
PETITIONS Ganging up on 
research damages scientific 
discourse p.480

HISTORY Heroism, intrigue 
and posturing abound in a 
history of Antarctica p.478

ANTHROPOLOGY Jared Diamond’s 
paean to traditional societies, 
reviewed p.477

ENERGY Critics of energy-
efficiency policy overplay 
the rebound effect p.475

A vision for data science 
To get the best out of big data, funding agencies should develop shared tools for 

optimizing discovery and train a new breed of researchers, says Chris A. Mattmann. 

I believe that four advancements are 
necessary to achieve that aim. Methods for 
integrating diverse algorithms seamlessly 
into big-data architectures need to be found. 
Software development and archiving should 
be brought together under one roof. Data 
reading must become automated among 
formats. Ultimately, the interpretation of 
vast streams of scientific data will require a 
new breed of researcher equally familiar with 
science and advanced computing. 

ALGORITHM INTEGRATION
A project by my team at the JPL illustrates 
the challenges of working with big data. In 
2011, we were asked by the US National 
Climate Assessment to establish a 

(1012 bytes) are now common in Earth and 
space sciences, physics and genomics (see 
‘Data deluge’). But a lack of investment in 
services such as algorithm integration and 
file-format translation is limiting the ability 
to manipulate archival data to reveal new 
science. 

At the Jet Propulsion Laboratory (JPL) 
in Pasadena, California, I am a principal 
investigator in a big-data initiative, pursu-
ing projects on data archiving and mining, 
smart algorithms and low-power hardware 
for astronomy and Earth science. Rather than 
finding one system that can ‘do it all’ for any 
data set, my team aims to define a set of archi-
tectural patterns and collaboration models 
that can be adapted to a range of projects. 

T
wo small words — ‘big data’ — 
are getting a lot of play across the  
sciences. Funding agencies, such as 

the National Science Foundation and the 
National Institutes of Health in the United 
States, have created million-dollar pro-
grammes around the challenges of storing 
and handling vast data streams. Although 
these are important, I believe that agencies 
should focus on developing shared tools for 
optimizing discovery. 

Big data are big in three ways: the volume 
of information that systems must ingest, 
process and disseminate; the number and 
complexity of the types of information 
handled; and the rate at which information 
streams in or out. Terabyte-sized data sets 

A satellite image of snow on the Hindu Kush mountains in Asia, with regions of high absorption of sunlight by dust and black carbon shaded in red.
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DATA DELUGE
The billions of terabytes (TB) produced in one year 
by the SKA telescope (grey) will dwarf today's data 
sets in genomics and climate science.

US National
Climate Assessment

(NASA projects), 2013

1,000 TB

Fifth assessment report
by the Intergovernmental
Panel on Climate Change

(IPCC), due 2014

2,500 TB

Square Kilometre Array 
(SKA), first light due 2020

22,000,000,000 TB
per year

Encyclopedia of
DNA Elements

(ENCODE), 2012

15 TB

computing facility to integrate a range of 
snow-related measurements — and to do so 
in a month. The data included observations 
from the western United States, Alaska and 
the Hindu Kush–Himalayan regions, as well 
as the entire Earth-observing record since 
2000 and subsequent monitoring. The data 
products and maps would amount to several 
hundred terabytes.

The algorithms to be incorporated were 
varied, and included codes for estimating 
snow coverage, grain size and absorp-
tion of solar radiation by dust and black  
carbon1. They had been written in IDL, a 
specialized programming language used by 
many researchers. Geographers, remote-
sensing experts and software programmers 
contributed.

Most computer scientists would assume 
that such a system would take years, not 
weeks, to develop. The algorithms would 
presumably have to be rewritten in a stand-
ard language such as C++, Java or Python, 
or one that could run on a fast computer 
system or infrastructure, such as Google’s 
Map Reduce model. 

But, in my experience, there is no need 
to rewrite scientific algorithms for big-
data systems. Rewriting only increases the  
barriers to communication between scien-
tists and computer engineers. Rewriting can 
also introduce costly errors.

Computer engineers should trust  
scientists to produce executable algo-
rithms, which can be plugged into a larger 
processing framework. The skill is in tying 
the input and output files and relevant 
parameters unobtrusively into the big-
data network, so that the algorithm can 
run seamlessly within it. With a modu-
lar approach, development can proceed 
quickly in parallel — we constructed our 
snow-science computing facility this way 
in less than a month. 

DEVELOPMENT AND STEWARDSHIP
Today, different big-data computing tasks 
are usually undertaken by different teams. 
The bulk of agency funding goes to building 
specific long-standing archives or data grids2 
— systems such as the NASA Earth science 
Distributed Active Archive Centers or the 
International Virtual Observatory Alliance in 
astronomy — that disseminate, preserve and 
steward3 data. Large archives have received 
an average of US$100 million a year from US 
federal agencies over the past decade. 

By contrast, the development, integration 
and updating of science algorithms receives 
only between $1 million and $5 million per 
year in the United States. These tasks are 
carried out in science-computing facilities, 
which are often small and transient. Because 
they must do more for less, such facilities 
largely use and generate community-based 
open-source software4–6. Examples include 

Apache Hadoop7 and Apache Tika8, used 
in Earth science, biomedicine and business. 

Although data interpretation and archiv-
ing efforts have so far been funded separately 
and at strikingly dissimilar levels, their needs 
— such as workflow processing and file and 
resource management — are complemen-
tary and overlapping. As storage and com-
putation costs fall, algorithm developers are 
moving into preservation, both to archive 
their own work and to open new research 
windows on large data sets that were previ-
ously closed.

In the next decade, I believe that archives 
and science-computing facilities must merge. 
The international radio-astronomy commu-
nity is doing so in preparation for the Square 
Kilometre Array radio telescope, due to see 
first light in 2020. The enormous volume of 
data that the array will produce — 700 tera-
bytes each second — will, after just a few 
days, eclipse the current size of the Internet. 
Archives in the United States such as those at 
the National Radio Astronomy Observatory’s 
Expanded Very Large Array and the Atacama 
Large Millimeter/submillimeter Array are 
developing software to handle that deluge. 

MANY FORMATS
Big-data systems must deal with thousands 
of file types and conventions. The commu-
nities that have formed around informa-
tion modelling, ontology and semantic web 
software address this complexity of data and 
metadata (descriptive terms attached to files) 
to some extent. But they have so far relied on 
human intervention. None has delivered the 
silver bullet: automatic solutions that iden-
tify file types and extract meaningful data 
from them.

Comparisons of observational and model 
data are, for example, under construction for 
the US National Climate Assessment and the 
Coupled Model Intercomparison Project of 
the Intergovernmental Panel on Climate 
Change. NASA uses the Hierarchical Data 
Format version 5 (HDF-5) and the HDF-
Earth Observing System metadata repre-
sentation. The outputs of climate models 
are stored in the Network Common Data 
Form, typically with climate and forecast 
metadata conventions9. Automatic methods 
will be needed to match and analyse these 
data, which amount to petabytes (1015 bytes). 

Some big-data fields are switching to 
formats like these that have better sup-
port. Astronomers, for instance, are turn-
ing to NASA’s HDF-5 file format from the 
Flexible Image Transport System that has 
been their standard. But history shows 
that defining a single, unifying file for-
mat is not the answer, because prolifera-
tion of file types will continue. Instead, we 
need a toolkit of automatic ways to boil 
file formats down to their essence, and 
more formats that are amenable to those 
approaches. We need flexible systems that 
can perform multiple functions and deal 
with diverse data. Encouraging efforts are 
under way, including with Apache OODT10 
and Apache Tika8.

PEOPLE POWER
To solve big-data challenges, researchers 
need skills in both science and computing 
— a combination that is still all too rare. A 
new breed of ‘data scientist’ is necessary. 

As well as being data stewards, data  
scientists will develop bespoke algorithms 
for analysis and adapt file formats. They 
will understand the mathematics, stat-
istics and physics necessary to integrate 
science algorithms into efficient architec-
tures. They will find solutions beyond the 
fragmented community efforts that have 
dominated the past decade of development 
of big-data systems. 

Funding agencies should support comput-
ing facilities that combine big-data steward-
ship and software development, employing 
data scientists to bridge the gap. Coordina-
tion between agencies is crucial to avoid 
duplication. The Big Data Senior Steering 
Group, linking efforts across the National 
Science Foundation, the National Institutes 
of Health, NASA and others, is a promising 
early example. More oversight will be needed 
to establish new working patterns. 

Because big-data fields stretch across 
national as well as disciplinary boundaries, 
such facilities and panels must be interna-
tional. In centres of excellence around the 
world, such as the JPL, data scientists will 
help astronomers and Earth scientists to 
share their approaches with bioinformati-
cians, and vice versa.
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For the specialism to emerge and 
grow, data scientists will have to over-
come barriers that are common to 
multi disciplinary research. As well as 
acquiring understanding of a range of 
science subjects, they must gain aca-
demic recognition. Journals such as the 
Data Science Journal should become 
more prominent within the comput-
ing community. Software products and 
technologies should be valued more by 
academic committees. 

New interdisciplinary courses will 
be needed. The University of Califor-
nia, Berkeley, and Stanford University 
in California have set up introductory 
courses for computer scientists on big-
data techniques — more universities 
should follow suit. Natural scientists, 
too, should become familiar with com-
puting and format issues.

In my lectures for computer-science 
graduates, I have brought together stu-
dents at the University of Southern Cali-
fornia in Los Angeles with researchers at 
the JPL. Using real projects, my students 
see the challenges awaiting them in their 
future careers. I hope to employ some of 
them on the projects that will flow from 
the JPL’s big-data initiative. The technolo-
gies and approaches that they develop will 
spread beyond NASA through contribu-
tions to the open-source community.

Empowering students with knowledge 
of big-data infrastructures and open-
source systems now will allow them to 
make steps towards addressing the major 
challenges that big data pose. ■
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B
uy a more fuel-efficient car and you 
will spend more time behind the 
wheel. That argument, termed the 

rebound effect, has earned critics of energy-
efficiency programmes a voice in the  
climate-policy debate, for example with an 
article in The New York Times entitled ‘When 
energy efficiency sullies the environment’1. 

The rebound effect idea — and its extreme 
variant the ‘backfire’ effect, in which 

supposed energy savings turn into greater 
energy use — stems from nineteenth-century 
economist Stanley Jevons. In his 1865 book 
The Coal Question, Jevons hypothesized  
that energy use rises as industry becomes 
more efficient because people produce and 
consume more goods as a result2.

The rebound effect is real and should be 
considered in strategic energy planning. 
But it has become a distraction. A vast 

The rebound effect 
is overplayed

Increasing energy efficiency brings emissions savings. 
Claims that it backfires are a distraction, say Kenneth 

Gillingham and colleagues. 

Fuel-efficient cars cost less to run, so people might use them a little more.  
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