types of trapezoids.

A trapezoid thus defined has one, two, three, or four adjacent trapezoids; four only if both
the left and the right sides are case (a). Notice that the trapezoids that compose the city at
stage depend only on the set of segments sl, s2 si and not on the particular order in which
these segments were inserted.

2.1.2. The suburbs. As new line segments are added the city gets smaller. Each new
line segment may chop off parts of the city by separating them from the point p. When a

portion of the city is thus disconnected from p, it is properly decomposed into trapezoids and
these trapezoids are added to the representation of the complement of the city, the so-called
suburbs. It is thus natural to represent the suburbs in the same way as the city, namely, as a
collection of trapezoids with adjacency relations.

At any point in time the trapezoids of the city and the suburbs define a decomposition (a
tiling) of the entire frame. It should be noted, however, that this decomposition is not edge-to-
edge, in the sense that a vertex of some trapezoid may lie in the middle of an edge of another
trapezoid. We view each edge of our diagram as two sided, so that the above vertex is not part
of the description of the second trapezoid each trapezoid is bounded by one-sided edges.
The same distinction was necessary in the analysis of 14]. There is, however, an important
difference between vertical and nonvertical edges. By our general position assumptions, at
most one point of a left or right side can also be a corner of (two) other trapezoids (in case
(a)), but arbitrarily many such points can lie on the floor or ceiling. For this reason we define
and store adjacencies only across vertical sides.

An important difference between city and suburbs is that the former gets further refined as
new line segments are added, while the latter only expands by the addition of new trapezoids
chopped offfrom the city. A trapezoid ofthe suburbs, once created, remains part ofthe suburbs
forever.

2.1.3. The history. There is a third type of trapezoid in our structure. This type consists
of trapezoids that belonged to earlier versions of the city and had to be removed because they
were cut by a new line segment. Such a trapezoid A is not deleted from the structure. Instead,
it remains as part of the history. The new trapezoids, generated by the addition of the new
line segment, that overlap A are added to the structure as children of A. Depending on how
the new line segment cuts A, it can have two, three, or four children (see Fig. 4). In effect,
A is removed from the representation of the city and is now part of a hierarchical structure of
trapezoids built on top of the decomposition described as city plus suburbs. As will be detailed
in the following, certain children trapezoids are merged with adjacent children trapezoids of
neighbor trapezoids.

1290 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

two three four three four

FIG. 4. The different ways in which a trapezoid can be split by a new line segment.

The collection (hierarchy) of such trapezoids that once belonged to the city but were later
destroyed is called the history. The history trapezoids, together with those defining the city
and suburbs, are all connected together by the children pointers in a directed acyclic graph.
(Because of the merging of children trapezoids that was previously mentioned, the graph is
not necessarily a tree.)

2.1.4. Adding a line segment. To understand exactly how our data structure looks at

any stage of the incremental process, we need to understand how a line segment, say, si+l, is
added. As mentioned earlier, already existing trapezoids of the suburbs and the history are
unaffected by this insertion.

Here is how the city trapezoids are updated. First, we compute and draw fi fq si+l, which
is a collection of portions (edges) of si+l. These new edges make it necessary to update the
decomposition of f: the trapezoids of f that intersect si+l become part of the history, and
the new trapezoids generated are included in the structure as their children. To understand this
process, let us define the transient city gi as f after si+l has been added and the decomposition
of f into trapezoids has been updated. Of course, gi may contain several trapezoids, some
newly created and some pre-existing as part of the city at stage i, that are no longer accessible
from p and thus not part of f+l. To obtain f+l we must thus remove all these trapezoids
from gi and place them in the suburbs. Figure 5 shows the development of the suburbs when
the line segments are added in the indicated sequence.

3
1

FIG. 5. The subdivision is constructed by inserting the line segments in the indicated sequence. Line segment
11 is not drawn at all because it lies completely outside the city at the time it is added. Only portions ofline segments
8, O, 13, and 14 are drawn. The boundary of the final city consists of two contour cycles.

To help us reflect on the process of adding line segments and updating the structure, let
us look at what distinguishes suburb trapezoids from history trapezoids. For a trapezoid A

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1291

defined by line segments Sa, Sb, Sc, and Sd to be part of the suburbs or the history after the first

+ line segments are added, it must have occurred as part of at least one of the cities fj or

gj for 1 <j<i.
1. If there is a j, j < i, so that A is part of fj. but not part of gj, then A is now part of the

history because it was cut by sj+l while being a city trapezoid.
2. If there is a j, j < i, so that A is part of gj but not part of J)+l, then it is now part of

the suburbs because it was cut off from the city by Sj+l.
There is a subtlety in condition 2, which we take the time to discuss now. The trapezoid A

can be of the type that belongs to j) and to gj but not to fj+l, or it can be of the type that
belongs to gj but neither to J) nor to J)+l. In the latter case we call A a transient trapezoid
because it lives a particularly short life. It will be important later to remember that transient
trapezoids can only be part of the suburbs, not of the history.

2.2. The data sti’ucture. We will now be more specific about the data structure that is
incrementally constructed by the algorithm. It consists of a directed acyclic graph (a dag) that
stores the city, the suburbs, and the history, all at once, a linear array for the line segments;
and a union-find structure for the line segments. We discuss the easy structures first.

2.2.1. The linear array. By keeping the line segments in a linear array we can use a

single index rather than four real numbers wherever a line segment is to be stored. We assume
that the segments are stored in the array in their insertion order.

2.2.2. The union-find structure. This structure allows us to keep track of topological
changes that happen to the boundary of the city as line segments are added. Each set in the
structure represents a connected component of the union of line segments and portions of line
segments as drawn by the algorithm. Although a single line segment can have several disjoint
portions drawn, they all belong to the same connected component. We can thus represent such
a component by the set of line segments that contribute edges to it. Note that each contour
cycle is part of a possibly bigger connected component. However, we will need the union-find
structure only to the extent that it represents contour cycles. We will use a simple union-find
structure, in which every element (segment) has a pointer to its current subset (contour cycle),
so that each find operation takes O (1) time. To form the union of two subsets we change the
pointers of all the elements in the smaller set to be the same as those of the elements in the
larger set. The overall cost of all unions is thus O (n log n).

2.2.3. The dag. Each node of the dag stores a unique trapezoid (city, suburbs, or history),
represented by four indices (line segments) and a few bits to indicate the type. The dag has
a unique root that stores the frame as a single trapezoid. Each interior node stores a history
trapezoid and contains pointers to its (at most) four children. The city and suburb trapezoids
are stored in the leaves of the dag, and each leaf has pointers to the at-most four leaves storing
adjacent trapezoids. To distinguish the three types of nodes we mark history and suburb
trapezoids as such and leave city trapezoids unmarked.

2.3. How it really works. Recall the basic steps that have to be performed when a line
segment Si+l is added.

1. We compute all portions of si+ N f.
2. Using these portions, we update the trapezoidal decomposition of f to get gi. De-

stroyed trapezoids become history.
3. The new city f+ is the component of gi that contains p. All other trapezoids in gi

need to be labeled as suburbs.
The portions of Si+l A f are computed by propagating si+l from the root of the dag down

to the leaves. Each trapezoid of f intersected by si+ is updated, and the new city and suburbs

1292 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

are differentiated with the help of the union-find structure. Here are the details of how steps
through 3 are implemented.

2.3.1. Intersecting the new line segment with the city. Starting at the root of the dag,
the line segment Si+l is propagated downward to all leaves whose trapezoid meets Si+l. When
we are at an internal node v, we know that si+l meets the history trapezoid of v and we mark
v as already visited. Next we recursively visit the children of v whose trapezoids meet Si+l
and that are not yet marked. The order in which we visit them is such that they meet si+l in
sequence from left to right. Because of this ordering, the leaves are also visited in the sequence
in which their trapezoids meet Si+l from left to right.

2.3.2. Updating the trapezoidal decomposition. When a leaf storing a suburb trapezoid
is reached, we do nothing. When a city trapezoid is reached, we do all the work. We distinguish
six cases as illustrated in Fig. 6. We denote the leaf by).

Case Case Case 2 Case Case 4 Case 4 Case Case 6 Case 6 Case 6 Case 6

FIG. 6. Updating the trapezoidal decomposition.

In every case we construct the appropriate number of children, change) from city to

history, and use)’s former adjacency pointers to connect it to its children. In case 1, depending
on whether the endpoint or intersection point that defines the right side of the old trapezoid
is above or below si+, one of the two children trapezoids that lie above and below si+l is
not a properly defined trapezoid yet. This trapezoid will be merged with the adjacent child
trapezoid of the next leaf. The same is true in case 2. The only difference between the two
cases is that in case we remember the line segment Sa that contains the left endpoint of the
currently processed portion of si+ 1 fi (Sa contains the top or bottom edge of)) and the
two children of) that lie above and below the current portion of si+l f3 f. In case 3 one
of the child trapezoids is merged with a child trapezoid of the preceding leaf, and the same
happens in cases 4 and 5. In case 4 we also take note of the line segment sb that contains the
right endpoint of the current portion of si+l N fi. The pair (Sa, sb) delimits this portion. The
pair will be processed as described below. Finally, case 6 is in a way the easiest, because it
requires only the construction of the four children for) and no merging of trapezoids (nodes)
is necessary. If, in case 6, si+l meets both top and bottom edges of), we immediately obtain
the corresponding delimiting pair (Sa, s6). In all other subcases this pair is undefined.

Let us say a few more words about the merging of children trapezoids. As we follow si+l
from left to right, we maintain the current two children trapezoids that lie above and below

Si+l. One of these children may be open-ended on the right. When we reach a trapezoid)

and we are in case 3, 4, or 5, we extend the open-ended trapezoid (if any) and merge it with
the appropriate child of). In case 3 we exit) on the right with one of the children trapezoid
closed and one open ended, as appropriate; in cases 4 and 5 both are closed. In cases and
2 we create two new children accompanying Si+l and leave one of them closed and one open
ended, as above. In case 6, as mentioned above, no merging of children is necessary.

2.3.3. Maintaining the topology. After all portions of si+ N fi are added to the city
decomposition as described, we have effectively obtained the trapezoidal decomposition of
the transient city gi. As a by-product, for each portion of Si+l f we also get a pair (Sa, s)

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1293

of line segments that delimit the portion, and two trapezoids, one that lies immediately above
it and one immediately below it. This extra information is not properly defined, but it is not
needed anyway if the portion contains one of the endpoints of si+l.

For each such pair (Sa, sb) we do the following. First we compute Ca and cb, the names of
the connected components containing sa and s, respectively, by doing two find operations. If
the two components are different, then we just have to union the two components to reflect the
fact that the new segment Si+l has merged the two contours into one; in this case the current
portion of si+ (-] fi does not disconnect any portion of f from p. If Ca Cb, i.e., the two
contours are the same, then we have to work harder because the old city area on one side of
the current portion of Si+l now becomes suburb. It is not possible to decide locally which
side this is. We thus perform two graph traversals in lock-step, starting at the two trapezoids
(nodes) provided with Sa, which are trapezoids that lie on the two sides of the current portion of
Si+l. These traversals use the adjacency pointers and advance in a strictly alternating fashion,
one trapezoid at a time. The traversals stop when one region is exhausted without finding
the trapezoid that contains p (the exhausted region is now suburb and its trapezoids must
therefore be relabeled) or when the trapezoid containing p is found (in this case the other
region becomes suburb and its trapezoids must be relabeled). In either case the amount of
time spent is at most proportional to the number of city trapezoids that became suburb.

Up to minor details, such as the fact that Si+l should be added to the proper contour
cycle or start a new one of its own, this concludes the description of the algorithm. For the
convenience of the reader, we summarize the algorithm in pseudocode.

procedure face(p,S); p is point and S is set of segments

initialize dag to single node containing the enclosing frame;

store a random permutation of S in array [Sl,S Sn];

initialize union-find data structure the segments, each

stored as singleton set;

for all i- do

perform depth-first search of dag to find all trapezoids crossed by si:

construct list x_trapezoids;

visit children of each node of dag that si crosses in

left-to-right order (along si)

mark each visited node (so not to visit it again);

add each city leaf crossed by si to x_trapezoids;

update the trapezoidal decomposition:

for each trapezoid Z in x_trapezoids do

depending on the type of Z do

case

initialize top_trap and hot_trap to the subtrapezoids of

lying above and below si, respectively;

mark which of the two is open-ended the right and which

is closed;

change to history node in dag;

add the 3 newly created subtrapezoids to dag;

store pointers from to them;

the type of the new nodes (city/suburb) is not set as yet;

store adjacency pointers between the nodes as appropriate

(the left subtrapezoid also inherits the left-adjacency

1294 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

pointer(s) from);

set to the segment containing the top bottom portion

of A, whichever si intersects;

set] and to top_trap and hot_trap, respectively;

2:

proceed in case except for setting Sa, I, and ;
both top_trp and bot_trp adjacent to the left

subtrapezoid of A;

case 3:

update top_trp and bot_trp by appending to the open-ended among

them the corresponding top bottom subtrapezoid of

and setting the remaining variable to the other

subtrapezoid of ;
again mark which of the two is now open-ended and which is closed;

add to dag the subtrapezoid that is not appended;

change to history;

store pointers from to these two subtrapezoids;

store adjacency pointers between the node of dg and the

subtrapezoid preceding it on the left;

4:

update top_trp and bot_trp as in case 3;

both resulting subtrapezoids closed;

update g described;

also, add the right subtrapezoid of to a;
store pointer to it from ;
store adjacency pointers between the subtrapezoids as appropriate

(the right subtrapezoid also inherits the right-adjacency

pointer(s) of);

set s to the segment containing the top bottom portion

of A, whichever si intersects;

5:

proceed in 4, except for setting s;

the right subtrapezoid is now adjacent to both top_trp

and hot_trap;

case

construct the subtrapezoids of , all closed, new nodes of da@;

change to history;

add pointers from to these nodes;

store adjacency pointers between these nodes appropriate

(including the carrying over of adjacency pointers of);

if s crosses the top (respectively, bottom) edge of , set sa
(respectively, Sb) to the segment containing that edge;

end case;

if either Sa Sb is undefined then

mark all nodes of dag city;

else

find and Sb in the union-find structure;

if sa and Sb in different subsets then

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1295

end for;

union these subsets;

mark all new nodes of dag as city;

else update the topology of the face:

perform simultaneously, in lock-step, two searches of dag,

starting at rl, , respectively, and following the adjacency

pointers, until either search is exhausted the

trapezoid containing p is encountered;

in either case, mark all nodes encountered in search as city

nodes and in the other search as suburb nodes, appropriate;

end if;

end if;

if either is defined then

union si with Sa with Sb, whichever is

defined;

end if;

end for;

return all city leaves of dag;

end procedure;

Remark. After completing the algorithm we notice that suburb trapezoids are fairly
useless when we add line segments. We could prune the dag by removing all leaves that store
suburb trapezoids and, recursively, all nodes storing history trapezoids that thus end up without
children. However, the analysis in 3 will reveal that the savings possible by this optimization
are not substantial (at least asymptotically).

3. The analysis. The algorithm presented in 2 is a purely on-line algorithm for the
single-face problem. In this section we show that if the segments are inserted according to a
random permutation, then the expected behavior of our algorithm is very good in terms of both
time and storage. We remark that without the randomization there can be situations where
the space and time performance of our algorithm become quadratric in n. Such a situation is
shown in Fig. 7.

FIG. 7. An example where our algorithm will require quadratic time ifall the vertical line segments are inserted

before the horizontal ones, which are then addedfrom bottom to top.

1296 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

Recall that the main data structures used in our algorithm are a linear array, a union-find
structure, and a dag. The sizes of the first two structures are proportional to n, the number
of line segments. The size of the dag is proportional to the number of trapezoids constructed
during the course ofthe algorithm. We will show in 3.1 that the expected number oftrapezoids
is O(not(n)).

The time spent by the algorithm is split among union-find operations, constructing trape-
zoids, searching for and labeling suburban trapezoids, and propagating the line segments
down the dag. The cost of the union-find operations is at most O (n log n), even with a simple
structure that supports n unions in amortized O(log n) time per operation and each find
operation in constant time. By the results of 3.1 the expected number of find operations is
O(not(n)), which thus takes expected time no more than O(not(n)). The same is true for
constructing and labeling trapezoids because our lock-step search strategy ensures that the
cost of these steps is proportional to the number of constructed trapezoids. Indeed, the cost
of the lock-step search is easily seen to be proportional to the number of trapezoids in the
smaller of the two face portions traversed and is thus proportional to the number of trapezoids
that have been now disconnected from the city. Since a trapezoid can leave the city at most
once, the claim follows. To understand the cost of propagating the line segments down the
dag, let us define the weight of a trapezoid A, denoted w(A), as the number of line segments
that intersect A. The cost is then proportional to Y w(A), where the sum is taken over all
trapezoids A constructed by the algorithm. We will show in 3.2 that the expectation of this
sum is O (not (n) log n).

Hence, anticipating these results, we obtain the main result of the paper.
THEOREM 3.1. Given a set of n line segments and a point in the plane, the algorithm

of2 constructs the face that contains the point in the arrangement of the line segments, in
expected time 0 (not (n) log n) and expected space 0 (not (n)).

3.1. The expected number of trapezoids. Before starting the probabilistic analysis,
recall that the number of transient trapezoids (that is, trapezoids that are constructed but are
never part of the city proper; see 2.1) cannot exceed the number of other trapezoids by more
than a factor of 4. This is because all transient trapezoids belong to the suburbs and are
therefore stored on the leaf level of the dag and because each inner node of the dag has at most
four children. This observation allows us to consider only trapezoids that belonged to the city
at the time they were created.

LEMMA 3.2. The expectednumber oftrapezoids constructedby the algorithm is (9 (not (n)).
Proof. Fix a trapezoid A, and define the following two events" (i) Xr, zx A is a trapezoid

in f, which is the city as defined after adding the first r segments. (ii) Zr, zx A is a trapezoid
in some f, for 0 < < r.

Clearly, Zn,zx =0 X,A, and ,x P[Zn,A] is the expected number of non-transient
trapezoids constructed by the algorithm, where the sum is taken over all trapezoids A defined
by at most four line segments each, as detailed in 2.1. By the remark before the lemma,
5 --]A P[Zn,A] is an upper bound on the expected number of constructed trapezoids, whether
transient or not.

Notice that a trapezoid A can be constructed only once; thus X-l,zX fq X,,x is nonempty
for at most one r, namely, if A is constructed at the time the rth segment is added. Therefore,
Zn,/X is the disjoint union of the events Xr-I,A N X,zx, for < r < n. This is true for all
trapezoids A, except for the frame, which is the only trapezoid of y, by definition. It follows
that

P[Zn,/X] -+-Z P[r-I,A 7) Yr,/X].
A A r=l

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1297

By the definition of conditional probability we have

P[Xr-l,zX N Xr, zX] P[Xr-l,zx lXr, zX] P[Xr, zx].

To estimate the conditional probability, we note that A is defined by at most four line
segments and, if we assume that A is in fr, then it was also in fr-1 if and only if the rth
segment to be added was not one of these at most four segments. This implies

4
P[Xr-l,6lX,zx] _<

r

The preceding equations thus imply

(1) P[Zn,/xl < + P[Xr, zxl + P[Xr,/xl.
A A r=l r=l

r A

However, -zx P[Xr,/] is the expected number of trapezoids in the city fr, after r line
segments have been added. By the results of [9], [15], [19], fr can have at most O(rot(r))
edges and, therefore, at most O(roe(r)) trapezoids. This finally gives

A r=l

Remark. The analysis just presented is fairly general, and so we would like to restate it
in more abstract terms, which will be exploited in 4. In general, we have a set of n objects
(line segments in our case) that we add incrementally in random order to form some structure
(a single face in our case). This structure is represented as a collection of regions (trapezoids
in our case), each defined by at most some constant number b of objects (4 in our case). Let
M(r) denote the expected number of regions composing the structure after r objects have
been added. Then the expected number of regions ever constructed during the randomized

b M(r) provided that if a region is present in the structureincremental process is at most Y=l 7
after r steps and the rth object to be added is not one of the b objects defining the region,
then the region was also present in the structure after the first r objects had been added.
(If each region is defined by exactly b objects, then the preceding sum is an exact expression
for the expected number of regions.) As an example, we apply this observation to the case
in which the objects are n points in the plane, the structure is their Delaunay triangulation,
and the regions are Delaunay triangles. This fits well into the setup just discussed. Moreover,
we know that M(r) is 2r hr 2, where h is the expected number of vertices appearing
on the convex hull of a random sample of r points of the given n. We thus conclude that
the expected number of Delaunay triangles constructed during a randomized incremental

n (2r h 2). The same expression was recently derived in [20] by usingalgorithm is }-r=3
a more involved analysis. This general framework has also been observed by Seidel 16]-[18]
and by Mehlhorn [11] (see also [4]) and is referred to as "backwards analysis."

3.2. The expectation of the sum of weights. Recall that the weight of a trapezoid A,
w(A), is defined as the number of line segments that intersect A. As in 3.1, we argue that
for the purpose of proving an upper bound on the expectation of the sum of weights of all
constructed trapezoids, it suffices to consider only nontransient trapezoids. To see this, let A
be a transient trapezoid. Distribute its weight among all its parents in the dag so that the share
of each parent does not exceed its original weight. This is possible because the union of the
trapezoids of all parents of A contains A and therefore intersects at least as many segments
as A does. Since any node in the dag has at most four children, its weight can thus go up by

1298 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

at most a factor of 5. Thus 5 times the expected sum of weights of all nontransient trapezoids
is an upper bound on the expectation of the sum over all trapezoids.

LEMMA 3.3. The expected sum of weights of all trapezoids constructed by the algorithm
is 0 (not (n log n).

Proof. The expected sum of weights over all nontransient trapezoids constructed by the
algorithm is equal to -’-A w(A)P[Zn,zX], where the sum is taken over all trapezoids A defined
by at most four segments each, and Zn,/ is the event that, in the course of adding all line
segments, A was constructed as a nontransient trapezoid, the same event as in Lemma 3.2. In
addition to the events Z,zx and Xr, zx we define Yr, zx A is a trapezoid of fr, and s+, the line
segment added next, is one of the w(A) segments that intersect A.

Note that if A is a trapezoid of fr, then none of the segments intersecting A was chosen
in the first r steps. So for Y,x to occur, given that X, x has occurred, we have to choose at the
(r + 1)th step one of these w(A) segments out of the remaining n r segments. Hence

P[Yr,/] P[Xr,,x]
w(ZX)
nmr

Observe also that

and, in general, we may have proper inclusion, because A can be removed from the city also by
a line segment that does not intersect A. Independent of whether proper or improper inclusion,
this implies that

(2)
A i=1 A i=1 A

In other words, the expected number of trapezoids that become history during the first
r + 1 insertions is O(rot(r)), which is clear because these trapezoids have to be constructed
first, and the expected number of such trapezoids, over the course of the first r insertions, is
O(rot(r)), as shown in 3.1.

Now fix A, and recall from the proof of Lemma 3.2 that

P[Zn,zX] P[r-l,zxlXr, zx]" P[Xr, zx] _< -P[Xr, zx].
r=l r=l

r

This implies that

w(A)P[Zn,zX] < 4 _a
r---1

n --r
w(A) P[Xr,/X] 4

n r,, P[Yr, zX].
r

r=l
r

To simplify the notation we set Dr / P[Yr, zx], and we can now write

(3)
n-1

w(A)P[Zn,zX] < 4
n r

rA r=l

n-1 (n r

r=l
r r+l i=1

However, we have shown that

Di P[Yi,xl O(rot(r)).
i=1 A i=1

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1299

Hence we finally obtain

(4)
n-1

A r=l r(r + 1)
O(rot(r)) O(na(n) log n),

as claimed. [3

Remark. As in the remark at the end of 3.1, these calculations can also be extended to the
more general setup discussed there. Specifically, if we denote by S(r) the expected number
of regions (trapezoids in our case) formed during the first r steps of the randomized process,
then (1) implies that

b
(5) S(r) < -M(j), r n,

j=l J

where b, M are as defined in the previous remark. The analysis leading to equations (2)-(4)
can then be generalized to yield a bound on T (n), which is defined to be the expectation of
the sum of weights of the regions ever formed by the algorithm, where the weight of a region
is the number of objects that intersect it. That is, we obtain

n-1 bn
T(n) <

r=l r(r + 1)
bn b

M(j)S(r)
r(r + 1) Jr=l j=l

b n-1 bn

j--1 J
M(j) Zr=,. r(r + 1)

b2nM(j)(_ __1),
j=l J n

or

bZ(n r)
M(r)(6) T(n) <

r2
r=l

4. Extensions. The technique presented in this paper is sufficiently general to be appli-
cable to a variety of other related problems. In this section we present a few such applications.
In 4.1 we extend the previous algorithm to compute the entire arrangement ofn line segments,
and in 4.2 we describe an algorithm for computing a single face in an arrangement of Jordan
arcs. The overall strategy is similar to that described earlier, but there are certain additional
technical details that are particular to the specific application. In each case we discuss in some
detail these difficulties, the modifications to the algorithm that they require, and the analysis
of the resulting modified algorithm.

4.1. Computing the entire arrangement of n line segments. We first consider a simple
extension of our technique to the problem of calculating the entire arrangement of a collection
of n line segments in the plane. This can be achieved by applying a simplified version of
the technique of 2. In this case there is no need to distinguish between city and suburbs
since every face of the arrangement needs to be constructed. Consequently, when a segment
is added to the arrangement, all its portions are drawn and there is no need to maintain any
face topology by means of a union-find structure. We leave it to the reader to work out
the details of this modified and simplified algorithm. The analysis is also easy; it uses the
general method described at the end of 3. In this case we have b 4 (the maximum number
of segments defining a trapezoid), and M(r), the expected number of trapezoids forming the
vertical decomposition ofthe arrangement of the first r segments that were inserted, is bounded

1300 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

by O (r 4- K), where K is the total number of intersections between the given segments
(see [5] for the simple proof of this bound). Hence the expected storage of the algorithm is

4 ((Kr))S(n) < -M(r) 0 + - O(n + K),
r=l

F
r=l

and the expected running time is

n 16(n--r)M(r)
0 ((n--r K(n-r)))(n) < Z + O(n log n + K)T

F2 F n2
r=l r=l

We thus obtain an algorithm with optimal (expected) running time and storage. The same
performance is achieved by the deterministic (but complicated) algorithm of [3] and by the
alternative randomized algorithms of [5], 14] (a variant of the algorithm of [5] also achieves
O(n) working storage).

4.2. Computing a face in an arrangement of arcs. Let F be a collection of n Jordan
arcs ?’1 9/n. We assume that the arcs have a simple shape, which means that any pair of
them intersect in at most some fixed number s of points, that each arc consists of a small fixed
number of x-monotone pieces, and that it takes constant time to perform any of the following
primitive operations finding the intersection points between a pair of arcs, decomposing
an arc into its x-monotone pieces, intersecting an arc with a vertical line, and testing whether
a given point lies above or below a given (x-monotone piece of an) arc. To simplify the
description of the algorithm, we assume that each arc is already x-monotone; otherwise, we
first decompose the arcs into x-monotone pieces and then apply the algorithm. We also assume
that the arcs are in general position, in the spirit of the similar assumption we have made for
line segments.

As above, let p be a given point not lying on any arc. Our goal is to compute the face in
the arrangement of 1-’ that contains p. To compute the desired face, we apply the same scheme
of 2, except that there are several new technical difficulties that need to be addressed. The
face (city) and its complement (suburbs) are represented by their vertical decomposition into
pseudotrapezoids, obtained, as was done earlier, by drawing vertical segments up and down
from every endpoint and intersection point until they hit another arc. If general position is
assumed, each pseudotrapezoid is defined by at most four arcs, two containing its top and
bottom edges and two defining its left and right sides.

The data structures that we use are the same as those in 2 the dag, the linear array, and
the union-find structure. Searching in the dag for the pseudotrapezoids that intersect a newly
inserted arc 9/is trickier in this case because the intersection of 9/with a pseudotrapezoid A
can consist of several connected components (at most s 4- components, as is easily checked).
In this case we expect the search through the dag to yield a partition of 9/into a (sorted) list of
subarcs, each of which is either contained in the suburbs (and is therefore not drawn at all) or
intersects a single pseudotrapezoid of the current city. This list is initialized to consist only of
9/itself and is refined during the search as follows. Any recursive step involves the processing
of some history pseudotrapezoid A and some subarc 9/ that is a connected component of
9/f A. We go over the (constant number of) children of A, and for each child A’ we compute
9/’ f A’. The constant number of resulting subarcs of 9/’ are sorted by x coordinate and replace
9/’ in the output list. The search now continues recursively at each of the new subarcs and at the
pseudotrapezoid that contains it. Note that a node A of the dag may be visited several times
during the search, each time with a different subarc 9/’. However, it is easy to show that the cost
of searching with 9/in the dag is proportional to the number of pseudotrapezoids ever formed

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1301

that are crossed by V. At the end of the search we almost obtain the desired sorted partition
of y; since children pseudotrapezoids are merged, the final list of subarcs may contain pairs
of adjacent subarcs that share an endpoint and are contained in the same pseudotrapezoid. An
additional pass through the final list is needed to merge such pairs.

The remaining steps of the algorithm are the same (with certain trivial modifications) as
those of the algorithm of 2. We leave it to the reader to fill in the details.

The analysis is also similar to that in 3. Using the general notations at the end of that
section, we observe that in our case we have b 4 (maximum number of arcs defining a

pseudotrapezoid) and M(r) O(.s+z(r)) (bound on the complexity of a single face in an
arrangement of r arcs as above; see [9]). Then the expected storage of the algorithm is

S(n) <_ -M(r) O()s+(n)),
r=l

F

and the expected running time, again dominated by the cost of the searches through the dag,
is

T(n) 0
r2]\r=l

Hence we have the following theorem.
THEOREM 4.1. Given a collection F of n arcs in the plane with the aforementioned

properties and a point p not lying on any arc, the face of 4(F) that contains p can be
computed in randomized expected time O()s+2(n) log n) and expected storage O()s+2(n)).

Remark. This result is an improvement of the previous (deterministic) algorithm of
Guibas, Sharir, and Sifrony [9], whose running time is O(.s+z(n) log2 n).

5. Disetssion. In this paper we have presented a randomized incremental technique for
computing a single face in an arrangement of line segments and for several related problems.
The technique is a variant of several related recent randomized algorithms. It improves the
running time of the previously best algorithms for these problems, and it is fairly simple to

implement. The main characteristic of the technique is maintaining the history of the random
process as a dag of trapezoids, which facilitates efficient location of the new segment to be
inserted relative to the current version of the computed face. The analysis of the algorithm is
also novel, in the sense that it extends the previous analysis technique of Clarkson and Shor,
resulting in a simpler and more general approach.

The problems studied in this paper are only a sample of problems that can be solved
efficiently by using our technique. In addition to the earlier algorithm of Guibas, Knuth, and
Sharir [8] for computing Delaunay triangulations in the plane, there appeared, after the original
preparation of this paper, a few related works that also apply this or closely related techniques.
Among these we mention work by Seidel [18] for constructing trapezoidal decompositions of
arrangements of nonintersecting line segments and applying them for efficient point location
and triangulation of simple polygons and work by Miller and Sharir [12] for computing the
union of fat triangles or of pseudodiscs.

There are several other problems that are likely to be amenable to the technique presented
here. Among these we mention the problems of computing many faces in an arrangement of
lines or of line segments, computing a single cell in an arrangement of triangles in 3-space,
computing the zone of a plane in an arrangement of planes in 3-space, and computing many
cells in such an arrangement of planes. In all these cases it is straightforward to design
the general structure of an appropriate algorithm, along the lines of the algorithms we have
described. It is also fairly easy to extend the analysis to obtain sharp bounds on the expected

1302 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

number of regions constructed by the algorithm and on the expected sum of their weights,
appropriately defined. The difficulty in completing the algorithm usually lies in the subproblem
of maintaining the topology of the constructed structure. For example, in computing a single
cell in an arrangement oftriangles in space, when we add anew triangle t, we need to determine
the way in which it modifies the current cell, which seems to be considerably more difficult
than the similar problem in two dimensions.

To conclude, we mention one final open problem, namely, to close the still remaining gap
between the expected running time of our main algorithm, i.e., O(not(n) log n), and the lower
bound of f2 (n log n).

Acknowledgment. The authors wish to express their gratitude for the generous support
and hospitality of the DEC Palo Alto Systems Research Center.

REFERENCES

E ALEVIZOS, J. D. BOISSONNAT, AND E P. PREPARATA, An optimal algorithmfor the boundary ofa cell in a union

of rays, Algorithmica, 5 (1990), pp. 573-590.
[2] J.D. BOISSONNAT, O. DEVILLERS, R. SCHOTT, M. TEILLAUD, AND M. YVINEC, On-line geometric algorithms with

good expected behaviours, in Proc. Journ6es GOometriques Algorithmiques, INRIA, Sophia-Antipolis,
June 1990, pp. 7-13.

[3] B. CHAZELLE AND n. EDELSBRUNNER,An optimal algorithmfor intersecting line segments in theplane, J. Assoc.
Comput. Mach., 39 (1992), pp. 1-54.

[4] L.P. CHEW, The Simplest Voronoi Diagram Algorithm Takes Linear Expected Time, Manuscript, 1988.
[5] K. CLARKSON AND P. SHOR, Applications ofrandom sampling in computational geometry II, Discrete Comput.

Geom., 4 (1989), pp. 387-421.
[6] n. EDELSBRUNNER, L. GUIBAS, AND M. SHARIR, The complexity and construction ofmanyfaces in arrangements

of lines and ofsegments, Discrete Comput. Geom., 5 (1990), pp. 161-196.
[7] n. EDELSBRUNNER AND E. MOCKE, Simulation of simplicity: A technique to cope with degenerate cases in

geometric algorithms, ACM Trans. Graphics, 9 (1990), pp. 66-104.
[8] L. GUIBAS, D. E. KNUTH, AND M. SHARIR, Randomized incremental construction of Voronoi and Delaunay

diagrams, Algorithmica, 7 (1992), pp. 381-413.
[9] L. GUIBAS, M. SHARIR, AND S. SIFRONY, On the general motion planning problem with two degrees offreedom,

Discrete Comput. Geom., 4 (1989), pp. 491-521.
10] J. HERSHBERGER, Finding the upper envelope ofn line segments in O(n log n) time, Inform. Process. Lett., 33

(1989), pp. 169-174.
11] K. MEHLHORN, Unpublished manuscript, 1990.
12] N. MILLER AND M. SHARIR, Efficient Randomized Algorithmsfor Constructing the Union ofFat Triangles and

ofPseudodiscs, Manuscript, 1991.
13] J. S. B. MITCHELL, On Computing a Single Face in an Arrangement ofLine Segments, Manuscript, School of

Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, July 1990.
[14] K. MULMULEY, A fast planar partition algorithm I, J. Symbolic Comput., 10 (1990), pp. 253-280.
15] R. POLLACK, M. SHARIR, AND S. SIFRONY, Separating two simple polygons by a sequence of translations,

Discrete Comput. Geom., 3 (1988), pp. 123-136.
16] R. SEIDEL, Small dimensional linear programming and convex hulls made easy, Discrete Comput. Geom., 6

(1991), pp. 423-434.
17], Backwards analysis ofrandomizedgeometric algorithms, inNew Trends in Discrete and Computational

Geometry, J. Pach, ed., Springer-Verlag, Berlin, 1993, pp. 37-67.
18], A simple andfast incremental randomized algorithmfor computing trapezoidal decompositions and

for triangulating polygons, Comput. Geom. Theory Appl., (1991), pp. 51-64.
[19] A. WIERNIK AND M. SHARIR, Planar realization of nonlinear Davenport Schinzel sequences by segments,

Discrete Comput. Geom., 3 (1988), pp. 15-47.
[20] E. YANIV. Randomized Incremental Construction of Delaunay Triangulations: Theory and Practice, M.Sc.

thesis, Tel Aviv University, Tel Aviv, Israel, 1991.

