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1. Introduction.

In an important class of minimizatior: algorithms called "trust region methods"
(see, for example, Sorensen [1981]), the calculation of the step between iterates
requires the solution of a problem of the form

(1.1)  minfy(w): |wii= A}
where A is a positive parameter, ||- || is the Euclidean norm in #™, and
(1.2)  yYlw) =gTw + ¥’ Buw,

with g € /*, and B € R™™™ a symmetric matrix. The quadratic function ¥ generally
represents a local model to the objective function defined by interpolatory data at an
iterate and thus it is important to be able to solve (1.1} for any symmetric matrix B; in
particular, for a matrix B with negative eigenvalues.

In trust region methods it is sometimes helpful to include a scaling matrix for the
variables. In this case, problem (1.1) is replaced by

(1.3)  minfy(v): || Dv [ = 8}

where D€ R™™® js a nonsingular matrix. The change of variables Dv = w shows that
problem (1.3) is equivalent to

(1.4) minffi(w):(w]i< 4

where ¥(w) = ¥(D'w), and that the solutions of problems (1.3) and (1.4) are related
by Dv = w. Because of this equivalence, we only consider problem (1.1). Also note
that if, as is usually the case, D is a diagonal matrix, then it is easy to explicitly carry
out the change of variables and solve problem (1.4).

The use of a trust region methed in a nonlinear optimization problem requires the
solution of many problems of type {1.1). These problems do not usually require accu-
rate soluticns, but in all cases we must be able to find an approxirnate solution with a
reasonable amount of computational effort, and the approximate solution found mus*
guarantee that the trust region method has the right sort of convergence properties.
In this paper we are concerned with these two issues; namely, robust and stable algo-
rithms for the solution of (1.1) and the impact of these algorithms on the convergence
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properties of trust region methods.

Goldfeld, Quandt, and Trotter {1966], Hebden [1973], Fletcher [1980], Gay [1981],
and Sorensen [1980], have discussed the solution of (1.1} in connection with trust
region methods. Their algorithms are bz3sed on the fact that if (1.1} has a solution on
the boundary of {w :||w || < A} then, in most cases, a solution of (1.1) can be found by
det :rmining A = 0 such that B + A/ is positive deflnite and

(18) (B +AN)gil=2

In one case - the hard case - equation (1.5) has no solution with 7 + A/ positive definite,
and this leads to numerical difficulties. Hebden [1973] proposed an algorithm for the
solution of (1.1) which is basically sound except for its treatment of the hard case. Gay
[1881] improved Hebden's scheme and showed that under certain conditions the
approximate solution determined by his algorithm is nearly optimal. His algorithm,
however, may require a large number of iterations in the hard case.

In this paper we propose an algorithm for the solution of (1.1) which is guaranteed
to produce a nearly optimal solution in a flnite number of steps. Specifically, given
parameters o, and 0z in (0,1), the approximate solution s satisfies

Y(s) =¥ s o(2—o)max{|¥ [0z} |Is]ls (L+a,)d,

where ¥° is the optimal value of (1.1). We also consider the use of our algorithm in a
trust region Newton's method. In particular, we prove that under reasonable assump-
tions the sequence {z,] generated by Newton's method has a limit point z° which
satisfles the first and second order necessary conditions for a minimizer of the objec-
tive function f. Numerical resuits for GQTPAR, which is a Fortran implementation of
our algorithm, show that GQTPAR is quite successful in a trust region method. In our
tests a call to GQTPAR only required 1.8 iterations on the average.

The outline of the paper is as follows. The theoretical basis of an aigorithm for the
solution of (1.1) is laid out in Section 2, while in Sectlion 3 we present the algorithm and
show that the solution generated by the algorithm is nearly optimal. In Section 4 we
consider the use of this algorithm in a trust region Newton's method and prove that the
combined algorithm has very strong convergence properties. Numerical results are
presented in Section 5.

2. Sructure of the Problem.

Problem (1.1) has a tremendous amount of structure and it is important to under-
stand this structure in order to construct a suitable algorithm. The following results
expose this structure and provide a theoretical basis for the numerical algorithm. Note
that these results provide necessary and sufficient conditions for a point p € " to be a
solution to (1.1) and that there is no "gap" between the necessary and sufficient condi-
tions.



Lemma (2.1). If pis a solution o (1.1) then p is a solution to an equation of the form
(2) (B+A)p=-g,
with B + A positive semidefinite, A= 0, and A(A~||p|) = 0. =

lemma (2.3). Let A\€ R, p € R™ satisfy (2 2) with B + M positive semidefinite.
) Ifx=0and|p| < Athenp solves (1.1).

(ii) psolves Y(p) = min{y(w) : jwll =1p (.

(#it) IfA=0 and ||p|| = A then p solves (1.1).
If B + A is positive definite then p is the only solution to (1.1). a

Simple proofs of these lemmas are given by Sorensen [1980). Lemma (2.3) is
important {from a computational standpoint since it provides a perturbation resuit that
is useful in setting termination rules for the iterative method used to solve (1.1).

The solution of {1.1) is straightforward if (1.1) has no solutions on the boundary of
fw:||w] < A}l Infact, (1.1) has no solution p with {|p || = A if and only if B is positive
definite and || B~'g || < A. To prove this claim, first note that if 7 is positive definite and
[B~'g |l < A then Lemma (2.3) immediately shows that p = —B~!g is the solution to
(1.1). On the other hand, if (1.1) has a solution p with |p || < A then Lemma (2.1} shows
that A = 0 and that B is positive seridefinite. If B were singular then 5z = 0 for scme
z with ||p +2 ]| = A and then Lemma (2.3) implies that p + 2 is a solution to {(1.1) on the
boundary. This contradiction establishes our claim.

Now assurne that (1.1) has a solution on the boundary of {w:||w ]| < A}. If g is not
perpendicular to the eigenspace

S;={g:Bz=MNz, 2204
where A, is the smallest eigenvalue of B, then the nonlinear equation ||p,|| = A where
Pa=—{B +al)y

has a solution A = 0 in (~A;,=). Moreover, Lemma {(2.3) implies that p, is the solution of
problem (1.1). Reinsch [19687,1971] and Hebden [1873] observed independently that to
solve ||p.|| = A great advantage could be taken of the fact that the unction ||p,|P is a
rational function in a with second order poles on a subset of the negatives of the eigen-
values of the symmetric matrix B . To see this consider the decomposition

B = QAQT with A = diag(A\j. As. - . A\a )and @QT@ =/,

and observe that

(24)  lipalf =11QA + al)"'Q7g |I* = );, (A,7+ )



where 7, is the i-th component of @7g. In the next section we elaborate on the impor-
tance of this observation.

If g is perpendicular to S, then the equation j|p,|| = A may still have a solution
A= 0in {—A;,=), and in this case the solution to {1.1) can be obtained as above. If, how-
ever, ||pall = A has no solutions in (—A;,=) then this leads to numerical difficulties. We
call this situation the "hard case".

A characteristic difficulty of the hard case is that ||p,|| < A whenever B + af is
positive definite. For example, if

_|F1o _[o
B=log, 9=
then A\, = —1 ,and if B + af is positive definite then ||p, /| < %. In the hard case, a solu-
tion to {1.1) can be obtained by solving

(B=M)p =-g
for p with ||p || < A and by determining an eigenvector z € S,. Then
(B -MI)p +72)=-g
and }|p + 7z || = A for some 7. Lemma (2.3) now shows that p + T2 solves (1.1).

3. The Algorithm.

Consider tne solution of ||pa{l =4 The rational structure of |p,|? may be
exploited by applying Newton's inethod to the zero finding problem

1 1

3.1 a)=s —— ——=0.
BN @)= 3 o
Newton's method is very efficient when applied to (3.1) since ¢ is almost linear on
(=Aj.=). Moreover, the computation of the Cholesky factorization of B + af/ makes it
possible to compute the necessary derivative whenever a € (—A,,=). There is no need to
compute the eigensystem of B as suggested by Goldfeld, Quandt, and Trotter [1968).
The following algorithm updates A by Newton's method applied to (3.1).
Algorithm (3.2). Let A= 0 with B + A/ positive definite and A > 0 be given.

1) Factor B+ M = RTR ;

2) Solve RTRp = —g ;

3) Solve RTq =p ;

4
nien=as (2 iol=a)



In this algorithm RTR is the Cholesky factorization of B + A/ with R € R™™® upper tri-
angular Although not represented in this simplified version, it is necessary to safe-
guard A in order to obtain a positive definite B + A/ and guarantee convergence. These
safeguards, and the convergence criteria for this algorithm are discussed later on in
this section.

It properly safeguarded, the iteration produced by Algorithm (3.2) is sufficiently
rapid to solve most problems of type (1.1) expected in practice. However, in the hard
case this scheme may require a large number of iterations to converge; in particular, if
g = 0 then Algorithm (3.2) breaks down. In the hard case it is necessary to supply a
vector z that is an approximate eigenvector of B corresponding to A,. Indeed, as
pointed out at the end of Section 2, in the hard case a solution to (1.1} is

(83) p=-(B-M\IMg + 72,

where z € S, and 7 is chosen so that || p [|=A. Note that actual computation of the two
orthogonal components of p indicated in (3.3) may require more computational effort
then is reasonable in the context of an optimization algorithm. Moreover, recognizing
thot a solution of the form (3.3} is required may also be time consuming. Fortunately,
there is a completely acceptable alternative. The following result provides a foundation
for this technique.

Lemma (3.4). Let 0 < o < 1 be given and suppose that
B+MN=RTR . (B+A\)p=-g A>0.
let z € R™ satisfy
(35) llp+=zil=A. llRz|E=<a(l| Rp |? + AA%).
Then
—¥(p +z)=H(1-0)(i| Rp |F + A83) = (1 -0)|¥°| .
where ¥° is the optimal value of (1.1).
Proof : First note that for any z € k™,
(38) wlp+z)=-KIRp|+Alp+2|f) + 4Rz |
Then for any z which satisfles (3.5),
—¥(p +2) 2 ¥(1-0)(||Rp P + A4%).
Moreover, il ¥° = y(p +2°) where |[p + z°|| < A then (3.5) and (3.8) imply that

—¥(p +2°) < ¥{| Rp I + A8%).

The last two inequalities yield Lemma (3.4). »

A consequence of Lemma (3.4) is that |y(p +2) ~y°| < o|y’|. This shows that if
(3.5) holds then p + = is a nearly optimal solution to problem {1.1).



A consequence of the proof of Lemma (3.4) is equation (3.8). This expression is
quite useful and will be used throughout this section.

Gay [1981] has a result similar to Lemma (3.4) but the proof is quite involved and
the assumptions are stronger than those in Lemma (3.4). Instead of {3.5), Gay's
assumptions imply that max{||p ]l./|z ]} < 4 and that

87 lp+zi=4, [(B+N)z|= (Z—)(IIR‘P % + Allp |I?).

Since ||p|| < A and ||z || < A. it is not difficult to show that (3.7) implies {3.5). A weak-
ness of (3.7) is that in the hard case it may be a severe restriction on A. This claim can
be made precise by first noting that (3.7) implies that

I+ Az ls COURIE+ Nip IR
Now, when ||p || < €A for some £ in (0,1) then ||z || = (1 —£)A and thus
I+ S (TZ(IRIE + Ne?.

Since £ can be quite small (specially if g is small) in the hard case, this estimate shows
that an algorithm based on {3.7) may require a large number of iterations in the hard
case. Note thal this weakness is not shared by (3.5).

The main use of Lemma {3.4) is in the hard case. In this situation we have A= 0
with B + A/ positive definite and the solution p of (2.2) satisfles ||p || < A. We can then
attempt to satisty (3.5) with z = 72 by letting 7 satisty ||p + 72 || = A and by choosing £’
with [|2 |} = 1 such that || RZ || is as small as possible.

Given z with ||z ]| = 1 and p with ||p || < A there are usually two choices of T which
gsatisfy |p + 72 || = A, and equation (3.8) implies that the choice wi ‘1 the smaller magni-
tude minimizes ¥(p + 7). This choice is

e — A -|p|?

PTZ + sgn(pT)(pT2) + (82 - lp )

A vector z with ||2 || = 1 surh that ]| RZ || is as small as possible can be obtained with
the LINPACK technique (Cline, Moler, Stewart, and Wilkinson [1979]) for estimating the
smallest singular value of a triangular matrix X. In this technique a vector e with com-
ponents +1 is selected so that the solution w to the system RTw = e is large. Essen-
tially the idea is to select the sign of the compenents of e to cause maximum local
growth of w as the forward substitution proceeds. Then the system Rv = w is solved
for v. The vector v has the property that

a~ R~lw - -~ _ VY
"Rl " = [ "w" where 2 = W

is close to the smallest singular value of #. In particular, if R is nearly singular then
| RE || is close to zero and this ensures that (3.5) is eventurlly satisfled by 2 = 72. This
algorithm is attractive because it is computationally inexpensive (roughly nt
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arithmetic operations) and quite reliable, but there are other possibilities, for exam-
ple. the algorithms of Cline, Conn, and Van Loan [1981].

An important ingredient of the iteration is the safeguarding required to ensure
that a solution is found. The safeguarding depends on the fact that ¢ is convex and
strictly decreasing on (—A;,%). This fact was discovered by Reinsch [1971] and follows
from (2.4). It implies that Newtoi's method started from A € {—A,;,=) with ¢(A) > 0 pro-
duces a monotonically increasing sequence converging to the solution of ¢(a) = 0. In
addition, if A € (—A;,=) and g(A) < 0 then the next Newton iterate A, is such that either
Ar s A or @(Ay) = 0.

The safeguarding scheme uses parameters Az, Ay, and Ag such that [A; . Ay ] is an
interval of uncertainty which contains the desired A, and Ag is a lower bound on —A,.

Safeguard A:
1) A := max{A,Az):
2) A := min{A. Ay);
3) It As As then A := max{0.001Ay, (ALAy)%);

Safeguarding schemes of this type have been used by Moré [1978] for the case in which
B is positive semidefinite and by Gay [1981] for the general case. The first two steps of
the safeguarding scheme ensure that A€[A;,Ay ] while the third step guarantees that
the length of the interval of uncertainty is reduced. The third step is critical; if the
length of the interval of uncertainty remains bounded away from zero then the third
step can only be executed a finite number of times. This last pcint will become clear
once we set down the rules for updating the safeguarding pararneters.

Given Ag and a trial A, the rules for revising As are as follows. If A € (—A;,») and
#(A) < 0 then compute T and # as described above and set

(3.8)  As := max(As.A—| RZ|[?).

If A < —A, then during the Cholesky decomposition of & + AJ it is possible to find 6 = 0
such that the leading submatrix of order! < n of

B + N + 39,7

is singular. In addition, it is possible to determine © € R™ such that
(B + M +é6eie,T)u =0

withy; =1andwy =0fori > 1. It tollows that

(38) As:= max(rg. A+ W

is & lower bound on —A,;.



Gay [1981] proposed updating Ag via (3.9) but (3.8) is new. Since || Rz | is usually
close to A + A, updating As via (3.8) tends to avoid trial A for which B + A/ is not posi-
tive definite and thus reduces the number of iterations required for convergence.

The rules for updating A; and Ay are fairly simple; they are presented in the fol-
lowing summary of the updating rules for the safeguarding parameters.

Update Az, Ay, As :
1) If A € (—A;=) and ¢(A) <0 then
Ag :=min{Ay,A) ;
else
Az := max(A; ,A);
2) Update As using (3.8) and (3.9);
8) Let Az := max{A; ,As);

Initial values for the safeguarding parameters are
As = max{-fy}

where By is the i-th diagonal element of B, and
ao=max(0.hs, Bhoypyy, Ay = Eleysy,

Other choices of initial values are possible, but these are simple and are particularly
effective for large values of ||g ||/ A.

The final ingredient of the iteration is the convergence criteria. The idea is to ter-
minate the iteration with a nearly optimal solution of problem (1.1). Given o, and 0 in
(0.1). and a trial A = 0 such that B + A/ is positive definite, a vector p is computed as in
Algorithm (3.2). If

(3.10) |A-llpll| =04 or [lpli=A A=0,

then the algorithm terminates with s = p as an approximate solution. The hard case is
taken into account by computing p and Z whenever ||p || < A, and it

(8.11)  ||R(r%)|? < 0,(R—0,) maxfag,|| Rp |F + A%

they the algorithm terminates with s = p + ¢ as the approximate solution.

An additional subtlety of the convergence tests is that if both (3.10) and (3.11) are
satisfied then we choose the approximate solution s for which ¥(s) is least. This is easy
to do because (3.8) shows that ¥/p + 12) < ¥{p) if and only if



| R(72) |7 = M4&° - ||p ).

This subtlety is not theoretically necessary but is nice to have from a computational
point of view. Also note that the factor of ,(R—0,) in (3.11) is needed so that in each

case ¥(s) satisfies a bound of the same form. This is made clear in the discussion that
follows.

We now show that {3.10) and (3.11) guarantee that i! the algorithm terminates then
the approximate solution s satisfies

(3.12) (s) -y = o0i(2—o)max{|y" .02}, lIslis(1+0y)A,

and thus s is a nearly optimal solution of (1.1). First consider (3.11). If
|| Rp ||? + AA? > o, then the assumptions of Lemma (3.4) are satisfied when o is replaced
by 0:(2--0,) and hence (3.12) holds for s = p + 7Z. Now suppose that || p |[? + A% =< ¢,
To establish that (3.12) holds in this case, first note that if ¥ =y{p +2z°) where
lp +2°{}= A then (3.6) implies that

19°| = " < Wil Bp I} + AA®) < Yoy .
We now use this result and (3.6) to obtain that
Y +72) = (I Rp |? + M%) + WIR(12) B <y + fo,(R - 0})0e.
Hence, (3.12) also holds in this case.
The next result shows that if the algorithm terminates when (3.10) is satisfled then

(3.12) holds with s = p.

Lamma (3.13). Let 0 < 0 < 1 be given and suppose that
B+N =RTR . (B+N)p=-g .A=0.

If ¥° is the optimal value of (1.1) andif ||p || = (1—0)A then
~¥(p) = J{1-0)*(Rp |? + M%) = (1-0)2| ¥°|.

Proof : Just as in the proof of Lemma (3.4), note that (3.8) holds for any zeR™ and
hence,

v < B1Rp I + A8
Moreover, (3.8) with z = 0 also implies that
—¥(p) = W1 -0)*(|| Rp |? + A4%).
The last two inequalities yield Lemma (3.13). ¢
We have now discussed all the ingredients of the iterative scheme for solving prob-

lem (1.1). The following algorithm summarizes these ingredients and deflnes a typical
iteration.
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Algorithm (3.14):
1) Sateguard A;

2) It B + A/ is positive definite then factor B + A/ = RTR ;
otherwise go to 5;

3) Solve RTRp = —3;

$)1t|pl <A compute Tand z ;

5) Update Az, Ay, As:

6) Check the convergence criteria;

7Y It B + M is positive definite and g # 0 then update A via Algr.rithm (3.2) ;
otherwise update Avia A := Ag ;

The last step of Algorithm (3.14) deserves some explanation. ! B + Af is positive
definite and g # 0 then the Newton iterate of Algorithm (3.2) tends to be a lower bound
on —A; for ||g || sufficiently small and thus updating A via Ag is a reasonable choice when
g = 0. Also note that setting A to Ag forces a safeguarded choice ci A 1n the next itera-
tion, and that this is a desirable strategy whenever the Newtor iteration cannot bo
used.

We now claim that after a finite number of iterations .\lgorithm (3.14) produces &
A€ (=Ap=) with (M) = 0 or an arbitrarily small interval of uncertainty. If we assume
that the length of the interval of uncertainty remains bounded away {rom zero then the
third step of the safeguarding scheme guarantees that A < A; only happens a finite
number of times. Now, if A < —A; then A< As holds on the next iteration. Finally, if
A€ (=A%) and (A} < 0 then recall that the next Newton iterate A, is such that either
A, < A, or ¢(A,)=20. The above argument shows that A, < —\; can only happen a
finite number of times, so eventually A, € (—?;,=) and ¢(A,) = 0. This establishes our
claim.

The importance of the above claim should be evident, given A€(~A; =) with
¢(A} = 0 then Algorithm (3.14) eventually satisfies (3.10), while if the interval of uncer-
tainty is small then R is nearly singular and it is ther. possible to satisfy (3.11). Thus
Algorithm (3.14) terminates ‘n a finite number of iteratizans with an approximate solu-
tion s which satisfles (3.12).

A frequent application of Algorithm (3.14) is to the solution of a sequence of prob-
lems of the form (1.1) in which only A is changing. In particular, in trust region
methods we need to solve a sequence of problems for decreasing values of A and then it
is possible to improve the initial choice of Az. Assume that A and A; are the final values
of these parameters for a specific value of A. Given a new value A, < A then Ay is still a
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ivwor bound for the new problem. Moreover, the convexity and monotonicity of ¢ shows
that an update of A based on a Newton step for

1 1

Q)= —— T——

P+ = A7 Tpal

is alvo a lower bouad for the riew problem. This improvement on the initial choice of A,
follows a suggestion of Ron Dembo.

One of the differcnces hetween Gay's [1981] algorithm and Algorithm (3.14) is that
in Gay's algorithm A = 0 is zlways tried first. I* is not at all clear that this is a desirable
strategy, and it seems prelerable to try A = O first only if the saleguarded A is zero.
Note that if B is positive cefinite and || B~'g || < A then Algorithm (3.14) terminates in at
most two iterations, In fact, if initially A > C then the convexity and monotonicity of ¢
and the positive definiteness of £ guarantee that the next trial A is zcro.

We have already mentioned that another difference is the updating of A5 via {3.8).
A final difference occurs when g = 0; Gay's algorithm does not apply in this situation,
but Algorithm (3.14) handles all cases.

4. Trust Region Methods in Unconstrained Minimization.

We now consider the use of Algorithm (3.14) in the context of trust region methods
for unconstrained minimization ar4 show how Algorithm (3.14} can be used to produce
an efficient and reliable version of Newton's method.

Let f : R®» R be a twice continuously differentiable function with gradient Vf and
Hessian ¥f. In Newton's method with a trust region strategy, each iterate z, has a
bound A; such that

J{m +w) N f(z) + e (w), lwlsA
where
Wa(w) = 91 (z)Tw + Y TR1 (zp )

In other words, ¥, is a model of the reduction in { within a neighborhood of the iterate
x,. This suggests that it may be desirable to compute a step s; which approximately
solves the preblem

(1) minfye(w): [|w ]| = Al

It the step is satisfactory in the sense that z, + s, produces a sufficient reduction in f,
then A; can be increased; if the step is unsatisfactory then A, should be decreased.

Algorithm (4.2). Let 0 < <7 <1 and 0 <y, <¥2 <1 <74 be specified constants.

1) Let zg€ R™ and A > O be given.

2)For k = 0,1,2, - - - until "convergence"
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a) Compute Vf (z;) and V2f (z;).
b) Determine an approximate solution s; to problem (4.1).

¢) Compute p, = J (zx "';:()s:)f (ze) _

d) If pp = uthen Ay := A€[y,Ar,72A] and go to b).

E) xk+1 = Iy + Sk .
1) It pp <mthen g,y € [¥ade Ac] else Ay € [A 73l ).

This is a basic form of Newton's method which does not include a scaling matrix for the
variables. To include a scaling matrix, subproblem (4.1) is replaced by

min{y, (w) : | Byw i} < A}

where Dy is a nounsingular matrix. We shall not discuss this generalization here; how-
ever, it is important to note that our resuits hold if {0, ] has uniformly bounded condi-
tion numbers.

In this section we are mainly interested in conditions on the approximate solution
s; of problem (4.1) which guarantee that the sequence §{z, | generated by Algorithm
{4.2) is convergent to a point z° with Vf{z*) = 0 and V2f (z") positive semidefinite, 2
minimal requirement on s; is that there is a § € (0,1) such that

—Y(sg) = fmaxt—y(w):w = a¥f (z;) . |lw | < &1, s lis b,

Under this assumption, Powell {1975] proved that if 4 = 0 then some subsequence of
{97 (zx)] converges to zero, while Thomas [1975] showed that if 4 > 0 then the whole
sequence {Vf (z;)] converges to zero. These results indicate that we can expect {z,} to
converge to a point z° with Vf(z*) = 0. Sorensen [1980] proved that we can also
expect to have V¢f (z°) positive semidefinite provided there is a constant o € (0,1) such
that

Vi (se) = minfy (w): jw || = 6] with ||s, || = 6 €[(1-0)Ae (1+0)A; ]

Unfortunately the termination criterion {3.11) is not necessarily consistent with these
conditions and thus this resuit does not allow the choice of s, provided by Algorithn
(3.14). An appropriate generalization of Sorensen's results car. be obtained by assum-
ing that there are constants #; > 0 and 8z > 0 such that

(43)  —Helse) = Bilve] with |Ise || < Boh,.

An immediate consequence of (3.12) is that if 9, # 0 then the approximate solution s,
provided by Algorithm (3.14) with o, = 0 satisfies (4.3). Of course, if ¥, =0 then
V7 (x:) = 0 and VS (z,) is positive semidefinite and thus Algorithm (4.2) terminates at
%y. Lernma (3.13) shows that Sorensen's assumptions imply that (4.3) holds.
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Assumption {4.3) can be expressed in an alternate form which is more convenient
for proofs of convergence. If p, € R™ is a solution to problem (4.1) then Lemma (2.1}
implies that there is a parameter A such that
Vef (za) + Nl = RIRe (V3 (Z) + Med)pe = V7 (T} A =0
and with A, (A; — |[px |[) = 0. A calculation now shows that

(4.4) 9| = ¥l Repe [ + AcAB).
This expression for ¥, shows that if (4.3) holds then

(4.5)  —yulse) = ¥B:(I| Repe IF + AAP),
and thus the iterates {z; ] generated by Algorithm (4.2) satisfy

(4.8)  f(z) = 1 (ze1) = b (|| Repy [P + A AB).

These two inequalities are essential to the proof of our next result.

Theorem (4.7). let f : R™ » R be tuice continuously differentiable on the level setf
N=fz:f(z)< f(zo)} and consider the sequence {zr,} produced by Algorithm (4.2)
where s; satisfies (4.3). If O is a compact set then either the algorithm terminates ct
2, € because Vf (z;) = 0 and V3f (z;) is positive semidefinite , or |z, | has a limit point
2’ €Qwith Vf (2°) = 0 and Vf (x *) positive semidefinite,

Proof : If Vf (z;) = 0 and V2f (x;) is positive semidefinite for some iterate z; € ) then the
algorithm terminates; otherwise (4.3) implies “hat ¥, (s;) < 0 for £ = 0 and thus iz, is
well defined and lies in ().

Let us now prove the result under the assumption that {A;{ is not bounded away
from zero. If some subsequence of {A;{ converges to zero then since 0 is compact we
can assume, without loss of generality, that the same subsequence of {z; ] converges to
some x° in the level set (). Since V2f (x,.)+ A,/ is positive semideflnite, V2f (z°*) is also
positive semidefinite , and Vf (z *) = O lollows by noting that

197 (=) 1P
IV2f (za) |} + Aa
and that (4.6) implies that {|| By ps ||} converges to zero.

We can show that {A;] is not bounded away from zero by contradiction. If
Ay = £ > 0 then {4.3) and (4.5) yield that

Y (se) = MM AR 2 K[%é‘]ﬂ!sh II2.

| Ry, I =

Now, a standard estimate is that
(48) | f(zu+s) —f(Z) —¥uis) | < Klsy I|’E&J{I|W1 (zp +€55) — VoS (23) Il
and thus the last two inequalities show that
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(4.9) lpx -1 |S [g%] gslg’f||vzf (me+ésk) -~ V3f (z) ||

Inequality (4.8) implies that {A,} converges to zero and hence §||s; ||| also converges to
zero. Thus the uniform continuity of ¥¥f on f) together with (4.9) implies that pg > 1
for all k sufficiently large and then the updating rules for A, yield that {A.} is bounded

away from zero. This is in contradiction of the fact that {A,] converges to zero. g

The result we have just established is only a sample of the available results for
Algorithm (4.7) under assumption (4.3) for s;. All of the results of Sorensen [1980]
hold, and in particular, it can be shown that if f has a finite number of critical points
in the level set (2 then every limit point of the sequence |z, satisfies the second order
necessary conditions. We now prove a stronger veusion of this result.

Lemma (4.10). Let x° be an isolated limil point of a sequence §z,} in R™. If {z,] does
not converge then there is a subsequence {x; j} which converges to z° and an £ > C such

that Hz,,“—a:,jﬂ =t
Proof: Choose £ > 0 so that if [z —~z°]| < ¢ and z is a limit point of §z,} thenz =z*. If
||::,,J—-z'|| < ¢ then define {; by

L =maxfl: )z —z*||<e,i =k, . U
In this manner, a subsequence {z; ’l is defined such that
lzy ~z°lls &, llzy e~z > e,

It folluws that {z, } converges to z*® and thus ”31, --x° || < Y for all §; sufficiently large.
Hence,

lzyy o1 =23, 1= llz 0 =2 || = |z ~2° )| = Y

as desired. g

Theorem (4.11). Let f :R™ + R be twice continuously differentiable on the level set
0=|z:f(z) < f(zo)} and consider the sequence {z,) produced by Algorithm (4.2)
where s, satisfies (4.3). If z° is an isolated limit point of {z, ] then V2f (z°) is positive
semidefinite.

Proot; If {z,} converges to z° then Theorem (4.7) shows ( the compactness of (1 is only
used to guarantee that {z,| is bounded ) that V2f (x ‘) is positive semidefinite. If {z,}
does not converge then Lemma {4.10) applies. Thus, if iz,,; is the subsequence
guaranteed by Lemma (4.10) then A, > B¢, and since (4.8) shows that {A\; Af} converges
to zero, (&’ } must then converge to zero. We can now use the positive semidefiniteness

of V8f (zx) + A [ to conclude that ¥y (z°) is positive semidefinite. »
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We have already noted that Thomas [1975) proved that {Vf (z,)] converges to zero.
Hence, it V2f (z*) is nonsingular at a limit point z° of {z;{ then z° is an isolated limit
point, and Theorem (4.11) shows that V2f (z°) is positive definite. Since ¥y (s;) < 0 we
have that

(4-12)  Mlise | s 1931 (=) " VS (ze)

whenever V2f (z,) is positive definite, and thus Lemma (4.10) shows that {z,} converges
to z°. This establishes the following result.

Thearem (4.13). Let f :R™ + R be twice continuously differentiable on the level set
Q=fz:f(z) < f(zo)] and consider the sequence {z,| produced by Algorithm (4.2)
where s, satisfies (4.3). If z° is a limit point of {z,} and V*f (z*) is nonsingular then
{zp} converges ta £* and V2f (z°) is positive definite. g

An additional result which is helpful in establishing rate of convergence results is
that under the assumptions of Theorem (4.13) the sequence {A;}] is bounded away from
zero. To prove this first note that it g5 > 0 is a lower bound on the eigenvalues of
V£ (z) then (4.4) shows that

| ¥x | = Yeomin{Ad,||sf/|I
where
sfl = —V2f (2)7'f (z2).

Now, (4.12) implies that ¥|s, || < x||sf’|| where « is an upper bound on the condition
number of V8f (z;), and hence assumption (4.3) shows that there is a constant £, > 0
with

Y (se) = Yoe,ll s, |12,
This estimate and (4.8) then yield ‘hat

’1_'] max(| VS (zy +és) = VS (=)l

-1

and thus p; > 7 for all k sufficiently large. It follows that {A;] is bounded away from
zero as desired.

Rate of convergence results can be obtained with the additional - but mild -
assumption that there is a constant 83 > 0 such that if ||s; || = fsA, then Véf (z,) is posi-
tive definite and s; = s{ For example, Algorithm (3.14) satisfles this assumption
because if [|s; || < (1-,)A; then Az = 0.

Under the above assumption, Theorem (4.13) can be extended to show that fz, !
converges to z° with a Q-superlinear rate of convergence and that if ¥f is Lipschitz
continuous then the rate of convergence is quadratic. The proof is not difficult; since
Wiss || < «||s¥|| where x is an upper bound on the condition number of the Hesslan
matrix at z,, eventually ||s; || < Sy, and then {z,] becomes an unmodified Newton's
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method. The rate of convergence results are then standard.

6. Computational Resuits.

Algorithm (3.14) has been implemented in a Fortran subroutine GQTPAR, and in
this section we present the results of GQTPAR on two sets of test problems. Since our
main concern here is the performance of GQTPAR in a trust region method, we used
0, = 0.1 and o = 0 in the convergence criteria (3.10) and (3.11). The reason for setting
oz = 0 is that o; is only required to deal with the case where g = 0 and F is positive
semidefinite and singular, and in this situation, a trust region method terminates. The
initial choice of A depends on the test and is described below. All tests were performed
in double precision on a VAX 11/780. This provides an accuracy of about 17 significant
decimal digits. '

The first set of tests is concerned with the performance of GQTPAR in the context
of a trust region Newton's method. The test problems used are the 18 unconstrained
minimization problems described in Moré, Garbow, and Hilistrom [1981a]. For each
problem it is possible to specily a set of starting points, and in 8 of the preblems it is
also possible to specify the dimension. A particular set of test cases is defined by the
data provided to the test drivers. We used the sample data provided in Moré, Garbow,
and Hillstrom [1981b] which defines 52 test cases.

The trust region Newton's method used follows Algorithm (4.2) and proved to be
quite successful on these problems. Details of the Newton method will appear else-
where. For the purposes of this paper it suffices to remark that on the first call Lo
GQTPAR the initial A is zero, but on succeeding calls the initial A is the same as the final
A from the previous call of GQTPAR. At the end of Section 3 we pointed ou! that it is
possible to obtain a more educated guess for the iritial A, but this choice provides a
stringent test of GQTPAR.

The performance of GQTPAR on these problems was very satisfactory. There werz
2580 calls to GQTPAR and the average number of iterations per call was 1.63; the larg-
est number of iterations was 10. In about 20% of the calls convergence criteria (3.11)
was satisfied.

The second set of tests is designed to exercise the various features of GQTPAR as
an individual algorithm on problems of type (1.1). For these problems we decided to
use

(6.1) a=lall
A

as the initial A. Unless other information is available, this is a reasonable automatic

choice, In these problems we generated sequences of uniformly distributed random

numbers with the RAND function of Schrage [1979]. Given an integer seed, RAND gen-

erates a random number in {0,1) and changes the seed. Thus a sequence of random
numbers can be generated by repeated calls to RAND.

A convenlent way to define a problem of type (1.1) is to set B = QDQ” for some
orthogonal matrix @ and diagonal matrix D, and to then let g = @f for some vector §.
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This rmakes it possible to generate a (potentially) hard case by setting to zero the com-
penent of § corresponding to the smallest element of D. The structure of B is scram-
bled by choosing the orthogonal matrix @ of the form @,@>@3 where

T
% i =123,
flvwj 1}
and the components of w; are random numbers uniformly distributed in (-1,1). A prob-
lem of type (1.1) can be generated be specifying A, g. and D; different choices lead to
problems with various characteristics.

We consider four different ways of specifying § and D. In all four cases, the ele-
ments of § and D are initially chosen as uniformly distributed random numbers in (-
1,1). This choice leads to the general case; as mentioned above, a hard case can then
be obtained by setting to zero the component of § corresponding to the smallest ele-
ment of D. A positive definite case is obtained by replacing D by | 2|, and in the saddle
point case all the components of g are set to zero.

Q,=I-—2

The choice of A is critical; if A is chosen from (0,1) then the tests are easy because
(5.1) is almost always an excellent choice. A harder test is obtained if A is chosen as
uniformly distributed from (0,100), and this choice is made in our tests. We have
observed that a wider distribution in the choice of A does not affect the results
significantly, and that the range {(0,100) appears to be the hardest choice for these
problems.

We now present the results of tests in each of the above four cases and {or dimen-
sions 10, 20, 40, 60, 80, and 100. For each case and each dimension we generated 5
problems and recorded both the average and the maximum number of iterations
required for convergence. The results are presented in the tables below.

Table 1. The General Case.

Number of iterations
Dimension | Average | Maximum
10 2.0 4
20 2.8 5
40 3.2 4
80 3.0 4
80 3.2 4
100 4.0 5

AL interesting aspect of the results for the general case is that Algorithm {3.14)
terminated on condition (3.11) in 26 out of the 30 cases. This shows that {3.11) is
powerful enough to terminate the algorithm even on non-hard cases. For smaller
values of g,, however, it is more difficult to satisfy (3.11) and this gives GQTPAR a
chance to produce an iterate A > =\; with p(A) > 0. Once this cccurs, the Newton



fteration converges quadratically and (3.10) is eventually satisfled. As noted above, the
results improve for smaller choices of 3, and for example, if A is chosen from (0,1) then
the maximum number of iterations is 2.

Table 2. The Hard Case.

Number of iterations
Dimension ; Average Maximum
10 18 3
<0 2.2 3
40 3.0 3
60 2.8 3
B0 3.2 4
100 3.2 4

The results ¢f Table 2 show that the hard case, once recognized and treated prop-
erly, can ke handled with the same computational eflort as the general case. In con-
trast to the general case, the results for the hard case are sensitive to the choice of 0,
since in this case it is necessary to determine A; and Algorithm (3.14) determines A,
with a bisection-type process. Another interesting point is that for these problems
Algorithm (3.14) does not always terminate on condition {3.11) since the hard case only
ocecurs if A is greater than ¢¥(-X,). This situation is avoided in the saddle point case by
choosingg =0.

Table 3. The Saddle Peint Case.

Number of iterations

Dimension { Average | Maximum
|10 1.6 3
20 2.0 2
40 2.8 J
60 3.0 4
80 3.6 4
100 3.2 4

The saddle point case is unusual because the algorithm and the results are
independent of the choice of A, and termination always occurs on condition (3.11).
Although setting g = 0 is an extreme choice, the numerical results are insensitive to
the choice of g provided the components of g are sufficiently small. For example, if the
components of g are chosen from (-1 07,1079 then the number of iterations increases
by 1 in two of the problems, but otherwise the results are unchanged.
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In the positive definite case, the choice of A as a unitormly distributed random
number from (0,100) resulted in exits with A = 0 in about half the problems, and this
explains why the average number of iterations is close to 2. On the other hand, if A is
chosen from (0,1) then (5.1) leads to termination on the first iteration.

These results show that GQTPAR performs adequately in all cases. In particular,
the dimension of the problem has no apparent correlation to the number of iterations
required for convergence. As expected, a smaller value of 0, requires more iterations,
but the increase is surprisingly small in most cases. The choice ¢, = 0.1 is very satis-
factory in many cases since it does not require a large number of iterations and pro-
duces a nearly optimal approximate solution as predicted by the theory.

6. Concluding Remarks.

We have presented an algorithm for the constrained quadratic minimization prob-
lem (1.1) and reported the computational results of the implementation GQTPAR. This
implementation uses the Cholesky factorization to solve systems of the form

(B+Mu=v,
but it is possible to use other factorizations. For example, the decomposition
(6.1) B =¢QTQT
where Q is orthogonal and T is tridiagonal leads to systems of the form
(T+AN)w=QTv, u = Qu,

and since Algorithm (3.14) is invariant with respect to orthogonal transformations, it is
possible to produce an implementation which only requires on the order of n arith-
metic operations per iteration. We have not used this factorization because we expect
GQTPAR to be used in a trust region method , and in this case our numerical results
show that a call to GQTPAR requires less than two Cholesky factorizations on the aver-
age.

Another argument against the use of factorization {6.1) is that it usually ignores
the structure of 5. In particular, for sparse systems the Cholesky factorization offers
many advantages. Good software based on the Cholesky factorization currently exists
for the solution of positive definite linear systems, and this together with an estimator
of the smallest aingular value of a sparse upper triangular matrix is all that is required

to provide a trust region Newton's method for optimization problems with a sparse Hes-
sian matrix.

It would be of interest to develop a method for large scale problems of type (1.1)
which does not require the solution of linear systems. lterative approaches along the
lines of conjugate directions or Lanczos type methods have been considered, but a
complete solution is not known to us.
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