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Abstract. We present algorithms for computing a sparse basis for the null space of a
sparse underdetermined matrix. We describe several possible computational strategies, both com-
binatorial and noncombinatorial in nature, and we compare their effectiveness for several test

problems.
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1. Introduction. Let A be an m X n matrix of rank r. (Without loss of generality, we
will assume throughout that r < m< n.) If B is an n X (n-r) matrix of rank n—r such that

AB =0,

then the columns of B form a basis for the (n-r)-dimensional null space of A. For brevity, we
will refer to such a matrix B as a null basis. We will refer to the individual columns of B as null
vectors, each of which corresponds to a set of columns of A whose linear combination is equal to
zero. Obviously such a matrix B is not unique, not only in the relatively trivial sense of different
possible scalings and column permutations, but also in the sense that there may be structurally
distinct null bases for the same A (i.e., involving different combinations of columns of A4 ).

We are concerned in this paper with computing the elements of the matrix B explicitly,
although other representations for a null basis are possible (e.g., product forms). More
specifically, if the matrix A is sparse, we wish to compute a suitably sparse null basis B. It is
difficult to define precisely what we mean by a “‘suitably” sparse null basis. For one thing, there
may be no such sparse B. For example, the matrix

[1, ],

where [ is the identity matrix and e is the column vector all of whose components are equal to 1,
is quite sparse but has no explicit sparse representation for its one-dimensional null space. More-
over, even if a sparse null basis exists, the problem of computing a sparsest representation for it
has been shown to be NP-hard [2]. As in many sparse matrix computations, we will therefore
content ourselves with developing heuristic computational strategies that find a “good” sparse
null basis, though not necessarily the sparsest possible.

The sparse null basis problem has at least one important feature that distinguishes it from
most other sparse matrix problems. The analysis of most sparse matrix problems is simplified by
ignoring any zeros that might be created through exact cancellation as a result of some arithmetic
operation on nonzeros (see, e.g., [4, p. 27]). In computing a sparse null basis, however, we are
specifically seeking nontrivial linear combinations of nonzeros that give a zero result (i.e., arith-
metic cancellation). For this reason we will necessarily employ numerical techniques along with
some standard combinatorial methods, such as bipartite matching.
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Before proceeding with a discussion of the algorithms we have developed, we will first give
some applications that justify our interest in the sparse null basis problem and review other work
on it. We then state our basic strategy for computing a sparse null basis and explore in detail
several possible variations. The results of extensive empirical testing and some final observations
conclude the paper.

2. Applications. There are numerous applications in which a null basis is important. The
fundamental fact on which most of these applications are based is that the general solution of an
underdetermined system of linear equations

Az=) (2.1)
can be expressed as
z=2%+ By (2.2)

for some vector y, where % is any particular solution to the system and B is a null basis. In con-
strained optimization problems, for example, if a set of linear (or linearized) equality constraints is
expressed in the form (2.1), then every feasible point can be expressed in the form (2.2), thereby
allowing the constrained problem to be solved by means of an unconstrained problem in the vari-
able y. See [1, pp. 99-104] or [5, pp. 155-163] for further discussion of such null space methods in
optimization. :

The specific application that motivated our own interest in the null basis problem is the
force method of structural analysis. Here A is the equilibrium matrix of a structure and % is a
vector of applied loads, so that (2.1) expresses a constraint on the system force vector z, which is
to be determined. (See [8] and references therein for further details of the discussion to follow).
The locality of connections within the structure causes the matrix A to be quite sparse.

Minimizing the potential energy requires that z minimize the quadratic form
% zTDz

subject to the constraint (2.1), where the n X n, symmetric, block-diagonal matrix D is the ele-
ment flexibility matrix of the structure. Using (2.2), we see that y must satisfy the symmetric
linear system

BTDBy=-BTD:. (2.3)

In this context the null basis B is called the self-stress matrix. Thus, having computed a particu-
lar solution Z and the redundant force vector y, the desired system force vector z is given by
(2.2).

One of the principal virtues of the force method is that it separates the computation into
two somewhat independent phases:

1. Compute a null basis B and a particular solution 2.
2. Solve the linear system (2.3).

The importance of this separation becomes apparent when solving a sequence of problems having
a fixed layout but differing material properties, such as multiple redesign problems or nonlinear
elastic analysis. In such cases the matrix A is fixed, but the matrix D changes from problem to
problem. Thus the first phase need be done only once for the entire sequence of problems, and
only the second phase is repeated for each problem. A further implication is that it may be worth
considerable effort producing a sparse B, since this one-time cost will be amortized over the whole
sequence of problems.

Another important conclusion we can draw from the various uses of the null basis is that it
should be as well conditioned as possible (i.e., the columns of B should not be nearly linearly
dependent numerically). For example, a poorly conditioned B would make the conditioning of
the linear system (2.3) extremely poor and might therefore yield a highly inaccurate solution. For
numerical purposes, an orthogonal null basis would be highly desirable, but in many cases this
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goal would conflict too greatly with sparsity considerations.

3. Methods for computing a null basis. Many mathematical programming algorithms
use a variable-reduction technique to compute a null basis B (see, e.g., [5, p. 163]). Assume for
the moment that A has full row rank m, and let A be partitioned so that

AP=[A1, Al_)] s

where A; is m X m and nonsingular, and P is a permutation matrix that may be required in
order to ensure that A, is nonsingular. We may then take

-A'A,
A permutation P that yields a structurally nonsingular A; can be chosen purely symbolically (see,
e.g., [3]), but this says nothing about the possible numerical conditioning of A; and the resulting

(3.1)

In order to control numerical conditioning, numerical pivoting must be employed. Several
such methods have been proposed based on various matrix factorizations, including LU, @R, LQ,
SVD, and Gauss-Jordan elimination (see [8] for a survey). For example, QR factorization with
column pivoting (see, e.g., [6, p.165]) yields

AP=Q[R1, Rz] ’

where P is again a permutation matrix, and R, is an upper triangular matrix of order m. We
may now take

-R;le]
(3.2)

We note that if the permutation matrix P were the same in both cases, then the null bases
given by (3.1) and (3.2) would be the same. Thus, the QR approach can be viewed simply as a
means of choosing a permutation P on numerical grounds. Of course, numerical considerations
may be at odds with sparsity considerations, and a compromise may have to be made between the
two. In any case, with either (3.1) or (3.2) there may be a great deal of intermediate fill during
the computation. Moreover, forcing B to contain an embedded identity matrix may restrict us to
a considerably less sparse null basis than might otherwise be possible.

When A is banded, a method for computing a banded null basis B has been developed by
Topcu [13] and Kaneko, Lawo and Thierauf [9]. Their method is based on LU factorization and
is called, for reasons that will become obvious, the ‘‘turnback’ method. Heath, Plemmons, and
Ward [8] extended and adapted this method for use with QR factorization. Our algorithms,
described in Sections 4 and 5, were motivated by turnback; thus we describe this method in some
detail below.

Write A=(4,,85,...,6,) by columns. A start column is a column a; such that the ranks of
(8y,85,...,8,_;) and (8),85,...,8;) are equal. Equivalently, a; is a start column if it is linearly
dependent on lower-numbered columns. The coeflicients of this linear dependency give a null vec-
tor whose highest-numbered nonzero is in position 8. It is easy to see that the number of start
columns is n-r, the dimension of the null space of A.

The start columns can be found by doing a QR factorization of A, using orthogonal
transformations to annihilate the subdiagonal nonzeros. Suppose that in carrying out the QR
factorization we do not perform column interchanges but simply skip over any columns that are
already zero (or numerically negligible) on and below the diagonal. The result will be a factoriza-
tion of the form

A=@Q R
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The start columns are the columns where the upper triangular structure jogs to the right; that is,
a, is a start column if the highest nonzero position in column # of R is no larger than the highest

nonzero position in earlier columns of R.

Turnback finds one null vector for each start column a4, by ‘‘turning back’ from column s
to find the smallest k& for which columns a,,s, ,,...,a,_; are linearly dependent. The null vector
has nonzeros only in positions 8-k through &. Thus if k£ is small for most of the start columns,
then the null basis will have a small profile. Note that turnback operates on A, not R. The ini-
tial QR factorization of A is used only to determine the start columns, and is then discarded.

As described above, the null vector that turnback finds from start column a; may not actu-
ally be nonzero in position ¢. Therefore, turnback needs to have some way to guarantee that its
null vectors are linearly independent. Heath, Plemmons, and Ward accomplish this by forbidding
the leftmost column of the dependency for each null vector from participating in any later depen-
dencies. Thus, if the null vector for start column a, has its first nonzero in position s-k, every
null vector for a start column to the right of a, will be zero in position s—k.

4. Overview of the algorithms. The four algorithms we compare in this paper all fit the
following framework, which is based on turnback.

Preorder the columns of A;
Perform QR factorization of A to get start column numbers 8y, 2,,...,8,_,;
for j:=1to n-r do

Find a null vector whose highest nonzero position is g,

The initial QR factorization is done by the George-Heath algorithm as described in [7]. As
in turnback, the factorization is used omly to find the start columns, and is then discarded.
Preordering the columns of A may be necessary to make the initial QR factorization sparse. We
experimented with several preordering strategies, as described in Section 6.

Each start column is the rightmost member of some dependent set of columns. Thus, each
start column corresponds to a null vector whose highest-numbered nonzero is in that column.
Each such null vector is found independently.

The algorithm maintains a set of active columns, initially containing only the current start
column a,. It adds lower-numbered columns to the active set, one at a time. If a lower-
numbered column is dependent on some active columns not including the start column, that
column is not added to the set. When the active set becomes linearly dependent, its columns
correspond to the nonzero positions of the desired null vector.

The active rows are the rows of A in which some active column is nonzero. The active sub-
matriz is the matrix of active rows and columns. Thus, the algorithm keeps adding columns to
the active submatrix until it becomes deficient in column rank. In order to produce a sparse null
vector, we want the active submatrix to grow as little as possible before a dependency is found.

The algorithm for finding one null vector is summarized in the following pseudocode.

ActiveColumns :={a, };
repeat
Choose an inactive column a,, ¢ <s;
if o, is independent of ActiveColumns—{a,}
then ActiveColumns:=ActiveColumns + {a.}
untll ActiveColumns is linearly dependent

The algorithm determines linear dependence or independence by maintaining a QR factori-
zation of the active submatrix. Since the active submatrix contains only the active rows and
columns, it is likely to be quite dense. Therefore, the QR factorization is stored in a dense data
structure, each column of which contains a column of R above the diagonal and a Householder
transformation below the diagonal. It is updated as follows. Suppose there are k active columns,
and a new column is being considered as a potential active column. The first k¥ Householder
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transformations are applied to the new column. If the result has any nonzeros below position k, a
new Householder transformation is computed to zero the new column below position k (thus
updating the QR factorization) and the new column becomes active.

If, on the other hand, the result is zero below position k, then the new column is dependent
on the other active columns. Either the dependency includes the start column, in which case the
desired null vector has been found; or the dependency excludes the start column, in which case
the new column does not become active and the QR factorization is not updated. Once a depen-
dency has been found, the numerical values of the nonzero entries in the corresponding null vector
are computed by back substitution with the triangular matrix R .

This procedure guarantees that the active columns are always linearly independent, so when
we find the null vector it will be nonzero in position 8 as desired. Notice that this part of the
algorithm is purely numerical; we use no information about the nonzero structure except in the
definition of an active row as one in which an active column is nonzero.

The size of the active submatrix is crucial to the efficiency of the algorithm in three ways.
First, its QR factorization (stored in dense format) dominates the space required by the algo-
rithm. Second, updating this @R factorization dominates the total time required. Third, the
number of columns in the active submatrix is at least as large as the number of nonzeros in the
current null vector, so small active submatrices will lead to a sparse null basis. We want
somehow to select columns for the active submatrix in a way that will keep the active submatrix
small. The following section considers several strategies for selecting columns.

5. Detalls of column selection strategy. The heart of the algorithm is the strategy for
choosing columns to add to the active submatrix. Since finding the sparsest null vector of a
matrix is NP-hard [2], we do not hope to find the best possible choice of columns. Rather, we
consider several heuristics.

5.1. Closest column next (Turnback). The simplest strategy is to choose columns in
right-to-left order from the start column a,. This is the ‘‘turnback” strategy described in Section
3 above, with a minor difference in the way it avoids finding linearly dependent null vectors. The
turnback algorithm in [8] never adds to the active submatrix the lowest-numbered nonzero
column of any earlier null vector; our implementation may add such a column, but it never adds
a column that would create a dependency that does not include a;.

Turnback performs well when the columns in a dependent set are close together in A, which
happens when A is banded. Turnback tries to minimize the bandwidth of the current null vector,
s0 it tries to produce a banded null basis.

Our experience is that turnback usually produces a basis with a sparse band, even for the
problems on which it performs best. Therefore, a general sparse data structure may be more com-
pact than a band or envelope data structure. Our implementation stores both A and the null
basis B by columns in the general sparse data structure used in Sparspak [4].

5.2. Cheapest column next. Turnback tries to find null vectors with small bandwidth
by choosing columns close to the start column. In a general sparse setting we want to choose
columns on grounds of sparsity rather than bandwidth. The next algorithm assigns each column
a cost that measures the growth it would cause in the active submatrix; then the algorithm
chooses the cheapest column.

Let n be the number of columns in A. The cost of column 4, is defined to be

cost(a;) = (number of nonzeros in inactive rows of a,)
— (number of nonzeros in active rows of a;}/n

-j/n

This definition makes a column cheaper if it adds fewer rows to the active submatrix. The null
vector is sparse if the final active submatrix has few columns. The submatrix has few columns if
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it has few rows, since the null vector is complete when the submatrix becomes deficient in column
rank.

In case of a tie in the number of nonzeros in inactive rows, we make a column cheaper if it
has more nonzeros in active rows. The heuristic reason for this is that we hope to encounter
numerical cancellation that will make the active submatrix deficient in column rank while it still
has more rows than columns. Our experience is that such cancellation is more likely if the active
submatrix is denser.

If ties in cost still remain, we make a column cheaper if it is farther to the right, that is,
closer to the start column. All else being equal, this tries to minimize bandwidth. Our experience
is that this tiebreaking rule usually makes little difference in the sparsity of the basis, but on some
banded problems it helps significantly. Cheapest-column-next with cost defined only by this
tiebreaking rule is the same as turnback.

5.3. Choosing a column by matching. A more sophisticated way to choose columns for
the active submatrix is based on the combinatorial structure of the matrix. In this section we
describe two versions of a heuristic that uses matchings in bipartite graphs to guide the search for
a good column. Appendix A contains the necessary definitions and lemmas from bipartite match-
ing theory.

In combinatorial terms, the matrix A is a bipartite graph whose two disjoint sets of vertices
are its rows and its columns, and whose edges are its nonzeros. The start column g, is a vertex of
A. The active submatrix is the subgraph containing the active columns, the active rows (which
are the vertices adjacent to active columns), and the edges between them. The active columns
less a, are always independent, so by Lemma 3 there is a matching that covers all the active
columns except a;. The new column to be added will increase the size of the matching by one.
The algorithm searches for a column to add by following alternating paths. We give details
below, followed by a proof that the algorithm will find the desired null vector.

Though we use matchings and alternating paths to guide the algorithm, we still use the
numerical QR factorization of the active submatrix to decide when sets of columns are depen-
dent. This lets us avoid any no-cancellation assumptions, and it lets us find null vectors that
could not be predicted from the structure alone of A. It means that we must be careful to distin-
guish numerical and structural notions both in the algorithm and in its correctness proof: ‘“depen-
dent”’ and “independent” are numerical; “matching’’, “path”, and “cover’’ are structural.

The algorithm. Given a start column a,, this algorithm finds a null vector whose highest
ponzero position is g, if there is such a null vector. In the algorithm, C is the set of active
columns. The active rows are all those rows in which some active column is nonzero.

C:={a;};
Start with the empty matching;
repeat
Find an alternating path from some uncovered active row, number r, to some
inactive column a; to the left of a; that is independent of C—{a;};
Alternate along the path, increasing the size of the matching by one
and covering row r and column c;
C:=C+{a.};
untll either a, is dependent on C'-{s,}
or no such alternating path exists;
if o, is dependent on C-{a,}
then null vector := coeflicients of the dependency
else report “no such null vector”

An invariant that is true at the beginning and end of the main loop is: The columns in C—{a;}
are independent, and the matching covers all columns in C-{a;} and only active rows. See Fig-
ure 1 for a sketch. (The active columns and rows may not actually be contiguous in the matrix.)
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Figure 1. Computing one null vector. Columns
in C-{a,} are independent and matched to active rows.
Active rows and columns may not be contiguous.
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If there is no numerical cancellation, so that the rank of every matrix involved is equal to
its maximum matching size, then the algorithm will find a null vector when the active columns
first become more numerous than the active rows. Then there will be exactly one more active
column than active row, and the matching will cover all the active rows. If there is cancellation,
the algorithm may find a null vector when there are more active rows than columns. This will be
a null vector whose nonzero structure could not have been predicted from the nonzero structure of

A.

Correctness of the algorithm.

Theorem. If there is a null vector whose highest nonzero position is s, this algorithm stops
with o, dependent on C—{a,}; otherwise it stops with s, independent of C{a,}.

Proof. Each iteration of the loop makes C larger, so the algorithm must stop eventually. If
there is no null vector, g, is independent of all the earlier columns, so it is independent of
C—{a,}. Thus we need only prove that if the null vector exists then the algorithm will not stop
early; that is, if the null vector exists and a, is independent of C-{a,}, then there is an alternat-
ing path from some uncovered active row to some inactive column to the left of a,.

Assume that the desired null vector exists. Then a, is a linear combination of the columns
to the left of a;. It is not a linear combination of C-{a,}, so there is some ¢ <s such that a, is
independent of C-{s,}, even considering only the active rows. Then C-{a,}+ {4 } is indepen-
dent, even considering only the active rows. Then Lemma 3 says that C-{a,}+ {a,} has a
matching that covers all its columns and covers only active rows.

The current matching is thus not a maximum matching on columns C—{a,}+ {a,} and the
active rows. Therefore, by Lemma 2, there is an alternating path from some uncovered active
row to some uncovered column. The only uncovered column in C-{a,}+ {a,} is the inactive
column a,. O

Finding an alternating path. The algorithm maintains a queue of uncovered active
rows. At each iteration, it takes a row from the head of the queue and searches for an alternating
path to an inactive column. If no such path exists, it proceeds to the next row on the queue.
When it chooses a new column, it adds any newly active rows to the tail of the queue.

There are two versions of the search for an alternating path from a particular uncovered
active row. The “‘DFS matching” version performs a depth-first search through alternating paths
from the row, visiting every inactive column that can be reached by such a path. It chooses the
cheapest of those columns according to the cost criterion of Section 5.2. The ‘‘greedy matching”
first looks for an inactive column that can cover the uncovered active row, and chooses the
cheapest such column if there is one. If there is no such column, it performs a depth-first search.
Thus it first tries to find an alternating path of length one, and spends the time to search all
alternating paths only if that fails.

The greedy algorithm is based on Duff’s code MC21A for finding a nonzero diagonal of a
matrix [3]. MC21A finds a matching by repeatedly finding alternating paths, and the greedy
heuristic speeds up MC21A very significantly in practice. We expected the DFS version to find
sparser null bases than the greedy version, but to take longer. However, in the experiments we
report in Section 6, the DFS version was usually better than the greedy version in running time
and storage as well as in sparsity of the null basis. Presumably this is because it is more success-
ful in keeping the active submatrix small; the time spent doing depth-first searches is saved in
updating the @R factorization.

8. Experimental results. We experimented with the four algorithms described in Section
5: turnback, cheapest column next, greedy matching, and DFS matching. Table 1 describes nine
sample problems, from various sources, that we used for testing.

Our code gives the option of preordering the columns of A before beginning the null basis

computation. Preordering may be necessary to keep the initial QR factorization, which is used to
find start columns, sparse; for details see [7]. We found little overall correlation between
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preordering method and null basis density, though some problems did show a marked preference
‘for one ordering or another. For the results in Tables 2 through 5 we used, for each algorithm
and each problem, the preordering that gave the sparsest null basis for that algorithm on that
problem. To support our contention that this compares the algorithms fairly, Table 6 gives
results with no preordering at all.

For all but one of the problems we tried three orderings: the original order in which the
matrix was presented, reverse Cuthill-McKee, and nested dissection. {The last two were applied
to the structure of ATA .) One matrix, WHEEL, was presented in four different orders; we tried
all four, for a total of six in all. It should be noted that for most of the problems the original ord-
ering had already been carefully chosen to reflect certain structural characteristics. In general,
one of the automated orderings would be necessary in order to make the initial sparse QR factori-
zation feasible.

Table 2 reports the numbers of nonzeros in the null bases found by the various algorithms.
The last column normalizes these numbers: It gives the ratio of the density of the particular null
basis to that of the sparsest null basis any algorithm could find for the same problem. Thus, for
example, the turnback null basis for FRAME3D had 1.43 times as many nonzeros as the DFS
matching null basis, which was the sparsest one found.

Table 3 reports running times. The time reported excludes the time to preorder the
columns, perform the initial QR factorization, and find start columns. The excluded times do not
depend on which of the four algorithms is being used, and they account for much less than 10% of
the total in the larger problems. Again, the last column normalizes each time to the fastest time
for the same matrix.

Table 4 reports the maximum size of the active submatrix during the computation. The
active submatrix dominates the storage requirements of all four algorithms. Its QR factorization
is stored in a dense rectangular array, using the lower triangle to store the Householder transfor-
mations whose product is @. The size reported is the product of the number of active rows and
active columns. The last column normalizes the results.

Table 5 gives, for each algorithm, the average over all nine problems of the normalized basis
density, running time, and submatrix size.

As we mentioned above, for each problem and algorithm we chose the preordering that gave
the sparsest null basis. Table 6 gives the same figures as Table 5, with no preordering; that is, it
gives the results when each problem is solved in the column order it was first presented in.

Our experimental code is written in Fortran 77 and was run on a lightly loaded Vax 780
(with floating point accelerator), under Berkeley 4.2 Unix. While we coded it carefully, we did
not go to extraordinary lengths to minimize runtime. We have not compared our code to any
other implementation of turnback. Our runring times were reproducible to within about 15%

7. Conclustions. Finding a sparse null basis is a problem that is partly combinatorial,
partly numerical. We have experimented with algorithms that use the combinatorial structure of
the matrix to guide a search for sparse null vectors, but use numerical computation to decide
linear dependence. They range in combinatorial sophistication from turnback (which uses none of
the structure of the matrix), through cheapest-column-next (which uses the nonzero counts of the
rows and columns), to the depth-first search matching algorithm (which uses matchings and alter-
nating paths in the bipartite graph of the matrix).

The results in Section 6 are somewhat mixed, but we can draw some rough conclusions.
The DFS matching algorithm looks promising. It has a small but consistent advantage in spar-
sity; indeed, for only one problem (PLANE) did it fail to come within 1% of the sparsest basis we
could find. On the other hand, all the algorithms found pretty good null bases; the worst basis of
the four was rarely more than 25% denser than the best. (This is counting only actual nonzeros; a
band-oriented approach like the original turnback algorithms might also require storage of many
zero entries in the null basis.) The differences in runtime and storage were greater: The matching
methods usually ran 2 to 5 times as fast as the non-matching methods, and used correspondingly
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smaller active submatrices. There was wide variation: DFS matching was never slower than turn-
back, but the ratio between them ranged from 1.4 to 22.

Cheapest-column-next generally did better than turnback but worse than DFS matching.
On the whole, we conclude that more combinatorial sophistication seems to help, both in sparsity
of the null basis and in effort to find it.

All these algorithms are limited by the storage needed for the active submatrix. The QR
factorization of the active submatrix is quite dense. We know of no way to avoid this while
adding columns to the submatrix in unpredictable order. The other storage bottleneck is the ini-
tial @R factorization of A. Here we use Heath’s technique of withholding any dense rows if
necessary [7]. This approach may lead to a few extra ‘“‘spurious” start columns, but these are
detected correctly by the subsequent null vector algorithm and do not affect the ultimate null
basis (although they may incur extra computation). We do not have detailed statistics, but when
the program ran out of space it was always because of the active submatrix rather than the initial
QR factorization.

We made some tests of the numerical quality of the computed null basis B. We estimated
|AB ||/ |lA || | B | to see how nearly orthogonal A and B were, and the answer was always near
machine epsilon. We estimated the condition number of B for six of the problems (all but
MIXED1, ADLITTLE, and SHARE1B). The answer was almost always reasonably small, but on
PLANE and WHEEL there were just a few bases with conditions as high as 10%®. The ill-
conditioned bases do not seem to correlate with choice of algorithm or choice of preordering. We
think these results on condition number are acceptable--at least, for every problem the majority
of the algorithms and preorderings produced well-conditioned bases—but we don’t know how to
guarantee good conditioning. Coleman and Pothen [2] gave an algorithm for finding an orthogo-
nal basis for the null space, but they also showed that the sparsest orthogonal null basis may be
very much denser than an arbitrary null basis. How to trade off sparsity for conditioning is an
interesting open question.

As mentioned above, some of the theory behind the matching methods we used comes from
Alex Pothen’s thesis [2]. Pothen is experimenting with the null basis algorithms from his thesis,
but we do not yet have any comparisons with our algorithms. Pothen [12] has also recently sug-
gested an interesting class of heuristics for null basis problems from structural analysis, based on
the structure of the object being analyzed in addition to the structure of the matrix.

Appendix. Bipartite graphs, matchings, and rank. Let A be a matrix. The bipartite
graph of A is the graph whose vertices are the rows of A and the columns of A, with an edge
between a row vertex and a column vertex if and only if the corresponding entry of A is nonzero.
We do not distinguish between a row of A and a row vertex of the graph of A. Informally, we do
not distinguish between A and its graph.

A matching on A is a set of edges, no two of which have a common endpoint.
(Equivalently, it is a set of nonzeros, no two of which are in the same row or column.) A vertex is
covered by a matching if it is the endpoint of some matching edge, and uncovered otherwise. A
mazimum matching is a matching such that no matching on A has more edges.

A poth in A is a sequence of distinct vertices vy,v,,...,v; such that {v, ;,v,} is an edge for
1<i<k. The length of the path is k. If M is a matching on A, an alternating path (with respect
to M) is a path whose edges are alternately in M and not in M. If P=u,,...,v; is an alternating
path from an uncovered vertex v, to an uncovered vertex vy, we can modify the matching by
removing edges {v,,v,},{vs,v,},....{vs_5v;1} and adding edges {vo,v,},{vs,vs},...,{ve_1,v:}. This
is called alternating along the path P. It increases the size of the matching by one edge, covers v,
and v;, and leaves all previously covered vertices covered.

For proofs of the following lemmas and more background on bipartite matching, see Lawler
[10] or Papadimitriou and Steiglitz [11].

Lemma 1 (Hall's Theorem). Matriz A has a matching that covers every column if and
only if every set of columns of A intersects a set of rows of A that is at least as large.
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Lemma 2. If M is a matching on A whose size 18 not mazimum, then there is an alternat-

ing path from gsome uncovered row of A to some uncovered column of A.

Lemma 3. Every matriz has s matching that is at least as large as its numerical rank.

As a consequence of Lemma 3, if the columns of A are linearly independent, then there is a

matching that covers every column. The combinatorial notion of maximum matching size
corresponds closely to the numerical notion of rank. It can be shown that if we fix the nonzero
structure of A and assign values to those nonzeros at random, then with probability 1 the rank is
equal to the maximum matching size.
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Rows Columns Nonzeros

FRAMEZ2D 27 45 93
PLANE 40 80 168
ADLITTLE 57 97 465
PLATE 59 144 364
FRAME3D 72 144 304
WHEEL 96 120 420
WRENCH 112 216 490
SHAREIB 118 225 1182
MIXED1 171 320 906

Table 1. Description of test problems. ADLITTLE, SHAREI1B, and MIXED]1 are linear
programming bases. The remaining problems are from structural analysis.
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Best Nonzeros in  Normalized
Problem Algorithm Preorder Null Basis Density
FRAME2D Turnback none 76 1.00
Cheapest Column  none 76 1.00
Greedy Matching  none 87 1.14
DFS Matching none 76 1.00
PLANE Turnback none 166 1.00
Cheapest Column  none 166 1.00
Greedy Matching RCM 183 1.10
DFS Matching none 177 1.07
ADLITTLE Turnback RCM 391 1.07
Cheapest Column ND 385 1.05
Greedy Matching RCM 387 1.05
DFS Matching ND 367 1.00
PLATE Turnback RCM 326 1.05
Cheapest Column RCM 310 1.00
Greedy Matching RCM 313 1.01
DFS Matching RCM 311 1.00
FRAME3D  Turnback none 452 1.43
Cheapest Column  none 338 1.07
Greedy Matching  none 369 1.16
DFS Matching none 317 1.00
WHEEL Turnback order 3 503 1.03
Cheapest Column  order 2 516 1.06
Greedy Matching RCM 625 1.28
DFS Matching order 3 488 1.00
WRENCH Turnback none 544 1.05
Cheapest Column none 549 1.06
Greedy Matching  none 590 1.14
DF'S Matching none 518 1.00
SHAREI1B Turnback none 1531 1.12
Cheapest Column ND 1567 1.15
Greedy Matching RCM 1604 1.18
DFS Matching RCM 1363 1.00
MIXED1 Turnback none 1518 1.38
Cheapest Column RCM 1323 1.20
Greedy Matching  none 1161 1.05
DFS Matching none 1101 1.00

Table 2. Density of null basis.



-13 -

Best Running Time Normalized

Problem Algorithm Preorder (Seconds) Time
FRAME2D  Turnback none 2.30 3.65
Cheapest Column  none 1.12 1.78

Greedy Matching  none 0.72 1.14

DFS Matching none 0.63 1.00

PLANE Turnback none 7.05 2.04
Cheapest Column  none 5.25 1.52

Greedy Matching RCM 3.45 1.00

DFS Matching none 4.88 1.41

ADLITTLE  Turnback RCM 28.02 3.19
Cheapest Column ND 17.47 1.99

Greedy Matching RCM 8.78 1.00

DFS Matching ND 10.50 1.20

PLATE Turnback RCM 13.02 3.28
Cheapest Column RCM 6.65 1.68

Greedy Matching RCM 3.97 1.00

DFS Matching RCM 4.12 1.04

FRAME3D Turnback none 66.12 22 41
Cheapest Column  none 16.10 5.46

Greedy Matching  none 2.95 1.00

DFS Matching none 2.95 1.00

WHEEL Turnback order 3 17.32 1.66
Cheapest Column  order 2 83.35 7.98

Greedy Matching RCM 16.83 1.61

DFS Matching order 3 10.45 1.00

WRENCH Turnback none 58.38 2.16
Cheapest Column  none 57.18 2.12

Greedy Matching  none 30.52 1.13

DFS Matching none 26.98 1.00

SHAREI1B Turnback none 773.15 7.85
Cheapest Column ND 365.90 3.72

Greedy Matching RCM 98.45 1.00

DFS Matching RCM 103.68 1.05

MIXED1 Turnback none 288.87 4.75
Cheapest Column RCM 584.68 9.62

Greedy Matching none 70.73 1.16

DFS Matching none 60.80 1.00

Table 3. Time to find null basis (excluding preordering and initial QR factorization).
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Best Size of Normalized

Problem Algorithm Preorder  Active Submatrix Size
FRAME2D Turnback none 288 4.00
Cheapest Column  none 182 2.53

Greedy Matching  none 110 1.53

DFS Matching none 72 1.00

PLANE Turnback none 506 1.00
Cheapest Column  none 506 1.00

Greedy Matching RCM 600 1.19

DFS Matching none 650 1.28

ADLITTLE Turnback RCM 2550 2.34
Cheapest Column ND 1680 1.54

Greedy Matching RCM 1089 1.00

DFS Matching ND 1680 1.54

PLATE Turnback RCM 812 4.46
Cheapest Column RCM 182 1.00

Greedy Matching RCM 210 1.15

DFS Matching RCM 182 1.00

FRAME3D Turnback none 2064 12.29
Cheapest Column  none 1089 6.48

Greedy Matching  none 288 1.71

DFS Matching none 168 1.00

WHEEL Turnback order 3 1560 2.06
Cheapest Column  order 2 9312 12.32

Greedy Matching RCM 2256 2.98

DFS Matching order 3 756 1.00

WRENCH Turnback none 5112 1.60
Cheapest Column  nomne 3782 1.18

Greedy Matching none 3192 1.00

DFS Matching none 3782 1.18

SHARE1B Turnback none 13570 1.66
Cheapest Column ND 9310 1.14

Greedy Matching RCM 8742 1.07

DFS Matching RCM 8160 1.00

MIXED1 Turnback none 10506 2.97
Cheapest Column RCM 15500 4.37

Greedy Matching  none 4356 1.23

DFS Matching none 3540 1.00

Table 4. Maximum size of active submatrix during null basis computation.
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Nonzeros in  Running Size of
Algorithm Null Basis Time Active Submatrix
Turnback 1.13 5.67 3.60
Cheapest Column 1.07 3.99 3.51
Greedy Matching 1.12 1.12 1.43
DF'S Matching 1.01 1.08 1.11

Table 5. Normalized performance measures, averaged over all nine problems.

Nonzeros in  Running Size of
Algorithm Null Basis Time Active Submatrix
Turnback 1.26 6.70 4.25
Cheapest Column 1.10 4.61 3.36
Greedy Matching 1.17 1.24 1.64
DFS Matching 1.01 1.10 1.05

Table 6. Normalized performance measures, averaged over all nine problems (no preordering).
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